网络分析仪 使用A+Bf公式建立规格的简易说明

合集下载

网络分析仪详解

网络分析仪详解

网络分析仪原理详解1 网络分析理论网络是一个被高频率使用的术语,有很多种现代的定义。

就网络分析而言,网络指一组内部相互关联的电子元器件。

网络分析仪的功能之一就是量化两个射频元件间的阻抗不匹配,最大限度地提高功率效率和信号的完整性。

每当射频信号由一个元件进入另一个时,总会有一部分信号被反射,而另一部分被传输,类似于图所示。

这就好比光源发出的光射向某种光学器件,例如透镜。

其中,透镜就类似于一个电子网络。

根据透镜的属性,一部分光将反射回光源,而另一部分光被传输过去。

根据能量守恒定律,被反射的信号和传输信号的能量总和等于原信号或入射信号的能量。

在这个例子中,由于热量产生的损耗通常是微不足道的,所以忽略不计。

我们可以定义参数反射系数(G),它是一个包含幅值和相位的矢量,代表被反射的光占总(入射)光的比例。

同样,定义传输系数(T)代表传输的光占入射光的矢量比。

下图示意了这两个参数。

通过反射系数和传输系数,我们就可以更深入地了解被测器件(DUT-device under test)的性能。

回顾光的类比,如果DUT是一面镜子,你会希望得到高反射系数。

如果DUT是一个镜头,你会希望得到高传输系数。

而太阳镜可能同时具有反射和透射特性。

通过反射系数和传输系数,你可以更深入地了解被测器件(DUT)的性能。

回顾光的类比,如果DUT是一面镜子,你会希望得到高反射系数。

如果DUT是一个镜头,你会希望得到高传输系数。

而太阳镜可能同时具有反射和透射特性。

电子网络的测量方式与测量光器件的方式类似。

网络分析仪产生一个正弦信号,通常是一个扫频信号。

DUT响应时,会传输并且反射入射信号。

传输和反射信号的强度通常随着入射信号的频率发生变化。

DUT对于入射信号的响应是DUT性能以及系统特性阻抗不连续性的表征。

例如,带通滤波器的带外具有很高的反射系数,带内则具有较高的传输系数。

如果DUT 略微偏离特性阻抗则会造成阻抗失配,产生额外的非期望响应信号。

网络分析仪使用

网络分析仪使用

网络分析仪使用VECTOR NETWORK ANALYZER网络矢量分析仪WLAN&GPRS1.概述1)NETWORK ANALYZER 的主要的测量对象如下:●Transmission measurement of magnitude and phase (传输线的测量)●Reflection measurement of magnitude and phase (反射系数的测量)●Measurements of bandwidth, Q factor and shape factor ofa filter(滤波器参数测量)2)测量的基本步骤●Measurement task确定所要测的任务●Connection of the DUT连上DUT,这里DUT的种类有很多,调试的可分为short,open,matching,through四种,这种接口是分male和female的。

还可以连接attenuator,实验室里有10db/div和1db/div两种,还可以连接filter,实验室目前没有此装备。

●Reset of instrument(preset)在仪器的左下方有一个preset键,用于将所有的设置参数default。

●Setting the instrument设置一些测量时所需要的参数,主要是frequency span设置,这些操作与spectrum analyzer相同。

以及sweep time和scale的设置。

●Performance of calibration这其实是很重要的一步,在测试之前就像power meter的零校准一样也需要校准。

连接线本身就有一定的衰减,大概在-2db左右,且随着frequency 的变化而变化,network analyzer能够补充这些误差,将误差调零。

●Performance of the measurement.校准结束后,就可以通过network analyzer来分析你所需要测的量了。

网络分析仪原理及操作培训

网络分析仪原理及操作培训
网络分析仪原理及操作培 训
网络分析仪原理
深入探讨网络分析仪的基本原理,包括信号解析、频谱分析和波动分析。了解其在网络故障诊断中的关键作用。
网络分析仪操作说明
1
连接设备
学习如何正确连接网络分析仪与被测设备,并确保准确的信号采集。
2
设置测量参数
详细了解如何根据需求设置测量参数,包括频率范围、带宽和增益等。
网络分析仪操境因素 的影响,尽量在低干扰环境 下进行测量。
正确校准
定期校准仪器,确保测量结 果的准确性和可靠性。
数据解读
学会正确解读测量数据,结 合实际场景进行问题分析和 故障排查。
网络分析仪常见问题及解决方法
无法连接设备
检查网络连接、设备设置以及驱 动程序是否正确安装。
测量结果异常
测量精度问题
排查设备故障、信号干扰等因素, 并参考厂商文档进行适当的疑难 解答。
检查仪器校准情况,保证测量结 果的准确性。
网络分析仪的应用案例
1
无线网络排障
利用网络分析仪分析无线信号,定位并解决无线网络中的故障。
2
网络容量规划
通过测量网络流量和带宽利用率,优化网络规划和资源分配。
3
网络安全检测
通过监测网络流量和识别异常行为,发现并抵御潜在的网络安全威胁。
网络分析仪在电信行业中的重 要性和作用
介绍网络分析仪在电信行业中的广泛应用,包括网络故障排查、网络优化和 服务质量保障。
3
执行测量
掌握如何进行各种测量操作,比如频谱分析、时域分析和网络监测等。
网络分析仪使用的主要功能和特点
1 频谱分析
通过频率分析技术,准确 测量并显示信号的频谱分 布。
2 时域分析

网络分析仪的设置与基本原理

网络分析仪的设置与基本原理

网络分析仪的设置与基本原理一、网络分析仪简介当提出“网络分析仪(Network Analyzer)”这一名字的时候,还没有计算机网络。

所以网络是指电子元、器件。

并非现在流行的计算机网络。

网络分析仪能对被测量器件(主要分为有源元件和无源元件 )的线性和非线性特性(幅频特性,相频特性,时频特性,功率频率特性等)进行表征。

如放大器、混频器、双工器、滤波器、耦合器和衰减器等,这些元件不仅用在诸如手机之类的常用和廉价的系统中,还被遥到通信或雷达系统这一类复杂和昂贵的系统中。

元件可能有一个端口(输入或输出端口)或多个端口。

对每一个端口的输入特性以及从一个端口到其它端口的转移特性进行测量的能力,可以为设计人员在对大型系统配置元器件时提供充分的依据。

二、网络分析仪的分类主要分为:标量网络分析仪和矢量网络分析仪。

标量网络分析仪只能测量S参数的幅度部分,测量的结果包括传输增益和损耗,回波损耗和驻波比等。

矢量网络分析仪是网络分析仪中功能最强的一类,它能在5HZ直到110GHZ的频率范围内进行测量。

如:S参数、幅度和相位、传输增益和损耗,回波损耗和驻波比(SWR)、群延迟、反射系数等。

注意行业使用的网络分析仪都是矢量网络分析仪,而且大多数是安捷伦生产的,所以这里所讲的网络分析仪都是针对安捷伦仪器。

1. 调试一般使用 E5070B2. 测试一般使用 HP8753ES / HP8753D3. Outband 测试一般使用 HP8719ES / HP8753C / N5232三、网分的结构图1-1 网络分析仪的结构图如上图所示,矢量网络分析仪的硬件由 1. 信号源; 2. 信号分离装置; 3. 接受、检测装置; 4. 显示、处理单元; 5. 被测件组成。

具体详细描述:1. 扫频信号源信号源提供被测件激励信号,由于网络分析仪要测试被测件传输/反射特性与工作频率和功率的关系,所以,网络分析仪内信号源具备频率扫描和功率扫描功能。

为保证测试的频率精度,现在网络分析仪内信号源采用频率合成方法实现。

西门子MAXUM II操作简易技术手册

西门子MAXUM II操作简易技术手册

西门子MAXUM II在线色谱简易操作技术手册R evision 2006-12-12 PI&PA Technical Service Center目录1、概述2、色谱一词的由来与相关的基本概念3、西门子MAXUM II色谱分析仪的特点4、MMI操作详述5、Maxum System Manager应用详述6、Maxum EZChrom应用详述7、Maxum Utilities应用详述8、如何调校西门子MAXUM II色谱分析仪9、西门子MAXUM II色谱分析仪的故障分析10、分析系统调试的具体步骤及每步所能达到的指标11、分析系统开车前对自身及外界条件的要求第 1 页共48 页1、概述这套西门子MAXUM II色谱分析仪操作技术手册是由西门子(上海)分析仪器工程有限公司的技术服务人员根据西门子在线色谱分析仪的技术资料编制的。

其目的是为了方便用户的技术人员与岗位操作人员能够对西门子MAXUM II色谱分析仪有比快捷方便的了解并提高对色谱的操控能力。

编者本着源于实践、用于实践的原则,根据用户现场的实际情况,尽可能做到让读者从不了解到了解,从不精通到精通。

手册适用4.0版本的数据库系统,手册内提到的技术相关问题全部来源于西门子编制的MAXUM II色谱分析仪说明书,如有疏漏与错误请查阅西门子发行的正规说明书或询问西门子的相关技术人员。

2、色谱一词的由来与相关的基本概念●什么是色谱一个俄罗斯植物学家茨维特,在1906年发明了色谱并命名了许多术语。

他把碳酸钙粉末装进一根玻璃管里形成一根“(色谱)柱”,然后把一小体积的树叶色素的石油醚溶液加在柱子上,用石油醚冲洗柱子。

各种色素以不同的速度移动并彼此分离开来。

碳酸钙粉末被茨维特称为固定相,而石油醚则是流动相。

流动相推动样品通过柱子,而固定相阻碍样品中组分的移动。

样品组分通过基于它们与固定相的不同作用而造成的差速移动而被分离。

他们与固定相间的作用可以是吸附、分配、离子交换、分子排阻等。

via-bravo-网络分析仪手册

via-bravo-网络分析仪手册

便携式网络分析仪简易使用说明型号:VIA BRAVO MRI
制作:计师衡
修改:黄小苏
版本:V1.0A
1.网络分析仪各个组件连接示意图(电池模式)50欧姆电缆(10米)DC Block 组件(Pomona 5297)网络分析仪本体(装载8节5号碱性电池)
50欧姆终端
Short 终端
2. 使用方法
(1)设置中心频率:
直接在键盘上输入需要的中心频率,例如12.700MHz就依次键入1,2,7,0,0;本机自动识别位数,如下图所示,输入完成后按ENTER键确认,仪器自动校正至所设频率。

(2)设置带宽
直接在键盘上输入需要的带宽,推荐使用1MHz,键入1,0,0,0,待1移到小数点左侧,即表示1MHz,按WIDTH∧或∨键确认,仪器自动校正至所设带宽。

(3)模式选择和校正(用WIDTH∧∨键上下选择)
(a)按下F2键,进入到如下图所示菜单,“INSTRUMENT MODE”,按ENTER键确定
(b)进入到如下图所示界面,选择“VECTOR IMPEDANCE ANALYZER”,按ENTER键确定
(c)进入到如下图所示界面,选择”SWEEP (WITH CABLE)“,按ENTER键确定
(d)设置完模式后自动进入到校准步骤,按照提示连接不同的终端头完成校准。

(4)使用一次后,第二次开机再用设备会保存上次所设定的频率及带宽
但是每次都必须重新执行步骤(3),进行F2模式选择,校准后再使用。

3.使用完成后, 请将电池取出保存, 避免长时不用导致电池漏液损坏仪器. 发货时也请注意取出电池后再发货.
祝大家使用愉快!。

网络分析仪的原理介绍

网络分析仪的原理介绍网络分析仪(Network Analyzer)是一种高性能、高精度的电子测试仪器,用于测量和分析电路的电参数和传输特性。

它可以测量电路的传输损耗、反射系数、输入输出阻抗以及频率响应等,是测试和分析电路特性的重要工具。

基本原理网络分析仪基于S参数测量原理进行工作。

S参数是指散射系数(Scattering Parameters),用于描述线性恒定、无耗电路的传输特性。

S参数有四个参数:S11、S12、S21、S22,它们分别表示反射系数、传输系数和互反射系数。

网络分析仪通过向待测电路输入信号并测量电路的反射和透射信号,计算出电路的S参数。

具体来说,网络分析仪工作时,首先会向被测电路的端口输入信号,然后独立地测量相应端口上的反射信号和透射信号,再根据测量结果计算出被测电路的S参数。

工作原理网络分析仪的工作过程可以分为两部分:向电路输入信号和测量电路响应。

其中,向电路输入信号可以使用多种方式实现,例如向设备输出微波信号或者利用负载电路激励器向管件输入信号。

电路响应的测量则可以通过如反射法、传输法等多种方法实现。

其中,反射法是一种较为常见的测量方法。

在反射法中,指向设备的微波信号被分为两部分,一部分沿着电路传输,一部分被反射回来。

通过测量这两部分信号的幅度和相位,就可以计算出反射系数,进而反向计算出电路的S参数。

传输法则是另一种常用的测量方法。

在传输法中,电路的输入和输出之间的信号被测量。

传输法测量电路的传输系数,它是指从输入到输出的信号传输比例和相位关系。

通过测量输入和输出信号的幅度和相位,就可以计算出电路的传输系数,进而反向计算出电路的S参数。

应用场景网络分析仪在电路分析中的应用非常广泛,常见的应用场景包括:1.传输参数测量:用于测量和确定电路的传输损耗、传输相位等传输参数,进而分析电路性能。

2.反射参数测量:用于测量和分析电路的反射损耗、反射系数等反射参数。

3.阻抗测量:用于测量电路的输入输出阻抗,进而评估电路性能和匹配性。

网络分析仪的校准方法

网络分析仪的校准方法网络分析仪(Network Analyzer)是一种用于测量和分析电路、设备或系统中信号传输和传输特性的仪器。

为了确保测量结果的准确性,网络分析仪需要定期进行校准。

以下是网络分析仪的校准方法及其主要步骤。

1. 校准需求分析在进行校准之前,需要明确校准的目的和要求。

根据测量对象和应用要求,确定准确度、频率范围、阻抗范围等校准参数。

2. 校准器件准备校准前需要准备标准校准器件,如标准电阻、标准电容、标准电感等。

这些标准器件需要具有高精度和稳定性。

3. 平面校准网络分析仪的平面校准是指对测试仪器的各个通道进行校准,包括接收通道和发射通道。

平面校准分为开路校准、短路校准和负载校准三个步骤。

- 开路校准:将校准器件中的信号引线断开,将通道连接到开路校准器件上,并进行校准,以消除通道中的开路时的反射。

校准过程中会通过测量仪器记录反射系数和相位信息。

- 短路校准:将校准器件中的信号引线短接在一起,将通道连接到短路校准器件上,并进行校准,以消除通道中的短路时的反射。

- 负载校准:将校准器件中的信号引线连接到标准负载上,将通道连接到负载校准器件上,并进行校准,以消除通道中的负载时的反射。

完成平面校准后,网络分析仪的通道会自动消除对应的开路、短路和负载时的反射影响,从而提高测量结果的准确性。

4. 扩展校准平面校准只能消除通道内的反射影响,而不考虑传输线路的传输特性。

为了更准确地反映被测设备或系统的性能,需要进行扩展校准。

扩展校准包括传输校准和参考平面校准。

- 传输校准:通过直接连接参考平面并扫描自由空间校准进行传输校准,以校准仪器的传输损耗和延迟。

在传输校准中,参考平面位于校准设备与被测设备之间。

- 参考平面校准:将校准器件的参考平面与校准设备的参考平面连接,并进行校准,从而消除校准设备参考平面的反射影响。

5. 频率响应校准频率响应校准是指校准仪器的输入和输出之间的功率响应,可以通过将信号引线连接到标准电阻、标准电容和标准电感等设备上进行校准。

网络分析仪基本操作介绍共38页PPT

网络分析仪基本操作介绍
11、战争满足了,或曾经满足过人的 好斗的 本能, 但它同 时还满 足了人 对掠夺 ,破坏 以及残 酷的纪 律和专 制力的 欲望。 ——查·埃利奥 特 12、不应把纪律仅仅看成教育的手段 。纪律 是教育 过程的 结果, 首先是 学生集 体表现 在一切 生活领 域—— 生产、 日常生 活、学 校、文 化等领 域中努 力的结 果。— —马卡 连柯(名 言网)
13、遵守纪律的风气的培养,只有领 导者本 身在这 方面以 身作则 才能收 到成效 。—— 马卡连 柯 14、劳动者的组织性、纪律性、坚毅 精神以 及同全 世界劳 动者的 团结一 致,是 取得最 后胜利 的保证 。—— 列宁 摘自名言网
15、机会是不守纪律的。——雨果

谢谢!
38
26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭

27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰

28、知之者不如好之者,好之者不如乐之者。——孔子

29、勇猛、大胆和坚定的决心Байду номын сангаас够抵得上武器的精良。——达·芬奇

30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华

标量网络分析仪利用说明书

WX1266标量网络分析仪利用说明书一概述WX1266/1267/1268系列标量网络分析仪是一套数字化的射频标量网络分析系统.整机由射频信号源,信号检测,数据搜集,处置显示部份组成.在微处置器的操纵下,外接检波器和驻波比电桥,在1~1000MHz/5~2000 MHz /5~3000 MHz的频率范围内进行射频网络的传输/反射参数的测量,绝对功率测量,屏幕直接显示测量曲线,数据,并打印测量结果.WX1266标量网络分析仪可普遍用于广播,电视,通信,教学等领域,进行二(四)端口网络的传输特性(增益,衰减),反射特性(回波损耗或电压驻波比)的测量.被测对象包括分支,分派器,工分器,放大器,高频调谐器,滤波器,隔离器,双工器,天线,负载,射频电缆等有源,无源器件.和具有频率输入响应的各类整机仪器.WX1266标量网络分析仪内部采纳了先进的ASIC电路,高性能的操纵器,高效的操纵软件,简捷,灵活的中(英)文人机对话界面,整机设计靠得住,有效,操作简便,是工厂,学校,实验室,电视台的最正确选择.二技术特性1 性能特点高频率精度(点频优于100KHz)大动态范围( ≥60dB)归一化校准,排除系统误差双独立通道,同时进行传输/反射测量及绝对功率测量8个独立频标,多种频标方式,方便测量读数.最大,最小自动跟踪测量,直接读出幅度差值中(英)文人机界面显示自动设置---使被测曲线显示在屏幕适当的位置测量运行/维持---便于精准观看测试曲线存储挪用测试结果打印大屏幕液晶显示小体积,低功耗2 性能指标2.1 要紧技术指标频率范围: 1-1000MHz频率分辨率:10KHz频率准确度(5-1000MHz)单频或频率校准点:优于100KHz扫频:全频段优于200KHz输出功率范围:-69.9dBm ~+10dBm,0.1dB步进(50Ω系统)-69.9dBm ~+7dBm,0.1dB步进(75Ω系统)输出功率平坦度:50Ω系统:<|±0.5|dB(在+10dBm时)75Ω系统:<|±0.5|dB(在+7dBm时)输出功率准确度:<|±1|dB(在0.1dBm ~+10dBm时)(50Ω系统)<|±1|dB(在0.1dBm ~+7dBm时) (75Ω系统)信号纯度谐波抑制:<-30dBc杂波抑制:<-25dBc剩余调频:<20KHz源驻波:< 1.5(50Ω)通道动态范围:+15dBm ~-45dBm通道准确度: ±0.5±2% 标称值( 配本机附件WX10305检波器测试)2.2 结构形式和尺寸(1) 结构形式:台式机箱(2) 外型尺寸:350mm×150mm×340mm(3) 显示器: 6″LCD 显示器(4) 重量: 8Kg2.3 要紧功能频标功能:有四种频标方式可供选那么, 方便测量读数,详见频标操作说明部份.归一化功能:传输/反射测量时,用来排除系统误差.任何情形下校准均为全频段校准,全带(从1MHz-1020 MHz)的校准点为961点.存储/挪用功能:用来存储最经常使用的仪器设置 .共有9个测量设置可供存储/挪用选择打印功能:标准并行输出接口,配接打印机,可将测试曲线及频标点的数据打印输出. 栅格:垂直:8格,0.1dB/DIV―10dB/DIV水平: 10格,每格的频率值由当前所设的带宽决定.栅格线可开,关.关掉栅格线时,在边框线上仍留有标记,以示栅格的位置.滑腻功能:有,关,滑腻1,滑腻2,滑腻3四种状态可选择,排除信号迹线上的噪声和调剂扫描速度.取样点数:分四档,有121,241,481,961点可供选择.注:扫描时刻:由滑腻状态和取样点数自动确信,滑腻关与取样点121扫速最快,滑腻3与取样点961扫速最慢.2.4 一样要求(1) 利用电源:AC 220V±10%,50Hz±5%(2) 整机功耗:≤50VA(3) 稳固时刻: 小于30分钟2.5 系统测试准确度传输准确度:采纳归一化时,测量元件的频响所产生的误差自动地从测试数据中减去.那么,总准确度是:传输准确度=通道准确度+失配准确度关于被测件有15dB 的反射损耗,其典型失配误差是±0.3dB反射损耗准确度=通道准确度+驻波比电桥的准确度驻波比电桥的准确度=±(0.01+0.06ρ2),其中ρ是被测件的反射系数.绝对功率测量准确度绝对功率测量准确度=通道准确度+检波器的频响2.6 要紧附件技术指标WX3681驻波比电桥用于回波损耗(或电压驻波比)的测量频率范围:5―1000MHz方向性:≥40dB接头:N型阴头插入损耗(输入口到测试口):6.5dB(标称值)最大输入功率:27dBm(500mW)WX10305检波器进行传输损耗,增益和绝对功率测量频率范围:1―1000MHz接头:N型阳头最大输入功率:20dBm(100mW)程控步进衰减器装入机内使整机输出功率范围扩展为:+10dBm ~-69.9dBm ,以0.1dB步进(50Ω系统)+7dBm ~-69.9dBm ,以0.1dB步进(75Ω系统)频率范围:1 ~1000MHz衰减精度:±0.3±2%标称值步进:10dB三工作原理WX1266/1267/1268系列标量网络分析仪由射频信号源,信号检测通道,源驱动操纵,频标,显示操纵,输入键盘及电源等部份组成.各部份在微处置器的操纵下,配接检波器及驻波比电桥组成一套完整的射频标量网络分析系统,在1~1000/5-2000/5-3000 MHz的频率范围内进行射频网络的传输/反射参数的测量.(1) 前面板(A1)该部份为键盘板,是人机对话的接口,由按键,拨轮及键盘处置电路组成.在该板上有一CPU专门用来处置键盘的操作,它和主CPU一路一起完成键盘的响应处置.(2) 通道板(A2)该部份为信号的输入通道,由对数变换,A/D变换及温度补偿电路组成.其功能为将A,B两个通道送来的检波信号进行对数变换处置,在CPU的操纵下完成A/D变换并送至CPU经运算处置形成通道的测量值.(3) CPU板(A3)CPU板为全机的核心部份, 其组成为:CPU及其外围电路,键盘接口,通道接口,频率及功率操纵部份接口,锁频操纵和图形显示处置电路等部份.由三大总线(数据总线,地址总线,操纵总线)与CPU联系,通过软件完成各部份的功能.(4) 驱动板(A4)该部份由频率驱动与功率电平操纵两部份组成.CPU依照当前所设频率的值(起始/终止,中心/带宽等)产生相应的数据送至A4,在A4板上变换产生频率操纵信号.功率电平操纵要紧由功率电平细衰减和ALC两部份组成.细衰减实现功率电平0.1~10dBm的操纵.ALC部份将定向检波器送来的检波信号放大后与参考电平比较产生误差信号,去操纵PIN,使整机输出幅度稳固.(5) 显示器(A5)显示部份为一组件,包括驱动电路与液晶屏,操纵信号由CPU 板产生.(6) 电源板(A6)产生整机所需要+5V,-20V,+18V,+15V, ±18V,+20V等几组电源.(7) 射频部份(A7)这部份包括扫频振荡器,PIN开关,宽带放大器,稳幅电路,程控衰减器等部份.在CPU 直接操纵下产生频率为1―1000/5-2000/5-3000 MHz,功率为-69.9--10dBm的射频信号.(8) 频标板(A8)频标板要紧由一片大规模ASIC电路实现,采纳锁频技术,监控扫频振荡器,使整机的输出频率达到较高的精度.四利用与操作1 前面板按键功能说明前面板如以下图所示(1)电源"开/关":整机的电源开关,按下到开位置,电源接通,仪器进行自测试,屏幕上提示自检信息.如自检失败,那么显示其缘故.自检通事后,屏幕上显示出厂时的设定状态.(2)辉度:辉度电位器,用来调剂LCD显示亮度.(3)A,B通道输入口:外接检波器及驻波比电桥.(4)RF输出口:50Ω或75Ω N型输出头.(5)通道功能键a) 开/关:交替打开,关闭通道.b) 分辨率:设置垂直方向每格显示分度,以□□dBm /Div或□□dB/Div显示,用数字键输入数据,用回车键(0)确认,或用拨轮直接改变.c) 偏移:用于设置偏移量,向上,向下移动测试曲线.用数字键输入数据,用回车键(0)确认,或用拨轮直接改变.d) 模式:选择传输,反射,功率三种测量模式,按模式键,用△/0键进行测量模式转换,用回车键(0)确认.数据输入键区包括数字键,拨轮,上(△)下(0)选择键,退格(←)键,确认(0)键.数字键:用于数据的输入.用数字键输入数据后用0键确认.拨轮:用来持续的改变数据.上(△)下(0)键:用于频标的上下的选择,模式的转换及辅助功能里菜单的选择.退格(←)键:用于数据输错后的修改,菜单的返回.(7)其它功能键运行/维持:用于将数据维持在屏幕上便于读数及观测.自动测量:自动将测试曲线放置在易观看的显示区域.源功能区用于频率,功率的改变及辅助菜单功能的选择起始:改变起始频率,用数字键输入数据,用回车(0)键确认,或用拨轮直接改变.终止:改变终止频率,用数字键输入数据,用回车(0)键确认,或用拨轮直接改变.中心:改变中心频率,操作同上.带宽:改变频率带宽,操作同上.当带宽为0时,输出为单频.频标:按一下该键后,进入频标操作区.频标模式"1","4"共有8个频标可供选用(出厂设置为:10,50,100,200,300,500,800,1000MHz).用上(△)下(0)键选中所要设置的有效频标,用数字键(或拨轮持续)修改数据,按回车(0)键关闭/打开频标.任意一个频标可作为当前有效频标,用于读出数据.频标读出的数值以dB或dBm为单位(其单位与通道所选测量模式对应).辅助:该键为菜单键,按该键后弹出校准通道等功能菜单,各功能如下:(用△,0键选择,按0键确认.)a) 校准通道:用于传输/反射模式时,进行归一化校准,校准的详细操作见其后的说明. 参考线:进入该菜单后,屏幕弹出以下功能菜单,界面如以下图:A参考线:用来改变A通道的测试参考迹线,按屏幕提示步骤进行操作.B参考线:用来改变B通道的测试参考迹线,按屏幕提示步骤进行操作.开关网格:按0键关或打开网格.限定线:设置限定线,每一个通道有两根测试限定线,用0键关闭或打开,用数字键(或拨轮)输入,改变限定值.c) 取样设置:有取样点数,滑腻设置可供选择,用△,0键选择,按0键确认进入下一级菜单.界面如以下图:取样点数分四档,有121,241,481,961点可供选择,界面如以下图:用△,0键选择,按0键确认.滑腻设置有滑腻关,滑腻1,滑腻2,滑腻3四种状态可选择,界面如以下图:用△,0键选择,按0键确认.滑腻和取样点可依照测试的需要任意组合,用来排除信号迹线上的噪声和改变扫描速度.改变滑腻设置和取样点数时,扫描时刻自动改变.存储挪用:用于存储当前界面的设置状态,或挪用已存储的设置状态.e) 频标设置:可有四种频标模式可供选择,界面如以下图:用△,0键选择,按0键确认选择每一种频标模式.以下频标的设置为:用△,0键选中所要设置的频标,用数字键置数或用拨轮持续修改.模式1有8个独立频标,分两屏显示,每一屏显示4个频标,同时读出4个频标所对应的A,B通道的测量值.界面如以下图:模式2为最大,最小测量模式, 用来测量两个频标之间所对应的频带之内所对应的通道的最大值,最小值及最大最小之间的差值,可依照测试的需要设置起始点,终止点频标.该功能用来测量放大器,分支,分派器的带内平坦度十分方便.注意:频标的设置范围必需要在屏幕下方显示的起始,终止频率范围之内,不然超界,屏幕读不出测量值.界面如以下图:模式3为最大,最小自动跟踪测量,在起始,终止频率范围内自动跟踪测量最大值,最小值,最大最小差值,并显示最大,最小值所对应的频率点.该模式下,频标是不能设置的,频标自动对应屏幕下方的起始,终止频率值.界面如以下图:模式4有8个独立频标,用△,0键连番选中所设置的频标,每次只有有效频标(加亮)所对应的A,B通道的值在屏幕下方读出,界面如以下图:f) 打印选择:打印开始,打印终止,用△,0键选择,按0键确认,用来打印输出测试数据和曲线.打印机连好后,按打印开始,屏幕下方显示:打印…按任意键返回.如打印有问题,屏幕会显示:打印错误.界面如以下图:功率:用于改变信号源输出功率值的大小,按一下该键后用数字(或拨轮)改变数据,功率范围从+10dBm(+7 dBm) ~-69.9dBm, 0.1dB步进.开/关(功率):用于射频功率的开关.2 显示界面显示界面如以下图所示式放置B反射10dB/Div 偏移0.0dB 测量显示界面图3 测量界面设置开机自测试全数通事后进入主界面,界面状态为仪器出厂设置,用户按如下步骤进行设置.通道选择及测量模式设定通道操纵键开/关键,依照测试需要打开或关闭A,B通道.每一个通道有三种测试模式:传输,反射,功率.按模式键,然后用△/0 键进行三种模式的转换,用回车(0)键确认.传输模式:用于测试被测件的增益,衰减,插入损耗,隔离度等.反射模式:用于测试被测件的驻波或回波损耗.功率模式:测量信号的绝对功率.按分辨率及偏移,改变显示分辨率及偏移(或按自动设置键),使测试曲线显示在屏幕的适合位置,以便观看.改变分辨率及偏移值可不能阻碍测试结果.(2)频率及频标的设置改变频率用起始,终止,或中心,带宽两组键来改变.这两组键是等效的,可依照被测件的频段进行设置.频标是为了方便测量而设置,频标模式"1""4"共有8个独立频标.可依照需要对所关切的频点设置频标,活动频标(频标加亮)所对应的通道(A,B)测量值,可直接在屏幕上读出.频标模式"2""3"有2个频标,设定所关切频带的上下限,此频带内测试的最大,最小及差值直接读出.(3)功率电平设置依照被测件的要求,设置源的输出功率电平.范围从-69.9dBm ~+10dBm(+7dBm/75Ω),最小步进0.1dBm.4 通道校准校准是测试传输,反射特性的重要步骤,校准有两个作用:一,提供测试基准,设定参考零点,其后的测试以此为基准进行定度.二,将源输出功率的不平度,检波器的频响,连接电缆,接头的传输损耗进行归一化处置,降低测量误差.传输校准校准界面如下:设置好起始,终止(中心,带宽)频率,输出功率电平,打开所用通道A(或B),选择传输测量模式,将检波器与测试所必要的转接器,电缆按图一方式连接仪器.按辅助键,屏幕弹出功能菜单,选中通道校准菜单,按回车0键别离对A,B通道进行校准,按回车0键完成校准,屏幕上显现通道A(B)的校准基(零)线.传输校准连接如图一.图一传输校准连接图反射损耗校准校准界面如以下图:设置好起始,终止(中心,带宽)频率,输出功率电平,打开所用通道A(B),选择反射测量模式,将驻波比电桥与测试所必要的转接器,电缆按图二方式连接仪器.按辅助键,屏幕弹出功能菜单,选中通道校准菜单,按0键别离对A,B通道进行校准,按回车0键完成校准,屏幕上显现通道A(B)的校准基(零)线.驻波比电桥是测试反射损耗(回波损耗)的专用附件.反射较准电桥的测试端口应开路或连接短路器,现在电桥测试端口为全反射,反射系数为1,回波损耗为0dB,以此为基准,通过查表可知被测件的电压驻波比.连接如图二图二反射损耗校准连接校准注意事项若是只进行单通道测试,可将不用通道关闭.(2) 校准是在设定的起始,终止(中心,带宽)频率,输出功率电平条件下进行的,若是条件改变,如频率值,功率值改变了,A,B通道前显示出提示符" ",表示需从头校准,如此测试值将加倍准确.(3) 同时测被测件的传输/反射特性时,应将电桥固定连接到射频输出口,检波器接至电桥测试端口进行传输校准.再将检波器从电桥测试端口取掉(这点用户专门容易忽略),这时电桥测试端口开路,然后进行反射损耗校准.5 测试在测量之前,应注意输入,输出端口的阻抗匹配,专门是不用的测试端要接匹配负载.接头要靠得住连接,注意接地,对射频输出功率电平,频率范围,及频标的选择均要适宜. 传输特性测试关于不同的被测件,描述其传输特性的参数不尽相同,例如:带宽,增益,衰减,插入损耗,传输损耗,阻带抑制,带内波动,隔离度等等,都描述被测件的幅频特性,也确实是的模值.典型测试连结如图三:图三传输特性的测量测试步骤:第一步:仪器设置依照被测件的特性要求,设置超始,终止(中心,带宽)频率,输出功率电平,选择打开通道,设置为传输模式(如只用单通道测试可关闭另一通道),依照所关切的频段选择频标模式,设定频标,以便读数.第二步:校准先不接被测件,将检波器与连结电缆,测试转接头等接好,接至射频输出口,按前所述校准方式进行.第三步:测试接上被测件,被测件的特性曲线即显示在屏幕上,用频标读出所测频点的测试值.或标定频段内纹波等,如放大器,滤波器,隔离器等器件特性.(2)反射特性测试反射特性测量是通过被子测件的反射损耗,测出被测件的反射系数,电压驻波比,反映端口的匹配情形.标网测出的值为回波损耗LR(dB).回波损耗LR,反射系数ρ,电压驻波比S三者的关系如下(换算值见附表1-1):LR(dB)=-20Logρ ρ= S=(1+ρ)/(1-ρ)三者换算关系见附表1-1典型连结如图四:图四反射特性测量测试进程:第一步:仪器设置依照被测件的特性要求,设置起始,终止(中心,带宽)频率,输出功率电平,选择打开通道,设置为反射模式(如只用单通道测试可关闭另一通道),依照所关切的频段选择频标模式,设定频标,以便读数.第二步:校准电桥测试端口开路或短路,按前所述进行校准.第三步:测试接上被测件,被测件的特性曲线即显示在屏幕上,用频标读出所测频点的测试值,或标定频段内纹波等,如放大器,滤波器,隔离器等器件特性.测量时应注意:为减小测量误码差,电桥测试端口最好不要加转接器,若是必需接入,连接器损耗要小,反射系数要小,不然会引发较大的测量误差.驻波比电桥能测量的回波损耗值不能超电桥的有效方向性.(3) 传输反射特性同时测量典型连接如图五.图五传输,反射特性同时测量测试进程:第一步:仪器设置依照被测件的特性要求,设置起始,终止(中心,带宽)频率,输出功率电平,选择打开通道,通道A设置为传输模式,通道B设置为反射损耗模式,依照所关切的频段选择频标模式,设定频标,以便读数.第二步:校准按图五将检波器输入端接至电桥的测试端口,另一端接通道A,按前述传输校准确性方式对A通道进行传输校准,然后将检波器从电桥测试端口取掉,电桥测试端口开路,按前述反射方式对B通道进行反射损耗的校准.第三步:测试校准完成后将被测件插入电桥测试端口与检波器之间,被测件的传输,反射特性曲线同时显示在屏幕上,用频标可读出相应频点的传输,反射值.有源增益器件(放大器等)测试时信号源的输出功率设置:关于高增益的有源器件,如放大器等,信号源的输出功率设置要依照被测件的增益大小相应设置,按以下公式估算值来设置信号源的功率:源的功率≤被测件最高输出功率-被测件放大量+插入损耗被测件最高输出功率指的是:保证放大器等增益器件的输出口不饱和所能经受的最大功率.如,有线电视放大器最大输出为120 dBμV(+12dBm).同时,考虑放大器的最大输出功率不能超过仪器检波器所能经受的最大经受功率:+20dBm,另外,要考虑保证测量的精度,一样检波口的输入功率应在+15dBm以下.被测件放大量指的是放大器的放大倍数,如30dB插入损耗:指被测件与信号源输出之间连接电缆等引发的损耗,如带电桥测试,应考率电桥的损耗,典型值为6.5dB.如:带电桥测试一增益为30dB的放大器,放大器的最大输出功率为+12dBm,电桥加测试电缆及转接头的插入损耗为7 dB,源的输出功率应设置为:源的功率≤+12dBm-30+7=-11dBm,此值为信号源的最大输出功率,一样要小于该值.现在,放大器的输入口的功率为:信号源的输出功率-插入损耗=-11-7=-18dBm,另外,要考虑放大器的最小输入灵敏度与最大输入功率等因素.依照体会,信号源的功率设在-18dBm可知足增益小于40dB放大器的测试要求.测量反射损耗时,信号源的输出功率要适当的增大,因为,若是源的功率过小,受仪器动态范围的限制,测量的动态不够会引发底端限幅,带来测量的误差.如信号源的输出功率为-13dBm时,可知足反射损耗≤20dB的被测件的测试要求,若是反射损耗指标要求高,可适当的增加功率.一样放大器的输出口反射指标高,端口经受的功率要求大,测量输出口的反射时,信号源的功率≤0dBm都可.以上是指单独测量反射时功率的设置要求,若是要传输/反射同时测量,信号源的输出功率的就要兼顾设置.为了提高反射测量的精度,建议单独进行反射测量.6 测量例如---电缆的测量驻波系数,衰减常数,平均特性阻抗和等效介电常数是射频电缆的重要电气参数.在进行电缆的测量时要注意以下点:第一,被测电缆要足够长,以便取得被测电缆可能存在的最大驻波系数;但不能太长,太长时,其终端的反射信号抵达始端时会因电缆本身衰减而损耗殆尽,致使这些反射信号始端得不到反映.通常,取测量频率范围内,低频端的衰减量为5dB.第二,要注意高频插头的装接,决不能使插头与电缆连接处的反射明显超过电缆局部的反射.(1)测量电缆损耗扫频法测出的电缆衰减包括着电缆的传输损耗和反射所引发的损耗,电缆的衰减与频率有关,并随频率的增高而增大,电缆损耗随着频率的上升而增加.为了测量电缆损耗,应取一截十多米长的电缆,把它看做是一个四端网络按图连续接,其方式犹如测试滤波器的带内衰减.(2)查验电缆的均匀性通常能够把电缆的输入驻波系统作为内部不均匀性的指标,精测电缆反射特性的方式按图四进行.为了查验电缆特性阻抗的均匀性,应将一段尽可能长的电缆经通式检波器至RF输出端,电缆另一端接上标准的同轴负载,检波器的输出接至通道A(B)输入.若是电缆呈现出可观的阻抗不持续性,在个别的频率距离内,就会在电平线上显示较大的波纹. (3)查验电缆的端匹配有时在共用天线系统,电缆电视网络或类似的系统中,应注意长电缆在工作状态下其端接(阻抗匹配)质量.若是电缆反射较低,即是正常的,就能够够利用.按图四连接,测得的电压驻波曲线上显示的波纹越小,终端的匹配就越好.(4)测试电缆特性阻抗介电常数因为标量网络分析仪的频率精度高,故采纳谐振法能够精准地测定电缆的平均特性阻抗Z和等效介电常数εE为此,先要精测出电缆的总长度L(米),总电容(PF),用标网测试,其方式步骤如下:a) 标网设置在起始频率100MHz,终止频率1000MHz最小滑腻.b) A通道设为功率模式,RF输口接通过式检波器,检波器测试端接1m ― 2m待测电缆.标网显示器上应显示出驻波形.c) 调剂起止频率,使显示器上稳固显示5 ― 7个驻波波谷.按维持键锁定显示.d) 计算驻波波谷间平均频宽.(用频标标定第1个波谷,读出频率值F1,标定并测出最后一个波谷频率值Fn),平均频宽单位为MHze) 周密测出待测电缆的电容值C,单位为PF.f) 按下计算特性阻抗:单位为欧姆Ω五利用注意事项与维修1 利用注意事项。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

使用A+Bf公式建立規格的簡易說明
如上圖,我們舉例使用A+Bf來建立SDD11: Return Loss (PHY side)的規格.
在規格中,我們需要的特殊點頻率為100MH, 200MHz, 300MHz, 400MHz及500MHz,
其規格值分別為-24.5, -21.5, -16, -10.5及-8.
因此,在TpNA上面,當我們進入編修規格線的頁面後,動作如下:

(1).選擇計算公式中,我們點選”A+Bf”的選項,後面的單位選為MHz
(2).在其下面的Table表中,起始頻率與終止頻率各行分別輸入為
(2.1).第一行起始頻率:100 (單位為MHz),終止頻率為200,後面的係數A,B先不用去寫入
(2.2).第二行起始頻率:200(單位為MHz),終止頻率為300,後面的係數A,B先不用去寫入
(2.3).第三行起始頻率:300 (單位為MHz),終止頻率為400,後面的係數A,B先不用去寫入
(2.4).第四行起始頻率:400 (單位為MHz),終止頻率為500,後面的係數A,B先不用去寫入
(3).點選”編輯工具”,接下來我們就可以在其右方直接輸入規格值如下:
(3.1).在規格線中我們選擇”規格線1”,START設定為-24.5, STOP設定為-21.5

(3.2). 在規格線中我們選擇”規格線2”,START設定為-21.5, STOP設定為-16
(3.3). 在規格線中我們選擇”規格線3”,START設定為-16, STOP設定為-10.5
(3.4). 在規格線中我們選擇”規格線4”,START設定為-10.5, STOP設定為-8

步驟一
步驟二
步驟三

步驟四
4.在所有的比較模式中,我們選擇”比較下限”(其意思就是在其之下為PASS).

到此就已經完成了規格線的設定.

相关文档
最新文档