指数函数及其性质拓展深化课
指数函数教学设计(精选9篇)

指数函数教学设计(精选9篇)作为一名无私奉献的老师,时常需要准备好教学设计,借助教学设计可以更大幅度地提高学生各方面的能力,从而使学生获得良好的发展。
那么你有了解过教学设计吗?以下是小编整理的指数函数教学设计,希望对大家有所帮助。
指数函数教学设计1教学目标:1.进一步理解指数函数的性质;2.能较熟练地运用指数函数的性质解决指数函数的平移问题。
教学重点:指数函数的性质的应用。
教学难点:指数函数图象的平移变换。
教学过程:一、情境创设1.复习指数函数的概念、图象和性质练习:函数y=ax(a0且a1)的定义域是_____,值域是______,函数图象所过的定点坐标为。
若a1,则当x0时,y1;而当x0时,y1。
若00时,y1;而当x0时,y1。
2.情境问题:指数函数的性质除了比较大小,还有什么作用呢?我们知道对任意的a0且a1,函数y=ax的图象恒过(0,1),那么对任意的a0且a1,函数y=a2x1的图象恒过哪一个定点呢?二、数学应用与建构例1解不等式:小结:解关于指数的不等式与判断几个指数值的大小一样,是指数性质的运用,关键是底数所在的范围。
例2说明下列函数的图象与指数函数y=2x的图象的关系,并画出它们的示意图:小结:指数函数的平移规律:y=f(x)左右平移y=f(x+k)(当k0时,向左平移,反之向右平移),上下平移y=f(x)+h(当h0时,向上平移,反之向下平移)。
练习:(1)将函数f(x)=3x的图象向右平移3个单位,再向下平移2个单位,可以得到函数的图象。
(2)将函数f(x)=3x的图象向右平移2个单位,再向上平移3个单位,可以得到函数的图象。
(3)将函数图象先向左平移2个单位,再向下平移1个单位所得函数的解析式是。
(4)对任意的`a0且a1,函数y=a2x1的图象恒过的定点的坐标是。
函数y=a2x-1的图象恒过的定点的坐标是。
小结:指数函数的定点往往是解决问题的突破口!定点与单调性相结合,就可以构造出函数的简图,从而许多问题就可以找到解决的突破口。
指数函数的图像与性质教案

§2.1.2指数函数及其性质(一)教学目标1、知识与技能:掌握指数函数的概念;会作指数函数的图象;归纳出指数函数的几个基本性质.2、过程与方法:通过由指数函数的图象归纳其性质的学习过程,培养学生探究、归纳分析问题的能力.3、情感、态度、价值观:通过探究体会“数形结合”的思想;感受知识之间的关联性;体会研究函数由特殊到一般再到特殊的研究学习过程;体验研究函数的一般思维方法;培养学生主动学习、合作交流的意识.教学重点和难点1、重点:指数函数的定义、图象和性质.2、难点:指数函数的定义理解;指数函数性质的归纳.教学方法 探究式教学教学手段 借助多媒体辅助教学,演示指数函数的图象教学流程设计教学过程设计情景引入问题1: 某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……. 1个这样的细胞分裂 x次后,得到的细胞个数 y 与 x 的函数关系是什么?问题2: 一尺之棰,日取其半,万世不竭.(出自《庄子 天下篇》)已知一把尺子第一次截去它的一半,第二次截去剩余部分的一半,第三次截去第二次剩余部分的一半,依次下去,问截的次数x 与剩余尺子长度y 之间的函数关系如何?(假设原来长度为1个单位)问题3: 与 这类函数的解析式有何共同特征?学生思考回答,得出结论,引出指数函数知识点一:指数函数的定义一般地,函数y=a x(a>0,且a≠1)叫做指数函数,其中x 是自变量,函数的定义域是R . 问题4:指数函数定义中为什么规定a >0且a≠1呢?如果不这样规定会出现什么情况呢? 学生活动:分组讨论,各组交流成果,加深对定义的认识例1.下列函数中,哪些是指数函数?知识点二:指数函数的图象、性质类比以前讨论函数性质时的内容和方法,我们该如何研究指数函数,研究什么内容?研究方法:画出函数图,结合图象研究函数性质.研究内容:定义域、值域、单调性、奇偶性及其它.探究:用描点法画函数x y 2=与x y )21(=的图象 学生自主探究,描点画出图象学生讨论:两个函数图象有何联系与区别?(学生活动)类比以上函数的图象,总结指数函数性质.学生自主探究完成下面指数函数性质表格:a>1 0<a<1 图象性质 (1)定义域:R (2)值 域:(0,+∞) (3)过点(0,1),即x=0时,y=1(4)在R 上是增函数 (4)在R 上是减函数12x y ⎛⎫= ⎪⎝⎭2x y =x y 4=4x y =x y 4-=14+=x y o o探究: x y 2=, x y 3= , x y )21(= , xy ⎪⎭⎫ ⎝⎛=31四个函数图象特征,图象与其底数有什么规律?学生探究:通过三组图象,探究指数函数图象与底的关系,教师适当启发指导. 知识点三:指数函数性质应用例2 比较下列各题中两个值的大小:(1)5.27.1,37.1; (2)1.08.0-,2.08.0-; (3)3.07.1,1.39.0.由学生分析解题思路,教师总结.拓展迁移:已知下列不等式 , 比较 m,n 的大小 :1. 2. 3. 学生演板,然后师生共评,反馈校正.小结归纳,拓展深化(1)通过本节课的学习,你学到了哪些知识 ?(2)你又掌握了哪些研究数学的学习方法?学生总结,教师补充点评.布置作业,提高升华(1)必做题 :课本P59,A 组5、7(2)选做题: 课本P60,B 组4板书设计n m 22<n m 2.02.0>)10(≠>>a a a a n m 且教学反思:本节课充分发挥自制课件的优势,将自己的想法、新课改的理念和“知识与技能、过程与方法、情感、态度、价值观”三维目标充分融入自制课件中,使本节课的内容更加充实。
指数函数的图象和性质 (经典公开课)

一、导入新课 函数 y=2x 与 y=12x 的图象在同一坐标系内如图:
二、提出问题 1.观察两个函数的图象,它们有什么关系? 2.能否利用函数 y=2x 的图象,画出函数 y=12x 的图象? 3.从图象上看,它们是否具有单调性?增减性如何? [学习目标] 1.能用描点法或借助计算工具画出具体指数函数的图象.(直 观想象) 2.探索并理解指数函数的单调性与特殊点.(数学抽象)
2.函数 f(x)= 31x-1-27的定义域是 (-∞,-2] . 解析:令13x-1-27≥0,即13x-1≥27=13-3,所以 x-1≤-3,所以 x≤
-2.故函数的定义域为(-∞,-2].
题型 3◆指数函数性质的应用
典例 1 已知 a=35 A.c<a<b
,b=35 ,c=32 ,则 a,b,c 的大小关系是( D )
题型 2◆指数型函数的定义域 典例 1 函数 y=3 x-1的定义域为 [1,+∞) .
解析:要使函数有意义,则 x-1≥0,即 x≥1,故函数的定义域为[1,+ ∞). 典例 2 函数 y= 2x-8的定义域为 [3,+∞) . 解析:依题意,得 2x-8≥0,所以 2x≥8=23. 又 y=2x 为增函数,所以 x≥3. 所以函数 y= 2x-8的定义域为[3,+∞).
单调性 是 R 上的 增函数 是 R 上的 减函数
奇偶性
非奇非偶函数
题型 1◆指数函数的图象及应用 典例 1 已知 0<m<n<1,则指数函数①y=mx,②y=nx 的图象为( C )
解析:由于 0<m<n<1,所以 y=mx 与 y=nx 都是减函数,故排除 A,B; 作直线 x=1 与两个曲线相交(图略),交点在下面的是函数 y=mx 的图 象.故选 C.
指数函数及其性质教案

“指数函数及其性质教案”一、教学目标1. 理解指数函数的定义和表达形式;2. 掌握指数函数的性质,包括单调性、奇偶性和周期性;3. 能够运用指数函数解决实际问题;4. 培养学生的数学思维能力和解决问题的能力。
二、教学内容1. 指数函数的定义和表达形式;2. 指数函数的单调性;3. 指数函数的奇偶性;4. 指数函数的周期性;5. 指数函数在实际问题中的应用。
三、教学重点与难点1. 指数函数的定义和表达形式;2. 指数函数的单调性的证明;3. 指数函数的奇偶性的证明;4. 指数函数的周期性的证明;5. 指数函数在实际问题中的应用。
四、教学方法1. 采用问题驱动的教学方法,引导学生主动探索和发现指数函数的性质;2. 通过举例和练习,让学生加深对指数函数的理解和应用;3. 利用多媒体辅助教学,展示指数函数的图像和实际应用场景。
五、教学安排1. 第一课时:介绍指数函数的定义和表达形式,引导学生理解指数函数的概念;2. 第二课时:讲解指数函数的单调性,通过例题和练习让学生掌握单调性的判断方法;3. 第三课时:讲解指数函数的奇偶性,通过例题和练习让学生掌握奇偶性的判断方法;4. 第四课时:讲解指数函数的周期性,通过例题和练习让学生掌握周期性的判断方法;5. 第五课时:介绍指数函数在实际问题中的应用,让学生学会将实际问题转化为指数函数问题,并解决。
六、教学评价1. 通过课堂讲解和练习,评估学生对指数函数定义和表达形式的掌握程度;2. 通过课后作业和练习题,评估学生对指数函数单调性、奇偶性和周期性的理解;3. 通过实际问题解决的练习,评估学生对指数函数应用的能力;4. 结合学生的课堂表现和作业完成情况,综合评价学生的数学思维能力和问题解决能力。
七、教学资源1. 教学PPT或黑板,用于展示指数函数的图像和性质;2. 教材或教辅资料,提供指数函数的相关理论知识和练习题;3. 计算器,用于计算和演示指数函数的值;4. 实际问题案例,用于引导学生将理论应用于实际问题的解决。
《指数函数》的优秀教案

《指数函数》的优秀教案•相关推荐《指数函数》的优秀教案(精选7篇)作为一名人民教师,常常要根据教学需要编写教案,教案是保证教学取得成功、提高教学质量的基本条件。
教案应该怎么写才好呢?下面是小编整理的《指数函数》的优秀教案,欢迎大家分享。
《指数函数》的优秀教案篇1教学目标:1.进一步理解指数函数的性质;2.能较熟练地运用指数函数的性质解决指数函数的平移问题;教学重点:指数函数的性质的应用;教学难点:指数函数图象的平移变换.教学过程:一、情境创设1.复习指数函数的概念、图象和性质练习:函数y=ax(a0且a1)的定义域是_____,值域是______,函数图象所过的定点坐标为.若a1,则当x0时,y1;而当x0时,y1.若00时,y1;而当x0时,y1.2.情境问题:指数函数的性质除了比较大小,还有什么作用呢?我们知道对任意的a0且a1,函数y=ax的图象恒过(0,1),那么对任意的a0且a1,函数y=a2x1的图象恒过哪一个定点呢?二、数学应用与建构例1解不等式:(1);(2);(3);(4).小结:解关于指数的不等式与判断几个指数值的大小一样,是指数性质的运用,关键是底数所在的范围.例2说明下列函数的图象与指数函数y=2x的图象的关系,并画出它们的示意图:(1);(2);(3);(4).小结:指数函数的平移规律:y=f(x)左右平移y=f(x+k)(当k0时,向左平移,反之向右平移),上下平移y=f(x)+h(当h0时,向上平移,反之向下平移).练习:(1)将函数f(x)=3x的图象向右平移3个单位,再向下平移2个单位,可以得到函数的图象.(2)将函数f(x)=3x的图象向右平移2个单位,再向上平移3个单位,可以得到函数的图象.(3)将函数图象先向左平移2个单位,再向下平移1个单位所得函数的解析式是.(4)对任意的a0且a1,函数y=a2x1的图象恒过的定点的坐标是.函数y=a2x—1的图象恒过的定点的坐标是.小结:指数函数的定点往往是解决问题的突破口!定点与单调性相结合,就可以构造出函数的简图,从而许多问题就可以找到解决的突破口.(5)如何利用函数f(x)=2x的图象,作出函数y=2x和y=2|x2|的图象?(6)如何利用函数f(x)=2x的图象,作出函数y=|2x—1|的图象?小结:函数图象的对称变换规律.例3已知函数y=f(x)是定义在R上的奇函数,且x0时,f(x)=1—2x,试画出此函数的图象.例4求函数的最小值以及取得最小值时的x值.小结:复合函数常常需要换元来求解其最值.练习:(1)函数y=ax在[0,1]上的最大值与最小值的和为3,则a等于;(2)函数y=2x的值域为;(3)设a0且a1,如果y=a2x+2ax—1在[—1,1]上的最大值为14,求a的值;(4)当x0时,函数f(x)=(a2—1)x的值总大于1,求实数a的取值范围.三、小结1.指数函数的性质及应用;2.指数型函数的定点问题;3.指数型函数的草图及其变换规律.四、作业:课本P55—6,7.五、课后探究(1)函数f(x)的定义域为(0,1),则函数的定义域为。
《指数函数及其性质》课件

指数函数中的底数 a 必须为正 实数且 a ≠ 1,自变量 x 可以 是实数或复数。
当 a > 1 时,函数是增函数; 当 0 < a < 1 时,函数是减函 数。
指数函数的基本形式
指数函数的基本形式为 y = a^x,其 中 a 为底数,x 为自变量。
指数函数的定义域和值域分别为全体 实数和正实数集。
CATALOGUE
指数函数与其他函数的比较
与线性函数的比较
线性函数
y=kx+b,其图像为直线 。指数函数与线性函数在 某些特性上存在显著差异 ,例如增长速度和斜率。
增长速度
线性函数在x增大时,y以 固定斜率增长;而指数函 数在x增大时,y的增长速 度会越来越快。
斜率
线性函数的斜率是固定的 ,而指数函数的斜率(即 函数的导数)会随着x的增 大而减小。
和第三象限。
指数函数的图像是连续的,但在 x = 0 处存在垂直渐近线。
02
CATALOGUE
指数函数的性质
增减性
总结词
指数函数的增减性取决于底数a的取 值范围。
详细描述
当a>1时,指数函数是增函数,即随 着x的增大,y的值也增大;当0<a<1 时,指数函数是减函数,即随着x的增 大,y的值减小。
奇偶性
总结词
奇函数和偶函数的性质可以通过指数函数的定义来判断。
详细描述
如果一个函数满足f(-x)=-f(x),则它是奇函数;如果满足f(-x)=f(x),则它是偶 函数。对于形如f(x)=a^x的指数函数,当a>0且a≠1时,它是非奇非偶函数; 当a=1时,它是偶函数;当a=-1时,它是奇函数。
值域和定义域
与幂函数的比较
高一数学必修一《指数函数及其性质》PPT课件
进行求解,也可以将对数方程转化为指数方程进行求解。
03
指数函数与对数函数在图像上的关系
指数函数的图像与对数函数的图像关于直线y=x对称。
02
指数函数运算规则
同底数指数运算法则
乘法法则
$a^m times a^n = a^{m+n}$,其中$a$是底数,$m$和$n$ 是指数。
除法法则
$a^m div a^n = a^{m-n}$,其中$a neq 0$。
分组让学生讨论指数函数的性质,如定义域、值域、 单调性、奇偶性等,并让他们尝试通过图像观察验证 这些性质。
问题导入
互动问答
通过具体案例,如“细菌繁殖”、“投资回报”等, 让学生应用指数函数的知识进行分析和计算,加深对
指数函数的理解。
案例分析
老师提出问题,学生抢答或点名回答,问题可以涉及 指数函数的计算、性质应用等,以检验学生的学习效 果。
放射性物质衰变模型
放射性物质衰变模型
01
N(t) = N0 * e^(-λt),其中N(t)表示t时刻的放射性物质数量,
N0表示初始放射性物质数量,λ表示衰变常数。
指数函数在放射性物质衰变模型中的应用
02
通过指数函数可以描述放射性物质数量随时间减少的规律。
放射性物质衰变模型的意义
03
对于核能利用、环境保护等领域具有重要的指导意义。
单调性
当a>1时,指数函数在R上是增函数;当0<a<1时,指数函 数在R上是减函数。
指数函数与对数函数关系
01
指数函数与对数函数的互化关系
指数函数y=a^x(a>0且a≠1)与对数函数y=log_a x(a>0且a≠1)是
指数函数及其性质教学教案
指数函数及其性质教学教案一、教学目标1. 知识与技能:使学生掌握指数函数的定义、表达式及图像特征;理解指数函数的单调性、奇偶性、过定点等性质;能够运用指数函数解决实际问题。
2. 过程与方法:通过观察、分析、归纳等方法,引导学生发现指数函数的性质;运用数形结合的方法,让学生感受指数函数在实际生活中的应用。
3. 情感态度与价值观:培养学生对数学的兴趣,提高学生运用数学知识解决实际问题的能力。
二、教学重点与难点1. 教学重点:指数函数的定义、表达式及图像特征;指数函数的单调性、奇偶性、过定点等性质。
2. 教学难点:指数函数的单调性的证明及应用;指数函数在实际生活中的应用。
三、教学过程1. 导入新课:以日常生活中常见的实例为切入点,如手机信号强度衰减、人口增长等,引出指数函数的概念。
2. 自主学习:让学生通过阅读教材,掌握指数函数的定义、表达式及图像特征。
3. 课堂讲解:讲解指数函数的单调性、奇偶性、过定点等性质,并通过例题演示运用指数函数解决实际问题。
4. 师生互动:引导学生通过观察、分析、归纳等方法,发现指数函数的性质;组织学生进行小组讨论,分享各自的学习心得。
5. 练习巩固:布置适量的课后练习题,让学生巩固所学知识。
四、课后作业1. 完成教材后的课后练习题。
2. 结合生活实际,寻找其他符合条件的指数函数实例,并加以分析。
五、教学反思2. 对教学过程中存在的问题进行反思,如教学方法、教学内容等,并提出改进措施。
3. 针对学生的学习情况,调整课后作业的难度,确保学生能够巩固所学知识。
六、教学评价1. 学生自评:让学生结合自己的学习情况,评价自己在本次课程中对指数函数及其性质的掌握程度。
2. 同伴评价:组织学生进行小组评价,相互交流在学习过程中的心得体会,取长补短。
3. 教师评价:根据学生的课堂表现、课后作业完成情况,以及课堂互动情况,对学生的学习效果进行评价。
七、教学拓展1. 引导学生探讨指数函数在其他领域的应用,如自然科学、社会科学等。
指数函数及其性质教案
指数函数及其性质教案教案主题:指数函数及其性质教学目标:1.理解指数函数及其基本性质;2.能够在实际问题中应用指数函数。
教学重难点:1.指数函数的定义和性质;2.指数函数在实际问题中的应用。
教学准备:1.幻灯片或黑板、粉笔;2.学生练习册、习题集。
教学过程:第一步:导入新课内容(10分钟)1.引导学生回顾之前学过的函数,如线性函数、二次函数等,并简要复习一下这些函数的性质。
2.提出问题:是否还有其他种类的函数?激发学生思考的兴趣,引导他们思考是否还有其他形式的函数。
第二步:引入指数函数(10分钟)1.引导学生回顾指数的基本概念,指出指数之间的运算规律和指数函数的定义。
2.定义指数函数:函数f(x)=a^x(a>0且a≠1)称为指数函数,其中a是底数,x是指数。
3.通过画出不同底数的指数函数的图像,让学生感受底数对指数函数图像的影响。
第三步:指数函数的性质(20分钟)1.引导学生观察并总结指数函数的性质:a)当a>1时,指数函数是递增的;b)当0<a<1时,指数函数是递减的;c)指数函数通过点(0,1);d)当x趋于负无穷时,指数函数趋于0;e)当x趋于正无穷时,指数函数趋于正无穷。
2.通过练习让学生巩固对指数函数性质的理解和应用。
第四步:指数函数的应用(30分钟)1.引导学生思考指数函数在实际问题中的应用,如人口增长、金融利息计算等。
2.通过实际问题的列举和解决,让学生了解指数函数在解决实际问题中的作用。
3.提供一些实际问题,让学生尝试应用指数函数来解决。
第五步:总结和拓展(10分钟)1.让学生总结指数函数及其性质,并与其他函数进行比较。
2.拓展学生的思维,让他们思考其他种类的函数,如对数函数等。
教学反思:通过本节课的教学,学生能够初步理解指数函数的定义和性质,并能够应用指数函数解决实际问题。
同时,通过与其他函数的比较,学生也能够更好地理解指数函数的特点和作用。
在教学中,应注意通过实例引导学生思考问题,激发他们的学习兴趣和主动性。
《指数函数》说课稿优秀3篇
《指数函数》说课稿优秀3篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、总结计划、心得体会、演讲致辞、策划方案、合同协议、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work reports, summary plans, insights, speeches, planning plans, contract agreements, documentary evidence, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!《指数函数》说课稿优秀3篇作为一名专为他人授业解惑的人·民教师,通常需要准备好一份说课稿,说课稿有助于顺利而有效地开展教学活动。