电力电子技术中的逆变器设计与应用实例

合集下载

电力电子技术中的逆变器设计与优化

电力电子技术中的逆变器设计与优化

电力电子技术中的逆变器设计与优化逆变器是电力电子领域中一种重要的设备,其作用是将直流电转换为交流电。

在现代工业和生活中,逆变器得到了广泛应用,如电力传输、太阳能发电系统、电动车等。

本文将重点探讨电力电子技术中的逆变器设计与优化。

一、逆变器的基本原理逆变器是一种能够将直流电源转换为交流电源输出的电力电子装置。

其基本原理是通过控制开关器件的开关状态和脉宽,实现直流电到交流电的转换。

具体来说,逆变器将直流电源经过整流、滤波等处理后的直流电转换为高频交流电,再经过滤波电路得到稳定的交流电输出。

二、逆变器设计要素1. 开关器件的选择:逆变器中常用的开关器件有晶体管和功率MOSFET。

根据应用的不同需求选择合适的开关器件,例如功率大、频率高的应用一般选择功率MOSFET。

2. 控制策略的设计:逆变器的控制策略直接影响其输出性能和效率。

常见的控制策略有脉宽调制(PWM)和多脉冲宽度调制(MPWM)。

通过调节开关器件的开关脉冲宽度,实现对输出电压的调节和控制。

3. 滤波电路设计:逆变器的输出是一个脉动的交流信号,需要经过滤波电路降低谐波,以获得稳定的交流电输出。

常用的滤波电路包括LC滤波电路和LCL滤波电路。

4. 保护电路设计:逆变器在工作过程中可能会遇到过电流、过压、过温等故障情况,需要设计相应的保护电路来确保逆变器的可靠运行。

常见的保护电路包括过电流保护、过温保护和短路保护等。

三、逆变器优化方法1. 提高逆变器的转换效率:逆变器的转换效率直接影响其能源利用率。

通过优化控制策略、减小开关器件的导通和开关损耗,以及选择低损耗的材料和元件等方法可以提高逆变器的转换效率。

2. 优化滤波电路:逆变器输出波形中的谐波会影响电能的传输和使用,同时也可能对电网和其他设备造成干扰。

通过优化滤波电路的参数和结构,减小谐波含量,可以提高逆变器的输出质量。

3. 降低逆变器的体积和重量:在一些应用场景中,逆变器的体积和重量是一个重要考量因素。

电力电子技术基础课件:逆变电路

电力电子技术基础课件:逆变电路

V2
VD1 VD2 VD1 VD2
逆变电路
4.2.1 单相电压型逆变电路
1)半桥逆变电路
t3-t4:t3时刻电流过零边负,V2导通,负载电 流反向增加,输出电压uo =-Ud/2;
t4-t5:t4时刻V2关断,给V1驱动信号,由于 阻感负载电流不能突变,此时电流通过VD1续流, 电流逐渐减小,输出电压uo =Ud/2;
通而变为零,则称为熄灭。
电力电子技术
第四章 逆变电路
4.2 单相逆变电路工作原理
4.2.1 单相电压型逆变电路 4.2.2 单相电流型逆变电路
逆变电路
电压型逆变电路的特点
1、直流侧为电压源或并联大电容,直流
侧电压基本无脉动。
+
2、由于直流电压源的钳位作用,输出电
压为矩形波,输出电流因负载阻抗不同而不 Ud
单相电流型逆变电路
iT
i VT1,4
i VT2,3
Id 0

uo/io
t
0
t1
Id t2 t3 t4
t5

t6 t7
t
tδ tβ
电流型逆变电路波形图
逆变电路
单相电流型逆变电路
t2-t4阶段:t2时刻四个晶闸管全部导通,负 载电容电压经两个回路LT1、VT1 、VT3 、LT3 和 LT2、VT2 、VT4 、LT4 放电;t4时刻VT1、VT4的 电流减小到零关断,直流侧电流Id全部转移到 VT2和VT3支路,换流结束。 。
VD3 VD4
u G1
0
t
u G2
0
t
u G3
q
0
t
u G4
0
t
uo io

逆变器应用及一种简单的逆变器电路图

逆变器应用及一种简单的逆变器电路图

逆变器应用及一种简单的逆变器电路图随着科技的快速发展,逆变器已经越来越多的出现在人们的生活中。

目前,逆变器的已经在很多领域应用到,比如电脑、电视、洗衣机、空调、家庭影院、电动砂轮、电动工具、缝纫机、录像机、按摩器、风扇、照明等等。

逆变器是一种能够进行电能转换的器件,当输入的是直流电是,输出就会变成交流电,而且一般是为220v50HZ正弦或方波。

它与应急电源的工作原理是相反的,逆变器一般由控制逻辑、滤波电路和逆变桥组成。

本文将首先介绍二极管在逆变器中的应用,然后结合一种简单的逆变器电路图,具体分析PWM逆变器的工作原理。

二极管在逆变器中的应用在家电应用中,最主要的就是高效率和节能,三相无刷直流电机正是因为具有效率高、尺寸小的优点,被广泛的应用在家电设备及其他很多应用中。

除此之外,由于还将机械换向装置替换成电子换向器,三相无刷电机进而被认为可靠性比原来更高了。

标准的三相功率级(power stage)被用来驱动一个三相无刷直流电机,如图1所示。

功率级产生一个电场,为了使电机很好地工作,这个电场必须保持与转子磁场之间的角度接近90°。

六步序列控制产生6个定子磁场向量,这些向量必须在一个指定的转子位置下改变。

霍尔效应传感器扫描转子的位置。

为了向转子提供6个步进电流,功率级利用6个可以按不同的特定序列切换的功率MOSFET。

下面解释一个常用的切换模式,可提供6个步进电流。

MOSFET Q1、Q3和Q5高频(HF)切换,Q2、Q4和Q6低频(LF)切换。

当一个低频MOSFET处于开状态,而且一个高频MOSFET 处于切换状态时,就会产生一个功率级。

步骤1) 功率级同时给两个相位供电,而对第三个相位未供电。

假设供电相位为L1、L2,L3未供电。

在这种情况下,MOSFET Q1和Q2处于导通状态,电流流经Q1、L1、L2和Q4。

步骤2)MOSFET Q1关断。

因为电感不能突然中断电流,它会产生额外电压,直到体二极管D2被直接偏置,并允许续流电流流过。

《电力电子技术》电子课件(高职高专第5版) 4.3 电压型逆变电路

《电力电子技术》电子课件(高职高专第5版)  4.3 电压型逆变电路

0 2
2
(4.3.1)
输出电压瞬时值为:
uo
n 1, 3 , 5 ,
2U d n
s in nt
(4.3.2)
其中, 2f s 为输出电压角频率。
当 n=1时其基波分量的有效
值为:
U O1
2U d
2
0.45U d
(4.3.3)
图4.3.1 电压型半桥逆变电路及 其电压电流波形
4.3.1 电压型单相半桥逆变电路
图4.3.1 电压型半桥逆变电路 及其电压电流波形
4.3.1 电压型单相半桥逆变电路
2、工作原理:
在一个周期内,电力晶体 管 周正T1和偏T,2的半基周极反信偏号,各且有互半补。
若负载为纯电阻,在[0,π] 期 T2通π2截间 ,]期止,T间1,T截1,则有止T驱,u20有动则=U驱信ud0动。号=-信在导Ud号[通π。导,, 动 信信 号若号 ,负截 由载止于为,感纯尽性电管负感载T,1有中T驱的2无动电驱 流i。不能立即改变方向,于 是 D1导通续流,u0=-Ud /2 。
3、特点: 优点: 简单,使用器件少;
缺点:
1)交流电压幅值仅为Ud/2; 2)直流侧需分压电容器; 3)为了使负载电压接近正弦波通常在输出端要接LC 滤波器,输出滤波器LC滤除逆变器输出电压中的高次 谐波。 4、应用:用于几kW以下的小功率逆变电源;
4.3.2 电压型单相全桥逆变电路
电路工作原理:
(4.3.7)
图4.3.2 电压型单相全桥逆变 电路和电压、电流波形图
4.3.2 电压型单相全桥逆变电路
3)阻感负载RL
0≤ ωt ≤ θ期间,T1和T4有驱动信号, 由于电流i0为负值,T1和T4不导通,D1、

《逆变电路及应用》课件

《逆变电路及应用》课件
电路设计
根据元器件的参数和电路需求,进行 电路设计,调整相应的阻容值。
逆变电路的性能评估方法
效率评估
逆变电路的效率是指输出功 率与输入功率的比值。可以 通过测量输入电流和输出电 流,计算得出逆变电路的效 率。
波形质量评估
逆变电路的输出波形质量是 对逆变电路性能的重要评价 指标,可通过示波器观察。
稳定性评估
逆变电路输出电压的稳定性 与电源电压和负载变化有关, 可通过空载、满载试验来评 估逆变电路的稳定性。
逆变电路的未来发展趋势
未来,随着新能源、智能家居、物联网等领域的迅猛发展,逆变电路的应用场景将越来越广泛。同时, 随着半导体、陶瓷和材料科学的进步,逆变电路的效率和稳定性也将得到进一步提升。
逆变电路及应用
逆变电路是一种将电能从一种形式转化为另一种形式的电路。本课件将深入 探讨逆变电路的原理、设计和应用。逆变电路的概念Fra bibliotek原理1
定义
逆变电路是将直流电转化为可变的交流电的电路。
2
原理
逆变电路利用半导体器件实现对直流电源进行逆变,产生高频交流电,再通过变 压器将电压升高到需要的水平。
3
应用
逆变电路广泛用于太阳能、风能发电系统、交通信号灯、UPS等领域。
常见的逆变电路类型
全桥逆变电路
采用MOS管作为开关管,输出 波形质量高,抗干扰性强。
半桥逆变电路
采用晶闸管作为开关管,成本 低,体积小,适用于低功率逆 变。
多电平逆变电路
能够提供多种电平的输出电压, 输出波形更接近正弦波,适用 于高功率逆变。
逆变电路的主要应用领域
太阳能发电系统
太阳能电池板输出的是直流电,逆变电路将 其转换为交流电,以供人们使用。

三相有源逆变电路及应用

三相有源逆变电路及应用

3、三相半波电路逆变电压的计算
– 变流器直流侧电压计算公式
Ud 1.17 U2cos
1.17U2 cos
– 考虑换相重叠角
Ud

1.17U2
cos

3xB
2
Id
cos( ) cos 2xB Id
6U 2
• 其它的电量,如负载电流平均值、晶闸管电流平均值和 有效值,变压器的容量计算等,均可按照整流电路的计 算原则进行 。
输出电压又可表示为 所以
U d U d 0 cos U d
1.35U AB
cos150

6xB 2
Id
Ud IdR E
E

1.35U
AB
c os150

Id
(R

6xB 2
)
Id

E
1.35U AB cos150 R 6xB

290 257.2 2 0.15
(二)三相桥式全控有源逆变电路
1、变流器工作于逆变状态( 2 )
Ud 0 , E 0 Ud E
2、三相桥式电路逆变电压的计算
ud
ua
ub
uc
ua
ub
– 变流器直流侧电压计算式O
n
wt
Ud 2.34U2cos 2.34U2 cos



三相半波整流电路如图例4.2所示,已知电动机处于稳定 的发电制动状态,滤波电抗Xd足够大,输出电流连续 而平直, 电枢回路 总电阻 Ra=0.5,电机端压Ua= 220V,变压器副边相电压U2=220V,交流侧换流电抗 XB=0.21。试完成下列要求:

单相桥式整流逆变电路的设计及仿真..

单相桥式整流逆变电路的设计及仿真..

辽宁工业大学电力电子技术课程设计(论文)题目:单相桥式整流/逆变电路的设计及仿真院(系):电气工程学院专业班级:自动化111班学号: *********学生姓名:指导教师:(签字)起止时间:2013.12.30-2014.1.10课程设计(论文)任务及评语院(系):电气工程学院 教研室:自动化 注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算学 号 1103020 学生姓名 专业班级课程设计(论文)题目单相桥式整流/逆变电路的设计及仿真课程设计(论文)任务 课题完成的功能、设计任务及要求、技术参数 实现功能整流电路是将交流电能变成直流电供给直流用电设备,在生产实际中,用于电阻加热炉、电解、电镀中,这类负载属于电阻类负载。

逆变电路是把直流电变成交流电。

逆变电路应用广泛,在各种直流电源中广泛使用。

设计任务及要求 1、确定系统设计方案,各器件的选型 2、设计主电路、控制电路、保护电路; 3、各参数的计算;4、建立仿真模型,验证设计结果。

5、撰写、打印设计说明书一份;设计说明书应在4000字以上。

技术参数整流电路:单相电网220V ,输出电压0~100V ,电阻性负载,,R=20欧姆 逆变电路:单相全桥无源逆变,输出功率200W ,输出电压100Hz 方波 进度计划1、 布置任务,查阅资料,确定系统方案(1天)2、 系统功能分析及系统方案确定(2天)3、 主电路、控制电路等设计(1天)4、 各参数计算(1天)5、 仿真分析与研究(3天)6、 撰写、打印设计说明书(1天)答辩(1天)指导教师评语及成绩平时: 论文质量: 答辩:总成绩: 指导教师签字: 年 月 日摘要整流电路是把交流电转换为直流电的电路。

大多数整流电路由变压器、整流主电路和滤波器等组成。

逆变电路是把直流电变成交流电的电路,与整流电路相对应。

无源逆变电路则是将交流侧直接和负载连接的电路。

此次设计的单相桥式整流电路是利用二极管来连接成“桥”式结构,达到电能的充分利用,是使用最多的一种整流电路。

逆变电路(电力电子技术课件)

逆变电路(电力电子技术课件)
载电流相减,直到VT 的合成正向电流
减至零后,再流过二极管VD。
换流方式
电感耦合式强迫换流
4) 强迫换流
给晶闸管加上反向电压而使其关
断的换流也叫电压换流(前图)
先使晶闸管电流减为零,然后通
过反并联二极管使其加 反压的
换流叫电流换流(左图)
换流方式小结
器件换流——适用于全控型器件
其余三种方式——针对晶闸管
断的换流也叫电压换流(前图)
先使晶闸管电流减为零,然后通
过反并联二极管使其加 反压的
换流叫电流换流(左图)
换流方式小结
器件换流——适用于全控型器件
其余三种方式——针对晶闸管
器件换流和强迫换流——属于自换流
因为器件或变流器自身的原因而实现换流
电网换流和负载换流——外部换流
借助于外部手段(电网电压或负载电压)
电感耦合式强迫换流
图a中晶闸管在LC振荡第一个半周期内关断
图b中晶闸管在LC振荡第二个半周期内关断
在图(a)中,接通开关S后,LC振荡
电流将反向流过晶闸管VT,与VT 的负
载电流相减,直到VT 的合成正向电流
减至零后,再流过二极管VD。
换流方式
电感耦合式强迫换流
4) 强迫换流
给晶闸管加上反向电压而使其关
其中交一直一交变频电路由交一直变换电路和直一交变换电路两
部分组成,
前一部分属于整流电路,后一部分就是逆变电路。
逆变器的工作原理

单相桥式逆变电路
当将开关Q1、Q4闭合,Q2、
Q3断开时,电阻上得到左
正右负的电压;
(a)逆变电路图
(b)输出电压波形
图5-1 逆变器的工作原理
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电力电子技术中的逆变器设计与应用实例
逆变器作为电力电子技术中的重要组成部分,其在能源转换和电力
传输中起着至关重要的作用。

本文将介绍逆变器的基本原理和设计方法,并通过实际应用案例来展示逆变器在不同领域中的应用。

一、逆变器的基本原理
逆变器是一种将直流电转换为交流电的装置,其核心是通过改变电
压和频率的方式,将直流电源输出为交流电信号。

逆变器的基本原理
是通过三相桥式逆变电路将直流电源变为交流电信号,然后通过滤波
电路进行滤波和调整,使输出的交流电信号具有所需要的频率和电压。

二、逆变器的设计方法
1. 选择逆变器的拓扑结构
逆变器有多种拓扑结构可供选择,如单相桥式逆变器、三相桥式逆
变器、多电平逆变器等。

在选择逆变器的拓扑结构时,需要考虑到应
用场景、输出功率、效率等因素,并根据需求选择最适合的结构。

2. 选定逆变器的工作频率和电压等级
逆变器的工作频率和电压等级需根据具体要求确定。

在选择逆变器
的工作频率时,需要考虑兼容性、损耗以及电源的要求等。

而选定逆
变器的电压等级时,则需参考负载的电压需求,并确定适宜的转换比例。

3. 选择逆变器的开关器件
逆变器的开关器件直接影响到逆变器的效率和可靠性。

常见的开关
器件有功率管、晶闸管、IGBT等,对于不同功率和频率的逆变器,需
要选择适合的开关器件,并确保其具有良好的导通和关断特性。

4. 进行逆变器的控制策略设计
逆变器的控制策略设计是实现逆变器稳定工作的关键。

常见的控制
策略有脉宽调制控制(PWM控制)、电压调制控制等,通过对逆变器
的控制电路和算法进行设计,可以实现对输出电压和频率的准确调节
和稳定控制。

三、逆变器的应用实例
1. 太阳能逆变器
太阳能逆变器是将太阳能电池板产生的直流电转换为交流电供电给
家庭、工业等用途的装置。

逆变器通过对太阳能电池板输出电流和电
压的控制,实现对交流电的输出,并通过滤波电路对输出波形进行优化。

2. 风力发电逆变器
风力发电逆变器是将风力发电机产生的直流电转换为交流电的装置。

逆变器通过对风力发电机输出电压和频率的控制,将其转换为稳定的
交流电信号,然后供电给电网或直接供电给用户。

3. 汽车逆变器
汽车逆变器是将汽车电瓶的直流电转换为交流电供给车载电器设备的装置。

逆变器通过对汽车电瓶输出电流和电压的控制,实现对交流电的输出,供给车载电器设备使用。

4. 电力传输逆变器
电力传输逆变器主要用于长距离电力输送中的输电线路,通过将输电线路上的直流电转换为交流电,实现电力的传输和分配。

总结:
逆变器作为电力电子技术中的关键组件,其设计与应用已经广泛应用于太阳能发电、风力发电、汽车电子以及电力传输等领域。

通过合理的设计选取逆变器的拓扑结构、工作频率和电压等级,并结合合适的开关器件和控制策略,可以实现逆变器的高效稳定运行。

随着新能源技术的发展,逆变器的应用前景将更加广阔。

相关文档
最新文档