导热高分子材料的研究与应用

合集下载

第7章 高分子材料的热学性能

第7章 高分子材料的热学性能

材料科学与工程学院
40
2.示差扫描量热法(DSC) 在加热或冷却过程中,将试样和参比物的温差 保持为零,测量补充的热量与温度或时间的关系 功率补偿DSC和热流式DSC
材料科学与工程学院
41
图7-11 高聚物典型的DTA曲线
材料科学与工程学院
42
典型的半结晶聚合物的DSC 曲线:
1. 与样品热容成比例的初始偏移
•对于酚醛树脂而言,其耐热性取决于温度和耐受时间 4 高聚物与纤维的复合
材料科学与工程学院
35
7.6 高分子材料的热稳定性
高分子材料的热稳定性主要是指高分子材料在受热 情况下,由于发生化学变化从而引起材料性能的变坏。 高温下高聚物可以发生降解和交联
降解:高分子主链的断裂,导致分子量下降,材料的物理力学性能变坏。
格波分为声频支和光频支两类
材料科学与工程学院
19
热性能的物理本质:晶格热振动
弹性波(格波):包括振动频率低的声频支 振动频率高的光频支
声频支—相邻原子具有相同的振动方向,两种原子的 质量不同,振幅不同,两原子间有相对运动。
光频支—相邻原子振动方向相反,形成一个范围很小, 频率很高的振动。
材料科学与工程学院
材料科学与工程学院
23
➢ 高分子材料热传导是通过分子(原子)相互碰撞的声 子导热,热导率较低
➢ 结晶度影响很大,结晶度高热导率高 ➢ 分子内热导率高于分子间热导率,增加分子量有利于
提高热导率 ➢ 取向高分子,取向方向热导率高于垂直于取向的方向 ➢ 导电共轭高分子的热导率是普通非共轭高分子的20-
30倍,将导电高分子与普通高分子共混可提高材料热 导率
VTm为熔点温度时的体积;V0为0K时的体积; 立方和六方金属,C为0.06~0.076

导热高分子复合材料的研究进展

导热高分子复合材料的研究进展

( . CF La , tras ce c n tu e S h o f h mi r n h mia n ie r g Z o g h nUn v ri , 1 P M b Maeil S in eIsi t, c o l e s y a dC e c l gn ei , h n s a iest t oC t E n y
导 热 材 料 在 国 防 工 业 和 国 民 经 济 各 个 领 域 都 有 很 广 泛 的 应 用。传统意义上 的导热、导电材 料多指金属 3Au  ̄ 、Ag u l l 、C 、 A1 、Mg ,金属 氧化物 如A1 、Mg 等 03 2 O、Be 、Z O、Ni , O n O等 金 属氮 化物  ̄ A N、S3 4 B I1 i 、 N等 以及 其 它 非 金 属 材 料 如 石 墨 N 和炭黑 等 。随着工业 生产和科学技术 的迅速发展 ,人们对导 』 热 材 料 提 出 了更 新 、更 高 的 要 求 ,除 导热 性 外 , 望 材 料 具 有 希 优 良的综合性能如质轻、易工艺化、力学性能 优异 、耐化学腐 蚀 等, 而且 由于现代信息产业 的快速发展 , 对于 电子设备具有 超 薄、轻便 、数字化、多功能化、网络化方 向发展寄予很高 的 期望 J 。。高分子 材料 由于具有质轻、耐化 学腐蚀、易加工成 型 、 电绝 缘 性 能 优 异 、力 学 及 抗 疲 劳 性 能 优 良等 优 异 的特 点 , 开 始 向这 些 领 域 渗 透 ,并 逐 步 在 这 个 领 域 发 挥 着 重 要 的 角色 。 然 而 ,由于 高 分 子 材 料 是 绝 缘 体 , 热 导 率 极 低 ,在 很 大 程 度 且 上 限制 了它 在 这 些 领 域 的应 用 。因此 , 发 出 具有 高导 热 、导 开 电性 能 , 综 合 性 能 优 异 的高 分 子 材 料 是 近 几 年 研 究 的一 个 热 且 点 ,并取得了显著成果 , 进一步拓宽 高分子材料在 导热 、导 电 方面 的应 用 领 域 。特 别 是 近 年 来 ,高 信 息 产 业 的蓬 勃 发展 , j 如 电器 、 微 电子 领 域 中广 泛使 用 的高 散 热 界 面 材 料 及 封 装 材 料 ,电磁 屏 蔽 、 电子 信 息 领 域 广 泛 使 用 的功 率 管 、集 成 块 、热 管 、集成 电路、覆铜基板等元器件 ,塑料在这些高端信息化产 品配 件 上 的应 用 将 向着 高 功 率 化 、高 密 度 化 、高集 成化 , 热 散 快 等 方 向发 展 , 为 高 导 热 高 分 子 材 料 在 新 的领 域 的发 展 提 供 这 了更 大 的舞 台 。 在 橡 胶 工 业 中 , 热 性 能 的 研 究 主 要 集 中在 硅 橡 胶 、丁腈 导 橡 胶 为 基 体 的应 用领 域 , 同时 也 有 小 部 分 报 道 了 以 丁苯 橡 胶 、 天 然 橡 胶 、丁基 橡 胶 、S S 为 基 体 的 导 热 橡 胶 的 研 究 。目前 , B等 电子 电气是导热橡胶 的主要应用领域 , 用于制造与 电子元器件 相接触 的橡胶制 品,为元器 件提供 良好的散热、绝缘 、以及减 震作用 。 在黏合剂工业 中, 导热胶黏剂主要用在 电子 电气领域 作为黏接和封装材料使用‘ 。

高分子材料在航空航天领域中的应用研究

高分子材料在航空航天领域中的应用研究

高分子材料在航空航天领域中的应用研究高分子材料在航空航天领域中的应用研究摘要:高分子材料作为一类重要的材料,在航空航天领域中得到了广泛的应用。

本文系统地综述了高分子材料在航空航天领域的应用情况,包括航空航天结构、热屏蔽材料、导热材料、电绝缘材料、复合材料等方面。

总结了高分子材料在航空航天领域中的优点和存在的问题,并对未来的发展方向进行了展望。

关键词:高分子材料;航空航天;结构材料;热屏蔽;导热;电绝缘;复合材料引言:高分子材料是以碳链为主体的材料,具有结构多样、性能可调、价格便宜等优点。

这些优点使得高分子材料在航空航天领域有着广泛的应用前景。

航空航天领域对材料的要求非常高,需要材料具有良好的机械性能、耐高温性能、耐腐蚀性能、导热性能等。

高分子材料在这些方面具有一定的优势。

本文将系统地综述高分子材料在航空航天领域中的应用情况,并对其未来发展进行展望。

一、高分子材料在航空航天结构中的应用航空航天结构是航空航天领域中最重要的应用领域之一。

高分子材料在航空航天结构中的应用主要包括飞机、火箭、卫星等结构件。

高分子材料在以往主要应用于载荷较低的位置上,如包胶、填充等部位。

但是随着高分子材料性能的不断提高,其在结构件上的应用也逐渐增多。

例如,航空航天结构中的航空航天材料、航天发动机涡轮叶片材料等。

高分子材料的优点是具有良好的成型性能和高效的成本性能。

成型性能是指高分子材料具有较好的可塑性和可流动性,可以制备出复杂形状的结构件。

这在航空航天领域中非常重要,因为航空航天结构件的形状十分复杂,传统的金属材料难以制备。

成本性能是指高分子材料相对于金属材料价格较低,可以降低航空航天的制造成本。

另外,高分子材料重量轻,可以降低结构件的重量,提高航空航天器的飞行性能。

高分子材料在航空航天结构中的应用也存在一些问题。

首先,高分子材料的强度相对较低,容易发生破损。

其次,高分子材料在高温下容易熔化或变形,影响结构件的稳定性。

因此,目前高分子材料在航空航天结构中主要应用于低载荷部位,如包胶、填充等。

导热高分子的导热机理(精)

导热高分子的导热机理(精)

导热高分子的导热机理学校名称:华南农业大学院系名称:材料与能源学院时间:2017年2月27日1.导热机理热传导过程采取扩散形式,但各种材料的导热机理是不同的。

固体内部的导热载体分别为电子、声子(点阵波)、光子(电磁辐射)3种1。

对聚合物而言,通常为饱和体系,无自由电子,导热载体为声子,热传导主要依靠晶格振动。

聚合物相对分子质量很大,具有多分散性,分子链则以无规则缠结方式存在,难以完全结晶,再加上分子链的振动对声子有散射作用2,使聚合物材料的热导率很小。

为了提高聚合物的热传导性能,可以制备具有结晶和高取向结构的聚合物材料,即合成结构型导热高分子材料;也可以向聚合物基体中添加导热填料来制备导热复合材料,即合成填充型导热高分子材料3。

制备结构型导热高分子材料加工工艺复杂,成本较高,且仅适用于少数聚合物,通常比较困难;采用填充导热填料来制备导热高分子材料,制备工艺简单,投资成本低,是目前制备导热高分子材料的主要方法。

制备结构型导热高分子材料,需要借助外力使高分子物理结构发生改变,制备工艺复杂,难度较大,因此在实际应用中受到使用限制。

1.1导热网链机理填料的热导率及其在聚合物基体中的分布形式决定了整个复合材料的热导率。

当填料的填加量较少时,填料在基体中以似孤岛形式分布,为分散相,被聚1张志龙,吴昊,景录如.高导热绝缘复合材料的研究[J].舰船电子工程,2005, 25 (6 ): 36-40.2周文英,齐暑华,李国新,等.导热胶粘剂研究[J].材料导报,2005,19(5):26-33.3石路晶,贾长明. 导热高分子材料在电子封装领域应用研究[J],.包装工程, 第35卷第17期2014年09月,合物包覆,形成类似于聚合物共混体系中的“海一岛”结构。

当填料的填充量达到某一临界值时,填料之间会相互接触,形成导热网链4。

随着填充量的增加,导热网链相互贯穿,复合材料导热性能显著提高。

这就如同一个简单的电路,基体和填料分别看作2个热阻。

高分子材料的性能与研究方法(ppt 28页)

高分子材料的性能与研究方法(ppt 28页)


医用高分子
概念:可应用于医药的人工合成(包括改性)的
高分子材料,不包括天然高分子材料、生物高分子 材料、无机(高分子)材料等在内。
分 类
基本:(1)、组织相容性:材料自身稳定性及于机 要求 体组织亲和性(容忍性),材料对集体的影
响; (2)、酶生物老化性:材料对人体复杂环境 的适应性(抗“体内老化”性) (3)、血液适应性:不凝血、不溶血、不改 变血液中的蛋白、不破坏血小板、不在引发 血栓形成等。
功能高分子材料
分类:(1)化学功能:感光高分子、氧化还原树脂、离子交

换树脂、高分子催化剂、光降解塑料、固体电介质等;

(2)物理功能:导电高分子、压电高分子、高分子极 驻体、旋光性高分子、磁记录高分子、荧光体等; (3)化学、物理复合功能:高分子吸附剂、絮凝剂、
子 发 光 板
表面活性剂、染料、稳定剂、高吸水材料等;
2、连锁聚合反应(链式聚合、链式反应): 单体被某种能量激活,是指链接到具有能量 的基团上,从而再激发另一个单体使之在连 接到这个增长的基团上,如此往复连成高分 子。包括自由基聚合与离子聚合。
4、高分子共混:多种高分子共混,形成有 特点的新的高分子材料。包括机械粉末共混、 溶液共混、乳液共混、熔融共混、化学反应 性共混等。
复合材料:以一种材料为基体(基体材料),另一
种材料为增强体(增强材料)组合而成的材料。 聚合物基复合材料通常以塑料或橡胶为基体,以纤维 为增强材料。
优势性能:强度高、力学性能好,抗疲劳性能好,
减震性能好,热变形温度高。
应用领域:
(1)航天航空(机翼、卫星天线、太阳能电池翼、大型运载火箭壳体等); (2)汽车工业(车身、受力构件、传动轴、发动机架及内部构件等); (3)化工、纺织、机械制造(化工设备、纺织机、复印机、高速机床等); (4)医学领域(医用X光机、矫形支架等)。

高分子材料在生活中的应用课件

高分子材料在生活中的应用课件
ห้องสมุดไป่ตู้
VS
橡胶制品是指由天然橡胶或合成橡胶制成的各种弹性体材料,广泛应用于轮胎、输送带、密封件等领域。
详细描述
橡胶制品具有弹性好、耐磨、耐油等特点,被广泛应用于轮胎制造、机械密封、管道密封等领域。例如,汽车轮胎、自行车轮胎、输送带、密封圈等都是橡胶制品。此外,橡胶制品还可以用于制造减震器、防震垫等减震材料。
要点一
要点二
详细描述
根据来源,高分子材料可分为天然高分子和合成高分子。天然高分子来源于自然界,如纤维素、蛋白质和天然橡胶等;合成高分子则是通过化学反应人工合成的,如聚乙烯、聚丙烯和合成橡胶等。根据结构,高分子材料可分为线型高分子、支链型高分子和网状型高分子。根据用途,高分子材料可分为塑料、橡胶、纤维和涂料等。
详细描述
高分子材料具有优良的物理、化学和机械性能,以及良好的加工性能。
总结词
高分子材料具有较高的弹性模量、强度和耐磨性,能够承受较大的压力和摩擦力。此外,高分子材料还具有良好的绝缘性、耐腐蚀性和耐候性,可在各种环境和条件下保持稳定的性能。
详细描述
总结词
高分子材料可以根据其来源、结构和用途进行分类。
总结词
03
CHAPTER
高分子材料在现代科技领域的应用
高分子材料在医疗器械领域的应用广泛,如医用导管、人工关节、牙科材料等。
医疗器械
药品包装
生物医用材料
高分子材料如聚乙烯、聚丙烯等,被用作药品包装材料,具有良好的阻隔性能和防护性能。
某些高分子材料可以用于制造生物医用材料,如人造皮肤、血管等,用于治疗疾病和修复受损组织。
03
02
01
04
CHAPTER
高分子材料的发展趋势与未来展望

高分子化学材料在日常生活中应用

高分子化学材料在日常生活中应用

浅析高分子化学材料在日常生活中的应用(巩义市第三中等专业学校河南巩义451200)高分子材料:以高分子化合物为基础的材料,高分子材料是由相对分子质量较高的化合物构成的材料,包括橡胶、塑料、纤维、涂料、胶粘剂和高分子基复合材料,由千百个原子彼此以共价键结合形成相对分子质量特别大、具有重复结构单元的有机化合物。

高分子的分子量从几千到几十万甚至几百万,所含原子数目一般在几万以上,而且这些原子是通过共价键连接起来的。

高分子化合物中的原子连接成很长的线状分子时,叫线型高分子(如聚乙烯的分子)。

如果高分子化合物中的原子连接成网状时,这种高分子由于一般都不是平面结构而是立体结构,所以也叫体型高分子。

生活中的高分子材料很多,如蚕丝、棉、麻、毛、玻璃、橡胶、纤维、塑料、高分子胶粘剂、高分子涂料和高分子基复合材料等。

下面就以塑料和纤维素举例说明。

一、生活中常见的高分子材料——塑料塑料是一种合成高分子材料,又可称为高分子或巨分子,也是一般所俗称的塑料或树脂,可以自由改变形体样式。

是利用单体原料以合成或缩合反应聚合而成的材料,由合成树脂及填料、增塑剂、稳定剂、润滑剂、色料等添加剂组成的,它的主要成分是合成树脂。

塑料主要有以下特性:①大多数塑料质轻,化学性稳定,不会锈蚀;②耐冲击性好;③具有较好的透明性和耐磨耗性;④绝缘性好,导热性低;⑤一般成型性、着色性好,加工成本低;⑥大部分塑料耐热性差,热膨胀率大,易燃烧;⑦尺寸稳定性差,容易变形;⑧多数塑料耐低温性差,低温下变脆;⑨容易老化;⑩某些塑料易溶于溶剂。

塑料的优点1、大部分塑料的抗腐蚀能力强,不与酸、碱反应。

2、塑料制造成本低。

3、耐用、防水、质轻。

4、容易被塑制成不同形状。

5、是良好的绝缘体。

6、塑料可以用于制备燃料油和燃料气,这样可以降低原油消耗。

塑料的缺点1、回收利用废弃塑料时,分类十分困难,而且经济上不合算。

2、塑料容易燃烧,燃烧时产生有毒气体。

3、塑料是由石油炼制的产品制成的,石油资源是有限的。

高分子绝缘材料在功率模块封装中的研究与应用

高分子绝缘材料在功率模块封装中的研究与应用

高分子绝缘材料在功率模块封装中的研究与应用曾亮1,2,齐放1,2,戴小平1,2(1.湖南国芯半导体科技有限公司,湖南株洲412001;2.湖南省功率半导体创新中心,湖南株洲412001)摘要:本文介绍了高分子绝缘材料在功率模块封装中的研究与应用情况,包括有机硅凝胶、环氧灌封胶、环氧模塑料、塑料框架等材料,并对其性能指标和国内外研究现状等进行了阐述。

最后对高分子材料在功率模块封装中的应用方向进行了展望,即优化使用工艺,提高产品稳定性和绝缘性能,开发耐温度冲击、热膨胀系数低、介电强度高的材料以及研究新型应用技术等。

关键词:绝缘材料;功率模块;有机硅树脂;环氧树脂中图分类号:TM215.1文献标志码:A文章编号:1009-9239(2021)05-0001-09DOI:10.16790/ki.1009-9239.im.2021.05.001Study and Application of Polymer Insulating Material inPower Module PackagingZENG Liang1,2,QI Fang1,2,DAI Xiaoping1,2(1.Coresing Semiconductor Technology Co.,Ltd.,Zhuzhou412001,China;2.Hunan Power Semiconductor Manufacturing Innovation Center,Zhuzhou412001,China)Abstract:This paper introduces the research and application of polymer insulating materials in power module packaging,including silicone gel,epoxy potting adhesive,epoxy molding compound,plastic frame and other materials,and their performance indicators and research status at home and abroad were elaborated.Finally,the application direction of polymer insulating materials in power module packaging was prospected,including optimizing the use process,improving the stability and insulation performance,developing materials with temperature shock resistance,low linear thermal expansion coefficient,and high dielectric strength and studying new applications technology.Key words:insulating material;power module;silicone resin;epoxy resin0引言功率模块封装是一门综合性非常强的学科,涉及的领域从材料研究到工艺应用、从无机材料到高分子材料、从大型智能化生产设备到计算机仿真分析等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导热高分子材料的研究与应用
导热高分子材料是一种具有良好导热性能的高分子材料,其研究与应用已经成为材料科学领域的热点之一。

导热高分子材料的特点在于其热导率较高,能够有效地传导热量,因此在热管理、导热材料和导热接触材料等领域具有广泛的应用前景。

在导热高分子材料的研究方面,学者们通过改变高分子材料的结构和组分,设计合成了一系列具有优异导热性能的材料。

例如,通过引入高导热性填料,如纳米颗粒、纳米管和纳米片等,可以显著提高材料的导热性能。

此外,改变高分子的链结构和分子排列方式,优化材料的热传导路径,也是提高导热性能的重要途径。

通过这些方法,研究人员已经成功地开发出导热性能突出的高分子材料,为导热材料的设计与制备提供了新的思路。

导热高分子材料的应用领域广泛。

首先,在电子器件中,由于电子元件工作时产生大量热量,需要有效地散热,导热高分子材料可以作为散热介质或导热胶,提高器件的热管理能力,保证器件的稳定性和可靠性。

其次,在汽车、航空航天和光电领域,导热高分子材料可以用于制备导热接触材料,提高能量转换效率和热传导效率。

此外,导热高分子材料还可以应用于热界面材料、导热膜、导热管等领域,满足不同领域对于导热性能的需求。

然而,目前导热高分子材料仍然面临一些挑战。

首先,虽然导热高分子材料的导热性能已经取得了显著的提高,但与传统导热材料如金属和陶瓷相比,其导热性能仍有一定差距。

因此,如何进一步提高导热高分子材料的导热性能,是当前研究的重要方向。

其次,导热高分子材料的制备工艺和成本也需要进一步优化,以满足大规模工业应用的需求。

此外,导热高分子材料的稳定性和可靠性也是需要重点关注的问题。

总之,导热高分子材料作为一种具有良好导热性能的材料,其研究与应用前景广阔。

通过改变材料的结构和组分,优化材料的导热性能,可以满足不同领域对于导热性能的需求。

然而,导热高分子材料仍然面临一些挑战,需要进一步研究和优化,以实现其在各个领域的广泛应用。

相关文档
最新文档