二次曲线-即-圆锥曲线

合集下载

第二章 圆锥曲线与方程

第二章 圆锥曲线与方程

第二章 圆锥曲线与方程[课标研读][课标要求] 1.圆锥曲线① 了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用. ② 掌握椭圆、抛物线的定义、几何图形、标准方程及简单性质. ③ 了解双曲线的定义、几何图形和标准方程,知道它的简单几何性质.④ 了解圆锥曲线的简单应用. ⑤ 理解数形结合的思想. 2.曲线与方程了解方程的曲线与曲线的方程的对应关系. [命题展望]本章内容是高中数学的重要内容之一,也是高考常见新颖题的板块,各种解题方法在本章得到了很好的体现和充分的展示,尤其是在最近几年的高考试题中,平面向量与解析几何的融合,提高了题目的综合性,形成了题目多变,解法灵活的特点,充分体现了高考中以能力立意的命题方向。

通过对近几年的高考试卷的分析,可以发现选择题、填空题与解答题均可涉及本章的知识,分值高达30分左右。

主要呈现以下几个特点:1.考查圆锥曲线的基本概念、标准方程及几何性质等知识及基本技能、基本方法,常以选择题与填空题的形式出现;2.直线与二次曲线的位置关系、圆锥曲线的综合问题常以压轴题的形式出现,这类问题视角新颖,常见的性质、基本概念、基础知识等被附以新的背景,以考查学生的应变能力和解决问题的灵活程度;3.在考查基础知识的基础上,注意对数学思想与方法的考查,注重对数学能力的考查,强调探究性、综合性、应用性,注重试题的层次性,坚持多角度、多层次的考查,合理调控综合程度;4.对称问题、轨迹问题、多变量的范围问题、位置问题及最值问题也是本章的几个热点问题,但从最近几年的高考试题本看,难度有所降低,有逐步趋向稳定的趋势。

第一讲 椭圆[知识梳理][知识盘点]一.椭圆的基本概念1.椭圆的定义:我们把平面内与两个定点21,F F 的距离的和等于常数( |,|21F F )的点的轨迹叫做椭圆,用符号表示为 。

这两个定点叫椭圆的 ,两个焦点之间的距离叫做椭圆的 。

2.椭圆的第二定义:平面内,到定点)0,(c F 的距离与到定直线:l 的距离之比是常数a c (即 )的动点的轨迹叫做椭圆,其中常数ac叫做椭圆的 。

圆锥曲线

圆锥曲线

【圆的基本知识】圆定义圆的定义有2其一:平面上到定点的距离等于定长的点的集合叫圆。

其二:平面上一条线段,绕它的一端旋转360°,留下的轨迹叫圆。

概括把一个圆按一条直线对折过去,并且完全重合,展开再换个方向对折,折出后,这些折痕相交的一个点,叫做圆心,用字母O表示。

连接圆心和圆上的任意一点的线段叫做半径,用字母r表示。

通过圆心并且两端都在圆上的线段叫做直径,用字母d表示。

圆心决定圆的位置,半径和直径定圆的大小。

在同一个圆或等圆中,半径都相等,直径也都相等,直径是半径的2倍,半径是直径的1/2。

用字母表示是:d=2r或r=d/2圆的相关量圆周率:圆周长度与圆的直径长度的比值叫做圆周率,它是一个无限不循环的小数通常用π表示,π=3.1415926535...,在实际应用中我们只取它的近似值,即π≈3.14(在奥数中一般π只取3、3.1416或3.14159)圆弧和弦:圆上任意两点间的部分叫做圆弧,简称弧。

大于半圆的弧称为优弧,小于半圆的弧称为劣弧。

连接圆上任意两点的线段叫做弦,弦不能过圆心(过圆心的为直径)。

圆心角和圆周角:顶点在圆心上的角叫做圆心角。

顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。

内心和外心:过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。

和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。

扇形:在圆上,由两条半径和一段弧围成的图形叫做扇形。

圆锥侧面展开图是一个扇形。

这个扇形的半径称为圆锥的母线。

【圆和圆的相关量字母表示方法】圆—⊙ 半径—r或R(在环形圆中外环半径表示的字母)弧—⌒ 直径—d 扇形弧长/圆锥母线—l 周长—C 面积—S【圆和其他图形的位置关系】圆和点的位置关系:以点P与圆O的为例(设P是一点,则PO是点到圆心的距离),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO<r。

直线与圆有3种位置关系:无公共点为相离;有两个公共点为相交,这条直线叫做圆的割线;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。

圆锥曲线的几个定义

圆锥曲线的几个定义

圆锥曲线的几个定义
1) 当平面与二次锥面的母线平行,且不过圆锥顶点,结果为抛物线。

2) 当平面与二次锥面的母线平行,且过圆锥顶点,结果退化为一条直线。

3) 当平面只与二次锥面一侧相交,且不过圆锥顶点,结果为椭圆。

4) 当平面只与二次锥面一侧相交,且不过圆锥顶点,并与圆锥的对称轴垂直,结果为圆。

5) 当平面与二次锥面两侧都相交,且不过圆锥顶点,结果为双曲线(每一支为此二次锥面中的一个圆锥面与平面的交线)。

6) 当平面与二次锥面两侧都相交,且过圆锥顶点,结果为两条相交直线。

7)当平面与二次锥面的两侧都不相交,且过圆锥顶点,结果为一点。

圆锥曲线的极点与极线的重要结论_罗碎海

圆锥曲线的极点与极线的重要结论_罗碎海

图7
M (x1,y1)、N(x2,y2) ,其中
m > 0,y1 > 0,y2 < 0.
(1)设动点 P 满足 PF2 - PB2 = 4 ,求点 P 的轨迹;
(2)设
x1
=
-2,
x2
=
-
1 3
,求点
T
的坐标;
(3)设 t = 9 ,求证:直线 MN 必过 x 轴上的一定点(其坐标
与 m 无关)。
分析(3):因为点(9,m)关于椭圆的极线为 x+y=1,此极线
2010.(4).
[3]梅向明.高等几何(第二版)[M].高等教育出版社.2000 年 5 月.
[4]梅向明.高等几何(第二版)[M].高等教育出版社.2000 年 5 月.
[5]罗碎海.方程 x0x+y0y=r2与 x2+y2=r2几何背景的探讨[J].中学数学教 学参考.2009.(3).
[6]姜坤崇.圆锥曲线关于极点极线的一个统一性质[J].中学数学教学
1 α
x0
a α (ln
a) =
ln a α
1
a1na
,m
=
(
ln a α
1
aln a )α

,从 而
∴当
0
<
m
<(
ln a α
1
aln a )α
时,曲线
y
=
ax

y
=
mxα
(m
>
0)

公共点;当
m
=
(
ln a α
a
1 ln a

时,曲线

圆锥曲线-双曲线

圆锥曲线-双曲线

圆锥曲线-双曲线一、双曲线的定义,标准方程 1. 双曲线第一定义:平面内与两个定点F 1、F 2的距离差的绝对值是常数(小于|F 1F 2|)的点的轨迹叫双曲线。

这两个定点叫双曲线的焦点,两焦点间的距离|F 1F 2|叫焦距。

2双曲线的标准方程: (1)焦点在x 轴上的:x a y ba b 2222100-=>>(),(2)焦点在y 轴上的:y a x ba b 2222100-=>>(),(3)当a =b 时,x 2-y 2=a 2或y 2-x 2=a 2叫等轴双曲线。

注:c 2=a 2+b 23.双曲线的几何性质:()焦点在轴上的双曲线,的几何性质:11002222x x a y ba b -=>>()1x a x a <>≤-≥范围:,或<2>对称性:图形关于x 轴、y 轴,原点都对称。

<3>顶点:A 1(-a ,0),A 2(a ,0) 线段A 1A 2叫双曲线的实轴,且|A 1A 2|=2a ; 线段B 1B 2叫双曲线的虚轴,且|B 1B 2|=2b 。

<>=>41离心率:e ca e () e 越大,双曲线的开口就越开阔。

<>±5渐近线:y b ax = <>=±62准线方程:x a c5.若双曲线的渐近线方程为:x ab y ±= 则以这两条直线为公共渐近线的双曲线系方程可以写成:)0(2222≠=-λλby a x1 22121x y m m m -=++若方程表示双曲线,则的取值范围是()A mB m m ..-<<-<->-2121或C m mD m R ..≠-≠-∈21且2. 220ab ax by c <+=时,方程表示双曲线的是() A. 必要但不充分条件 B. 充分但不必要条件 C. 充分必要条件D. 既不充分也不必要条件3. 22sin sin cos x y αααα-=设是第二象限角,方程表示的曲线是() A. 焦点在x 轴上的椭圆B. 焦点在y 轴上的椭圆C. 焦点在y 轴上的双曲线D. 焦点在x 轴上的双曲线4.曲线3sin 2x 2+θ+2sin y 2-θ=1所表示的图形是( )。

圆锥曲线二级结论及证明

圆锥曲线二级结论及证明

圆锥曲线二级结论及证明
圆锥曲线的二级结论是指在圆锥曲线中,一些经过推导和证明的特殊性质和定理。

这些结论通常用于简化解题过程和提高解题效率。

以下是一些圆锥曲线的二级结论及证明:
焦点弦长公式:对于过圆锥曲线焦点的直线与圆锥曲线交于两点A和B,有AB=2ex1ex2*sin(θ),其中e为离心率,x1和x2为A、B两点对应的横坐标,θ为直线AB的倾斜角。

证明:设直线AB的方程为x=my+n,联立直线和圆锥曲线方程,得到二次方程。

利用韦达定理得到x1+x2和x1*x2的值,再利用弦长公式得到AB的长度。

切线与法线的关系:对于圆锥曲线上的点P(x0,y0),其切线方程可以表示为y-y0=k(x-x0),其中k为切线的斜率。

同时,该点的法线方程可以表示为y-y0=-1/k(x-x0)。

证明:设点P处的切线斜率为k,则切线方程可以表示为
y-y0=k(x-x0)。

求出该点处的导数即为切线的斜率。

利用点斜式方程得到切线方程,然后利用法线和切线的垂直关系得到法线方程。

离心率与曲线的形状关系:对于椭圆,离心率e越小,曲线越扁;对于双曲线,离心率e越大,曲线越扁。

证明:利用椭圆的焦点距离公式和半轴长公式,可以得到离心率
e与半轴长之间的关系。

对于双曲线,同样利用焦点距离公式和半轴长公式,可以得到离心率e与半轴长之间的关系。

以上是一些圆锥曲线的二级结论及证明,这些结论可以应用于具体的解题过程中,提高解题效率。

圆锥曲线齐次化使用条件

圆锥曲线齐次化使用条件

圆锥曲线齐次化使用条件圆锥曲线齐次化是一种重要的数学工具,它在多个领域中都有着广泛的应用,如物理学、工程学、计算机图形学等。

本文将介绍圆锥曲线齐次化的使用条件,以帮助读者更好地了解和应用这一工具。

圆锥曲线齐次化是指将一个二次方程化为标准的圆锥曲线形式。

具体来说,一个二次方程$ax^2+bx+c=0$可以被齐次化为$x^2+px+q=0$,其中$p$和$q$分别是圆锥曲线的两个参数,它们与原方程的系数$a,b,c$之间的关系如下:$$\begin{cases}p=\frac{1}{a}b,\\q=\frac{1}{a}c.\end{cases}$$圆锥曲线齐次化结果可以用以下公式表示:$$x^2+px+q=0\Rightarrow x^2+\frac{1}{a}px+\frac{1}{a}q=0$$从这个公式中可以看出,圆锥曲线齐次化后的方程只涉及$x$的一次项和常数项,而与原方程的二次项和一次项系数无关。

因此,圆锥曲线齐次化对于某些二次方程具有重要的简化作用。

圆锥曲线齐次化在物理学中有广泛的应用。

例如,在量子力学中,圆锥曲线齐次化被用来描述粒子的波动性质。

另外,在电动力学中,圆锥曲线齐次化也被用来描述电场和磁场的相互作用。

圆锥曲线齐次化在工程学和计算机图形学中也有重要的应用。

例如,在计算机图形学中,圆锥曲线齐次化被用来计算三维图形的几何性质,如圆度、平滑度等。

此外,在工程学中,圆锥曲线齐次化也被用来进行数据分析和优化,以提高工程系统的效率和可靠性。

在使用圆锥曲线齐次化时,需要满足一定的条件。

首先,原方程必须是一个二次方程,即$ax^2+bx+c=0$。

其次,$a\neq0$。

此外,圆锥曲线齐次化结果中的参数$p$和$q$也必须满足一定的关系,即$p=\frac{1}{a}b$,$q=\frac{1}{a}c$。

总结起来,圆锥曲线齐次化是一种非常有用的数学工具,它可以帮助我们更好地理解和应用二次方程。

圆锥曲线经典题型总结(含答案)

圆锥曲线经典题型总结(含答案)

圆锥曲线整理1.圆锥曲线的定义:(1)椭圆:|MF 1|+|MF 2|=2a (2a >|F 1F 2|);(2)双曲线:||MF 1|-|MF 2||=2a (2a <|F 1F 2|); (3)抛物线:|MF |=d .圆锥曲线的定义是本部分的一个重点内容,在解题中有广泛的应用,在理解时要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。

若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。

若去掉定义中的绝对值则轨迹仅表示双曲线的一支。

2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程):(1)椭圆:焦点在x 轴上时12222=+b y a x (0a b >>),焦点在y 轴上时2222bx a y +=1(0a b >>)。

%(2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:2222b x a y -=1(0,0a b >>)。

(3)抛物线:开口向右时22(0)y px p =>,开口向左时22(0)y px p =->,开口向上时22(0)x py p =>,开口向下时22(0)x py p =->。

注意:1.圆锥曲线中求基本量,必须把圆锥曲线的方程化为标准方程。

2.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断):椭圆:由x2,y 2分母的大小决定,焦点在分母大的坐标轴上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次曲线即圆锥曲线.圆锥曲线包括圆,椭圆,双曲线,抛物线。

其统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。

当e>1时为双曲线,当e=1时为抛物线,当e<1时为椭圆。

1简介2000多年前,古希腊数学家最先开始研究圆锥曲线,并获得了大量的成果。

古希腊数学家阿波罗尼采用平面切割圆锥的方法来研究这几种曲线。

用垂直于锥轴的平面去截圆锥,得到的是圆;把平面渐渐倾斜,得到椭圆;当平面倾斜到“和且仅和”圆锥的一条母线平行时,得到抛物线;当平面再倾斜一些就可以得到双曲线。

阿波罗尼曾把椭圆叫“亏曲线”,把双曲线叫做“超曲线”,把抛物线叫做“齐曲线”.事实上,阿波罗尼在其著作中使用纯几何方法已经取得了今天高中数学中关于圆锥曲线的全部性质和结果.2定义编辑几何观点用一个平面去截一个圆锥面,得到的交线就称为圆锥曲线(conic sections)。

通常提到的圆锥曲线包括椭圆,双曲线和抛物线,但严格来讲,它还包括一些退化情形.具体而言:1)当平面与圆锥面的母线平行,且不过圆锥顶点,结果为抛物线。

2)当平面与圆锥面的母线平行,且过圆锥顶点,结果退化为一条直线.3)当平面只与圆锥面一侧相交,且不过圆锥顶点,结果为椭圆。

4) 当平面只与圆锥面一侧相交,且不过圆锥顶点,并与圆锥面的对称轴垂直,结果为圆。

5)当平面只与圆锥面一侧相交,且过圆锥顶点,结果退化为一个点.6) 当平面与圆锥面两侧都相交,且不过圆锥顶点,结果为双曲线的一支(另一支为此圆锥面的对顶圆锥面与平面的交线)。

7)当平面与圆锥面两侧都相交,且过圆锥顶点,结果为两条相交直线。

代数观点在笛卡尔平面上,二元二次方程ax^2+bxy+cy^2+dx+ey+f=0的图像是圆锥曲线。

根据判别式的不同,也包含了椭圆、双曲线、抛物线以及各种退化情形。

焦点--准线观点(严格来讲,这种观点下只能定义圆锥曲线的几种主要情形,因而不能算是圆锥曲线的定义。

但因其使用广泛,并能引导出许多圆锥曲线中重要的几何概念和性质)。

给定一点P,一直线L以及一非负实常数e,则到P的距离与L距离之比为e的点的轨迹是圆锥曲线。

根据e的范围不同,曲线也各不相同。

具体如下:1) e=0,轨迹退化为点(即定点P);2)e=1(即到P与到L距离相同),轨迹为抛物线;3)0〈e〈1,轨迹为椭圆;4) e〉1,轨迹为双曲线。

3概念编辑(以下以纯几何方式叙述主要的圆锥曲线通用的概念和性质,由于大部分性质是在焦点-准线观点下定义的,对于更一般的退化情形,有些概念可能不适用。

)考虑焦点-—准线观点下的圆锥曲线定义。

定义中提到的定点,称为圆锥曲线的焦点;定直线称为圆锥曲线的准线;固定的常数(即圆锥曲线上一点到焦点与准线的距离比)称为圆锥曲线的离心率;焦点到准线的距离称为焦准距;焦点到曲线上一点的线段称为焦半径。

过焦点、平行于准线的直线与圆锥曲线相交于两点,此两点间的线段称为圆锥曲线的通径,物理学中又称为正焦弦。

圆锥曲线是光滑的,因此有切线和法线的概念。

类似圆,与圆锥曲线交于两点的直线上两交点间的线段称为弦;过焦点的弦称为焦点弦。

对于同一个椭圆或双曲线,有两个“焦点-准线”的组合可以得到它。

因此,椭圆和双曲线有两个焦点和两条准线。

而抛物线只有一个焦点和一条准线。

圆锥曲线关于过焦点与准线垂直的直线对称,在椭圆和双曲线的情况,该直线通过两个焦点,该直线称为圆锥曲线的焦轴。

对于椭圆和双曲线,还关于焦点连线的垂直平分线对称。

Pappus定理:圆锥曲线上一点的焦半径长度等于该点到相应准线的距离乘以离心率. Pascal定理:圆锥曲线的内接六边形,若对边两两不平行,则该六边形对边延长线的交点共线。

(对于退化的情形也适用)Brianchon定理:圆锥曲线的外切六边形,其三条对角线共点。

4定理编辑由比利时数学家G。

F.Dandelin 1822年得出的冰淇凌定理证明了圆锥曲线几何定义与焦点—准线定义的等价性。

即有一以Q为顶点的圆锥(蛋筒),有一平面PI’(你也可以说是饼干)与其相截得到了圆锥曲线,作球与平面PI’及圆锥相切,在曲线为椭圆或双曲线时平面与球有两个切点,抛物线只有一个(或者另一个在无穷远处),则切点为焦点。

又球与圆锥之交为圆,设以此圆所在平面PI与PI’之交为直线d(曲线为圆时d为无穷远线),则d为准线。

图只画了椭圆,证明对抛物线双曲线都适用,即证,任一个切点为焦点,d为准线.证:假设P为曲线上一点,联线PQ交圆O于E。

设平面PI′与PI的交角为a,圆锥的母线(如PQ)与平面PI的交角为b.设P到平面PI 的垂足为H,H到直线d的垂足为R,则PR为P 到d的垂线(三垂线定理),而∠PRH=a。

又PE=PF,因为两者同为圆球之切线.如此则有:PR·sina=PH=PE·sinb=PF·sinb其中:PF/PR=sina/sinb为常数5性质编辑椭圆文字语言定义:平面内一个动点到一个定点与一条定直线的距离之比是一个小于1的正常数e。

平面内一个动点到两个定点(焦点)的距离和等于定长2a的点的集合(设动点为P,两个定点为F1和F2,则PF1+PF2=2a)。

定点是椭圆的焦点,定直线是椭圆的准线,常数e是椭圆的离心率。

标准方程:1、中心在原点,焦点在x轴上的椭圆标准方程:(x^2/a^2)+(y^2/b^2)=1其中a>b>0,c〉0,c^2=a^2—b^2。

2、中心在原点,焦点在y轴上的椭圆标准方程:(x^2/b^2)+(y^2/a^2)=1其中a〉b>0,c>0,c^2=a^2-b^2。

参数方程:x=acosθ;y=bsinθ (θ为参数,0≤θ≤2π)双曲线文字语言定义:平面内一个动点到一个定点与一条定直线的距离之比是一个大于1的常数e。

定点是双曲线的焦点,定直线是双曲线的准线,常数e是双曲线的离心率。

标准方程:1、中心在原点,焦点在x轴上的双曲线标准方程:(x^2/a^2)-(y^2/b^2)=1其中a〉0,b>0,c^2=a^2+b^2。

2、中心在原点,焦点在y轴上的双曲线标准方程:(y^2/a^2)-(x^2/b^2)=1。

其中a>0,b>0,c^2=a^2+b^2。

参数方程:x=asecθ;y=btanθ (θ为参数)直角坐标(中心为原点):x^2/a^2 — y^2/b^2 = 1 (开口方向为x轴)y^2/a^2 - x^2/b^2 = 1 (开口方向为y轴)抛物线文字语言定义:平面内一个动点到一个定点与一条定直线的距离之比是等于1.定点是抛物线的焦点,定直线是抛物线的准线.参数方程x=2pt^2 y=2pt (t为参数) t=1/tanθ(tanθ为曲线上点与坐标原点确定直线的斜率)特别地,t可等于0直角坐标y=ax^2+bx+c (开口方向为y轴,a≠0) x=ay^2+by+c (开口方向为x轴,a≠0 )圆锥曲线(二次非圆曲线)的统一极坐标方程为ρ=ep/(1—ecosθ)其中e表示离心率,p为焦点到准线的距离.离心率椭圆,双曲线,抛物线这些圆锥曲线有统一的定义:平面上,到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。

且当0〈e〈1时为椭圆:当e=1时为抛物线;当e>1时为双曲线.这里的参数e就是圆锥曲线的离心率,它不仅可以描述圆锥曲线的类型,也可以描述圆锥曲线的具体形状,简言之,离心率相同的圆锥曲线都是相似图形。

一个圆锥曲线,只要确定了离心率,形状就确定了。

特别的,因为抛物线的离心率都等于1,所以所有的抛物线都是相似图形。

极坐标方程1、在圆锥中,圆锥曲线极坐标方程可表示为:其中l表示半径,e表示离心率;2、在平面坐标系中,圆锥曲线极坐标方程可表示为:其中e表示离心率,p表示焦点到准线的距离。

[1]焦半径圆锥曲线上任意一点到焦点的距离称为焦半径。

圆锥曲线左右焦点为F1、F2,其上任意一点为P(x,y),则焦半径为:椭圆|PF1|=a+ex|PF2|=a—ex双曲线P在左支,|PF1|=-a-ex |PF2|=a-exP在右支,|PF1|=a+ex |PF2|=-a+exP在下支,|PF1|= -a—ey |PF2|=a-eyP在上支,|PF1|= a+ey |PF2|=-a+ey抛物线|PF|=x+p/2切线方程圆锥曲线上一点P(,)的切线方程:以代替,以代替;以(x0+x)/2代替x,以y0+y代替y^2即椭圆:x0x/a^2+y0y/b^2=1;双曲线:x0x/a^2-y0y/b^2=1;抛物线:y0y=p(x0+x)焦准距圆锥曲线的焦点到准线的距离p,叫圆锥曲线的焦准距,或焦参数。

椭圆的焦准距:双曲线的焦准距:抛物线的准焦距:p焦点三角形椭圆或双曲线上的一点与两焦点所构成的三角形。

设F1、F2分别为椭圆或双曲线的两个焦点,P为椭圆或双曲线上的一点且PF1F2能构成三角形.若∠F1PF2=θ,则椭圆焦点三角形的面积为S=tan(θ/2);双曲线焦点三角形的面积为S=cot(θ/2)通径圆锥曲线中,过焦点并垂直于轴的弦称为通径.椭圆的通径:双曲线的通径:抛物线的通径:2p对比圆锥曲线椭圆双曲线抛物线标准方程a〉b〉0 a>0,b〉0 p>0范围x∈[—a,a]y∈[—b,b]x∈(-∞,-a]∪[a,+∞)y∈Rx∈[0,+∞)y∈R对称性关于x轴,y轴,原点对称关于x轴,y轴,原点对称关于x轴对称顶点(a,0),(-a,0),(0,b),(0,-b) (a,0),(-a,0)(0,0)焦点(c,0),(—c,0)【其中c^2=a^2—b^2】(c,0),(—c,0)【其中c^2=a^2+b^2】(p/2,0)准线x=±(a^2)/c x=±(a^2)/c x=—p/2 渐近线—-——-- y=±(b/a)x[2] —-———离心率e=c/a,e∈(0,1) e=c/a,e∈(1,+∞)e=1焦半径∣PF1∣=a+ex∣PF2∣=a—ex∣PF1∣=∣ex+a∣∣PF2∣=∣ex-a∣∣PF∣=x+p/2焦准距p=(b^2)/c p=(b^2)/c p 通径(2b^2)/a (2b^2)/a 2p参数方程x=a·cosθy=b·sinθ,θ为参数x=a·secθy=b·tanθ,θ为参数x=2pt^2y=2pt,t为参数过圆锥曲线上一点(x0,y0)的切线方程(x0·x/a^2)+(y0·y/b^2)=1 (x0x/a^2)-(y0·y/b^2)=1 y0·y=p(x+x0)斜率为k的切线方程y=kx±√[(a^2)·(k^2)+b^2]y=kx±√[(a^2)·(k^2)-b^2] y=kx+p/2k中点弦问题已知圆锥曲线内一点为圆锥曲线的一弦中点,求该弦的方程:1、联立方程法。

相关文档
最新文档