【精品】2018年湖南省株洲市炎陵县垄溪学校九年级上学期数学期中试卷及解析

合集下载

20182019新人教版九年级数学上册期中测试题含解析

20182019新人教版九年级数学上册期中测试题含解析

・・
p
1
X
o
II
CXI
§
CXI
r\
■5
II
e
+
II
<
c\r~
r\
(N
(N
II
E
t、
M
A
(N
(N

XX
B
• r\
CXI O
CM
+
+
T—
co
II
r\
r\
J

CXI
CXI co
CXI
<
CO CXI <
\—
X
E
+

II
(N
u

r\
A
CXI

ni

■a
<
ii
E
CXI
cxi
o
CXI
co
<
u o
A
A
II
CXI
E

)




x



x2

(2m
+
1)x
+
m(r
+
1)
0.(
1)


:













7
(2
)









x1
x2

x21

湘教版九年级数学上册期中试卷附答案

湘教版九年级数学上册期中试卷附答案

湘教版九年级数学上册期中试卷附答案班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.-5的相反数是( )A .15-B .15C .5D .-52.用配方法将二次函数y=x 2﹣8x ﹣9化为y=a (x ﹣h )2+k 的形式为( )A .y=(x ﹣4)2+7B .y=(x+4)2+7C .y=(x ﹣4)2﹣25D .y=(x+4)2﹣253.若数a 使关于x 的不等式组232x a x a ->⎧⎨-<-⎩无解,且使关于x 的分式方程5355ax x x-=---有正整数解,则满足条件的整数a 的值之积为( ) A .28 B .﹣4 C .4 D .﹣24.用配方法解方程2890x x ++=,变形后的结果正确的是( )A .()249x +=-B .()247x +=-C .()2425x +=D .()247x += 5.若关于x 的不等式mx - n >0的解集是15x <,则关于x 的不等式()m n x n m >-+的解集是( )A .23x >-B .23x <-C .23x <D .23x > 6.已知直线y 1=kx+1(k <0)与直线y 2=mx (m >0)的交点坐标为(12,12m ),则不等式组mx ﹣2<kx+1<mx 的解集为( ) A .x>12 B .12<x<32 C .x<32 D .0<x<327.四边形ABCD 中,对角线AC 、BD 相交于点O ,下列条件不能判定这个四边形是平行四边形的是( )A .AB ∥DC ,AD ∥BCB .AB=DC ,AD=BC C .AO=CO ,BO=DOD .AB ∥DC ,AD=BC8.如图是二次函数2y=ax +bx+c 的部分图象,由图象可知不等式2ax +bx+c<0的解集是( )A .1<x<5-B .x>5C .x<1-且x>5D .x <-1或x >59.如图,在平行四边形ABCD 中,点E 在边DC 上,DE :EC=3:1,连接AE 交BD 于点F ,则△DEF 的面积与△BAF 的面积之比为( )A .3:4B .9:16C .9:1D .3:110.如图,⊙O 是△ABC 的外接圆,∠OCB =40°,则∠A 的大小为( )A .40°B .50°C .80°D .100°二、填空题(本大题共6小题,每小题3分,共18分)181__________.2.因式分解:34a a -=____________.3.若2a b +=,3ab =-,则代数式32232a b a b ab ++的值为__________.4.如图是抛物线型拱桥,当拱顶离水面2m 时,水面宽4m ,水面下降2m ,水面宽度增加__________m.5.如图,点A ,B 是反比例函数y=k x(x >0)图象上的两点,过点A ,B 分别作AC ⊥x 轴于点C ,BD ⊥x 轴于点D ,连接OA ,BC ,已知点C (2,0),BD=2,S △BCD =3,则S △AOC =__________.6.如图,在边长为4的正方形ABCD 中,以点B 为圆心,以AB 为半径画弧,交对角线BD 于点E ,则图中阴影部分的面积是__________(结果保留π)三、解答题(本大题共6小题,共72分) 1.解方程:2111x x x +=--2.计算:()011342604sin π-----+().3.如图,在ABC 中,ACB 90∠=,AC BC =,D 是AB 边上一点(点D 与A ,B不重合),连结CD,将线段CD绕点C按逆时针方向旋转90得到线段CE,连结DE交BC于点F,连接BE.()求证:ACD≌BCE;1()当AD BF2∠的度数.=时,求BEF4.某市为节约水资源,制定了新的居民用水收费标准.按照新标准,用户每月缴纳的水费y(元)与每月用水量x(m3)之间的关系如图所示.(1)求y关于x的函数解析式;(2)若某用户二、三月份共用水40m3(二月份用水量不超过25m3),缴纳水费79.8元,则该用户二、三月份的用水量各是多少m3?5.某初级中学数学兴趣小组为了了解本校学生的年龄情况,随机调查了该校部分学生的年龄,整理数据并绘制如下不完整的统计图.依据以上信息解答以下问题:(1)求样本容量;(2)直接写出样本容量的平均数,众数和中位数;(3)若该校一共有1800名学生,估计该校年龄在15岁及以上的学生人数.6.“互联网+”时代,网上购物备受消费者青睐.某网店专售一款休闲裤,其成本为每条40元,当售价为每条80元时,每月可销售100条.为了吸引更多顾客,该网店采取降价措施.据市场调查反映:销售单价每降1元,则每月可多销售5条.设每条裤子的售价为x元(x为正整数),每月的销售量为y条.(1)直接写出y与x的函数关系式;(2)设该网店每月获得的利润为w元,当销售单价降低多少元时,每月获得的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定每月从利润中捐出200元资助贫困学生.为了保证捐款后每月利润不低于4220元,且让消费者得到最大的实惠,该如何确定休闲裤的销售单价?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、B4、D5、B6、B7、D8、D9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、±32、(2)(2)a a a +-3、-124、-45、5.6、8﹣2π三、解答题(本大题共6小题,共72分)1、32x =2、33、()1略;()2BEF 67.5∠=.4、(1) 1.8(015)2.49(15)x x x x >≤≤⎧⎨-⎩(2)该用户二、三月份的用水量各是12m 3、28m 3 5、(1)样本容量为50;(2)平均数为14(岁);中位数为14(岁),众数为15岁;(3)估计该校年龄在15岁及以上的学生人数为720人.6、(1)5500y x =-+;(2)当降价10元时,每月获得最大利润为4500元;(3)当销售单价定为66元时,即符合网店要求,又能让顾客得到最大实惠.。

【九年级数学试题】2018九年级数学上第一次月考试卷(湘教版附答案和解释)

【九年级数学试题】2018九年级数学上第一次月考试卷(湘教版附答案和解释)

2018九年级数学上第一次月考试卷(湘教版附答案和解释)
因式分解法.
【专题】压轴题;新定义.
【分析】此题考查学生的分析问题和探索问题的能力.解题的关键是理解题意,在此题中x+2=a,5=b,代入所给式得(x+2)*5=(x+2)2﹣52,则可得一元二次方程,解方程即可求得.
【解答】解据题意得,
∵(x+2)*5=(x+2)2﹣52
∴x2+4x﹣21=0,
∴(x﹣3)(x+7)=0,
∴x=3或x=﹣7.
故答案为x=3或x=﹣7
【点评】此题将规定的一种新运算引入题目中,题型独特、新颖,难易程度适中.
18.小王同学想利用树影测量校园内的树高.他在某一时刻测得小树高为15米时,其影长为12米,当他测量教学楼旁的一棵大树的影长时,因大树靠近教学楼,有一部分影子在墙上.经测量,地面部分影长为64米,墙上影长为14米,那么这棵大树高约为 94 米.【考点】平行投影;相似三角形的应用.
【专题】压轴题.
【分析】根据在同一时刻,不同物体的物高和影长成比例计算.【解答】解设这棵大树高为x,
根据平行投影特点在同一时刻,不同物体的物高和影长成比例.可得树高比影长为 =125,
则有 = =08,
解可得x=94米.
【点评】本题考查了平行投影特点在同一时刻,不同物体的物高。

2018-2019学年湖南省株洲市醴陵市九年级(上)期末数学试卷

2018-2019学年湖南省株洲市醴陵市九年级(上)期末数学试卷

2018-2019学年湖南省株洲市醴陵市九年级(上)期末数学试卷副标题一、选择题(本大题共10小题,共30.0分)1. 方程x 2-4=0的两个根是( )A. x 1=2,x 2=-2B. x =-2C. x =2D. x 1=2,x 2=02. 如图,已知DE ∥BC ,=,则△ABC 与△ADE 的面积比为( )A. 2:1B. 4:1C. 9:1D. 1:93. 为了绿化校园,某校计划经过两年时间,让校园的绿地面积从100m 2增加到121m 2.设平均每年绿地面积增长率为x ,则方程可列为( ) A. 100(1+x )2=21 B. (1+x )+(1+x )2=21 C. 100(1+x )2=121 D. (1+x )+(1+x )2=1214. 将抛物线y =x 2向上平移2个单位后,所得的抛物线的函数表达式为( )A. y =x 2+2B. y =x 2-2C. y =(x +2)2D. y =(x -2)25. 如图,点O 是等边三角形PQR 的中心,P '、Q '、R '分别是OP 、OQ 、OR 的中点,则△P 'Q 'R '与△PQR 是位似三角形,此时△P 'Q 'R '与△PQR 的位似比、位似中心分别是( ) A. 2、点PB. 、点PC. 2、点OD. 、点O6. 在△ABC 中,∠C =90°,sin A =,则tan A =( )A. B. C. D.7. 如图,四边形ABCD 为⊙O 的内接四边形,已知∠BCD =130°,则∠BOD =( )A. 50°B. 80°C. 100°D. 130°8.如图,点P在△ABC的边AC上,如果添加一个条件后可以得到△ABP∽△ACB,那么以下添加的条件中,不正确的是()A. ∠ABP=∠CB. ∠APB=∠ABCC. AB2=AP•ACD.9.矩形ABCD中AB=10,BC=8,E为AD边上一点,沿CE将△CDE对折,点D正好落在AB边上的F点.则AE的长是()A. 3B. 4C. 5D. 610.如图,二次函数y=ax2+bx+c的图象与x轴交于点A(-1,0),与y轴的交点B在(0,2)与(0,3)之间(不包括这两点),对称轴为直线x=2.下列结论:①abc<0;②9a+3b+c>0;③若点M(,y1),点N(,y2)是函数图象上的两点,则y1<y2;④-<a<-.其中正确结论有()A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共8小题,共24.0分)11.已知sin A=,则锐角∠A=______.12.若=,则=______.13.抛物线y=x2+bx+c经过A(-1,0),B(3,0)两点,则这条抛物线的解析式为______.14.关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,则k的取值范围是______.15.如图,AB是⊙O的直径,弦CD⊥AB于点E,OC=5cm,CD=8cm,则AE=______cm.16.《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的正方形边长最大是多少步?”该问题的答案是______步.17.如图,Rt△ABC中,∠ACB=90°,AC=6,BC=8,D是AB边的中点,P是BC边上一动点(点P不与B、C重合),若以D、C、P为顶点的三角形与△ABC相似,则线段PC=______.18.如图,在边长为1的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点O,则tan∠AOD=______.三、解答题(本大题共8小题,共66.0分)19.计算:(π-2018)0+(-1)2-sin60°•cos30°.20.配方法解:x2+3x-4=0.21.自2016年国庆后,许多高校均投放了使用手机就可随用的共享单车.某运营商为提高其经营的A品牌共享单车的市场占有率,准备对收费作如下调整:一天中,同一个人第一次使用的车费按0.5元收取,每增加一次,当次车费就比上次车费减少同时,就此收费方案随机调查了某高校名师生在一天中使用品牌共享单车的意愿,得到如下数据:(Ⅰ)写出a,b的值;(Ⅱ)已知该校有5000名师生,且A品牌共享单车投放该校一天的费用为5800元.试估计:收费调整后,此运营商在该校投放A品牌共享单车能否获利?说明理由.22.如图,四边形ACEF为正方形,以AC为斜边作Rt△ABC,∠B=90°,AB=4,BC=2,延长BC至点D,使CD=5,连接DE.(1)求正方形的边长;(2)求DE的长.23.如图,长沙九龙仓国际金融中心主楼BC高达452m,是目前湖南省第一高楼,和它处于同一水平面上的第二高楼DE高340m,为了测量高楼BC上发射塔AB的高度,在楼DE底端D点测得A的仰角为α,在顶端E点测得A的仰角∠AEF=45°,(1)若设AB为x米,请用含x的代数式表示AF的长.(2)求出发射塔AB的高度.(cosα≈,sinα≈,tanα≈)24.如图,AB是半圆O的直径,C是半圆上一点,=,DH⊥AB于点H,AC分别交BD、DH于E、F.(1)已知AB=10,AD=6,求AH.(2)求证:DF=EF25.已知y是关于x的函数,如果能在其函数图象上能找到横坐标与纵坐标相同的一个点P(t,t),则称点P为函数图象上的“郡点”.例如:直线y=2x-1上存在“郡点”P(1,1).(1)直线y=3x-4的郡点是______;双曲线y=上的郡点是______.(2)若抛物线y=x2+5x-5上有“郡点”,且“郡点”A、B(点A,B可重合)的坐标分别为(x1,y1),(x2,y2),求x12+x22的值.26.如图,一小球从斜坡O点处抛出,球的抛出路线可以用二次函数y=-x2+4x刻画,斜坡可以用一次函数y=x刻画.(1)请用配方法求二次函数图象的最高点P的坐标;(2)小球的落点是A,求点A的坐标;(3)连接抛物线的最高点P与点O、A得△POA,求△POA的面积;(4)在OA上方的抛物线上存在一点M(M与P不重合),△MOA的面积等于△POA 的面积.请直接写出点M的坐标.答案和解析1.【答案】A【解析】解:移项得:x2=4,两边直接开平方得:x=±2,则x1=2,x2=-2,故选:A.首先移项,再两边直接开平方即可.此题主要考查了解一元二次方程-直接开平方法,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x2=a(a≥0)的形式,利用数的开方直接求解.2.【答案】B【解析】解:∵DE∥BC,∴△ABC∽△ADE,∴S△ADE:S△ABC=AD2:AB2,∵AD:AB=1:2,∴S△ADE:S△ABC=1:4,即△ABC与△ADE的面积比为4:1.故选:B.由DE平行于BC可以得到△ABC∽△ADE,然后利用相似三角形的性质即可求解.此题主要考查了相似三角形的性质与判定,解题时首先根据平行线得到相似三角形,然后利用相似三角形的性质即可求解.3.【答案】C【解析】解:设平均每年绿地面积增长率为x,依题意,得:100(1+x)2=121.故选:C.设平均每年绿地面积增长率为x,根据校园两年绿化面积的变化,可得出关于x的一元二次方程,此题得解.本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.4.【答案】A【解析】解:∵抛物线y=x2向上平移2个单位后的顶点坐标为(0,2),∴所得抛物线的解析式为y=x2+2.故选:A.求出平移后的抛物线的顶点坐标,然后利用顶点式形式写出即可.本题考查了二次函数图象与几何变换,此类题目利用顶点的平移确定抛物线函数图象的变化更简便.5.【答案】D【解析】解:∵△P′Q′R′与△PQR是位似三角形∴△P′Q′R′∽△PQR,∴相似比等于P′Q′:PQ,∵P′,Q′,R′分别是OP,OQ,OR的中点∴P′Q′=PQ∴△P′Q′R′与△PQR的位似比为,根据位似中心的定义可知,△P'Q'R'与△PQR的位似中心为点O,故选:D.根据三角形中位线定理得到P′Q′=PQ,根据位似三角形的定义、位似中心的定义解答.本题考查的是位似变换,掌握位似中心的定义、相似三角形的性质是解题的关键.6.【答案】C【解析】解:由sinA=知,如果设a=3x,则c=5x,结合a2+b2=c2得b=4x;∴tanA===.故选:C.根据sinA=设出关于两边的代数表达式,再根据勾股定理求出第三边长的表达式即可推出tanA的值.求锐角的三角函数值的方法:利用锐角三角函数的定义,通过设参数的方法求三角函数值.7.【答案】C【解析】解:∵四边形ABCD为⊙O的内接四边形,∠BCD=130°,∴∠A+∠BCD=180°,∴∠A=50°,由圆周角定理得,2∠A=∠BOD=100°,故选:C.根据圆周角定理求出∠A的度数,根据圆内接四边形的性质计算即可.本题考查的是圆内接四边形的性质和圆周角定理,掌握圆内接四边形的对角互补是解题的关键.8.【答案】D【解析】解:A、当∠ABP=∠C时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;B、当∠APB=∠ABC时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;C、当AB2=AP•AC即=时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;D、无法得到△ABP∽△ACB,故此选项正确.故选:D.分别利用相似三角形的判定方法判断得出即可.此题主要考查了相似三角形的判定,正确把握判定方法是解题关键.9.【答案】A【解析】解:∵四边形ABCD是矩形∴AB=CD=10,BC=AD=8,∠A=∠D=∠B=90°,∵折叠∴CD=CF=10,EF=DE,在Rt△BCF中,BF==6∴AF=AB-BF=10-6=4,在Rt△AEF中,AE2+AF2=EF2,∴AE2+16=(8-AE)2,∴AE=3故选:A.由矩形的性质和折叠的性质可得CF=DC=10,DE=EF,由勾股定理可求BF的长,即可得AF=4,由勾股定理可求AE的长.本题考查了翻折变换,矩形的性质,勾股定理,熟练掌握折叠的性质是本题的关键.10.【答案】D【解析】解:①由开口可知:a<0,∴对称轴x=>0,∴b>0,由抛物线与y轴的交点可知:c>0,∴abc<0,故①正确;②∵抛物线与x轴交于点A(-1,0),对称轴为x=2,∴抛物线与x轴的另外一个交点为(5,0),∴x=3时,y>0,∴9a+3b+c>0,故②正确;③由于<2,且(,y2)关于直线x=2的对称点的坐标为(,y2),∵,∴y1<y2,故③正确,④∵=2,∴b=-4a,∵x=-1,y=0,∴a-b+c=0,∴c=-5a,∵2<c<3,∴2<-5a<3,∴-<a<-,故④正确故选:D.根据二次函数的图象与系数的关系即可求出答案.本题考查二次函数的图象与性质,解题的关键是熟练运用图象与系数的关系,本题属于中等题型.11.【答案】30°【解析】解:∵sinA=,∠A为锐角,∴∠A=30°.故答案为:30°.根据sin30°=进行解答即可.本题考查的是特殊角的三角函数值,熟记各特殊角的三角函数值是解答此题的关键.12.【答案】-【解析】解:由=,得==-,故答案为:-.根据比例的性质,可得y=3x,根据分式的性质,可得答案.本题考查了比例的性质,利用了比例的性质,分式的性质.13.【答案】y=x2-2x-3【解析】解:∵抛物线经过A(-1,0),B(3,0)两点,∴,解得b=-2,c=-3,∴抛物线解析式为y=x2-2x-3.抛物线y=x2+bx+c经过A(-1,0),B(3,0)两点,则这两点的坐标满足解析式,把点的坐标代入解析式就得到一个关于b,c的方程组,就可解得函数的解析式.本题考查了用待定系数法求函数解析式的方法,同时还考查了方程组的解法等知识,难度不大.14.【答案】k<1【解析】解:由已知得:△=4-4k>0,解得:k<1.故答案为:k<1.由方程有两个不等实数根可得出关于k的一元一次不等式,解不等式即可得出结论.本题考查了根的判别式以及解一元一次不等式,解题的关键是得出关于k的一元一次不等式.本题属于基础题,难度不大,解决该题型题目时,根据根的个数结合根的判别式得出不等式(或不等式组)是关键.15.【答案】8【解析】解:∵AB⊥CD,AB是直径,∴CE=ED=4cm,在Rt△OEC中,OE===3(cm),∴AE=OA+OE=5+3=8(cm),故答案为8.根据垂径定理推出EC=ED=4,再利用勾股定理求出OE即可解决问题.本题考查垂径定理,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.【答案】【解析】解:如图1,∵四边形CDEF是正方形,∴CD=ED,DE∥CF,设ED=x,则CD=x,AD=12-x,∵DE∥CF,∴∠ADE=∠C,∠AED=∠B,∴△ADE∽△ACB,∴,∴,x=,如图2,四边形DGFE是正方形,过C作CP⊥AB于P,交DG于Q,设ED=x,S△ABC=AC•BC=AB•CP,12×5=13CP,CP=,同理得:△CDG∽△CAB,∴,∴,x=,∴该直角三角形能容纳的正方形边长最大是(步),故答案为:.如图1,根据正方形的性质得:DE∥BC,则△ADE∽△ACB,列比例式可得结论;如图2,同理可得正方形的边长,比较可得最大值.此题考查了相似三角形的判定和性质、正方形的性质,设未知数,构建方程是解题的关键.17.【答案】4或【解析】解:∵Rt△ABC中,∠ACB=90°,AC=6,BC=8,∴AB=10,∵D是AB边的中点,∴CD=BD=AB=5,∵以D、C、P为顶点的三角形与△ABC相似,∴∠DPC=90°或∠CDP=90°,(1)若∠DPC=90°,则DP∥AC,∴=,∴BP=BC=4,则PC=4;(2)若∠CDP=90°,则△CDP∽△BCA,∴,即,∴PC=.∴PC=4或.由Rt△ABC中,∠ACB=90°,AC=6,BC=8,D是AB边的中点,即可求得AB 与CD的值,又由以D、C、P为顶点的三角形与△ABC相似,可得∠DPC=90°或∠CDP=90°,然后根据相似三角形的对应边成比例,即可求得PC的值.此题考查了相似三角形的性质与直角三角形的性质.解题的关键是掌握相似三角形的对应边成比例定理的应用与数形结合思想的应用.18.【答案】2【解析】解:如图,连接BE,∵四边形BCEK是正方形,∴KF=CF=CK,BF=BE,CK=BE,BE⊥CK,∴BF=CF,根据题意得:AC∥BK,∴△ACO∽△BKO,∴KO:CO=BK:AC=1:3,∴KO:KF=1:2,∴KO=OF=CF=BF,在Rt△OBF中,tan∠BOF==2,∵∠AOD=∠BOF,∴tan∠AOD=2.故答案为:2首先连接BE,由题意易得BF=CF,△ACO∽△BKO,然后由相似三角形的对应边成比例,易得KO:CO=1:3,即可得OF:CF=OF:BF=1:2,在Rt△OBF中,即可求得tan∠BOF的值,继而求得答案.此题考查了相似三角形的判定与性质,三角函数的定义.此题难度适中,解题的关键是准确作出辅助线,注意转化思想与数形结合思想的应用.19.【答案】解:原式=1+1-×=2-=.【解析】直接利用零指数幂的性质以及特殊角的三角函数值分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.20.【答案】解:x2+3x-4=0x2+3x=4x2+3x+=4+=∴x+=±所以x1=1,x2=-4.【解析】先把常数项移到方程右边,再把方程两边加上,把方程左边配成完全平方式,最后用直接开平方法解方程即可.掌握配方法,它是我们常用的数学思想方法.熟练运用它解一元二次方程.配方法一个重要环节就是配一次项系数一半的平方.21.【答案】解:(Ⅰ)a=0.9+0.3=1.2,b=1.2+0.2=1.4;(Ⅱ)根据用车意愿调查结果,抽取的100名师生每人每天使用A品牌共享单车的平均车费为:×(0×5+0.5×15+0.9×10+1.2×30+1.4×25+1.5×15)=1.1(元),所以估计5000名师生一天使用共享单车的费用为:5000×1.1=5500(元),因为5500<5800,故收费调整后,此运营商在该校投放A品牌共享单车不能获利.【解析】(Ⅰ)根据收费调整情况列出算式计算即可求解;(Ⅱ)先根据平均数的计算公式求出抽取的100名师生每人每天使用A品牌共享单车的平均车费,再根据用样本估计总体求出5000名师生一天使用共享单车的费用,再与5800比较大小即可求解.考查了样本平均数,用样本估计总体,(Ⅱ)中求得抽取的100名师生每人每天使用A品牌共享单车的平均车费是解题的关键.22.【答案】解:(1)在Rt△ABC中,AB=4,BC=2,AC===2 ,∴正方形边长为2;(2)∵∠B=90°,∴∠BAC+∠BCA=90°,∵∠ACE=90°,∴∠BCA+∠ECD=90°,∴∠BAC=∠ECD,又∵=,∴△ABC∽△CED,∴=,∴DE=.【解析】(1)根据题意△ABC为直角三角形,AB=4,BC=2,则可以根据勾股定理求出AC的长,即正方形的边长.(2)△ABC三边都是已知,△CDE知道两条边,若△ABC与△CED相似,就可以很容易求出DE的长,而易知∠BAC=∠ECD,,所以△ABC与△CED 相似,从而求出DE的长.本题考查了勾股定理、正方形的性质以及相似三角形.解题的关键是对基本图形和性质的熟练掌握.(2)问学生易错在直接认为F、E、D三点在同一直线上而直接用勾股定理解决,实际上题目只给我出来了B、C、D三点在通知一直线上,F、E、D三点在同一直线上需证明才能得到.23.【答案】解:(1)∵四边形EDCF为矩形,∴ED=CF=340m,又AC=(452+x)m∴AF=AC-CF=452+x-340=(112+x)m;(2)在Rt△AEF中,∵∠AEF=45°,∴EF=AF=(112+x)m=CD在Rt△ADC中,∵∠ADC=α,∴tanα=∴,∴x=28答:发射塔AB的高度为28m.【解析】(1)根据矩形的性质解答即可;(2)根据解直角三角形的三角函数解答即可.本题考查的是解直角三角形的应用-仰角俯角问题,掌握锐角三角函数的定义、仰角俯角的概念是解题的关键.24.【答案】(1)解:∵AB是⊙O的直径,∴∠ADB=90°,∵DH⊥AB,∴∠DHA=∠ADB=90°,又∵∠DAB=∠HAD,∴△DAB∽△HAD,∴=即=,∴AD=3.6.(2)证明:∵=,∴∠DAC=∠DBA,∵DH⊥AB,∴∠FDE+∠B=90°,∵∠ADB=90°,∴∠DEF+∠DAC=90°,∴∠DEF=∠DEF,∴DF=EF.【解析】(1)证明△DAB∽△HAD,可得=,由此构建方程即可解决问题.(2)利用等角的余角相等,证明∠DEF=∠DEF即可.本题考查圆心角、弧、弦之间的关系,勾股定理,垂径定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.25.【答案】(2,2)(1,1),(-1,-1)【解析】解:(1)把x=y代入直线y=3x-4,可得x=2=y,∴直线y=3x-4的郡点是(2,2)把x=y代入双曲线y=,可得x1=1,x2=-1,∴双曲线y=上的郡点是(1,1),(-1,-1)故答案为:(2,2),(1,1),(-1,-1)(2)∵抛物线y=x2+5x-5上有“郡点”A(x1,y1),B(x2,y2)可得x1=x12+5x1-5,x2=x22+5x2-5,因此,x1,x2可看作是方程x=x2+5x-5的两个实数根,由韦达定理得:x1+x2=-4,x1•x2=-5,∴x12+x22=(x1+x2)2-2x1x2=26(1)由“郡点”的定义可求解;(2)由“郡点”的定义可得x1=x12+5x1-5,x2=x22+5x2-5,由根与系数关系可求x12+x22的值.本题考查了反比例函数图象上点的坐标特征,二次函数图象上点的坐标特征,一次函数图象上点的坐标特征,理解并运用“郡点”的定义是本题的关键.26.【答案】解:(1)由题意得,y=-x2+4x=-(x-2)2+4,故二次函数图象的最高点P的坐标为(2,4);(2)联立两解析式可得:,解得:,或.故可得点A的坐标为(,);(3)如图,作PQ⊥x轴于点Q,AB⊥x轴于点B.S△POA=S△POQ+S梯形PQBA-S△BOA=×2×4+×(+4)×(-2)-××=4+-=;(4)过P作OA的平行线,交抛物线于点M,连结OM、AM,则△MOA的面积等于△POA的面积.设直线PM的解析式为y=x+b,∵P的坐标为(2,4),∴4=×2+b,解得b=3,∴直线PM的解析式为y=x+3.由,解得,,∴点M的坐标为(,).【解析】(1)利用配方法抛物线的一般式化为顶点式,即可求出二次函数图象的最高点P的坐标;(2)联立两解析式,可求出交点A的坐标;-S△BOA,(3)作PQ⊥x轴于点Q,AB⊥x轴于点B.根据S△POA=S△POQ+S梯形PQBA代入数值计算即可求解;(4)过P作OA的平行线,交抛物线于点M,连结OM、AM,由于两平行线之间的距离相等,根据同底等高的两个三角形面积相等,可得△MOA的面积等于△POA的面积.设直线PM的解析式为y=x+b,将P(2,4)代入,求出直线PM的解析式为y=x+3.再与抛物线的解析式联立,得到方程组,解方程组即可求出点M的坐标.本题是二次函数的综合题型,其中涉及到两函数图象交点的求解方法,二次函数顶点坐标的求解方法,三角形的面积,待定系数法求一次函数的解析式,难度适中.利用数形结合与方程思想是解题的关键.。

人教版九年级初三数学上册上学期期中教学质量检测试卷及答案

人教版九年级初三数学上册上学期期中教学质量检测试卷及答案

人教版九年级初三数学上册上学期期中教学质量检测试卷及答案九年级数学期中试卷本试卷分试题和答题卡两部分,所有答案一律写在答题卡上.考试时间为120分钟.试卷满分130分.注意事项:1.答卷前,考生务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写在答题卡的相应位置上,并认真核对条形码上的姓名、准考证号是否与本人的相符合.2.答选择题必须用2B铅笔将答题卡上对应题目中的选项标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔作答,写在答题卡上各题目指定区域内相应的位置,在其他位置答题一律无效.3.作图必须用2B铅笔作答,并请加黑加粗,描写清楚.4.卷中除要求近似计算的结果取近似值外,其他均应给出精确结果.一、选择题:(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的序号填写在题答题卡的相应的括号内.)1.下列关于x的方程中,一定是一元二次方程的是(▲)A.x-1=0B.x+x=3C.x+3x-5=0D.ax+bx+c=02.关于x的方程x+x-k=0有两个不相等的实数根,则k的取值范围为(▲)A.k>-B.k≥-C.k<-D.k>-且k≠03.45°的正弦值为(▲)A.1B.C.D.4.已知△ABC∽△DEF,∠A=∠D,AB=2cm,AC=4cm,DE=3cm,且DE <DF,则DF的长为(▲)A.1cmB.1.5cmC.6cmD.6cm或1.5cm5.在平面直角坐标系中,点A(6,3),以原点O为位似中心,在第一象限内把线段OA缩小为原来的得到线段OC,则点C的坐标为(▲)A.(2,1)B.(2,0)C.(3,3)D.(3,1)6.已知⊙A半径为5,圆心A的坐标为(1,0),点P的坐标为(-2,4),则点P与⊙A的位置关系是(▲)A.点P在⊙A上B.点P在⊙A内C.点P在⊙A外D.不能确定7.如图,在□ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则DF:FC=(▲)ADFCBOE(第7题)ACBPFEQ(第10题)ABCDP(第8题)A.1︰3B.1︰4C.2︰3D.1︰28.如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=12,AD=4,BC =9,点P是AB上一动点,若△PAD与△PBC相似,则满足条件的点P的个数有 (▲)A.1个B.2个C.3个D.4个9.已知线段AB,点P是它的黄金分割点,AP>BP,设以AP为边的等边三角形的面积为S1,以PB、AB为直角边的直角三角形的面积为S2,则S1与S2的关系是(▲)A.S1>S2B.S1<S2C.S1=S2D.S1≥S210.如图,△ABC是等腰直角三角形,∠ACB=90°,点E、F分别是边BC、AC的中点,P是AB上一点,以PF为一直角边作等腰直角△PFQ,且∠FPQ=90°,若AB=10,PB=1,则QE的值为(▲)A.3B.3C.4D.4二、填空题(本大题共8小题,每小题2分,共计16分.请把答案直接填写在答题卡相应位置上.)11.已知x:y=2:3,则(x+y):y=▲.12.在相同时刻的物高与影长成比例,xxxx,那么影长为30m的旗杆的高是▲m.13.某电动自行车厂三月份的产量为1000辆,由于市场需求量不断增大,五月份的产量提高到1210辆,则该厂四、五月份的月平均增长率为▲.ABCDEF(第15题)14.在△ABC中,∠A、∠B为锐角,且+(-cosB)=0,则∠C=▲°.15.如图,在□ABCD中,E在AB上,CE、BD交于F,若AE:BE=4:3,且BF=2,则DF=▲.(图2)ACBDEFACBDEFACBDEF(图1)(第18题)ABDCEF(第16题)……16.如图,在△ABC中,AB=BC,AC=8,点F是△ABC的重心(即点F是△ABC的两条中线AD、BE的交点),BF=6,则DF=▲.17.关于x的一元二次方程mx+nx=0的一根为x=3,则关于x的方程m(x +2)+nx+2n=0的根为▲.18.如图,△ABC是一张等腰直角三角形纸板,∠C=90°,AC=BC=2,在这张纸板中剪出一个尽可能大的正方形称为第1次剪取,记所得正方形面积为S1(如图1);在余下的Rt△ADE和Rt△BDF中,分别剪取一个尽可能大的正方形,得到两个相同的正方形,称为第2次剪取,并记这两个正方形面积和为S2(如图2);继续操作下去…;第2021次剪取后,余下的所有小三角形的面积之和是▲.三、解答题(本大题共10小题,共84分.解答需写出必要的文字说明或演算步骤.)19.计算或解方程:(每小题4分,共16分)(1)计算:()-4sin60°-tan45°;(2)3x-2x-1=0;(3)x+3x+1=0(配方法);(4)(x+1)-6(x+1)+5=0.20.(本题满分6分)如图,在平面直角坐标系中,A(0,4)、B(4,4)、C (6,2).(1)在图中画出经过A、B、C三点的圆弧所在圆的圆心M的位置;OABCxy (第20题)(2)点M的坐标为▲;(3)判断点D(5,-2)与⊙M的位置关系.21.(本题满分6分)如图,在四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB =90°,E为AB中点.(1)求证:AC=AB•AD;ADCBEF(第21题)(2)若AD=4,AB=6,求的值.22.(本题满分6分)已知关于x的方程x+(m-3)x-m(2m-3)=0.(1)证明:无论m为何值方程都有两个实数根.(2)是否存在正数m,使方程的两个实数根的平方和等于26?若存在,求出满足条件的正数m的值;若不存在,请说明理由.23.(本题满分6分)某市的特色农产品在国际市场上颇具竞争力,其中属于菌类的一种猴头菇远销国外.上市时,有一外商按市场价格10元/千克收购了2021千克猴头菇存入冷库中,据预测,猴头菇的市场价格每天每千克上涨0.5元,但冷库存放这批猴头菇时每天需要支出各种费用合计220元,而且这种猴头菇在冷库中最多能保存130天,同时,平均每天有6千克的猴头菇损坏不能出售.)(1)若外商要将这批猴头菇存放x天后一次性出售,则x天后这批猴头菇的销售单价为▲元,销售量是▲千克(用含x的代数式表示);(2)如果这位外商想获得利润24000元,需将这批猴头菇存放多少天后出售?24.(本题满分8分)如图1为放置在水平桌面上的台灯的平面示意图,灯臂AO长为50cm,与水平桌面所形成的夹角∠OAM为75°.由光源O射出的边缘光线OC,OB与水平桌面所形成的夹角∠OCA,∠OBA分别为90°和30°.(不考虑其他因素,结果精确到0.1cm.参考数据:sin75°≈0.97,cos75°≈0.26,≈1.73)AOCFEDPBM(1)求该台灯照亮水平桌面的宽度BC.(2)人在此台灯下看书,将其侧面抽象成如图2所示的几何图形,若书与水平桌面的夹角∠EFC为60°,书的长度EF为24cm,点P为眼睛所在位置,当点P在EF的垂直平分线上,且到EF距离约为34cm(人的正确看书姿势是眼睛离书距离约1尺≈34cm)时,称点P为“最佳视点”.试问:最佳视点P在不在灯光照射范围内?并说明理由.25.(本题满分9分)如图,以点P(-1,0)为圆心的圆,交x轴于B、C 两点(B在C的左侧),交y轴于A、D两点(A在D的下方),AD=2,将△ABC绕点P旋转180°,得到△MCB.(1)求B、C两点的坐标;(2)请在图中画出线段MB、MC,并判断四边形ACMB的形状(不必证明),求出点M的坐标;ACOPBDxy(第25题)(3)动直线l从与BM重合的位置开始绕点B顺时针旋转,到与BC重合时停止,设直线l与CM交点为E,点Q为BE的中点,过点E作EG⊥BC于点G,连接MQ、QG.请问在旋转过程中,∠MQG的大小是否变化?若不变,求出∠MQG 的度数;若变化,请说明理由.26.(本题满分8分)如图,已知AB是⊙O的弦,OB=2,∠B=30°,C是弦AB上任意一点(不与点A、B重合),连接CO并延长CO交⊙O于点D,连接AD.(1)AB=▲;(2)当∠D=20°时,求∠BOD的度数.(3)若△ACD与△BCO相似,求AC 的长.ACBDO(第26题)27.(本题满分9分)定义:已知x为实数,[x]表示不超过x的最大整数.例如:[3.14]=3,[1]=1,[-1.2]=-2.请你在学习和理解上述定义的基础上,解决下列问题:设函数y=x-[x].(1)当x=2.15时,求y=x-[x]的值.(2)当0<x<2时,求函数y=x-[x]的表达式,并画出对应的函数图像.(3)当-2<x<2时,在平面直角坐标系中,以O为圆心,r为半径作圆,且r≤2,该圆与函数y=x-[x]恰有一个公共点,请直接写出r的取值范围.xyO-1-2-3-4-1-2-3-412213434(第27题)28.(本题满分10分)如图1,在Rt△ABC中,∠C=90°,AC=6,BC=8,点P从点A开始沿边AC向点C以每秒1个单位长度的速度运动,点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD∥BC,交AB于点D,连接PQ.已知点P、Q分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒(t≥0).(1)用含t的代数式表示:QB=▲,PD=▲;(2)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由.并探究如何改变匀速运动的点Q的速度,使四边形PDBQ在某一时刻为菱形,求出此时点Q的速度.(3)如图2,在整个P、Q运动的过程中,点M为线段PQ的中点,求出点M经过的路径长.ABCPDQ(图1)MABCPQ(图2)九年级数学期中试卷参考答案与评分标准2021.11一.选择题(本大题共有10小题,每题3分,共30分)⒈C⒉A⒊C⒋C⒌A⒍A⒎D8.B9.B10.D二、填空题(本大题共8小题,每小题2分,共计16分)11、5:312、1813、10%14、75°15、16、2.517、1或-218、1/22021三、解答题(10小题,共84分)19.(每小题4分)(1)1—2(2)x1=1,x2=-3(1)(3)x1=2(5),x2=2(5)(4)x1=0,x2=420.(本题6分)解:(1)略……2分(2)M的坐标:(2,0);……3分(3)∵,……4分∴……5分∴点D在⊙M内……6分21.解:(1)∵AC平分∠DAB,∴∠DAC=∠BAC又∵∠ADC=∠ACB=90°∴△ADC∽△ACB…………………………………………(1分)∴AC(AD)=AB(AC)∴AC2=AB•AD………………………………………(2分)(2)∵∠ACB=90°,E为AB中点.∴CE=2(1)AB=AE=3∴∠EAC=∠ECA………………………………………(3分)又∵AC平分∠DAB,∴∠DAC=∠EAC∴∠DAC=∠ECA………………………………………(4分)∴AD∥EC∴△ADF∽△ECF………………………………………(5分)∴FC(AF)=EC(AD)=3(4)∴AF(AC)=4(7).………………………………………(6分)22.(1)(2分)(2)(6分,不排除扣2分)23.(1)10+0.5x,(1分)2021―6x;(1分)(2)由题意得:(10+0.5x)(2021―6x)―10×2021―220x=24000.(2分)解得x1=40,x2=200(不合题意,舍去)(1分)答:存放40天后出售。

湘教版九年级上学期数学期中考试试卷A卷

湘教版九年级上学期数学期中考试试卷A卷

湘教版九年级上学期数学期中考试试卷A卷姓名:________ 班级:________ 成绩:________考试须知:1、请首先按要求在本卷的指定位置填写您的姓名、班级等信息。

2、请仔细阅读各种题目的回答要求,在指定区域内答题,否则不予评分。

一、单选题 (共10题;共20分)1. (2分) (2018九上·桥东月考) 下列各数是一元二次方程 x2+x﹣12=0的根的是()A . ﹣1B . 1C . 2D . 32. (2分) (2019八上·昭通期末) 某机械厂七月份生产零件50万个,第三季度生产零件182万个.若该厂八、九月份平均每月生产零件的增长率均为x,则下面所列方程正确的是()A . 50(1+x)2=182B . 50+50(1+x)2=182C . 50+50(1+x)+50(1+2x)=182D . 50+50(1+x)+50(1+x)2=1823. (2分)(2016·贵阳模拟) 9的平方根是()A . ±3B . ±C . 3D . ﹣34. (2分) (2018八上·防城港期末) 若分式有意义,则x应满足的条件是()A . x≠0B . x≠3C . x≥3D . x≤35. (2分) (2019八上·安国期中) 设的小数部分为b,则b(b+3)的值是()A . 1B .C . 3D . 无法确定6. (2分)将方程化为一元二次方程的一般形式,其中二次项系数为1,一次项系数、常数项分别是()A . ﹣8、﹣10B . ﹣8、10C . 8、﹣10D . 8、107. (2分) (2016九上·海南期中) 下列各式不是二次根式的是()A .B .C .D .8. (2分) (2018九上·黔西期中) 已知关于x的一元二次方程有一根为0,则k 的值是()A . -1B . 1C . ±1D . 09. (2分)(2019·天河模拟) 如图,△ABC是等腰直角三角形,AC=BC=a,以斜边AB上的点O为圆心的圆分别与AC,BC相切于点E、F,与AB分别相交于点G、H,且EH的延长线与CB的延长线交于点D,则CD的长为()A .B .C .D .10. (2分) (2018九上·晋江期中) 正方形ABCD中,E、F分别为AB、BC的中点,AF与DE相交于点O,则=()A .B .C .D .二、填空题 (共12题;共13分)11. (1分) (2018八上·陕西月考) 9的平方根是________,(-8)2的立方根为________.12. (1分) (2018九上·皇姑期末) 方程两根的积为________.13. (1分) (2019九上·宜兴期中) 若方程(m+2)x2+5x﹣7=0是关于x的一元二次方程,则m≠________.14. (1分)(2018·松桃模拟) 当x________时,二次根式有意义.15. (1分) (2018八上·柘城期末) 当x=3时,分式的值为0;而当x=1时,分式无意义,则a=________,b=________.16. (1分) (2019九上·开州月考) 方程x=x2的解为________17. (1分) (2019八上·鄞州期末) 函数中,自变量的取值范围是________.18. (1分)已知关于x的一元二次方程有一个根为0.请你写出一个符合条件的一元二次方程是________.19. (1分) (2016七下·宝坻开学考) 的相反数是________,的倒数是________,+(﹣5)的绝对值是________.20. (1分)(2019·锡山模拟) 在平面直角坐标系中,已知、,B为y轴上的动点,以AB 为边构造,使点C在x轴上,为BC的中点,则PM的最小值为________.21. (1分) (2019九上·秀洲期末) 如图,△ABC是一块锐角三角形余料,边BC=120cm,高AD=80cm,要把它加工成一个矩形零件,使矩形PQMN的一边在BC上,其余两个顶点分别在AB、AC上.设PQ=xcm,矩形PQMN 的面积为ycm2 ,请写出y关于x的函数表达式(并注明x的取值范围)________.22. (2分) (2019七下·湖州期中) 如图,已知,,,则的度数为________.三、解答题 (共7题;共48分)23. (10分) (2018八下·镇海期末) 计算:24. (10分) (2018九上·康巴什月考) 阅读下面的材料,回答问题:解方程x4﹣5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:设x2=y ,那么x4=y2 ,于是原方程可变为y2﹣5y+4=0 ①,解得y1=1,y2=4.当y=1时,x2=1,∴x=±1;当y=4时,x2=4,∴x=±2;∴原方程有四个根:x1=1,x2=﹣1,x3=2,x4=﹣2.(1)在由原方程得到方程①的过程中,利用________法达到________的目的,体现了数学的转化思想.(2)解方程(x2+x)2﹣4(x2+x)﹣12=0.25. (5分)(2019·长春模拟) 如图,一位测量人员要测量池塘的宽度AB的长,他过A、B两点画两条相交于点O的射线,在射线上取两点D、E,使,若测得DE=37.2米,他能求出A、B之间的距离吗?若能,请你帮他算出来:若不能,请你帮他设计一个可行方案。

湘教版九年级上册数学期中考试试卷附答案解析

湘教版九年级上册数学期中考试试题一、选择题。

(每小题只有一个正确答案)1.线段a 、b 、c 、d 是成比例线段,a=4、b=2、c=2,则d 的长为( )A .1B .2C .3D .42.下列说法正确的是( )A .方程ax 2+bx +c =0是关于x 的一元二次方程B .方程3x 2=4的常数项是4C .若一元二次方程的常数项为0,则0必是它的一个根D .用配方法解一元二次方程y 2﹣2y ﹣2019=0,可化为(y ﹣1)2=20183.已知m 是方程220x x --=的一个根,则代数式()23m m -+=A .2-B .1C .0D .5 4.a 、b 是实数,点A (2,a )、B (3,b )在反比例函数y=﹣2x的图象上,则( ) A .a <b <0 B .b <a <0 C .a <0<b D .b <0<a 5.如图,AD ∥BE ∥CF ,直线m ,n 与这三条平行线分别交于点A 、B 、C 和点D 、E 、F ,已知AB =5,BC =10,DE =4,则DF 的长为( )A .12.5B .12C .8D .46.某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份平均每月的增长率为x ,那么x 满足的方程是( )A .50(1+x )²=182B .50+50(1+x )+50(1+x )²=182C .50(1+2x)=182D .50+50(1+x)+550(1+x )²=182 7.已知A 、B 两地的实际距离AB=5km ,画在图上的距离=2cm ,则该地图的比例尺为( ) A .2:5 B .1:2500 C .1:250000 D .250000:1 8.两地的距离是500米,地图上的距离为10厘米,则这张地图的比例尺为( )A.1:50 B.1:500 C.1:5000 D.1:500009.若点(﹣2,y1)、(﹣1,y2)和(1,y3)分别在反比例函数y=﹣21kx+的图象上,则下列判断中正确的是()A.y1<y2<y3B.y3<y1<y2C.y2<y3<y1D.y3<y2<y110.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为()A.x(x+1)=1035 B.x(x﹣1)=1035×2 C.x(x﹣1)=1035 D.2x(x+1)=1035二、填空题11.方程x2=9x的解是______.12.关于x的一元二次方程(k-1)x2-2x+1=0有两个不相等的实数根,则实数k的取值范围是_______.13.如图,点P是反比例函数图象上的一点,过点P向x轴作垂线,垂足为M,连结PO,若阴影部分面积为6,则这个反比例函数的关系式是________.14.若反比例函数()251my m x-=+的图象在第二、四象限,则m=________.15.在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),AB=点A在y轴上,反比例函数经过点B,求反比例函数解析式______.16.如图,△ABC中,AB>AC,D,E两点分别在边AC,AB上,且DE与BC不平行.请填上一个你认为合适的条件:_____,使△ADE∽△ABC.(不再添加其他的字母和线段;只填一个条件,多填不给分!)三、解答题17.用适当的方法解方程:(1)22350x x +-= (2)()()22312x x +=-18.阅读材料:设一元二次方程ax 2+bx +c =0(a ≠0)的两根为x 1,x 2,则两根与方程系数之间有如下关系:x 1+x 2=-b a ,x 1·x 2=c a .根据该材料解题: 已知x 1、x 2是方程2x 2+6x +3=0的两实数根.(1)求:2212x x + (2)2112x x x x +19.蓄电池的电压为定值,使用此电源时,电流I (A )是电阻R (Ω)的反比例函数,其图象如图所示.(1)求这个反比例函数的表达式;(2)当R =10Ω时,求电流I (A ).20.如图,已知在△ABC 中,点D 、E 、F 分别是边AB 、AC 、BC 上的点,DE BC ∥,EF AB ∥,且AD :DB =3:5,求CF CB.21.若234x y z ==,且x +2y +z =36,分别求x 、y 、z 的值.22.如图,直线y 1=3x ﹣5与反比例函数y 2=1k x-的图象相交A (2,m ),B (n ,﹣6)两点,连接OA ,OB .(1)求k 和n 的值;(2)求△AOB 的面积;(3)直接写出y 1> y 2时自变量x 的取值范围.23.某市百货商店服装部在销售中发现“米奇”童装平均每天可售出20件,每件获利40元.为了扩大销售,减少库存,增加利润,商场决定采取适当的降价措施,经过市场调查,发现如果每件童装每降价1元,则平均每天可多售出2件,要想平均每天在销售这种童装上获利1200元,那么每件童装应降价多少元?24.已知关于x 的方程x 2﹣(2k+1)x+4(k ﹣12)=0(1)求证:无论k 取何值,这个方程总有实数根;(2)若等腰三角形ABC的一边长a=4,另两边b、c恰好是这个方程的两个根,求△ABC的周长.25.如图,已知,A(0,4),B(﹣3,0),C(2,0),D为B点关于AC的对称点,反比例函数y=kx的图象经过D点.(1)证明四边形ABCD为菱形;(2)求此反比例函数的解析式;(3)已知在y=kx的图象(x>0)上一点N,y轴正半轴上一点M,且四边形ABMN是平行四边形,求M点的坐标.参考答案1.A【解析】试题分析:根据成比例线段的概念,得a:b=c:d,再根据比例的基本性质,可求得d的值.解:∵a、b、c、d是成比例线段,∴a:b=c:d,即4:2=2:d,∴d=1;故选A.考点:比例线段.2.C【分析】根据一元二次方程的概念,方程的解的概念以及配方法解一元二次方程的一般步骤对选项进行判断即可.【详解】解:A、当a=0时,此方程不是一元二次方程,故此选项错误;B、化为一般形式为3x2-4=0,所以常数项是-4,故此选项错误;C、一元二次方程常数项为0时,方程为ax2+bx=0(a≠0),当x=0时,左边=右边,所以0必是此方程的一个根,故此选项正确;D、y2﹣2y﹣2019=0,配方得(y﹣1)2=2020,故此选项错误.故选C.【点睛】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.3.D【详解】∵m是方程220x x--=的一个根,∴220m m--=,即22m m-=,∴23235m m-+=+=.故选D.4.A【详解】解:∵2yx=-,∴反比例函数2yx=-的图象位于第二、四象限,在每个象限内,y随x的增大而增大,∵点A(2,a)、B(3,b)在反比例函数2yx=-的图象上,∴a<b<0,故选A .5.B【分析】根据平行线分线段成比例定理得到比例式,代入已知数据计算即可.【详解】解:∵AD ∥BE ∥CF , ∴AB DE BC EF =, 即5410EF=, 解得EF =8,∴DF =DE +EF=4+8=12.故选:B .【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、列出比例式是解题的关键. 6.B【分析】先根据平均每月的增长率求出该厂五.六月份生产的零件数量,再根据“第二季度共生产零件182万个”列出方程即可.【详解】由题意得:该厂五、六月份生产的零件数量分别为50(1)x +万个、250(1)x +万个 则25050(1)50(1)182x x ++++=故选:B .【点睛】本题考查了一元二次方程的实际应用,理解题意,正确求出该厂五、六月份生产的零件数量是解题关键.7.C【解析】∵5千米=500000厘米,∴比例尺=2:500000=1:250000;故选C.8.C【解析】【分析】根据“比例尺=图上距离:实际距离”求解即可.【详解】500米=50000厘米;10:50000=1:5000,故选C .【点睛】本题考查了比例的知识,解题的关键是了解比例尺的求法,难度不大.9.B【分析】先根据反比例函数中,k 2+1>0,可知-( k 2+1)<0,判断出函数图像所在的象限及增减性,再根据各点横坐标的特点即可得出结论.【详解】解:∵反比例函数的,-( k 2+1)<0,∴函数图像的两个分支分别位于第二、四象限,且在每一象限内y 随x 的增大而增大. ∵-2<-1<0,∴点()12,y -、()21,y -位于第二象限,且在第二象限内y 随x 的增大而增大,∴y 2>y 1>0,又∵1>0,∴点()31,y 位于第四象限,∴y 3<0,∴y 3<y 1<y 2.故选择B.【点睛】本题考查的是反比例函数图像上的点的坐标特点,熟知反比例函数图像上各点坐标一定适合此函数的解析式是解题的关键.10.C【解析】∵全班有x 名同学,∴每名同学要送出(x ﹣1)张;又∵是互送照片,∴总共送的张数应该是x (x ﹣1)=1035.故选:C .11.10x =,29x =【分析】方程x 2=9x 移项,得x 2-9x =0,再运用因式分解法求出方程的解即可.【详解】解:移项,得x 2-9x =0,x (x -9)=0,所以x =0或x -9=0,所以x 1=0,x 2=9.故答案为x 1=0,x 2=9.【点睛】本题考查了一元二次方程的解法—因式分解法,将方程转化为一般形式是解决此题的关键.12.k <2且k≠1【详解】试题解析:∵关于x 的一元二次方程(k-1)x 2-2x+1=0有两个不相等的实数根, ∴k-1≠0且△=(-2)2-4(k-1)>0,解得:k <2且k≠1.考点:1.根的判别式;2.一元二次方程的定义.13.12y x=-【解析】【分析】根据反比例函数y=kx(k≠0)系数k的几何意义得到12|k|=6,然后去绝对值去掉满足条件的k的值,从而得到反比例函数解析式.【详解】∵过点P向x轴作垂线,垂足为M,∴S△OPM=12|k|,∴12|k|=6,而k<0,∴k=﹣12,∴反比例函数解析式为y=﹣12x.故答案为y=﹣12x.【点睛】本题考查了反比例函数y=kx(k≠0)系数k的几何意义:从反比例函数y=kx(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.14.2-【解析】【分析】根据反比例函数的定义先求出m的值,再根据反比例函数的性质即可求解.【详解】由题意可知:m2﹣5=﹣1,m+1≠0,∴m=±2.∵该函数的图象在第二、四象限内,∴m+1<0,∴m=﹣2.故答案为﹣2.【点睛】本题考查了反比例函数的性质和定义的知识点,首先将反比例函数解析式的一般式k yx =(k≠0),转化为y=kx﹣1(k≠0)的形式,根据反比例函数的定义条件可以求出m的值.特别注意不要忽略k≠0这个条件.并且反比例函数图象所在的象限,是由反比例系数k的符号确定.15.y【分析】过点B 作BD ⊥x 轴于点D ,在Rt △ABC 中利用勾股定理求出AC 的长,在Rt △OAC 中利用勾股定理求出OA 的长,然后证明△OAC ≌DCB ,可得BD ,CD 的长,即可得点B 的坐标,最后利用待定系数法即可求出反比例函数的解析式.【详解】解:过点B 作BD ⊥x 轴于点D ,在Rt △ABC 中,AC =BC ,AB=由勾股定理可得AC =BC =2,∵点C 的坐标为(1,0),∴OC =1,在Rt △OAC 中,OA∵∠OCA +∠DCB =90°,∠OCA +∠OAC =90°,∴∠OAC =∠DCB ,在△OAC 和△DCB 中,90OAC DCBAOC CDB AC CB∠=∠⎧⎪∠=∠=⎨⎪=⎩,∴△OAC ≌△DCB ,∴CD =OABD =OC =1,∴OD =CD +OC,即点B,1).设反比例函数的解析式为y =kx ,则,解得k ,所以反比例函数的解析式为y故答案为:y 【点睛】本题综合考查了勾股定理,全等三角形和待定系数法求反比例函数的解析式,根据勾股定理和全等三角形得出点B 的坐标是解决此题的关键.16.∠B=∠1或AE AD AC AB = 【分析】此题答案不唯一,注意此题的已知条件是:∠A =∠A ,可以根据有两角对应相等的三角形相似或有两边对应成比例且夹角相等三角形相似,添加条件即可.【详解】此题答案不唯一,如∠B =∠1或AD AE AB AC =. ∵∠B =∠1,∠A =∠A ,∴△ADE ∽△ABC ; ∵AD AE AB AC =,∠A =∠A , ∴△ADE ∽△ABC ;故答案为∠B =∠1或AD AE AB AC= 【点睛】此题考查了相似三角形的判定:有两角对应相等的三角形相似;有两边对应成比例且夹角相等三角形相似,要注意正确找出两三角形的对应边、对应角,根据判定定理解题.17.(1)11x =;252x =-;(2)1x =23-,2x =4. 【分析】(1)用公式法求解;(2)用因式分解法求解.【详解】解:(1)a =2,b =3,c =-5,△=32-4×2×(-5)=49>0,所以x1=1,x152-;(2)()()22312x x+=-()()223120x x+--=[(x+3)+(1-2x)] [(x+3)-(1-2x)]=0(-x+4)(3x+2)=0所以3x+2=0或-x+4=0,解得x1=23-,x2=4.【点睛】本题考查了一元二次方程的解法,根据方程的特点选择适当的方法是解决此题的关键.18.(1)22126x x+=;(2)2112x xx x+=4【分析】根据根与系数的关系求得两根之和与两根之差,然后把所求式子转化成用两根之和与两根之差表示,最后代入求值即可.【详解】(1)解:因为x1、x2是方程2x2+6x+3=0的两实数根,所以x1+x2=-62=-3,x1·x2=32,所以2212x x+=( x1+x2)2-2 x1·x2=( -3)2-2×32=6;(2)2112x xx x+=221212x xx x⋅+=632=4.【点睛】本题考查了一元二次方程根与系数的关系,难度中等,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.19.(1)36I R =;(2)3.6A . 【分析】(1)利用待定系数法即可得出答案;(2)把R=10代入函数解析式即可求出电流I 的值.【详解】解:(1)由电流I (A )是电阻R (Ω)的反比例函数,设k I R =(k ≠0), 把(4,9)代入得:k =4×9=36, ∴36I R=. (2) 当R =10Ω时,3610I ==3.6A . 【点睛】本题主要考查了用待定系数法求反比例函数的解析式,设出函数解析式,然后代入点的坐标是解决此题的关键.20.58CF CB = 【分析】根据平行线分线段成比例定理,由DE ∥BC 得到AE :EC =AD :DB =3:5,则利用比例性质得到CE :CA =5:8,然后利用EF ∥AB 可得到CF :CB =5:8.【详解】解:∵DE ∥BC ,∴AE :EC =AD :DB =3:5,∴CE :CA =5:8,∵EF ∥AB ,∴CF :CB =CE :CA =5:8. 即58CF CB =. 【点睛】本题考查了平行线分线段成比例:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.21.x =6,y =9,z =12【分析】 设234xy z ===k ,可得x =2k ,y =3k ,z =4k ,然后代入x +2y +z =36中求出k 的值,即可得出答案. 【详解】 解:设234xy z ===k , ∴x =2k ,y =3k ,z =4k ,代入x +2y +z =36得:2k +6k +4k =36,解得:k =3,所以x =6,y =9,z =12.【点睛】设连等式等于一个常数,然后得到x ,y ,z 与这个常数的关系式是解答本题的关键.22.(1)k =3,n =;(2)13-;(3)103x -<< 或 x >2. 【分析】(1)把A ,B 的坐标代入直线的解析式求出m ,n 的值,再把B 点坐标代入反比例函数解析式求出k 的值;(2)先求出直线与x 轴、y 轴的交点坐标,再求出即可.(3)由图象可知取一次函数图象在反比例函数图象上方的x 的取值范围即可.【详解】解:(1)∵点B (n ,﹣6)在直线y =3x ﹣5上.∴-6=3n -5,解得:n =13-. ∴B (13-,-6); ∵反比例函数k 1y x -=的图象也经过点B (13-,-6), ∴k -1=-6×(13-)=2,解得:k =3; (2)设直线y =3x ﹣5分别与x 轴,y 轴相交于点C ,点D ,当y =0时,即3x ﹣5=0,x =53,∴OC =53, 当x =0时,y =3×0-5=-5, ∴OD =5,∵点A (2,m )在直线y =3x ﹣5上,∴m =3×2-5=1,即A (2,1). 155135(155)23336AOB AOC COD BOD S S S S ∴=++=⨯⨯+⨯+⨯=. (3)由图象可知y 1> y 2时自变量x 的取值范围为:103x -<< 或 x >2.【点睛】本题考查了用待定系数法求反比例函数的解析式,反比例函数与一次函数的交点问题、函数图象上点的坐标特征等知识点,能求出反比例函数的解析式是解此题的关键.23.应该降价20元.【解析】【分析】设每件童装应降价x 元,那么就多卖出2x 件,根据每天可售出20件,每件获利40元.为了扩大销售,减少库存,增加利润,商场决定采取适当的降价措施,要想平均每天在销售这种童装上获利1200元,可列方程求解.【详解】设每件童装应降价x 元,由题意得:()()402021200x x -+=,解得:10x =或20x =.因为减少库存,所以应该降价20元.【点睛】本题考查一元二次方程的应用,关键找到降价和卖的件数的关系,根据利润列方程求解.24.(1)证明见解析;(2)10.【详解】试题分析:(1)先把方程化为一般式:x2﹣(2k+1)x+4k﹣2=0,要证明无论k取任何实数,方程总有两实数根,即要证明△≥0;(2)先利用因式分解法求出两根:x1=2,x2=2k﹣1.先分类讨论:若a=4为底边;若a=4为腰,分别确定b,c的值,求出三角形的周长.试题解析:(1)证明:方程化为一般形式为:x2﹣(2k+1)x+4k﹣2=0,∵△=(2k+1)2﹣4(4k﹣2)=(2k﹣3)2,而(2k﹣3)2≥0,∴△≥0,所以无论k取任何实数,方程总有两个实数根;(2)解:x2﹣(2k+1)x+4k﹣2=0,整理得(x﹣2)[x﹣(2k﹣1)]=0,∴x1=2,x2=2k﹣1,当a=4为等腰△ABC的底边,则有b=c,因为b、c恰是这个方程的两根,则2=2k﹣1,解得k=32,则三角形的三边长分别为:2,2,4,∵2+2=4,这不满足三角形三边的关系,舍去;当a=4为等腰△ABC的腰,因为b、c恰是这个方程的两根,所以只能2k﹣1=4,则三角形三边长分别为:2,4,4,此时三角形的周长为2+4+4=10.所以△ABC的周长为10.25.(1)证明见解析;(2)反比例函数的解析式为20yx;(3)M点的坐标为8(0,)3.【详解】试题分析:(1)由A(0,4),B(-3,0),C(2,0),利用勾股定理可求得AB=5=BC,又由D为B点关于AC的对称点,可得AB=AD,BC=DC,即可证得AB=AD=CD=CB,继而证得四边形ABCD为菱形;(2)由四边形ABCD 为菱形,可求得点D 的坐标,然后利用待定系数法,即可求得此反比例函数的解析式;(3)由四边形ABMN 是平行四边形,根据平移的性质,可求得点N 的横坐标,代入反比例函数解析式,即可求得点N 的坐标,继而求得M 点的坐标.试题解析:(1)∵A (O ,4),B (-3,0),C (2,0),∴OA =4,OB =3 ,OC =2,∴5AB ==,BC =5,∴AB =BC .∵D 为B 点关于AC 的对称点,∴AB=AD ,CB=CD ,∴AB=AD=CD=CB .∴四边形ABCD 为菱形.(2)∵四边形ABCD 为菱形,∴D 点的坐标为(5,4),反比例函数ky x =的图象经过D 点, ∴45k=,∴k =20,∴反比例函数的解析式为20y x =.(3)∵四边形ABMN 是平行四边形,∴AN ∥BM ,AN=BM ,∴AN 是BM 经过平移得到的.∴首先BM 向右平移了3个单位长度,∴N 点的横坐标为3,代入20y x =,得203y =,∴M 点的纵坐标为208-433=,∴M 点的坐标为80,3⎛⎫⎪⎝⎭.。

人教版九年级上册数学期中测试卷含答案及解析-最新

人教版九年级上册数学期中测试卷·最新一、选择题(每一道小题都给出代号为A、B、C、D的四个选项,其中有且只有一个选项符合题目要求,把符合题目要求的选项的代号直接填在答题框内相应题号下的方框中,不填、填错成一个方框内填写的代号超过一个,一律得0分;共10小题,每小题3分,共30分)1.已知关于x的一元二次方程x2+x+m2﹣4=0的一个根是0,则m的值是()A.0 B.1 C.2 D.2或﹣22.用配方法解方程x2﹣8x+3=0,下列变形正确的是()A.(x+4)2=13 B.(x﹣4)2=19 C.(x﹣4)2=13 D.(x+4)2=193.如图,AB是⊙O的直径,弦CD⊥AB,垂足为M,下列结论不一定成立的是()A.CM=DM B.OM=MB C.BC=BD D.∠ACD=∠ADC4.下列一元二次方程有实数根的是()A.x2﹣2x﹣2=0 B.x2+2x+2=0 C.x2﹣2x+2=0 D.x2+2=05.已知关于x的一元二次方程(k﹣2)x2+2x﹣1=0有两个不相等的实数根,则k的取值范围为()A.k>1 B.k>﹣1且k≠0 C.k>1且k≠2 D.k<16.观察如下图形,它们是按一定规律排列的,依照次规律,第n的图形中共有210个小棋子,则n等于()A.20 B.21 C.15 D.167.若点(﹣1,4),(3,4)是抛物线y=ax2+bx+c上的两点,则此抛物线的对称轴是()A.直线x=﹣B.直线x=1 C.直线x=3 D.直线x=28.如图,⊙C过原点O,且与两坐标轴分别交于点A、B,点A的坐标为(0,4),点M是第三象限内上一点,∠BMO=120°,则⊙O的半径为()A.4 B.5 C.6 D.29.如图,AB为⊙O直径,C为⊙O上一点,∠ACB的平方线交⊙O于点D,若AB=10,AC=6,则CD的长为()A.7 B.7C.8 D.810.已知二次函数y=ax2+bx+c的图象如图所示,则a的取值范围为()A.﹣1<a<0 B.﹣1<a<C.0<a<D.<a<二、填空题(本大题共6小题,每小题3分,共18分)11.抛物线y=﹣(x+3)2+1的顶点坐标是.12.已知ab≠0,且a2﹣3ab﹣4b2=0,则的值为.13.已知关于x的方程a(x+m)2+c=0(a,m,c均为常数,a≠0)的根是x1=﹣3,x2=2,则方程a(x+m﹣1)2+c=0的根是.14.如图,AB,AC是⊙O,D是CA延长线上的一点,AD=AB,∠BDC=25°,则∠BOC=.15.已知△ABC的三个顶点都在⊙O上,AB=AC,⊙O的半径等于10cm,圆心O到BC的距离为6cm,则AB的长等于.16.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,图象与x轴交于A(x1,0)B(x2,0)两点,点M(x0,y0)是图象上另一点,且x0>1.现有以下结论:①abc>0;②b<2a;③a+b+c>0;④a(x0﹣x1)(x0﹣x2)<0.其中正确的结论是.(只填写正确结论的序号)三、解答题(本大题共9小题,共72分)17.解方程:(1)x2+2x﹣15=0(2)3x(x﹣2)=(2﹣x)18.已知抛物线的顶点是(4,2),且在x轴上截得的线段长为8,求此抛物线的解析式.19.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“凤凰”方程.已知x2+mx+n=0是“凤凰”方程,且有两个相等的实数根,求m2+n2的值.20.为响应党中央提出的“足球进校园”号召,我市在今年秋季确定了3所学校为我市秋季确定3所学校诶我市足球基地实验学校,并在全市开展了中小学足球比赛,比赛采用单循环制,即组内每两队之间进行一场比赛,若初中组共进行45场比赛,问初中共有多少个队参加比赛?21.如图,在⊙O中,=,∠ACB=60°.(1)求证:∠AOB=∠BOC=∠AOC;(2)若D是的中点,求证:四边形OADB是菱形.22.已知关于x的一元二次方程x2﹣(2m+1)x+m(m+1)=0.(1)求证:无论m取何值,方程总有两个不相等的实数根;(2)若△ABC的两边AB、AC的长是这个方程的两个实数根,且BC=8,当△ABC为等腰三角形时,求m的值.23.如图,O为正方形ABCD对角线上一点,以点O为圆心,OA长为半径的⊙O与BC相切于点E.(1)求证:CD是⊙O的切线;(2)若正方形ABCD的边长为10,求⊙O的半径.24.某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?25.如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3).(1)求抛物线的解析式;(2)在(1)中抛物线的对称轴上是否存在点D,使△BCD的周长最小?若存在,求出点D的坐标,若不存在,请说明理由;(3)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求△ACE的最大面积及E点的坐标.参考答案与试题解析一、选择题(每一道小题都给出代号为A、B、C、D的四个选项,其中有且只有一个选项符合题目要求,把符合题目要求的选项的代号直接填在答题框内相应题号下的方框中,不填、填错成一个方框内填写的代号超过一个,一律得0分;共10小题,每小题3分,共30分)1.已知关于x的一元二次方程x2+x+m2﹣4=0的一个根是0,则m的值是()A.0 B.1 C.2 D.2或﹣2【考点】一元二次方程的解.【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即把0代入方程求解可得m的值.【解答】解:把x=0代入方程程x2+x+m2﹣4=0得到m2﹣4=0,解得:m=±2,故选D.【点评】本题考查的是一元二次方程解的定义.能使方程成立的未知数的值,就是方程的解,同时,考查了一元二次方程的概念.2.用配方法解方程x2﹣8x+3=0,下列变形正确的是()A.(x+4)2=13 B.(x﹣4)2=19 C.(x﹣4)2=13 D.(x+4)2=19【考点】解一元二次方程-配方法.【专题】计算题.【分析】先把常数项移到方程右边,再把方程两边加上16,然后把方程左边写成完全平方形式即可.【解答】解:x2﹣8x=﹣3,x2﹣8x+16=13,(x﹣4)2=13.故选C.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.3.如图,AB是⊙O的直径,弦CD⊥AB,垂足为M,下列结论不一定成立的是()A.CM=DM B.OM=MB C.BC=BD D.∠ACD=∠ADC【考点】垂径定理.【分析】先根据垂径定理得CM=DM,,,得出BC=BD,再根据圆周角定理得到∠ACD=∠ADC,而OM与BM的关系不能判断.【解答】解:∵AB是⊙O的直径,弦CD⊥AB,∴CM=DM,,,∴BC=BD,∠ACD=∠ADC.故选:B.【点评】本题考查了垂径定理,圆心角、弧、弦之间的关系定理,圆周角定理;熟练掌握垂径定理,由垂径定理得出相等的弧是解决问题的关键.4.下列一元二次方程有实数根的是()A.x2﹣2x﹣2=0 B.x2+2x+2=0 C.x2﹣2x+2=0 D.x2+2=0【考点】根的判别式.【分析】根据一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根判断即可.【解答】解:A、∵△=(﹣2)2﹣4×1×(﹣2)>0,∴原方程有两个不相等实数根;B、∵△=22﹣4×1×2<0,∴原方程无实数根;C、∵△=(﹣2)2﹣4×1×2<0,∴原方程无实数根;D、∵△=﹣4×1×2<0,∴原方程无实数根;故选A.【点评】此题考查了根的判别式与方程解的关系,一元二次方程ax2+bx+c=0(a≠0),当b2﹣4ac>0时,方程有两个不相等的实数根;当b2﹣4ac=0时,方程有两个相等的实数根;当b2﹣4ac<0时,方程无解.5.已知关于x的一元二次方程(k﹣2)x2+2x﹣1=0有两个不相等的实数根,则k的取值范围为()A.k>1 B.k>﹣1且k≠0 C.k>1且k≠2 D.k<1【考点】根的判别式;一元二次方程的定义.【分析】根据关于x的一元二次方程(k﹣2)x2+2x﹣1=0有两个不相等的实数根,可得出判别式大于0,再求得k的取值范围.【解答】解:∵关于x的一元二次方程(k﹣2)x2+2x﹣1=0有两个不相等的实数根,∴△=4+4(k﹣2)>0,解得k>﹣1,∵k﹣2≠0,∴k≠2,∴k的取值范围k>﹣1且k≠2,故选C.【点评】本题考查了根的判别式,总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.6.观察如下图形,它们是按一定规律排列的,依照次规律,第n的图形中共有210个小棋子,则n等于()A.20 B.21 C.15 D.16【考点】规律型:图形的变化类.【分析】由题意可知:排列组成的图形都是三角形,第一个图形中有1个小棋子,第二个图形中有1+2=3个小棋子,第三个图形中有1+2+3=6个小棋子,…由此得出第n个图形共有1+2+3+4+…+n=n(n+1),由此联立方程求得n的数值即可.【解答】解:∵第一个图形中有1个小棋子,第二个图形中有1+2=3个小棋子,第三个图形中有1+2+3=6个小棋子,…∴第n个图形共有1+2+3+4+…+n=n(n+1),∴n(n+1)=210,解得:n=20.故选:A.【点评】此题考查图形的变化规律,找出图形之间的联系,得出点的排列规律,利用规律解决问题.7.若点(﹣1,4),(3,4)是抛物线y=ax2+bx+c上的两点,则此抛物线的对称轴是()A.直线x=﹣B.直线x=1 C.直线x=3 D.直线x=2【考点】二次函数图象上点的坐标特征.【分析】因为两点的纵坐标都为4,所以可判此两点是一对对称点,利用公式x=求解即可.【解答】解:∵两点的纵坐标都为4,∴此两点是一对对称点,∴对称轴x===1.故选B.【点评】本题考查了如何求二次函数的对称轴,对于此类题目可以用公式法也可以将函数化为顶点式或用公式x=求解.8.如图,⊙C过原点O,且与两坐标轴分别交于点A、B,点A的坐标为(0,4),点M是第三象限内上一点,∠BMO=120°,则⊙O的半径为()A.4 B.5 C.6 D.2【考点】圆内接四边形的性质;含30度角的直角三角形;圆周角定理.【分析】连接OC,由圆周角定理可知AB为⊙C的直径,再根据∠BMO=120°可求出∠BAO 的度数,证明△AOC是等边三角形,即可得出结果.【解答】解:连接OC,如图所示:∵∠AOB=90°,∴AB为⊙C的直径,∵∠BMO=120°,∴∠BCO=120°,∠BAO=60°,∵AC=OC,∠BAO=60°,∴△AOC是等边三角形,∴⊙C的半径=OA=4.故选:A.【点评】本题考查了圆周角定理、圆内接四边形的性质、等边三角形的判定与性质;熟练掌握圆内接四边形的性质,证明三角形是等边三角形是解决问题的关键.9.如图,AB为⊙O直径,C为⊙O上一点,∠ACB的平方线交⊙O于点D,若AB=10,AC=6,则CD的长为()A.7 B.7C.8 D.8【考点】圆周角定理;全等三角形的判定与性质;勾股定理.【分析】作DF⊥CA,交CA的延长线于点F,作DG⊥CB于点G,连接DA,DB.由CD 平分∠ACB,根据角平分线的性质得出DF=DG,由HL证明△AFD≌△BGD,△CDF≌△CDG,得出CF=7,又△CDF是等腰直角三角形,从而求出CD.【解答】解:作DF⊥CA,垂足F在CA的延长线上,作DG⊥CB于点G,连接DA,DB.∵CD平分∠ACB,∴∠ACD=∠BCD,∴DF=DG,弧AD=弧BD,∴DA=DB.在Rt△AFD和Rt△BGD中,,∴△AFD≌△BGD(HL),∴AF=BG.在△CDF和△CDG中,,∴△CDF≌△CDG(AAS),∴CF=CG.∵AC=6,AB=10,∴BC==8,∴AF=1,∴CF=7,∵△CDF是等腰直角三角形,∴CD=7.故选B.【点评】本题主要考查了圆周角的性质,圆心角、弧、弦的对等关系,全等三角形的判定,角平分线的性质等知识点的运用.关键是正确作出辅助线.10.已知二次函数y=ax2+bx+c的图象如图所示,则a的取值范围为()A.﹣1<a<0 B.﹣1<a<C.0<a<D.<a<【考点】二次函数图象与系数的关系.【分析】根据开口判断a的符号,根据y轴的交点判断c的符号,根据对称轴b用a表示出的代数式,进而根据当x=2时,得出4a+2b+c=0,用a表示c>﹣1得出答案即可.【解答】解:抛物线开口向上,a>0图象过点(2,4),4a+2b+c=4则c=4﹣4a﹣2b,对称轴x=﹣=﹣1,b=2a,图象与y轴的交点﹣1<c<0,因此﹣1<4﹣4a﹣4a<0,实数a的取值范围是<a<.故选:D.【点评】此题考查二次函数图象与系数的关系,对于函数图象的描述能够理解函数的解析式的特点,是解决本题的关键.二、填空题(本大题共6小题,每小题3分,共18分)11.抛物线y=﹣(x+3)2+1的顶点坐标是(﹣3,1).【考点】二次函数的性质.【分析】已知抛物线的顶点式,可直接写出顶点坐标.【解答】解:∵抛物线y=﹣(x+3)2+1,∴顶点坐标是(﹣3,1).故答案为:(﹣3,1).【点评】此题考查二次函数的性质,掌握顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),对称轴是x=h,是解决问题的关键.12.已知ab≠0,且a2﹣3ab﹣4b2=0,则的值为﹣1或4.【考点】解一元二次方程-因式分解法.【专题】计算题.【分析】把a2﹣3ab﹣4b2=0看作关于a的一元二次方程,利用因式分解法解得a=4b或a=﹣b,然后利用分式的性质计算的值.【解答】解:(a﹣4b)(a+b)=0,a﹣4b=0或a+b=0,所以a=4b或a=﹣b,当a=4b时,=4;当a=﹣b时,=﹣1,所以的值为﹣1或4.故答案为﹣1或4.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).13.已知关于x的方程a(x+m)2+c=0(a,m,c均为常数,a≠0)的根是x1=﹣3,x2=2,则方程a(x+m﹣1)2+c=0的根是x1=﹣2,x2=3.【考点】解一元二次方程-直接开平方法.【分析】把后面一个方程中的x﹣1看作整体,相当于前面一个方程中的x,从而可得x﹣1=﹣3或x﹣1=2,再求解即可.【解答】解:∵关于x的方程a(x+m)2+c=0的解是x1=﹣3,x2=2(a,m,c均为常数,a≠0),∴方程a(x+m﹣1)2+c=0变形为a[(x﹣1)+m]2+c=0,即此方程中x﹣1=﹣3或x﹣1=2,解得x=﹣2或x=3.故方程a(x+m﹣1)2+c=0的解为x1=﹣2,x2=3.故答案是:x1=﹣2,x2=3.【点评】此题主要考查了方程解的定义.注意由两个方程的特点进行简便计算.14.如图,AB,AC是⊙O,D是CA延长线上的一点,AD=AB,∠BDC=25°,则∠BOC= 100°.【考点】圆周角定理.【分析】由AD=AB,∠BDC=25°,可求得∠ABD的度数,然后由三角形外角的性质,求得∠BAC的度数,又由圆周角定理,求得答案.【解答】解:∵AD=AB,∠BDC=25°,∴∠ABD=∠BDC=25°,∴∠BAC=∠ABD+∠BDC=50°,∴∠BOC=2∠BAC=100°.故答案为:100°.【点评】此题考查了圆周角定理以及等腰三角形的性质.注意在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.15.已知△ABC的三个顶点都在⊙O上,AB=AC,⊙O的半径等于10cm,圆心O到BC的距离为6cm,则AB的长等于8或4.【考点】垂径定理;等腰三角形的性质;勾股定理.【专题】分类讨论.【分析】此题分情况考虑:当三角形的外心在三角形的内部时,根据勾股定理求得BD的长,再根据勾股定理求得AB的长;当三角形的外心在三角形的外部时,根据勾股定理求得BD 的长,再根据勾股定理求得AB的长.【解答】解:如图1,当△ABC是锐角三角形时,连接AO并延长到BC于点D,∵AB=AC,O为外心,∴AD⊥BC,在Rt△BOD中,∵OB=10,OD=6,∴BD===8.在Rt△ABD中,根据勾股定理,得AB===8(cm);如图2,当△ABC是钝角或直角三角形时,连接AO交BC于点D,在Rt△BOD中,∵OB=10,OD=6,∴BD===8,∴AD=10﹣6=4,在Rt△ABD中,根据勾股定理,得AB===4(cm).故答案为:8或4.【点评】本题考查的是垂径定理,在解答此题时要注意进行分类讨论,不要漏解.16.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,图象与x轴交于A(x1,0)B(x2,0)两点,点M(x0,y0)是图象上另一点,且x0>1.现有以下结论:①abc>0;②b<2a;③a+b+c>0;④a(x0﹣x1)(x0﹣x2)<0.其中正确的结论是①、④.(只填写正确结论的序号)【考点】二次函数图象与系数的关系.【专题】推理填空题;数形结合.【分析】由抛物线的开口方向可确定a的符号,由抛物线的对称轴相对于y轴的位置可得a 与b之间的符号关系,由抛物线与y轴的交点位置可确定c的符号;根据抛物线的对称轴与x=﹣1的大小关系可推出2a﹣b的符号;由于x=1时y=a+b+c,因而结合图象,可根据x=1时y的符号来确定a+b+c的符号,根据a、x0﹣x1、x0﹣x2的符号可确定a(x0﹣x1)(x0﹣x2)的符号.【解答】解:由抛物线的开口向下可得a<0,由抛物线的对称轴在y轴的左边可得x=﹣<0,则a与b同号,因而b<0,由抛物线与y轴的交点在y轴的正半轴上可得c>0,∴abc>0,故①正确;由抛物线的对称轴x=﹣>﹣1(a<0),可得﹣b<﹣2a,即b>2a,故②错误;由图可知当x=1时y<0,即a+b+c<0,故③错误;∵a<0,x0﹣x1>0,x0﹣x2>0,∴a(x0﹣x1)(x0﹣x2)<0,故④正确.综上所述:①、④正确.故答案为①、④.【点评】本题主要考查二次函数图象与系数的关系,其中a决定于抛物线的开口方向,b决定于抛物线的开口方向及抛物线的对称轴相对于y轴的位置,c决定于抛物线与y轴的交点位置,2a与b的大小决定于a的符号及﹣与﹣1的大小关系,运用数形结合的思想准确获取相关信息是解决本题的关键.三、解答题(本大题共9小题,共72分)17.解方程:(1)x2+2x﹣15=0(2)3x(x﹣2)=(2﹣x)【考点】解一元二次方程-因式分解法.【专题】计算题.【分析】(1)利用因式分解法解方程;(2)先把方程变形得到3x(x﹣2)+(x﹣2)=0,然后利用因式分解法解方程.【解答】解:(1)(x+5)(x﹣3)=0,x+5=0或x﹣3=0,x+5=0或x﹣3=0,所以x1=﹣5,x2=3;(2)3x(x﹣2)+(x﹣2)=0,(x﹣2)(3x+)=0,x﹣2=0或3x+=0,所以x1=2,x2=﹣.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).18.已知抛物线的顶点是(4,2),且在x轴上截得的线段长为8,求此抛物线的解析式.【考点】待定系数法求二次函数解析式.【专题】计算题.【分析】根据抛物线的对称性得到抛物线与x轴的两交点坐标为(0,0),(8,0),则可设交点式y=ax(x﹣8),然后把顶点坐标代入求出a即可.【解答】解:根据题意得抛物线的对称轴为直线x=4,而抛物线在x轴上截得的线段长为8,所以抛物线与x轴的两交点坐标为(0,0),(8,0),设抛物线解析式为y=ax(x﹣8),把(4,2)代入得a•4•(﹣4)=2,解得a=﹣,所以抛物线解析式为y=﹣x(x﹣8),即y=﹣x2+x.【点评】本题考查了待定系数法求二次函数的解析式:一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.本题的关键是利用对称性确定抛物线与x轴的交点坐标.19.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“凤凰”方程.已知x2+mx+n=0是“凤凰”方程,且有两个相等的实数根,求m2+n2的值.【考点】根的判别式;一元二次方程的解.【专题】新定义.【分析】根据x2+mx+n=0是“凤凰”方程,且有两个相等的实数根,列出方程组,求出m,n 的值,再代入计算即可.【解答】解:根据题意得:解得:,则m2+n2=(﹣2)2+12=5.【点评】本题考查了一元二次方程的解,根的判别式,关键是根据已知条件列出方程组,用到的知识点是一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.20.为响应党中央提出的“足球进校园”号召,我市在今年秋季确定了3所学校为我市秋季确定3所学校诶我市足球基地实验学校,并在全市开展了中小学足球比赛,比赛采用单循环制,即组内每两队之间进行一场比赛,若初中组共进行45场比赛,问初中共有多少个队参加比赛?【考点】一元二次方程的应用.【分析】赛制为单循环形式(每两队之间都赛一场),每个小组x个球队比赛总场数=x(x﹣1),由此可得出方程.【解答】解:设初中组共有x个队参加比赛,依题意列方程x(x﹣1)=45,解得:x1=10,x2=﹣19(不合题意,舍去),答:初中组共有10个队参加比赛.【点评】此题考查一元二次方程的实际运用,解决本题的关键是读懂题意,得到总场数与球队之间的关系.21.如图,在⊙O中,=,∠ACB=60°.(1)求证:∠AOB=∠BOC=∠AOC;(2)若D是的中点,求证:四边形OADB是菱形.【考点】圆心角、弧、弦的关系;菱形的判定;圆周角定理.【专题】证明题.【分析】(1)根据圆心角、弧、弦的关系,由=得AB=AC,加上∠ACB=60°,则可判断△ABC是等边三角形,所以AB=BC=CA,于是根据圆心角、弧、弦的关系即可得到∠AOB=∠BOC=∠AOC;(2)连接OD,如图,由D是的中点得=,则根据圆周角定理得∠AOD=∠BOD=∠ACB=60°,易得△OAD和△OBD都是等边三角形,则OA=AD=OD,OB=BD=OD,所以OA=AD=DB=BO,于是可判断四边形OADB是菱形.【解答】证明:(1)∵=,∴AB=AC,∵∠ACB=60°,∴△ABC是等边三角形,∴AB=BC=CA,∴∠AOB=∠BOC=∠AOC;(2)连接OD,如图,∵D是的中点,∴=,∴∠AOD=∠BOD=∠ACB=60°,又∵OD=OA,OD=OB,∴△OAD和△OBD都是等边三角形,∴OA=AD=OD,OB=BD=OD,∴OA=AD=DB=BO,∴四边形OADB是菱形.【点评】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.也考查了菱形的判定、等边三角形的判定与性质和圆周角定理.22.已知关于x的一元二次方程x2﹣(2m+1)x+m(m+1)=0.(1)求证:无论m取何值,方程总有两个不相等的实数根;(2)若△ABC的两边AB、AC的长是这个方程的两个实数根,且BC=8,当△ABC为等腰三角形时,求m的值.【考点】根的判别式;根与系数的关系;等腰三角形的性质.【分析】(1)先根据题意求出△的值,再根据一元二次方程根的情况与判别式△的关系即可得出答案;(2)根据△ABC的两边AB、AC的长是这个方程的两个实数根,设AB=x1=8,得出82﹣8(2m+1)+m(m+1)=0,求出m的值即可.【解答】解:(1)∵△=[﹣(2m+1)]2﹣4m(m+1)=1>0,∴不论m为何值,方程总有两个不相等的实数根.(2)由于无论m为何值,方程恒有两个不等实根,故若要△ABC为等腰三角形,那么必有一个解为8;设AB=x1=8,则有:82﹣8(2m+1)+m(m+1)=0,即:m2﹣15m+56=0,解得:m1=7,m2=8.则当△ABC为等腰三角形时,m的值为7或8.【点评】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.23.如图,O为正方形ABCD对角线上一点,以点O为圆心,OA长为半径的⊙O与BC相切于点E.(1)求证:CD是⊙O的切线;(2)若正方形ABCD的边长为10,求⊙O的半径.【考点】切线的判定;正方形的性质.【分析】(1)首先连接OE,并过点O作OF⊥CD,由OA长为半径的⊙O与BC相切于点E,可得OE=OA,OE⊥BC,然后由AC为正方形ABCD的对角线,根据角平分线的性质,可证得OF=OE=OA,即可判定CD是⊙O的切线;(2)由正方形ABCD的边长为10,可求得其对角线的长,然后由设OA=r,可得OE=EC=r,由勾股定理求得OC=r,则可得方程r+r=10,继而求得答案.【解答】(1)证明:连接OE,并过点O作OF⊥CD.∵BC切⊙O于点E,∴OE⊥BC,OE=OA,又∵AC为正方形ABCD的对角线,∴∠ACB=∠ACD,∴OF=OE=OA,即:CD是⊙O的切线.(2)解:∵正方形ABCD的边长为10,∴AB=BC=10,∠B=90°,∠ACB=45°,∴AC==10,∵OE⊥BC,∴OE=EC,设OA=r,则OE=EC=r,∴OC==r,∵OA+OC=AC,∴r+r=10,解得:r=20﹣10.∴⊙O的半径为:20﹣10.【点评】此题考查了切线的判定、正方形的性质、角平分线的性质以及勾股定理.注意准确作出辅助线是解此题的关键.24.某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?【考点】二次函数的应用.【专题】综合题.【分析】(1)根据题意可知y与x的函数关系式.(2)根据题意可知y=﹣10﹣(x﹣5.5)2+2402.5,当x=5.5时y有最大值.(3)设y=2200,解得x的值.然后分情况讨论解.【解答】解:(1)由题意得:y=(50+x﹣40)=﹣10x2+110x+2100(0<x≤15且x为整数);(2)由(1)中的y与x的解析式配方得:y=﹣10(x﹣5.5)2+2402.5.∵a=﹣10<0,∴当x=5.5时,y有最大值2402.5.∵0<x≤15,且x为整数,当x=5时,50+x=55,y=2400(元),当x=6时,50+x=56,y=2400(元)∴当售价定为每件55或56元,每个月的利润最大,最大的月利润是2400元.(3)当y=2200时,﹣10x2+110x+2100=2200,解得:x1=1,x2=10.∴当x=1时,50+x=51,当x=10时,50+x=60.∴当售价定为每件51或60元,每个月的利润为2200元.当售价不低于51或60元,每个月的利润为2200元.当售价不低于51元且不高于60元且为整数时,每个月的利润不低于2200元(或当售价分别为51,52,53,54,55,56,57,58,59,60元时,每个月的利润不低于2200元).【点评】本题考查二次函数的实际应用,借助二次函数解决实际问题,是一道综合题.25.如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3).(1)求抛物线的解析式;(2)在(1)中抛物线的对称轴上是否存在点D,使△BCD的周长最小?若存在,求出点D的坐标,若不存在,请说明理由;(3)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求△ACE的最大面积及E点的坐标.【考点】二次函数综合题.【专题】代数几何综合题;压轴题.【分析】(1)利用待定系数法求二次函数解析式解答即可;(2)利用待定系数法求出直线AC的解析式,然后根据轴对称确定最短路线问题,直线AC 与对称轴的交点即为所求点D;(3)根据直线AC的解析式,设出过点E与AC平行的直线,然后与抛物线解析式联立消掉y得到关于x的一元二次方程,利用根的判别式△=0时,△ACE的面积最大,然后求出此时与AC平行的直线,然后求出点E的坐标,并求出该直线与x轴的交点F的坐标,再求出AF,再根据直线l与x轴的夹角为45°求出两直线间的距离,再求出AC间的距离,然后利用三角形的面积公式列式计算即可得解.【解答】解:(1)∵抛物线y=ax2+bx+3经过点A(1,0),点C(4,3),∴,解得,所以,抛物线的解析式为y=x2﹣4x+3;(2)∵点A、B关于对称轴对称,∴点D为AC与对称轴的交点时△BCD的周长最小,设直线AC的解析式为y=kx+b(k≠0),则,解得,所以,直线AC的解析式为y=x﹣1,∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的对称轴为直线x=2,当x=2时,y=2﹣1=1,∴抛物线对称轴上存在点D(2,1),使△BCD的周长最小;(3)如图,设过点E与直线AC平行线的直线为y=x+m,联立,消掉y得,x2﹣5x+3﹣m=0,△=(﹣5)2﹣4×1×(3﹣m)=0,解得:m=﹣,即m=﹣时,点E到AC的距离最大,△ACE的面积最大,此时x=,y=﹣=﹣,∴点E的坐标为(,﹣),设过点E的直线与x轴交点为F,则F(,0),∴AF=﹣1=,∵直线AC的解析式为y=x﹣1,∴∠CAB=45°,∴点F到AC的距离为AF•sin45°=×=,又∵AC==3,∴△ACE的最大面积=×3×=,此时E点坐标为(,﹣).【点评】本题考查了二次函数综合题型,主要考查了待定系数法求二次函数解析式,待定系数法求一次函数解析式,利用轴对称确定最短路线问题,联立两函数解析式求交点坐标,利用平行线确定点到直线的最大距离问题.21。

【期中卷】人教版2021-2022学年九年级数学上学期期中测试卷(三)含答案与解析

人教版2021–2022学年上学期期中测试卷(三)九年级数学(考试时间:100分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.测试范围:九年级上册第二十一章~第二十四章5.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一、选择题(本题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项符合题目要求)1.下列交通标志中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.已知⊙O的半径长为5,若点P在⊙O内,那么下列结论正确的是()A.OP>5 B.OP=5 C.0<OP<5 D.0≤OP<53.已知y=(m+2)x|m|+2是关于x的二次函数,那么m的值为()A.﹣2 B.2 C.±2 D.04.如果关于x的方程x2+mx+1=0的两个根的差为1,那么m等于()A.±2 B.± C.± D.±5.若一个扇形的半径是18cm,且它的弧长是12π cm,则此扇形的圆心角等于()A.30° B.60°C.90° D.120°6.若关于x的方程x2+2x+a=0不存在实数根,则a的取值范围是()A.a<1 B.a>1 C.a≤1 D.a≥17.如图,⊙C与∠AOB的两边分别相切,其中OA边与⊙C相切于点P.若∠AOB=90°,OP=6,则OC的长为()A .12B .C .D .8.如图,在平面直角坐标系xOy 中,抛物线y=x 2+bx+c 与x 轴只有一个交点M ,与平行于x 轴的直线l 交于A 、B 两点,若AB=3,则点M 到直线l 的距离为( )A .B .C .2D .9.若一次函数y kx b =+的图象不经过第二象限,则关于x 的方程20x kx b ++=的根的情况是( ) A. 有两个不相等的实数根 B. 有两个相等的实数根 C. 无实数根D. 无法确定10.如图,正方形ABCD 的边长为3cm ,动点P 从B 点出发以3cm/s 的速度沿着边BC ﹣CD ﹣DA 运动,到达A 点停止运动;另一动点Q 同时从B 点出发,以1cm/s 的速度沿着边BA 向A 点运动,到达A 点停止运动.设P 点运动时间为x (s ),△BPQ 的面积为y (cm 2),则y 关于x 的函数图象是( )A. B. C. D.第Ⅱ卷二、填空题(本题共5小题,每小题3分,共15分)11.一元二次方程x2﹣2x=0的两根分别为.12.若点M(3,a﹣2),N(b,a)关于原点对称,则ab=.13.如图,△ABC的内切圆⊙O与BC,CA,AB分别相切于点D,E.F.且AB=5,AC=12,BC=13,则⊙O 的半径是.14.抛物线y=ax2+bx+c(a≠0)的部分图象如图所示,其与x轴的一个交点坐标为(﹣3,0),对称轴为x =﹣1,则当y<0时,x的取值范围是.15.有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC=90°,点M,N分别在射线BA,BC上,MN长度始终保持不变,MN=4,E为MN的中点,点D到BA,BC的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为.三、解答题(本大题共8个小题,满分75分)16.(8分)解方程:(1)3x2+6x﹣5=0(2)x2+2x﹣24=017.(9分)如图,图中每个小方格都是边长为1个单位长度的正方形,△ABC在方格纸中的位置如图所示.(1)请在图中建立平面直角坐标系,使得A,B两点的坐标分别为A(2,﹣1),B(1,﹣4),并写出C点坐标;(2)在图中作出△ABC绕坐标原点旋转180°后的△A1B1C1,并写出A1,B1,C1的坐标:(3)在图中作出△ABC绕坐标原点顺时针旋转90°后的△A2B2C2,并写出A2,B2,C2的坐标.18.(9分)已知二次函数y=﹣x2+3x﹣(1)用配方法求出函数图象的顶点坐标和对称轴方程;(2)用描点法在如图所示的平面直角坐标系中画出该函数的图象;(3)根据图象,直接写出y的值小于0时,x的取值范围.19.(9分)如图,E点是正方形ABCD的边BC上一点,AB=12,BE=5,△ABE逆时针旋转后能够与△ADF 重合.(1)旋转中心是,旋转角为度;(2)△AEF是三角形;(3)求EF的长.20.(9分)如图,在△ABC中,以AB为直径的⊙O交AC于点M,弦MN∥BC交AB于点E,且ME=NE=3.(1)求证:BC是⊙O的切线;(2)若AE=4,求⊙O的直径AB的长度.21.(10分)某水果店将标价为10元/斤的某种水果.经过两次降价后,价格为8.1元/斤,并且两次降价的百分率相同.(1)求该水果每次降价的百分率;(2)从第二次降价的第1天算起,第x天(x为整数)的销量及储藏和损耗费用的相关信息如下表所示:时间(天)x销量(斤)120﹣x储藏和损耗费用(元)3x2﹣64x+400已知该水果的进价为4.1元/斤,设销售该水果第x(天)的利润为y(元),求y与x(1≤x<10)之间的函数解析式,并求出第几天时销售利润最大,最大利润是多少?22.(10分)如图,在△ABC中,AC=BC,D是AB上一点,⊙O经过点A、C、D,交BC于点E,过点D作DF ∥BC,交⊙O于点F.求证:(1)四边形DBCF是平行四边形;(2)AF=EF.23.(11分)如图,两条抛物线y1=﹣x2+4,y2=﹣x2+bx+c相交于A,B两点,点A在x轴负半轴上,且为抛物线y2的最高点.(1)求抛物线y2的解析式和点B的坐标;(2)点C是抛物线y1上A,B之间的一点,过点C作x轴的垂线交y2于点D,当线段CD取最大值时,求S△BCD.九年级数学·全解全析一、选择题(本题共10小题,每小题3分,共30分)1 2 3 4 5 6 7 8 9 10A DBCD B C B A C1.【解析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,是中心对称图形.故正确;B、是轴对称图形,不是中心对称图形.故错误;C、是轴对称图形,不是中心对称图形.故错误;D、不是轴对称图形,不是中心对称图形.故错误.故选A.2.【解析】根据d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.【解答】解:由⊙O的半径长为5,若点P在⊙O内,得0≤OP<5,故选:D.3.【解析】根据形如y=ax2+bx+c (a≠0)是二次函数,可得答案.【解答】解:由y=(m﹣2)x|m|+2是y关于x的二次函数,得|m|=2且m+2≠0.解得m=2.故选:B.4.【解析】根据一元二次方程的根与系数的关系得到,两根之和与两根之积,其中两根的和可以用m表示,而(x1﹣x2)2=(x1+x2)2﹣4x1•x2=1,代入即可得到关于m的方程,进而求解.【解答】解:由根与系数的关系可知:x1+x2=﹣m,x1•x2=1,又知x1﹣x2=1,则(x1﹣x2)2=1,即(x1+x2)2﹣4x1•x2=1,则(﹣m)2﹣4=1,解得:m=±.故本题选C.5.【解析】把弧长公式进行变形,代入已知数据计算即可.【解答】解:根据弧长的公式l=,得n===120°,故选:D.6.【解析】根据根的判别式得出b2﹣4ac<0,代入求出不等式的解集即可得到答案.【解答】解:∵关于x的方程x2+2x+a=0不存在实数根,∴b2﹣4ac=22﹣4×1×a<0,解得:a>1.故选B.7.【解析】连接CP,由切线的性质可得CP⊥AO,再由切线长定理可得∠POC=45°,进而可得△POC是等腰直角三角形,利用勾股定理即可求出OC的长.【解答】解:连接CP,∵OA边与⊙C相切于点P,∴CP⊥AO,∵⊙C与∠AOB的两边分别相切,∠AOB=90°,∴∠POC=45°,∴OP=CP=6,∴OC==6,故选C.8.【解析】设M到直线l的距离为m,则有x2+bx+c=m两根的差为3,又x2+bx+c=0时,△=0,列式求解即可.【解答】解:抛物线y=x2+bx+c与x轴只有一个交点,∴△=b2﹣4ac=0,∴b2﹣4c=0,设M到直线l的距离为m,则有x2+bx+c=m两根的差为3,可得:b2﹣4(c﹣m)=9,解得:m=.故答案选B.9.【解析】利用一次函数性质得出k>0,b≤0,再判断出△=k2-4b>0,即可求解.=+的图象不经过第二象限,【详解】解:一次函数y kx bk∴>,0b≤,240∴∆=->,k b∴方程有两个不相等的实数根.故选A.【点睛】本题考查的是一元二次方程的根的判别式,熟练掌握一次函数的图像和一元二次方程根的判别式是解题的关键.10.【解析】试题分析:由题意可得BQ=x.①0≤x≤1时,P点在BC边上,BP=3x,则△BPQ的面积=12BP•BQ,解y=12•3x•x=232x;故A选项错误;②1<x≤2时,P点在CD边上,则△BPQ的面积=12BQ•BC,解y=12•x•3=32x;故B选项错误;③2<x≤3时,P点在AD边上,AP=9﹣3x,则△BPQ的面积=12AP•BQ,解y=12•(9﹣3x)•x=29322x x;故D选项错误.故选C.考点:动点问题的函数图象.二、填空题(本题共5小题,每小题3分,共15分。

【精品】2016年湖南省株洲市炎陵县垄溪学校八年级上学期期中数学试卷带解析答案

2015-2016学年湖南省株洲市炎陵县垄溪学校八年级(上)期中数学试卷一、选择题(本题共8小题,每小题3分,共24分)1.(3分)下列分式不是最简分式的是()A.B.C.D.2.(3分)有下列命题:①两点之间,线段最短;②相等的角是对顶角;③当a>0时,|a|=a;④内错角互补,两直线平行.其中真命题的有()A.1个 B.2个 C.3个 D.4个3.(3分)下列运算正确的是()A.x﹣2•x4=x8B.3x+2y=6xy C.(x﹣3)﹣2=x6D.y3÷y3=y4.(3分)为了判断命题“每个月都有31天”是假命题,可举的反例是()A.3月 B.5月 C.7月 D.9月5.(3分)化简的结果是()A.a2﹣b2B.a+b C.a﹣b D.16.(3分)已知三角形的两边长分别为4cm和9cm,则下列长度的四条线段中能作为第三边的是()A.13cm B.6cm C.5cm D.4cm7.(3分)如图所示,在△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,∠AFD=158°,则∠EDF=()度.A.58°B.68°C.78°D.32°8.(3分)八年级两班的学生参加植树造林活动,已知甲班每天比乙班每天多植15棵树,甲班植90棵树所用天数与乙班植60棵树所用天数相等.若设甲班每天植树x棵,则()A.=B.=C.=D.=二、填空题(本题共8小题,每小题3分,共24分)9.(3分)计算:(﹣2)0=,(﹣)﹣4=,(3﹣2)2=.10.(3分)当x时,分式的值为0.11.(3分)已知等腰三角形两边长分别为9cm、4cm.则它的周长是cm.12.(3分)化简:=.13.(3分)已知D、E分别是△ABC的边BC和AC的中点,若△ABC的面积=24cm2,则△DEC的面积为.14.(3分)如图,△ABC≌△BAD,点A和点B,点C和点D是对应点.如果∠D=70°,∠CAB=50°,那么∠DAB=.15.(3分)已知,∠ABC=∠DEF,AB=DE,要说明△ABC≌△DEF,若以“AAS”为依据,还要添加的条件为.16.(3分)小亮和小青从同一地点出发跑800m,小亮的速度是小青的1.25倍,小亮比小青提前40s到达终点.问:小亮和小青的速度各是多少?设小青的速度为xm/s,依题意列方程.三、解答题(本大题共8小题,共52分)17.(8分)计算:(1)()﹣1﹣2+(π﹣3.14)0(2)÷.18.(8分)解下列分式方程:(1)=(2)+1=.19.(5分)先化简,再求值:•(﹣1),其中x=2.20.(5分)如图:河岸线的同侧有两个村庄A,B,现要在河岸上修一个自来水厂,使厂到A,B两地的距离相等,请在图中作出厂的位置(用P点表示),并说明你这样做会使厂到时A,B两地距离相等的理由(尺规作图,不要求写出做法,只保留作图痕迹)21.(6分)如图,△ABC中,∠A=40°,∠B=72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE交CE于F,求∠CDF的度数.22.(6分)去年入秋以来,云南省发生了百年一遇的旱灾,连续8个多月无有效降水,为抗旱救灾,某部队计划为驻地村民新修水渠3600米,为了水渠能尽快投入使用,实际工作效率是原计划工作效率的1.8倍,结果提前20天完成修水渠任务.问原计划每天修水渠多少米?23.(6分)如图:已知AD、BC相交于O,且AB=CD,AD=CB.求证:∠B=∠D.24.(8分)在数学课上,林老师在黑板上画出如图所示的图形(其中点B、F、C、E在同一直线上),并写出四个条件:①AB=DE,②BF=EC,③∠B=∠E,④∠1=∠2.请你从这四个条件中选出三个作为题设,另一个作为结论,组成一个真命题,并给予证明.题设:;结论:.(均填写序号)证明:2015-2016学年湖南省株洲市炎陵县垄溪学校八年级(上)期中数学试卷参考答案与试题解析一、选择题(本题共8小题,每小题3分,共24分)1.(3分)下列分式不是最简分式的是()A.B.C.D.【解答】解:A、分式的分子分母不含公因式,故A是最简分式;B、分式的分子分母不含公因式,故B是最简分式;C、分式的分子分母不含公因式,故C是最简分式;D、分式的分子分母含公因式2,故D不是最简分式;故选:D.2.(3分)有下列命题:①两点之间,线段最短;②相等的角是对顶角;③当a>0时,|a|=a;④内错角互补,两直线平行.其中真命题的有()A.1个 B.2个 C.3个 D.4个【解答】解:两点之间,线段最短,所以①正确;相等的角不一定是对顶角,所以②错误;当a>0时,|a|=a,所以③正确;内错角相等,两直线平行,所以④错误.故选:B.3.(3分)下列运算正确的是()A.x﹣2•x4=x8B.3x+2y=6xy C.(x﹣3)﹣2=x6D.y3÷y3=y【解答】解:x﹣2•x4=x﹣2+4=x2,A错误;3x与2y不是同类项,不能合并,B错误;(x﹣3)﹣2=x﹣3×(﹣2)=x6,C正确;y3÷y3=1,D错误,故选:C.4.(3分)为了判断命题“每个月都有31天”是假命题,可举的反例是()A.3月 B.5月 C.7月 D.9月【解答】解:∵9月是30天,∴命题“每个月都有31天”是假命题,故选:D.5.(3分)化简的结果是()A.a2﹣b2B.a+b C.a﹣b D.1【解答】解:原式==a+b.故选:B.6.(3分)已知三角形的两边长分别为4cm和9cm,则下列长度的四条线段中能作为第三边的是()A.13cm B.6cm C.5cm D.4cm【解答】解:根据三角形的三边关系,得:第三边应大于两边之差,且小于两边之和,即9﹣4=5,9+4=13.∴第三边取值范围应该为:5<第三边长度<13,故只有B选项符合条件.故选:B.7.(3分)如图所示,在△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,∠AFD=158°,则∠EDF=()度.A.58°B.68°C.78°D.32°【解答】解:∵FD⊥BC,∠AFD=158°,∴∠CFD=180°﹣∠AFD=180°﹣158°=22°,则∠C=180°﹣∠FDC﹣∠CFD=180°﹣90°﹣22°=68°.∵∠B=∠C,DE⊥AB,∴∠EDB=180°﹣∠B﹣∠DEB=180°﹣68°﹣90°=22°,则∠EDC=∠B+∠DEB=∠B+90°.∵∠EDC=∠EDF+90°,∴∠EDF=∠B=68°.故选:B.8.(3分)八年级两班的学生参加植树造林活动,已知甲班每天比乙班每天多植15棵树,甲班植90棵树所用天数与乙班植60棵树所用天数相等.若设甲班每天植树x棵,则()A.=B.=C.=D.=【解答】解:设甲班每天植树x棵,根据题意得:,故选:D.二、填空题(本题共8小题,每小题3分,共24分)9.(3分)计算:(﹣2)0=1,(﹣)﹣4=16,(3﹣2)2=.【解答】解:(﹣2)0=1,(﹣)﹣4=16,(3﹣2)2=3﹣4=,故答案为1,16,.10.(3分)当x=1时,分式的值为0.【解答】解:∵分式的值为0,∴,解得x=1.故答案为:=1.11.(3分)已知等腰三角形两边长分别为9cm、4cm.则它的周长是22cm.【解答】解:∵等腰三角形的两条边长分别为9cm、4cm,∴由三角形三边关系可知:等腰三角形的腰长不可能为4cm,只能为9cm,∴等腰三角形的周长=9+9+4=22(cm).故答案为:22.12.(3分)化简:=.【解答】解:==.故答案为:.13.(3分)已知D、E分别是△ABC的边BC和AC的中点,若△ABC的面积=24cm2,则△DEC的面积为6cm2.【解答】解:∵D、E分别是△ABC的边BC和AC的中点,=2S△ADC∴S△ABC=24cm2,又∵D是△ABC的边BC的中点,S△ABC∴S=S△ABC=6cm2.△DEC故答案为:6cm2.14.(3分)如图,△ABC≌△BAD,点A和点B,点C和点D是对应点.如果∠D=70°,∠CAB=50°,那么∠DAB=60°.【解答】解:∵△ABC≌△BAD,点A和点B、点C和点D是对应点,∴∠CAB的对应角是∠DBA,∴∠CAB=∠DBA=50°.∵∠D+∠DBA+∠DAB=180°,∠D=70°,∴∠DAB=180°﹣70°﹣50°=60°.故答案为:60°.15.(3分)已知,∠ABC=∠DEF,AB=DE,要说明△ABC≌△DEF,若以“AAS”为依据,还要添加的条件为∠ACB=∠F.【解答】解:添加∠ACB=∠F,∵在△ABC和△DEF中,∴△ABC≌△DEF(AAS),故答案为:∠ACB=∠F.16.(3分)小亮和小青从同一地点出发跑800m,小亮的速度是小青的1.25倍,小亮比小青提前40s到达终点.问:小亮和小青的速度各是多少?设小青的速度为xm/s,依题意列方程﹣=40.【解答】解:设小青的速度是x米/秒,则小亮的速度是1.25x米/秒,由题意得:﹣=40,故答案为:﹣=40.三、解答题(本大题共8小题,共52分)17.(8分)计算:(1)()﹣1﹣2+(π﹣3.14)0(2)÷.【解答】解:(1)原式=2﹣2+1=1;(2)原式=•=.18.(8分)解下列分式方程:(1)=(2)+1=.【解答】解:(1)去分母得:x+2=4,解得:x=2,经检验x=2是增根,分式方程无解;(2)去分母得:x﹣3+x﹣2=﹣3,解得:x=1,经检验x=1是分式方程的解.19.(5分)先化简,再求值:•(﹣1),其中x=2.【解答】解:原式=•(﹣),=•=﹣,当x=2时,原式=﹣=﹣1.20.(5分)如图:河岸线的同侧有两个村庄A,B,现要在河岸上修一个自来水厂,使厂到A,B两地的距离相等,请在图中作出厂的位置(用P点表示),并说明你这样做会使厂到时A,B两地距离相等的理由到线段两个端点距离相等的点在线段的垂直平分线上(尺规作图,不要求写出做法,只保留作图痕迹)【解答】解:如图所示:理由为:到线段两个端点距离相等的点在线段的垂直平分线上,故答案为:到线段两个端点距离相等的点在线段的垂直平分线上.21.(6分)如图,△ABC中,∠A=40°,∠B=72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE交CE于F,求∠CDF的度数.【解答】解:∵∠A=40°,∠B=72°,∴∠ACB=180°﹣40°﹣72°=68°,∵CE平分∠ACB,∴∠ACE=∠BCE=34°,∴∠CED=∠A+∠ACE=74°,∴∠CDE=90°,DF⊥CE,∴∠CDF+∠ECD=∠ECD+∠CED=90°,∴∠CDF=74°.22.(6分)去年入秋以来,云南省发生了百年一遇的旱灾,连续8个多月无有效降水,为抗旱救灾,某部队计划为驻地村民新修水渠3600米,为了水渠能尽快投入使用,实际工作效率是原计划工作效率的1.8倍,结果提前20天完成修水渠任务.问原计划每天修水渠多少米?【解答】解:设原计划每天修水渠x米.根据题意得:,解得:x=80.经检验:x=80是原分式方程的解.答:原计划每天修水渠80米.23.(6分)如图:已知AD、BC相交于O,且AB=CD,AD=CB.求证:∠B=∠D.【解答】证明:连接AC,在△ABD和△CDB中,,∴△ABD≌△CDB(SSS),∴∠B=∠D.24.(8分)在数学课上,林老师在黑板上画出如图所示的图形(其中点B、F、C、E在同一直线上),并写出四个条件:①AB=DE,②BF=EC,③∠B=∠E,④∠1=∠2.请你从这四个条件中选出三个作为题设,另一个作为结论,组成一个真命题,并给予证明.题设:可以为①②③;结论:④.(均填写序号)证明:【解答】情况一:题设:①②③;结论:④.证明:∵BF=EC,∴BF+CF=EC+CF,即BC=EF.在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴∠1=∠2;情况二:题设:①③④;结论:②.证明:在△ABC和△DEF中,∵,∴△ABC≌△DEF(AAS),∴BC=EF,∴BC﹣FC=EF﹣FC,即BF=EC;情况三:题设:②③④;结论:①.证明:∵BF=EC,∴BF+CF=EC+CF,即BC=EF,在△ABC和△DEF中,,∴△ABC ≌△DEF (ASA ),∴AB=DE .赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征: PA Bl运用举例:1. △ABC 中,AB =6,AC =8,BC =10,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为AP 的中点,则MF 的最小值为B2.如图,在边长为6的菱形ABCD 中,∠BAD =60°,E 为AB 的中点,F 为AC 上一动点,则EF +BF 的最小值为_________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018-2019学年湖南省株洲市炎陵县垄溪学校九年级(上)期中数学试卷
一、选择题:(本大题共10小题,每小题3分,共30分.)
1.(3分)下列各点中,在反比例函数y=图象上的是( )

A.(3,1) B.(﹣3,1) C.(3,) D.(,3)
2.(3分)如图,AC与BD相交于点E,AD∥BC.若AE:EC=1:2,则S△AED:S△CEB为( )

A.1: B.1:2 C.1:3 D.1:4
3.(3分)反比例函数y=图象上有三个点(x1,y1),(x2,y2),(x3,y3),其中x1<x2<0<x3,
则y1,y2,y3的大小关系是( )
A.y1<y2<y3 B.y2<y1<y3 C.y3<y1<y2 D.y3<y2<y
1

4.(3分)如图,在△ABC中,D、E分别是AB、AC上的点,且DE∥BC,若AD:DB=3:2,则AE:

AC等于( )

A.3:2 B.3:1 C.2:3 D.3:5
5.(3分)把方程x2﹣6x+4=0的左边配成完全平方,正确的变形是( )
A.(x﹣3)2=9 B.(x﹣3)2=13 C.(x+3)2=5 D.(x﹣3)2=5
6.(3分)如图,身高为1.6m的吴格霆想测量学校旗杆的高度,当她站在C处时,她头顶端的影
子正好与旗杆顶端的影子重合,并测得AC=2.0m,BC=8.0m,则旗杆的高度是( )

A.6.4m B.7.0m C.8.0m D.9.0m
7.(3分)某学校组织艺术摄影展,上交的作品要求如下:七寸照片(长7英寸,宽5英寸);将
照片贴在一张矩形衬纸的正中央,照片四周外露衬纸的宽度相同;矩形衬纸的面积为照片面积的
3倍.设照片四周外露衬纸的宽度为x英寸(如图),下面所列方程正确的是( )

A.(7+x)(5+x)×3=7×5 B.(7+x)(5+x)=3×7×5
C.(7+2x)(5+2x)×3=7×5 D.(7+2x)(5+2x)=3×7×5
8.(3分)如图,在直角坐标系中,点A是x轴正半轴上的一个定点,点B是双曲线y=(x>0)
上的一个动点,当点B的横坐标逐渐增大时,△OAB的面积将会( )

A.逐渐增大 B.逐渐减小 C.不变 D.先增大后减小
9.(3分)定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“凤
凰”方程.已知ax2+bx+c=0(a≠0)是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是
( )
A.a=c B.a=b C.b=c D.a=b=c
10.(3分)△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1:2,已知△ABC的面
积是3,则△A′B′C′的面积是( )
A.3 B.6 C.9 D.12

二、填空题:请把答案填在题中横线上.(本大题共8小题,每小题3分,共24分.)
11.(3分)已知y与(2x+1)成反比例,且当x=1时,y=3,那么当x=0时,y= .
12.(3分)如图,在▱ABCD中,BD为对角线,E、F分别是AD、BD的中点,连接EF.若EF=3,
则CD的长为 .

13.(3分)方程x(x+2)=0的根是 .

相关文档
最新文档