2008年湖北省武汉市中考数学试卷

合集下载

2008年湖北省天门市中考数学试题无答案

2008年湖北省天门市中考数学试题无答案

2008年湖北省天门市中考数学试卷注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至8页.满分120分.考试时间120分钟.2.答第Ⅰ卷前,考生务必用钢笔(圆珠笔)将自己的姓名,用2B 铅笔将准考证号、考试科目写或涂在答题卡上.3.第Ⅰ卷每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用4B 橡皮擦干净后,再涂选其它答案.答案写在第Ⅰ卷上无效.4.答第Ⅱ卷时,将答案直接写在试卷上.5.考试结束后,考生须将第Ⅰ卷、第Ⅱ卷、答题卡一并交回.第Ⅰ卷(选择题 共36分)一.选择题(本大题共有12个小题,每小题3分,共36分)01.43-的倒数是( ).A 、43 B 、34-430203.关于xA 、1B 、-104.初三(1)班10A 、38,36B 、3805度h 随时间t 器的形状是图中(06.如图,a ∥b ,∠1=105°,∠2=140°,则∠3的度数是( ).A 、75°B 、65°C 、55°D 、50° 07.下列命题中,真命题是( ).A 、一组对边平行且有一组邻边相等的四边形是平行四边形B 、顺次连结四边形各边中点所得到的四边形是矩形C 、等边三角形既是轴对称图形又是中心对称图形D 、对角线互相垂直平分的四边形是菱形08.如图,为了测量河两案A 、B 两点的距离,在与AB 垂直的方向点C 处测得AC=a ,∠ACB =α,那么AB 等于( ).主视图左视图俯视图(第02题图)B C D A 1 2 3(第06题图)abA CaαA 、a ·sin αB 、a ·tan αC 、a ·cos αD 、αtan a09.将分别标有数字1,2,3,4的四张卡片洗匀后,背面朝上,放在桌面上,随机抽取一张(不放回),接着再随机抽取一张,恰好两张卡片上的数字相邻的概率为( ).A 、51 B 、41 C 、31 D 、2110.设计一个商标图案如图中阴影部分,矩形ABCD 中,AB =2BC ,且AB =111213141516三.解答题(本大题共有8个小题,共68分)17.(本小题满分6分)计算:02)722(60sin 41122-+︒-+--π18.(本小题满分7分)先化简,后求值:2x 1x +-·1x 11x 2x 4x 2-÷+--,其中x 2-x =0.19.(本小题满分7分)如图,有两个可以自由转动的均匀转盘A 、B ,转盘A 被均匀地分成3等分,每份分(第10题图)别标有1,2,3这三个数字;转盘B 被均匀地分成4等分,每份分别标有4,5,6,7这四个数字.有人为小明,小飞设计了一个游戏,其规则如下:①同时自由转动转盘A 和B ;②转盘停止后,指针各指向一个数字(如果指针恰好指在分格线上,那么重转一次,直到指针指向某一数字为止),用所指的两个数字相乘,如果积为偶数,小明胜,否则小飞胜. (1)请你用列表或树形图求出小明胜和小飞胜的概率; (2)游戏公平吗?若不公平,请你设计一个公平的规则.20.(本小题满分7分)现将四个全等的直角梯形透明纸片,分别放在方格纸中,方格纸的每个小正方形的边长均为1,并且直角梯形的每个顶点与小正方形的顶点重合.请你仿照例①,按如下要求拼图.21.(本小题满分8分)A 点在第一象限.C 为xABC =. 三点的坐标; P ,使以A 、B 、C 、P 为顶点的四边形为平行四边形?若存在,请直接..22.(本小题满分10分)如图,AB 为⊙O 的直径,C 为⊙O 上一点,∠BAC 的平分线交⊙O 于点D ,过D 点作EF ∥BC 交AB 的延长线于点E ,交AC 的延长线于点F . (1)求证:EF 为⊙O 的切线;A B (第19题图)(第20题图)(2)若sin ∠ABC =54,CF =1,求⊙O 的半径及EF 的长.23.本小题满分分一快餐店试销某种套餐,试销一段时间后发现,每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本).若每份售价不超过10元,每天可销售400份;若每份售价超过10元,每提高1元,每天的销售量就减少40份.为了便于结算,每份套餐的售价x(元)取整.数.,用y(元)表示该店日净收入.(日净收入=每天的销售额-套餐成本-每天固定支出) (1)求y 与x 的函数关系式; (2)若每份套餐售价不超过10元,要使该店日净收入不少于800元,那么每份售价最少不低于多少元? (3)该店既要吸引顾客,使每天销售量较大,又要有较高的日净收入.按此要求,每份套餐的售价应定24.((0,4).动点M 从N 从点A 出发沿AB 方向) N(第22题图)。

2008年湖北省荆门市中考数学试题(含答案)

2008年湖北省荆门市中考数学试题(含答案)

第3题图 2830 3132 34 374 65 用水量/吨1 2 3 日期日 第4题图-4 (-1,4)2 -1-2 41 23 x O y (1,1) (-4,-1)-11 -2-3 湖北省荆门市二○○八年初中毕业生学业考试试卷数 学注意事项:1. 本卷共8页,总分120分,考试时间120分钟.2. 考生答题前务必将自己所在县(市、区)、学校、姓名、准考证号填写在密封线内的相应空格处.题 号一二三总 分1~1011~20 21 22 23 24 25 26 27 28 得 分一、选择题(本大题共10小题,每小题2分,共20分) 将下列各题中唯一正确的答案代号填入下表中. 题号 1 2 3 4 5 6 7 8 9 10 答案1.4-(-7)等于 (A) 3. (B) 11. (C) -3. (D) -11. 2.下列各式中,不成立的是(A) 3-=3. (B) -3=-3. (C) 3-=3. (D) -3-=3.3.某住宅小区六月份中1日至6日每天用水量变化情况如折线图所示,那么这6天的平均用水量是(A) 30吨. (B) 31 吨. (C) 32吨. (D) 33吨.4.如图,将三角形向右平移2个单位长度,再向上平移3个单位 长度,则平移后三个顶点的坐标是(A) (1, 7) , (-2, 2),(3, 4). (B) (1, 7) , (-2, 2),(4, 3). (C) (1, 7) , (2, 2),(3, 4). (D) (1, 7) , (2,-2),(3, 3). 5.计算ab ba b a b a b a b a 22222-⨯⎪⎪⎭⎫⎝⎛+---+的结果是(A)b a -1. (B) ba +1. (C) a -b . (D) a +b . 6.如图,将圆沿AB 折叠后,圆弧恰好经过圆心,则 等于(A) 60°. (B) 90°. (C)120°. (D)150°.7.左下图是由若干个小正方形所搭成的几何体及从上面看这个几何体所看到的图形,那么得分 评卷人A mB ⌒第15题图从左边看这个几何体时, 所看到的几何图形是8(A) 6米. (B) 8米.(C) 12米. (D)9.把抛物线y =x 2+bx +c 的图象向右平移3移2个单位,所得图象的解析式为y =x 2-3x +5,则(A) b =3,c =7.(B) b =6,c =3.(C) b =-9,c =-5.(D) b =-9,c =21. 10.用四个全等的矩形和一个小正方形拼成如图所示的大正 方形,已知大正方形的面积是144,小正方形的面积是4,若用x ,y 表示矩形的长和宽(x >y ),则下列关系式中不正 确的是 (A) x +y =12 . (B) x -y =2.(C) xy =35. (D) x 2+y 2=144.二、填空题(本大题共10小题,每小题3分,共30分)11. ()322x -= ___________.12.如图,半圆的直径AB =__________. 13.如图,l 1∥l 2,∠α=__________度.14.计算:27124148÷⎪⎭⎫⎝⎛+=_________.15.数学老师布置10道选择题作为课堂练习,科代表将全班同学的答题情况绘制成条形统计图,根据图 中信息,全班每位同学答对题数的中位数和众数分 别为______________.16.如图,l 1反映了某公司的销售收入与销量的关系,l 2第13题图 25° αl 1 l 2120°第10题图第8题图从左面看第7题图 (A) (C) 第12题图反映了该公司产品的销售成本与销量的关系,当该公 司赢利(收入大于成本)时,销售量必须____________. 17.如图,菱形ABCD 的两条对角线分别长6和8,点P 是对角线AC 上的一个动点,点M 、N 分别是边AB 、BC 的中点,则PM +PN 的最小值是_____________. 18.如图,矩形纸片ABCD 中,AD =9,AB =3,将其折叠,使点D 与点B 重合,折痕为EF ,那么折痕EF 的长为________.19.如图,一次函数与反比例函数的图象相交于A、B 两点, 则图中使反比例函数的值小于一次函数的值的x 的取值范围是_____________.20.如图,正方形ABCD 和正方形OEFG 中, 点A 和点F的坐标分别为 (3,2),(-1,-1),则两个正方形的位似 中心的坐标是_________.三、解答题(本大题共8小题,共70分)21.(本小题满分6分)给出三个多项式X =2a 2+3ab +b 2,Y =3a 2+3ab ,Z = a 2+ab ,请你任选两个进行加(或减)法运算,再将结果分解因式.22.(本小题满分6分)第17题图DAB C P M N 第20题图 x E C ’A F DBC 第18题图第19题图 x今年5月12日,四川省汶川发生8.0级大地震,某中学师生自愿捐款,已知第一天捐款4800元,第二天捐款6000元,第二天捐款人数比第一天捐款人数多50人,且两天人均捐款数相等,那么两天共参加捐款的人数是多少?人均捐款多少元?23.(本小题满分8分)将两块全等的含30°角的三角尺如图(1)摆放在一起,它们的较短直角边长为3.(1) 将△ECD 沿直线l 向左平移到图(2)的位置,使E 点落在AB 上,则CC ′=______; (2) 将△ECD 绕点C 逆时针旋转到图(3)的位置,使点E 落在AB 上,则△ECD 绕点C 旋转的度数=______;(3) 将△ECD 沿直线AC 翻折到图(4)的位置,ED ′与AB 相交于点F ,求证AF =FD ′.D(1)(2)第23题A C BE D EA CB EDl(3) l D ’F C BED(4)A CB EDl E ’ C ’24.(本小题满分8分)如图,山脚下有一棵树AB ,小华从点B 沿山坡向上走50米到达点D ,用 高为1.5米的测角仪CD 测得树顶的仰角为10°,已知山坡的坡角为15°,求树AB 的高.(精确到0.1米)(已知sin10°≈0.17, cos10°≈0.98, tan10°≈0.18, sin15°≈0.26, cos15°≈0.97,tan15°≈0.27.)25.(本小题满分10分)小敏的爸爸买了某项体育比赛的一张门票,她和哥哥两人都很想去观看.可门票只有一张,读九年级的哥哥想了一个办法,拿了8张扑克牌,将数字为2、3、5、9的四张牌给小敏,将数字为4、6、7、8的四张牌留给自己,并按如下游戏规则进行:小敏和哥哥从各自的四张牌中随机抽出一张,然后将抽出的两张扑克牌数字相加,如果和为偶数,则小敏去;如果和为奇数,则哥哥去. (1)请用画树形图或列表的方法求小敏去看比赛的概率; (2)哥哥设计的游戏规则公平吗? 若公平,请说明理由; 若不公平,请你设计一种公平的游戏规则.得分 评卷人得分 评卷人得分 评卷人26.(本小题满分10分) 如图,⊙O 是Rt △ABC 的外接圆,AB 为直径,∠ABC =30°,CD 是⊙O 的切线,ED ⊥AB 于F ,(1)判断△DCE 的形状;(2)设⊙O 的半径为1,且OF =213-,求证△DCE ≌△OCB . 27.(本小题满分10分)第26题图某人定制了一批地砖,每块地砖(如图(1)所示)是边长为0.4米的正方形ABCD,点E、F分别在边BC和CD上,△CFE、△ABE和四边形AEFD均由单一材料制成,制成△CFE、△ABE和四边形AEFD的三种材料的每平方米价格依次为30元、20元、10元,若将此种地砖按图(2)所示的形式铺设,且能使中间的阴影部分组成四边形EFGH.(1)判断图(2)中四边形EFGH是何形状,并说明理由;(2)E、F在什么位置时,定制这批地砖所需的材料费用最省?第27题图(2)(1)28.(本小题满分12分)已知抛物线y =ax 2+bx +c 的顶点A 在x 轴上,与y 轴的交点为B (0,1),且b =-4ac . (1) 求抛物线的解析式;(2) 在抛物线上是否存在一点C ,使以BC 为直径的圆经过抛物线的顶点A ?若不存在说明理由;若存在,求出点C 的坐标,并求出此时圆的圆心点P 的坐标;(3) 根据(2)小题的结论,你发现B 、P 、C 三点的横坐标之间、纵坐标之间分别有何关系?Ox yA 第28题图 B湖北省荆门市二○○八年初中毕业生学业考试数学试卷参考答案说明:除本答案给出的解法外,如有其他正确解法,可按步骤相应给分.二、填空题(本大题共10小题,每小题3分,共30分) 11.-8x 6 12.22 13.35 14.2315.9, 8 16.大于4 17.5 18.10 19.x ﹤-1或0﹤x ﹤2 20. (1,0) 或(-5,-2)三、解答题(本大题共8小题,共70分)21.(以下给出三种选择方案,其他方案从略) 解答一:Y + Z =(3a 2+3ab )+ (a 2+ab )=4a 2+4ab …………………………………………………………3分 =4a (a +b ). …………………………………………………………6分 解答二: X - Z = (2a 2+3ab +b 2)-(a 2+ab )=a 2+2ab +b 2 ……………………………………………………………3分=(a +b )2. ……………………………………………………………6分解答三:Y - X =(3a 2+3ab )- (2a 2+3ab +b 2)=a 2- b 2……………………………………………………………3分 =(a +b )(a -b ). ……………………………………………………………6分 说明:整式计算正确得3分,因式分解正确得3分.22.解:设第一天捐款x 人,则第二天捐款x +50人,由题意列方程x 4800=506000x . 化简得,4x +200=5x . 解得 x =200.检验:当x =200时,x (x +50)≠0,∴ x =200是原方程的解. ………………………………………………3分两天捐款人数x +(x +50)=450.人均捐款x4800=24. ……………………………………………………………5分 答:两天共参加捐款的有450人;人均捐款24元. ……………………………6分 23.(1) 3-3; …………………………………………………………2分(2)30°; …………………………………………………………4分(3)证明:在△AEF 和△D ′BF 中,∵AE =AC -EC , D’ B =D’ C -BC , 又AC =D’ C ,EC =BC ,∴AE =D’ B .又 ∠AEF =∠D’ BF =180°-60°=120°,∠A =∠CD’E =30°,∴△AEF ≌△D’ BF .∴AF =FD’. ………………………………………8分 24.解:延长CD 交PB 于F ,则DF ⊥PB .∴DF =BD ·sin15°≈50×0.26=13.0. …………2分 (写13不扣分)∴CE =BF =BD ·cos 15°≈50×0.97=48.5. …………4分 ∴AE =CE ·tan 10°≈48.5×0.18=8.73. …………6分∴AB =AE +CD +DF =8.73+1.5+13 =23.2.答:树高约为23.2米. ………………………8分 25.解:(1)根据题意,我们可以画出如下的树形图:或者:根据题意,我们也可以列出下表:从树形图(表) 中可以看出,所有可能出现的结果共有16个,这些结果出现的可能性相等.而和为偶数的结果共有6个,所以小敏看比赛的概率P (和为偶数)=166=83. ……………………………………………………………6分(2)哥哥去看比赛的概率P (和为奇数)=1-83=85,因为 83<85,所以哥哥设计的游戏规则不公平; ………………………………………………………………8分2 3 5 9 4 (4,2) (4,3) (4,5) (4,9) 6 (6,2) (6,3) (6,5) (6,9) 7 (7,2) (7,3) (7,5) (7,9) 8(8,2)(8,3)(8,5)(8,9)小敏 哥哥 4 6 7 8944 6 7 82 …………3分小敏 哥哥F…………3分如果规定点数之和小于等于10时则小敏(哥哥)去,点数之和大于等于11时则哥哥(小敏)去.则两人去看比赛的概率都为21,那么游戏规则就是公平的. …………………10分 或者:如果将8张牌中的2、3、4、5四张牌给小敏,而余下的6、7、8、9四张牌给哥哥,则和为偶数或奇数的概率都为21,那么游戏规则也是公平的.(只要满足两人手中点数为偶数(或奇数)的牌的张数相等即可.) …………………………………………10分26.解:(1)∵∠ABC =30°,∴∠BAC =60°.又∵OA =OC , ∴△AOC 是正三角形.又∵CD 是切线,∴∠OCD =90°,∴∠DCE =180°-60°-90°=30°.而ED ⊥AB 于F ,∴∠CED =90°-∠BAC =30°.故△CDE 为等腰三角形. …………………………………………………4分(2)证明:在△ABC 中,∵AB =2,AC =AO =1,∴BC =2212-=3.OF =213-,∴AF =AO +OF =213+. 又∵∠AEF =30°,∴AE =2AF =3+1. ∴CE =AE -AC =3=BC .而∠OCB =∠ACB -∠ACO =90°-60°=30°=∠ABC ,故△CDE ≌△COB . ……………………………………………10分27.解:(1) 四边形EFGH 是正方形. …………………………………………… 2分图(2)可以看作是由四块图(1)所示地砖绕C 点按顺(逆)时针方向旋转90°后得到的,故CE =CF =CG .∴△CEF 是等腰直角三角形.因此四边形EFGH 是正方形.… 4分(2)设CE =x , 则BE =0.4-x ,每块地砖的费用为y ,那么y =21x 2×30+21×0.4×(0.4-x )×20+[0.16-21x 2-21×0.4×(0.4-x )×10] =10(x 2-0.2x +0.24)=10[(x -0.1)2+0.23] (0<x <0.4) . ………………………………………8分当x =0.1时,y 有最小值,即费用为最省,此时CE =CF =0.1.答:当CE =CF =0.1米时,总费用最省. ………………………………………10分28.解:(1)由抛物线过B (0,1) 得c =1.又b =-4ac , 顶点A (-ab 2,0),∴-a b 2=a ac 24=2c =2.∴A (2,0). ………………………………………2分 将A 点坐标代入抛物线解析式,得4a +2b +1=0 ,∴ ⎩⎨⎧=++-=.0124,4b a a b 解得a =41,b =-1. 故抛物线的解析式为y =41x 2-x +1. ………………………………………4分 另解: 由抛物线过B (0,1) 得c =1.又b 2-4ac =0, b =-4ac ,∴b =-1. ………2分 ∴a =41,故y =41x 2-x +1. ……………………………………………4分 (2)假设符合题意的点C 存在,其坐标为C (x ,y ), 作CD ⊥x 轴于D ,连接AB 、AC . ∵A 在以BC 为直径的圆上,∴∠BAC =90°. ∴ △AOB ∽△CDA . ∴OB ·CD =OA ·AD .即1·y =2(x -2), ∴y =2x -4. ……………………6分由⎪⎩⎪⎨⎧+-=-=.141,422x x y x y 解得x 1=10,x 2=2.∴符合题意的点C 存在,且坐标为 (10,16),或(2,0). …………………………8分 ∵P 为圆心,∴P 为BC 中点.当点C 坐标为 (10,16)时,取OD 中点P 1 ,连PP 1 , 则PP 1为梯形OBCD 中位线.∴PP 1=21(OB +CD )=217.∵D (10,0), ∴P 1 (5,0), ∴P (5, 217). 当点C 坐标为 (2,0)时, 取OA 中点P 2 ,连PP 2 , 则PP 2为△OAB 的中位线.∴PP 2=21OB =12.∵A (2,0), ∴P 2(1,0), ∴P (1,12). 故点P 坐标为(5, 217),或(1,12). ………………………………………10分 (3)设B 、P 、C 三点的坐标为B (x 1,y 1), P (x 2,y 2), C (x 3,y 3),由(2)可知:.2,2312312y y y x x x +=+= ………………………………………12分 第28题图 O x y A CB P P 1 D P 2 P。

2008年湖北省潜江等十市初中毕业升学统一考试、数学试卷

2008年湖北省潜江等十市初中毕业升学统一考试、数学试卷

2121-仙桃市 潜江市江 汉 油 田2008年初中毕业生学业考试数 学 试 题亲爱的同学,相信在本场考试中,你的数学知识水平和探究能力一定会有很好的发挥.特别提醒你要仔细审题,先易后难.祝你取得好成绩!并请你注意以下几点:1.答卷前,请你用钢笔(圆珠笔)将自己的姓名、准考证号填在密封线内.2.答选择题时,请将答案直接填在选择题答题表中.3.试卷共8页,满分120分,考试时间120分钟.总 分 表一、选择题(本大题共有8个小题,每小题3分,满分24分.)在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号填入上面选择题答题表中相应题号下的方格内,填错或不填均为零分.1.2-的倒数是A. 2B.C. 2-D.2.2008年5月12日,四川汶川发生里氏8.0级地震,国内外社会各界纷纷向灾区捐款捐物,抗震救灾.截止6月4日12时,全国共接收捐款约为43 681 000 000元人民币.这笔款额用科学记数法表示(保留三个有效数字)正确的是A. 1110437.0⨯ B. 10104.4⨯ C. 101037.4⨯ D. 9107.43⨯ 3.在下面的四个几何体中,它们各自的左视图与主视图不相同的是正方体长方体 圆柱 圆锥ABCDEO(第5题图) (第8题图)4.对于反比例函数xk y 2=(0≠k ),下列说法不正确...的是 A. 它的图象分布在第一、三象限B. 点(k ,k )在它的图象上C. 它的图象是中心对称图形D. y 随x 的增大而增大5.如图,四边形ABCD 是菱形,过点A 作BD 的平行线交CD 的延长线于点E ,则下列式子不成立...的是 A. DE DA = B. CE BD = C. 90=∠EAC ° D. E ABC ∠=∠26.如图,抛物线)0(2>++=a c bx ax y 的对称轴是直线1=x ,且经过点P (3,0),则c b a +-的值为 A. 0 B. -1 C. 1 D. 27.如图,三个大小相同的正方形拼成六边形ABCDEF ,一动点P从点A 出发沿着A →B →C →D →E 方向匀速运动,最后到达点E .运动过程中PEF ∆的面积(s )随时间(t)变化的图 象大致是 8.如图,小明从半径为5cm 的圆形纸片中剪下40%圆周的 一个扇形,然后利用剪下的扇形制作成一个圆锥形玩具纸 帽(接缝处不重叠),那么这个圆锥的高为A.3cmB.4cmC.21cmD.62cm二、填空题(本大题共8个小题,每小题3分,满分24分)将结果直接填写在每题的横线上.9.分解因式:92-x = .40%5=R (图1) (图2)60% A B D C (第7题图) A BC DE. F.P .·10.化简211x x x -÷的结果是 . 11. “五一”期间,某服装商店举行促销活动,全部商品八折销售.小华购买一件标价为180 元的运动服,打折后他比按标价购买节省了 元.12. 关于x 的一元二次方程022=+-m mx x 的一个根为1,则方程的另一根为 13.如图是我们生活中经常接触的小刀,刀柄外形是一个直角梯形(下底挖去一小半圆),刀片上、下是平行的,转动刀片时会形成∠1、∠2,则∠1+∠2= 度.14.2008年6月2日,奥运火炬在荆州古城传递,208名火炬手参加了火炬传递,其中8位火炬手所跑的路程(单位:米)如下:60,70,100,60,80,70,90,100,则这组数据的中位数是 .15.如图,矩形ABCD 的面积为5,它的两条对角线交于点1O ,以AB 、1AO 为两邻边作 平行四边形11O ABC ,平行四边形11O ABC 的对角线交于点2O ,同样以AB 、2AO 为两邻边作平行四边形22O ABC ,……,依次类推,则平行四边形n n O ABC 的面积 为 .16.如图,ABC ∆中,点A 的坐标为(0,1),点C 的坐标为(4,3),如果要使ABD ∆与D 的坐标是 .三、解答题(本大题共9个小题,满分72分.) 17.(本题满分5分)计算:20)21(8)21(3--+-+-(第13题图) A B C 1O D1C 2O2C ……(第15题图)y18.(本题满分5分)解不等式组⎪⎪⎨⎧>+-≥+x x x 1102 并把解集表示在下面的数轴上.19. (本题满分7分)为了降低能源消耗,减少环境污染,国务院办公厅下发了“关于限制生产销售使用塑料购物袋的通知”(简称“限塑令”),并从2008年6月1日起正式实施.小宇同学为了了解“限塑令”后使用购物袋的情况,6月8日到某集贸市场对部分购物者进行了调查,据了解该市场按塑料购物袋的承重能力提供了0.1元,0.2元,0.3元三种质量不同的塑料袋.下面两幅图是这次调查得到的不完整的统计图(若每人每次只使用一个购物袋),请你根据图中的信息,回答下列问题: (1)这次调查的购物者总人数是 ;(2)请补全条形统计图,并说明扇形统计图中20⋅元部分所对应的圆心角是 度0.3元部分所对应的圆心角是 度;(3)若6月8日到该市场购物的人数有3000人次,则该市场需销售塑料购物袋多少个?并根据调查情况,谈谈你的看法.类别AB CD 20.(本题满分7分)在数学活动课上,九年级(1)班数学兴趣小组的同学们测量校园内一棵大树的高度,设计的方案及测量数据如下:(1)在大树前的平地上选择一点A ,测得由点A 看大树顶端C 的仰角为35°; (2)在点A 和大树之间选择一点B (A 、B 、D 在同一直线上),测得由点B 看大树顶端C 的仰角恰好为45°; (3)量出A 、B 两点间的距离为4.5米. 请你根据以上数据求出大树CD 的高度.(可能用到的参考数据:sin35°≈0.57 cos35°≈0.82 tan35°≈0.70)21. (本题满分8分)A 箱中装有3张相同的卡片,它们分别写有数字1,2,4;B 箱中也装有3张相同的卡片,它们分别写有数字2,4,5;现从A 箱、B 箱中各随机 地取出1张卡片,请你用画树形(状)图或列表的方法求: (1)两张卡片上的数字恰好相同的概率.(2)如果取出A 箱中卡片上的数字作为十位上的数字,取出B 箱中卡片上的数字作为个位上的数字,求两张卡片组成的两位数能被3整除的概率.22. (本题满分8分)如图,AB 为半圆O 的直径,点C 在半圆O 上,过点O 作BC 的平行线交AC 于点E ,交过点A 的直线于点D ,且BAC D ∠=∠.(1)求证:AD 是半圆O 的切线;(2)若2=BC ,2=CE ,求AD 的长.23. (本题满分10分)小华将一张矩形纸片(如图1)沿对角线CA 剪开,得到两张三角形纸片(如图2),其中α=∠ACB ,然后将这两张三角形纸片按如图3所示的位置摆放,∆EFD纸片的直角顶点D 落在∆ACB 纸片的斜边AC 上,直角边DF 落在AC 所在的直线上.(1) 若ED 与BC 相交于点G ,取AG 的中点M ,连接MB 、MD ,当∆EFD 纸片沿CA 方向平移时(如图3),请你观察、测量MB 、MD 的长度,猜想并写出MB 与MD 的数量关系,然后证明你的猜想;(2) 在(1)的条件下,求出BMD ∠的大小(用含α的式子表示),并说明当45=α°时, BMD ∆是什么三角形?(3) 在图3的基础上,将∆EFD 纸片绕点C 逆时针旋转一定的角度(旋转角度小于90°),此时CGD ∆变成CHD ∆,同样取AH 的中点M ,连接MB 、MD (如图4),请继续探究MB 与MD 的数量关系和BMD ∠的大小,直接写出你的猜想,不需要证明,并说明α为何值时,BMD ∆为等边三角形.A B A BCD EF 图1图2A BCDEFGM图3ABCDEFMH图424.(本题满分10分)华宇公司获得授权生产某种奥运纪念品,经市场调查分析,该纪念品的销售量1y (万件)与纪念品的价格x (元/件)之间的函数图象如图所示,该公司纪念品的生产数量2y (万件)与纪念品的价格x (元/件)近似满足函数关系式85232+-=x y .,若每件纪念品的价格不小于20元,且不大于40元.请解答下列问题:(1) 求1y 与x 的函数关系式,并写出x 的取值范围;(2) 当价格x 为何值时,使得纪念品产销平衡(生产量与销售量相等); (3) 当生产量低于销售量时,政府常通过向公司补贴纪念品的价格差来提高生产量,促成新的产销平衡.若要使新的产销平衡时销售量达到46万件,政府应对该纪念品每件补贴多少元?x (元/件))25.(本题满分12分)如图,直角梯形OABC 中,AB ∥OC ,O 为坐标原点,点A 在y 轴正半轴上,点C 在x 轴正半轴上,点B 坐标为(2,23),∠BCO = 60°,BC OH ⊥于点H .动点P 从点H 出发,沿线段HO 向点O 运动,动点Q 从点O 出发,沿线段OA 向点A 运动,两点同时出发,速度都为每秒1个单位长度.设点P 运动的时间为t 秒.(1) 求OH 的长;(2) 若OPQ ∆的面积为S (平方单位). 求S 与t 之间的函数关系式.并求t 为何值时,OPQ ∆的面积最大,最大值是多少?(3) 设PQ 与OB 交于点M .①当△OPM 为等腰三角形时,求(2)中S 的值. ②探究线段OM 长度的最大值是多少,直接写出结论.答卷完后,请回过头来检查一遍,可要仔细哟!江 汉 油 田 潜江市 仙桃市数学试题参考答案及评分说明说明:本试卷中的解答题一般只给出一种解法,对于其它解法,只要推理严谨、运算合理、结果正确,均给满分.对部分正确的,参照本评分说明酌情给分.一、选择题(每小题3分,共24分) 1—8 D C B D B A B C 二、填空题(每小题3分,共24分)9. )3)(3(-+x x 10.x -1 11. 36 12.2- 13. 90 14. 75 15.n2516.)14(-, )31(,- )1,1(-- (第14题不写单位不扣分) 三、解答题(共72分)17.(5分)解:原式=42213-++ ………………………………………………(3分)=22………………………………………………………………(5分) 18.(5分)解:02≥+x 的解集是:2-≥xx x >+-121的解集是:1<x 所以原不等式的解集是:12<≤-x ………………………………………(3分)解集表示如图…………………………………………………………………(5分)19.(7分)解:(1)120……………………………………………………………………(1分)(2)条形统计图,如图所示,…………………………………………………… (2分)0.2元的圆心角是99°,0.3元的圆心角是36°…………………(4分)(3)该市场需销售塑料购物袋的个数是1875120753000=⨯………………(6分) 只要谈的看法涉及环保、节能等方面,且观念积极向上,即可给分……(7分)20.(7分)(1)解:在ACD Rt ∆中,035tan CDAD =类别在BCD Rt ∆中,045tan CDBD =而5.4=-BD AD即5.445tan 35tan 00=-CDCD …………………………………………(5分)解得:5.10=CD所以大树的高为5.10米………………………………………………(7分)21.(8分)解:(1)由题意可列表:∴两张卡片上的数字恰好相同的概率是92.………………………(4分) (2)由题意可列表:∴两张卡片组成的两位数能被3整除的概率是5………………(8分) (画树状图略)22.(8分)(1)证明:∵AB 为半⊙O 的直径∴90=∠BCA又∵BC ∥OD , ∴AC OE ⊥ ∴090=∠+∠DAE D 而BAC D ∠=∠∴090=∠+∠DAE OAE∴AD 是半圆O 分)(2)∵AC OE ⊥ ∴222==CE AC 在ABC Rt ∆中,322)22(2222=+=+=BC AC AB …(5分)由DOA ∆∽ABC ∆可得:BC OA AC AD = 即2322=AD ∴6=AD …………………………………………………………(8分)23. (10分)解:(1)MB =MD ………………………………………………………(1分)证明:∵AG 的中点为M ∴在ABG Rt ∆中, AG MB 21=在ADG Rt ∆中,AG MD 21=∴MB =MD ………………………………………………(3分)(2)∵BAM ABM BAM BMG ∠=∠+∠=∠2同理DAM ADM DAM DMG ∠=∠+∠=∠2 ∴BMD ∠=DAM BAM ∠+∠22=BAC ∠2 而α-=∠090BAC∴α21800-=∠BMD …………………………………………(6分)∴当045=α时,090=∠BMD ,此时BMD ∆为等腰直角三角形.…(8分)(3)当CGD ∆绕点C 逆时针旋转一定的角度,仍然存在MB =MD , α21800-=∠BMD ………………………………………………(9分) 故当060=α时,BMD ∆为等边三角形.…………………………(10分) 24. (10分)解:(1)设y 与x 的函数解析式为:b kx y +=,将点)60,20(A 、)28,36(B代入b kx y +=得:⎩⎨⎧+=+=b k bk 36282060解得:⎩⎨⎧=-=1002b k∴1y 与x 的函数关系式为:⎩⎨⎧≤<=≤≤+-=)4028(28)2820(100211x y x x y ……(3分)(2)当2820≤≤x 时,有⎪⎩⎪⎨⎧+-=+-=10028523x y x y 解得:⎩⎨⎧==4030y x ……………………………………………………(5分)当4028≤≤x 时,有⎪⎩⎪⎨⎧=+-=288523y x y 解得:⎩⎨⎧==2838y x∴当价格为30元或38元,可使公司产销平衡.…………………(7分)(3)当461=y 时,则8523461+-=x ,∴261=x 当462=y 时,则1002462+-=x ,∴272=x∴112=-x x∴政府对每件纪念品应补贴25.(12分)解:(1)∵AB ∥OC ∴ 090=∠=∠AOC OAB 在OAB Rt ∆中,2=AB ,=AO∴4=OB , 060=∠ABO ∴060=∠BOC 而060=∠BCO∴BOC ∆为等边三角形 ∴3223430cos 0=⨯==OB OH …(3分) (2)∵t PH OH OP -=-=32∴t OP x p 23330cos 0-== 2330sin 0t OP y p -== ∴)233(2121t t x OQ S p -⋅⋅=⋅⋅= =t t 23432+- (320<<t )…………………………(6分) 即433)3(432+--=t S ∴当3=t 时,=最大S 433………………………………………(7分)(3)①若OPM ∆为等腰三角形,则:(i )若PM OM =,MOP MPO ∠=∠=∠ ∴PQ ∥OC∴p y OQ= 即23tt -= 解得:332=t此时33233223)332(432=⨯+⨯-=S (ii )若OM OP =,75=∠=∠OMP OPM ∴045=∠OQP过P 点作OA PE ⊥,垂足为E ,则有: EP EQ =即t t t 233)213(-=-- 解得:2=t 此时332232432-=⨯+⨯-=S (iii )若PM OP =,AOB PMO POM ∠=∠=∠∴PQ ∥OA 此时Q 在AB 上,不满足题意.……………………………………………(10分)3②线段OM长的最大值为……………………………………………………(12分)2。

2008年湖北黄冈中考数学试卷及解析

2008年湖北黄冈中考数学试卷及解析

湖北省黄冈市2008年初中毕业生升学考试数 学 试 题(考试时间120分钟 满分120分)一、细心填一填,相信你填得对!(每空3分,共33分)1.计算:3-= ;012⎛⎫-= ⎪⎝⎭;cos 45= .2.分解因式:2a a -= ;化简:= ;计算:31(2)4a a ⎛⎫-=⎪⎝⎭. 3.若点(21)P k -,在第一象限,则k 的取值范围是 ;直线2y x b =+经过点(13),,则b = ;抛物线22(2)3y x =-+的对称轴为直线 .4.已知圆锥的底面直径为4cm,其母线长为3cm, 则它的侧面积为 2cm .5.如图,ABC △和DCE △都是边长为2的等边三角形,点B C E ,,在同一条直线上,连接BD ,则BD 的长为 .二、精心选一选,相信你选得准!(A,B,C,D 四个答案中有且只有一个是正确的,请将题中唯一正确的答案序号填入题后的括号内,不填、填错或多填均不得分,本题满分12分)6.要了解一批电视机的使用寿命,从中任意抽取30台电视机进行试验,在这个问题中,30是( ) A .个体 B .总体 C .样本容量 D .总体的一个样本 7.计算a b a bb a a +⎛⎫-÷ ⎪⎝⎭的结果为( )A .a bb-B .a b b + C .a b a - D .a ba + 8.已知反比例函数2y x=,下列结论中,不正确...的是( ) A .图象必经过点(12),B .y 随x 的增大而减少C .图象在第一、三象限内D .若1x >,则2y <9.如图,四个几何体分别为长方体、圆柱体、球体和三棱柱,这四个几何体中有三个的某一种视图都是同一种几何图形,则另一个几何体是( ) A .长方体 B .圆柱体 C .球体 D .三棱柱A DB CD三、多项选择题,相信你选得全!(共3个小题,每小题3分,共9分,每小题至少有两个答案是正确的,全部选对得3分,对而不全的酌情给分,有对有错或不选均得0分) 10.下列说法中正确的是( ) A 4是一个无理数 B .函数1y x =-x 的取值范围是1x > C .8的立方根是2±D .若点(2)P a ,和点(3)Q b -,关于x 轴对称,则a b +的值为511.下列命题是真命题的是( ) A .一组数据21012--,,,,的方差是3B .要了解一批新型导弹的性能,采用抽样调查的方式C .购买一张福利彩票,中奖.这是一个随机事件D .分别写有三个数字124--,,的三张卡片,从中任意抽取两张,则卡片上的两数之积为正数的概率为1312.如图,已知梯形ABCD 中,AD BC ∥,AB CD AD ==,AC BD ,相交于O 点,60BCD ∠=,则下列说法正确的是( )A .梯形ABCD 是轴对称图形B .2BC AD = C .梯形ABCD 是中心对称图形 D .AC 平分DCB ∠ 四、耐心做一做,试试我能行!(共8道题,满分66分) 13.(本题满分6分)解不等式组255432x x x x -<⎧⎨-+⎩≥,.14.(本题满分7分)已知:如图,点E 是正方形ABCD 的边AB 上任意一点,过点D 作DF DE ⊥交BC 的延长线于点F .求证:DE DF =.ADOC BA E BCF D 12 315.(本题满分7分)2008年5月31日奥运会圣火传递活动在湖北武汉市内举行.我市红城中学校团委在学校七年级8个班中,开展了一次“迎奥运,为奥运加油”的有关知识比赛活动,班级 七(1) 七(2) 七(3) 七(4) 七(5) 七(6) 七(7) 七(8) 得分 90 90 80 80 90 80 100 90 学生人数4646484749455050(1)请直接写出各班代表队得分数的平均数、众数和中位数;(2)学校决定:在本次比赛获得优胜的班级中,随意选取5名学生,免费送到武汉观看奥运圣火,小颖是七(7)班的学生,则她获得免费送到武汉观看奥运圣火的概率是多少?16.(本题满分8分)已知:如图,在ABC △中,AB AC =,以AB 为直径的O 交BC 于点D ,过点D 作DE AC ⊥于点E . 求证:DE 是O 的切线.17.(本题满分8分)如图是“明清影视城”的圆弧形门,黄红同学到影视城游玩,很想知道这扇门的相关数据.于是她从景点管理人员处打听到:这个圆弧形门所在的圆与水平地面是相切的,20AB CD ==cm,200BD =cm,且AB CD ,与水平地面都是垂直的.根据以上数据,请你帮助黄红同学计算出这个圆弧形门的最高点离地面的高度是多少?18.(本题满分8分)某市有一块土地共100亩,某房地产商以每亩80万元的价格购得此地,准备修建“和谐花园”住宅区.计划在该住宅区内建造八个小区(A 区,B 区,C 区H 区),其中A 区,B 区各修建一栋24层的楼房;C 区,D 区,E 区各修建一栋18层的楼房;F 区,G 区,H 区各修建一栋16层的楼房.为了满足市民不同的购房需求,开发商准备将A 区,B 区两个小区都修建成高档,每层8002m ,初步核算成本为800元/2m ;将C 区,D 区,E 区三个小区都修建成中档住宅,每层8002m ,初步核算成本为700元/2m ;将F 区,G 区,H 区三个小区D E C A OB AC B D都修建成经济适用房,每层7502m ,初步核算成本为600元/2m .整个小区内其他空余部分土地用于修建小区公路通道,植树造林,建花园,运动场和居民生活商店等,这些所需费用加上物业管理费,设置安装楼层电梯等费用共计需要9900万元.开发商打算在修建完工后,将高档,中档和经济适用房以平均价格分别为3000元/2m , 2600元/2m 和2100元/2m 的价格销售.若房屋全部出售完,请你帮忙计算出房地产开发商的赢利预计是多少元?19.(本题满分8分)四川汶川大地震发生后,我市某工厂A 车间接到生产一批帐篷的紧急任务,要求必须在12天(含12天)内完成.已知每顶帐篷的成本价为800元,该车间平时每天能生产帐篷20顶.为了加快进度,车间采取工人分批日夜加班,机器满负荷运转的生产方式,生产效率得到了提高.这样,第一天生产了22顶,以后每天生产的帐篷都比前一天多2顶.由于机器损耗等原因,当每天生产的帐篷数达到30顶后,每增加1顶帐篷,当天生产的所有帐篷,平均每顶的成本就增加20元.设生产这批帐篷的时间为x 天,每天生产的帐篷为y 顶. (1)直接写出y 与x 之间的函数关系式,并写出自变量x 的取值范围.(2)若这批帐篷的订购价格为每顶1200元,该车间决定把获得最高利润的那一天的全部利润捐献给灾区.设该车间每天的利润为W 元,试求出W 与x 之间的函数关系式,并求出该车间捐款给灾区多少钱?20.(本题满分14分)已知:如图,在直角梯形COAB 中,OC AB ∥,以O 为原点建立平面直角坐标系,A B C ,,三点的坐标分别为(80)(810)(04)A B C ,,,,,,点D 为线段BC 的中点,动点P 从点O 出发,以每秒1个单位的速度,沿折线OABD 的路线移动,移动的时间为t 秒. (1)求直线BC 的解析式;(2)若动点P 在线段OA 上移动,当t 为何值时,四边形OPDC 的面积是梯形COAB 面积的27? (3)动点P 从点O 出发,沿折线OABD 的路线移动过程中,设OPD △的面积为S ,请直接写出S 与t 的函数关系式,并指出自变量t 的取值范围;(4)当动点P 在线段AB 上移动时,能否在线段OA 上找到一点Q ,使四边形CQPD 为矩形?请求出此时动点P 的坐标;若不能,请说明理由.湖北黄冈2008参考答案: 一、 填空1.3;1;2 222a - 3. K >1; 1; X=2 4. 6π5.二、选择6. C7.A8.B9.C 三.多选题10.B 、D 11.B 、C 、D 12.A 、B 、D 四、解答题(此题备用)13. 13.(本题满分6分)解不等式组25, 543 2. x xx x-<⎧⎨-+⎩≥解:25,543 2.x xx x-<⎧⎨-+⎩≥12()()由不等式(1)得:x<5由不等式(2)得:x≥3所以:5>x≥314.(本题满分7分)已知:如图,点E是正方形ABCD的边AB上任意一点,过点D作DF⊥DE 交BC的延长线于点F.求证:DE=DF.解:∵四边形ABCD是正方形,∴ AD=CD ,∠A=∠DCF=900又∵DF⊥DE,∴∠1+∠3=∠2+∠3∴∠1=∠2在Rt△DAE和Rt△DCE中,∠1=∠2AD=CD∠A=∠DCF∴Rt△DAE≅Rt△DCE∴DE=DF.15解:(1)平均分:87.5分;众数:90分;中位数:90分(2)七(7)的分数为100分,所以七(7)班为优胜班级.共50人,从中选出5名,选中的概率为1 1016证明:连接AD, ∵AB 为⊙O 的直径,∴AD ⊥BC, 又∵AB =AC ,∴D 为BC 的中点. 又∵OB=OA, ∴OD ‖AC ∵ DE ⊥AC ∴DE ⊥OD 所以,DE 是⊙O 的切线. 17.(本题满分8分)解:过圆心O 作OE ⊥AC,连接AD.设圆O 的半径为R,在Rt △AOE 中,AE=2AC =2BD=100 OE=R —AB=R —20∵AE 2+OE 2=OA 2 ∴1002+( R —20)2=R 2解之:R 1=260 cm这个圆弧形门的最高点离地面的高度为2R=520cm 答:这个圆弧形门的最高点离地面的高度为520cm.18.(本题满分8分解:开发商共投资:100×800000+24×800×800×2+18×800×700×3+16×750×600×3+99000000=26156(万元)房屋全部出售完可得:(2×24×800×3000+3×18×800×2600+3×16×750×2100)÷10000=30312(万元)房地产开发商的赢利预计:30312—26156=4156(万元) 所以房地产开发商的赢利预计是4156万元.19.(本题满分8分)解:y=20+2x (12≥x ≥1)(2)当5≥x ≥1时,W=(1200-800)×(2x+20) =800x+8000此时w 随x 的增大而增大,当x=5时,W 最大=12000 当12≥x >5时,W=[]1200800202x 20302x 20--+-+()() =-80(X 2-5X-150)=-80(X-52)2+12500 此时函数图象开口向下,在对称轴右侧,W 随x 的增大而减小. 所以,当x=6时,W 最大=1152020.(1)设直线BC 的解析式为y=kx+b 依题意得:4=k ×0+410=8k+b解之得:k=34; b= 4 所以直线BC 的解析式为y=34x+4(2) t=167(3) s=72t (8>t>0)s=44-2x (18>x ≥8) s=-8184t 55+(4)不存在.理由如下:过C 作CM ⊥AB 于M,易知CM=OA=8AM=OC=4,所以BM=6.假设四边形CQPD 为矩形,则PQ=CD=5,PQ ‖CD,根据Rt △P AQ ∽ Rt △BDP 可求PB=5,PB=PD,这与三角形PBD 是直角三角形相矛盾,所以假设不成立在OA 上不存在点Q,,使四边形CQPD 为矩形。

2008年数学(理科)试卷(湖北卷)(word版+详细解析)

2008年数学(理科)试卷(湖北卷)(word版+详细解析)

中学学科网2008年高考湖北卷理科数学试题全解全析解析作者:李华绝密★启用前数 学(理工农医类)本试卷共4面,满分150分,考试时间120分钟★祝考试顺利★注意事项:1. 答卷前,考生务必将自己的姓名,准考证号填写在试题卷和答题卡上,并将准考证号条形码粘巾在答题卡上指定位置。

2. 选择题每小题选出答案后,用2B 铅笔将答题卡上,对应题目的答案标号涂写,如写改动,用橡皮擦干净后,再选涂其它答案标号,答在试题卷上无效。

3. 非选择题用0.5毫米的黑色墨水签字夂答在答题卡上每题对应的答题区域内,答在试题卷上无效。

考试结束,请将本试题卷和答题卡一并上交。

一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 4.1. 设a =(1,-2),b =(-3,4),c =(3,2),则(a +2b )·c =A.(-15,12)B.0C.-3D.-112. 若非空集合A ,B ,C 满足A ∪B=C ,且B 不是A 的子集,则A.“x ∈C ”是“x ∈A ”的充分条件但不是必要条件B. “x ∈C ”是“x ∈A ”的必要条件但不是充分条件C. “x ∈C ”是“x ∈A ”的充分条件D. “x ∈C ” 既不是“x ∈A ”的充分条件也不是“x ∈A ”必要条件 【标准答案】2.B【试题解析】由韦恩图,知B正确.【高考考点】集合的运算的理解和充分条件与必要条件.【易错提醒】不理解要得到充分条件与必要条件,那个做为条件,那个做结论.【学科网备考提示】对"抽象"的集合问题常用韦恩图来分析问题,这其实是数形结合的思想. 3. 用与球心距离为1的平面去截球,所得的截面面积为π,则球的休积为 A.38π B. 328πC.π28D. 332π【标准答案】3.B 【试题解析】易知球的半径是2,所以根据球的体积公式知348233R V ππ==球,故B 为正确答案.【高考考点】球的体积公式和空间想象能力。

2008年湖北天门中考数学试卷及解析

2008年湖北天门中考数学试卷及解析

天门市2008年中考试卷数 学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至8页.满分120分.考试时间120分钟.2.答第Ⅰ卷前,考生务必用钢笔(圆珠笔)将自己的姓名,用2B 铅笔将准考证号、考试科目写或涂在答题卡上.3.第Ⅰ卷每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用4B 橡皮擦干净后,再涂选其它答案.答案写在第Ⅰ卷上无效.4.答第Ⅱ卷时,将答案直接写在试卷上.5.考试结束后,考生须将第Ⅰ卷、第Ⅱ卷、答题卡一并交回.第Ⅰ卷(选择题 共36分)一.选择题(本大题共有12个小题,每小题3分,共36分) 01.43-的倒数是( ).A 、43 B 、34- C 、34 D 、43-02.一个几何体的三视图如图所示,则这个几何体是( ).03.关于x 的一元二次方程(m -1)x 2+x +m 2-1=0有一根为0,则m 的值为( ).A 、1B 、-1C 、1或-1D 、2104.初三(1)班10名同学体育测试成绩如右表,那么这10名同学体育测试成绩的众数和中位数分别是( ). A 、38,36 B 、38,38 C 、36,37 D 、38,3705.均匀地向一个容器注水,最后把容器注满,在注水过程中,水面高度h 随时间t 的变化规律如图所示(图中OABC 为一折线),这个容器的形状是图中( ).06.如图,a ∥b ,∠1=105°,∠2=140°,则∠3的度数是( ). A 、75° B 、65° C 、55° D 、50°07.下列命题中,真命题是( ). A 、一组对边平行且有一组邻边相等的四边形是平行四边形 B 、顺次连结四边形各边中点所得到的四边形是矩形 C 、等边三角形既是轴对称图形又是中心对称图形 D 、对角线互相垂直平分的四边形是菱形08.如图,为了测量河两案A 、B 两点的距离,在与AB 垂直的方向点C 处测得AC =a ,∠ACB =α,那么AB 等于( ).A 、a ·sin αB 、a ·tan αC 、a ·cos αD 、αtan aA B C D 主视图 左视图俯视图(第02题图)A B C D A1 2 3 (第06题图)abABCa α (第08题图)09.将分别标有数字1,2,3,4的四张卡片洗匀后,背面朝上,放在桌面上,随机抽取一张(不放回),接着再随机抽取一张,恰好两张卡片上的数字相邻的概率为( ).A 、51 B 、41 C 、31 D 、2110.设计一个商标图案如图中阴影部分,矩形ABCD 中,AB =2BC ,且AB =8cm ,以点A 为圆心,AD 为半径作圆与BA 的延长线相交于点F ,则商标图案的面积等于( ).A 、(4π+8)cm 2B 、(4π+16)cm 2C 、(3π+8)cm 2D 、(3π+16)cm 2 11.已知二次函数y =ax 2+bx +c(a ≠0)的图象如图所示,下列结论:①abc >0;②2a+b <0;③a -b +c <0;④a +c >0,其中正确结论的个数为( ). A 、4个 B 、3个 C 、2个 D 、1个12.如图,在平面直角坐标系中,OABC 是正方形,点A 的坐标是(4,0),点P 为边AB上一点,∠CPB =60°,沿CP 折叠正方形,折叠后,点B 落在平面内点B ’处,则B ’点的坐标为( ).A 、(2,32) B 、(23,32-) C 、(2,324-) D 、(23,324-)第Ⅱ卷(非选择题 共84分)二.填空题(本大题有4个小题,每小题4分,共16分) 13.已知不等式组⎩⎨⎧--++1m 1x n m 2x <>的解集为-1<x <2,则(m +n)2008=_______________. 14.如图,已知AE =CF ,∠A =∠C ,要使△ADF ≌△CBE ,还需添加一个条件______________________(只需写一个).15.某公园门票价格如下表,有27名中学生游公园,则最少应付费______________元.(游客16根火柴棒.(用含n的代数式表示)三.解答题(本大题共有8个小题,共68分) 17.(本小题满分6分)计算:02)722(60sin 41122-+︒-+--π(第10题图)AB CDEF(第14题图)4根12根24根n =1 n =2 n =3(第16题图)18.(本小题满分7分)先化简,后求值:2x 1x +-·1x 11x 2x 4x 222-÷+--,其中x 2-x =0.19.(本小题满分7分)如图,有两个可以自由转动的均匀转盘A 、B ,转盘A 被均匀地分成3等分,每份分别标有1,2,3这三个数字;转盘B 被均匀地分成4等分,每份分别标有4,5,6,7这四个数字.有人为小明,小飞设计了一个游戏,其规则如下:①同时自由转动转盘A 和B ;②转盘停止后,指针各指向一个数字(如果指针恰好指在分格线上,那么重转一次,直到指针指向某一数字为止),用所指的两个数字相乘,如果积为偶数,小明胜,否则小飞胜. (1)请你用列表或树形图求出小明胜和小飞胜的概率; (2)游戏公平吗?若不公平,请你设计一个公平的规则.A B (第19题图)20.(本小题满分7分)现将四个全等的直角梯形透明纸片,分别放在方格纸中,方格纸的每个小正方形的边长均为1,并且直角梯形的每个顶点与小正方形的顶点重合.请你仿照例①,按如下要求拼图.要求:①用四个全等的直角梯形,按实际大小拼成符合要求的几何图形;②拼成的几何图形互不重叠,且不留空隙;③拼成的几何图形的各顶点必须与小正方形的顶点重合.21.(本小题满分8分)如图,直线y =x +1与双曲线x2y 交于A 、B 两点,其中A 点在第一象限.C 为x 轴正半轴上一点,且S △ABC =3. (1)求A 、B 、C 三点的坐标; (2)在坐标平面内.....,是否存在点P ,使以A 、B 、C 、P 为顶点的四边形为平行四边形?若存在,请直接..写出点P 的坐标,若不存在,请说明理由.(第20题图) 例①:矩形 矩形(不同于例①)平行四边形(非矩形) 梯形22.(本小题满分10分)如图,AB 为⊙O 的直径,C 为⊙O 上一点,∠BAC 的平分线交⊙O 于点D ,过D 点作EF ∥BC 交AB 的延长线于点E ,交AC 的延长线于点F . (1)求证:EF 为⊙O 的切线;(2)若sin ∠ABC =54,CF =1,求⊙O 的半径及EF 的长.23.(本小题满分11分)一快餐店试销某种套餐,试销一段时间后发现,每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本).若每份售价不超过10元,每天可销售400份;若每份售价超过10元,每提高1元,每天的销售量就减少40份.为了便于结算,每份套餐的售价x(元)取整数..,用y(元)表示该店日净收入.(日净收入=每天的销售额-套餐成本-每天固定支出) (1)求y 与x 的函数关系式;(2)若每份套餐售价不超过10元,要使该店日净收入不少于800元,那么每份售价最少不低于多少元?(3)该店既要吸引顾客,使每天销售量较大,又要有较高的日净收入.按此要求,每份套餐的售价应定为多少元?此时日净收入为多少?(第22题图)24.(本小题满分12分)如图①,在平面直角坐标系中,A 点坐标为(3,0),B 点坐标为(0,4).动点M 从点O 出发,沿OA 方向以每秒1个单位长度的速度向终点A 运动;同时,动点N 从点A 出发沿AB 方向以每秒35个单位长度的速度向终点B 运动.设运动了x 秒.(1)点N 的坐标为(________________,________________);(用含x 的代数式表示) (2)当x 为何值时,△AMN 为等腰三角形?(3)如图②,连结ON 得△OMN ,△OMN 可能为正三角形吗?若不能,点M 的运动速度不变,试改变点N 的运动速度,使△OMN 为正三角形,并求出点N 的运动速度和此时x 的值.天门市2008年中考试卷(第24题图)数学试题参考答案及评分意见一、选择题(每小题3分,共36分)1.B 2.C 3.B 4.D 5.A 6.B 7.D 8.B 9.D 10.A 11.C 12.C 二、填空题(每小题4分,共16分)13.1 14.AD=BC 或∠D =∠B 或∠AFD =∠CEB 15.240 16.2n(n+1) 三.解答题(本大题共有8个小题,共68分) 17.(本小题满分6分)解:原式=1|2341|324+⨯-+-- =1321324++--- =4-18.(本小题满分7分) 解:∵02=-x x∴0)1(=-x x∴1,021==x x原式=)1)(1()1()2)(2(212-+⋅--+⋅+-x x x x x x x =)1)(1()1()2)(2(212-+⋅--+⋅+-x x x x x x x =)1)(2(+-x x(1)当0=x 时原式=)1)(2(+-x x =2)10)(20(-=+- (2)当1=x 时原式=)1)(2(+-x x =2)11)(21(-=+-19.(本小题满分7分)树形图法32128)(==小明胜P 31124)(==小飞飞P (2)∵3132> ∴不公平,小明胜的机会大12 3456745 6 74567开始A B规则如下:①同时自由转动转盘A 和B ;②转盘停止后,指针各指向一个数字(如果指针恰好指在分格线上,那么重转一次,直到指针指向某一数字为止),用所指的两个数字相加,如果和为偶数,小明胜,否则小飞胜.或规则如下:把图A 中的数字2改为奇数(比如5)然后按题目中的规则进行比赛:①同时自由转动转盘A 和B ;②转盘停止后,指针各指向一个数字(如果指针恰好指在分格线上,那么重转一次,直到指针指向某一数字为止),用所指的两个数字相乘,如果积为偶数,小明胜,否则小飞胜.(方法不唯一,正确即可.) 20.(本小题满分7分)21.(本小题满分8分)解:(1)⎪⎩⎪⎨⎧=+=x y x y 21解得:⎩⎨⎧-=-=1211y x ⎩⎨⎧==2122y x ∴A(1,2) B(-2,-1)设直线1+=x y 与x 轴相交于点D(m,0) 当y=0时 m+1=0,m=-1 ∴D(-1,0) 设C(n,0)31)1(212)1(21=⨯+⨯+⨯+⨯=+=∆∆∆n n S S S BCD ADC ABC 求得:n=1 ∴C(1,0)(2)存在P(-2,1) 22.(本小题满分10分)矩形 平行四边形(非矩形) 梯形证明:(1)连结OD ∵AB 是直经 ∴∠ACB=90°∵EF ∥BC∴∠AFE=∠ACB=90° ∵OA=OD∴∠OAD=∠ODA 又∵AD 平分∠BAC ∴∠OAD=∠DAC ∴∠ODA=∠DAC ∴OD ∥AF∴∠ODE=∠AFD=90° 即OD ⊥EF 又∵EF 过点D ∴EF 是⊙O 的切线 解:(2)连结BD,CD∵AB 是直经 ∴∠ADB=90° ∴∠ADB=∠AFD ∵AD 平分∠BAC ∴∠OAD=∠DAC ∴BD=CD 设BD=CD=a又∵EF 是⊙O 的切线 ∴∠CDF=∠DAC∴∠CDF=∠OAD=∠DAC ∴△CDF ≈△ABD ≈△ADF∴AB BD CD CF = AFDFDF CF =∵sin ∠ABC=AB AC =54∴设AC=4x,AB=5x ∴xa a 51=x a 52= ∴在Rt △CDF 中15222-=-=x CF CD DF又∵AFDFDF CF = ∴)41(115x x +⨯=- x=2 ∴AB=5x=10 AC=4x=8 ∵EF ∥BC∴△ABC ≈△AEF(第22题图)∴AF AC AE AB = 9810=AE 445=AE ∴在Rt △AEF 中4279)445(2222=-=-=AF AE EF 23.(本小题满分11分) 解:(1)⎩⎨⎧>----≤<--=10600)]10(40400)[5(105600)5(400x x x x x y即:⎩⎨⎧>-+-≤<-=10460010004010526004002x x x x x y(2)由题意得:400x-2600≥800 解得:x ≥8.5 ∴每份售价最少不低于9元. (3) 由题意得:46001000402-+-=x x y1650)225(402+--=x ∴当12=x 或13=x (不合题意,舍去)时1650)22512(402+--=y1640= ∴每份套餐的售价应定为12元时,日净收入为1640元. 24.(本小题满分12分) 解:(1)N(x x 34,3-) (2)①AM=ANx x -=335335=+x x 338=x 89=x②MN=AMx x x -=+-3)34()23(220)5443(=-x x0=x (舍去)或4354=x ③MN=AN )3(21x x -=1=x (3)不能当N(x x 23,21)时,△OMN 为正三角形 由题意可得:3421323=-x x 解得:1196372-=x 点N 的速度为:11160314035-=x。

中考真题2008年湖北省黄冈市中考数学试卷及答案

2008年湖北省黄冈市中考数学试卷及答案一、选择题(共7小题,每小题3分,满分21分)1.(3分)要了解一批电视机的使用寿命,从中任意抽取40台电视机进行试验,在这个问题中,40是()A.个体B.总体C.样本容量D.总体的一个样本2.(3分)计算的结果为()A.B.C.D.3.(3分)已知反比例函数,下列结论中,不正确的是()A.图象必经过点(1,2)B.y随x的增大而增大C.图象在第一、三象限内D.若x>1,则0<y<24.(3分)如图,四个几何体分别为长方体、圆柱体、球体和三棱柱,这四个几何体中有三个的某一种视图都是同一种几何图形,则另一个几何体是()A.长方体B.圆柱体C.球体D.三棱柱5.(3分)下列说法中正确的是()A.是一个无理数B.函数的自变量x的取值范围是x>1C.8的立方根是±2D.若点P(﹣2,a)和点Q(b,﹣3)关于x轴对称,则a+b的值为56.(3分)下列命题不是真命题的是()A.一组数据﹣2,﹣1,0,1,2的方差是3B.要了解一批新型导弹的性能,采用抽样调查的方式C.购买一张福利彩票,中奖.这是一个随机事件D.分别写有三个数字﹣1,﹣2,4的三张卡片,从中任意抽取两张,则卡片上的两数之积为正数的概率为7.(3分)如图,已知梯形ABCD中,AD∥BC,AB=CD=AD,AC,BD相交于O点,∠BCD=60°,则下列说法错误的是()A.梯形ABCD是轴对称图形B.BC=2ADC.梯形ABCD是中心对称图形D.AC平分∠DCB二、填空题(共5小题,满分33分)8.(9分)计算:|﹣3|=;=;cos45°=.9.(9分)分解因式:a2﹣a=;化简:=;计算:(﹣2a)•(a3)=.10.(9分)若点P(2,k﹣1)在第一象限,则k的取值范围是;直线y=2x+b经过点(1,3),则b=;抛物线y=2(x﹣2)2+3的对称轴为直线.11.(3分)已知圆锥的底面直径为4cm,其母线长为3cm,则它的侧面积为cm2.12.(3分)如图,△ABC和△DCE都是边长为2的等边三角形,点B、C、E在同一条直线上,连接BD,则BD的长为.三、解答题(共8小题,满分66分)13.(6分)解不等式组14.(7分)已知:如图,点E是正方形ABCD的边AB上任意一点,过点D作DF⊥DE交BC的延长线于点F.求证:DE=DF.15.(7分)2008年5月31日奥运会圣火传递活动在湖北武汉市内举行.我市红城中学校团委在学校七年级8个班中,开展了一次“迎奥运,为奥运加油”的有关知识比赛活动,得分最多的班级为优胜班级,比赛结果如下表:班级七(1)七(2)七(3)七(4)七(5)七(6)七(7)七(8)得分90908080908010090学生人数4646484749455050(1)请直接写出各班代表队得分数的平均数、众数和中位数;(2)学校决定:在本次比赛获得优胜的班级中,随意选取5名学生,免费送到武汉观看奥运圣火,小颖是七(7)班的学生,则她获得免费送到武汉观看奥运圣火的概率是多少?16.(8分)已知:如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作DE⊥AC于点E.求证:DE是⊙O的切线.17.(8分)如图是“明清影视城”的圆弧形门,黄红同学到影视城游玩,很想知道这扇门的相关数据.于是她从景点管理人员处打听到:这个圆弧形门所在的圆与水平地面是相切的,AB=CD=20cm,BC=200cm,且AB,CD与水平地面都是垂直的.根据以上数据,请你帮助黄红同学计算出这个圆弧形门的最高点离地面的高度是多少?18.(8分)某市有一块土地共100亩,某房地产商以每亩80万元的价格购得此地,准备修建“和谐花园”住宅区.计划在该住宅区内建造八个小区(A区,B区,C区…H区),其中A区,B区各修建一栋24层的楼房;C区,D区,E区各修建一栋18层的楼房;F区,G区,H区各修建一栋16层的楼房.为了满足市民不同的购房需求,开发商准备将A区,B区两个小区都修建成高档,每层800m2,初步核算成本为800元/m2;将C区,D区,E区三个小区都修建成中档住宅,每层800m2,初步核算成本为700元/m2;将F区,G区,H区三个小区都修建成经济适用房,每层750m2,初步核算成本为600元/m2.整个小区内其他空余部分土地用于修建小区公路通道,植树造林,建花园,运动场和居民生活商店等,这些所需费用加上物业管理费,设置安装楼层电梯等费用共计需要9900万元.开发商打算在修建完工后,将高档,中档和经济适用房以平均价格分别为3000元/m2,2600元/m2和2100元/m2的价格销售.若房屋全部出售完,请你帮忙计算出房地产开发商的赢利预计是多少元?19.(8分)四川汶川大地震发生后,我市某工厂A车间接到生产一批帐篷的订单,要求必须在12天(含12天)内完成.已知每顶帐篷的成本价为800元,该车间平时每天能生产帐篷20顶.为了加快进度,车间采取工人分批日夜加班,机器满负荷运转的生产方式,生产效率得到了提高.这样,第一天生产了22顶,以后每天生产的帐篷都比前一天多2顶.由于机器损耗等原因,当每天生产的帐篷达到30顶后,每增加1顶帐篷,当天生产的所有帐篷,平均每顶的成本就增加20元.设生产这批帐篷的时间为x天,每天生产的帐篷为y顶.(1)直接写出y与x之间的函数关系式,并写出自变量x的取值范围.(2)若这批帐篷的订购价格为每顶1200元,该车间决定把获得最高利润的那一天的全部利润捐献给灾区.设该车间每天的利润为W元,试求出W与x之间的函数关系式,并求出该项车间捐献给灾区多少钱?20.(14分)已知:如图,在直角梯形COAB中,OC∥AB,以O为原点建立平面直角坐标系,A,B,C 三点的坐标分别为A(8,0),B(8,10),C(0,4),点D为线段BC的中点,动点P从点O出发,以每秒1个单位的速度,沿折线OABD的路线移动,移动的时间为t秒.(1)求直线BC的解析式;(2)若动点P在线段OA上移动,当t为何值时,四边形OPDC的面积是梯形COAB面积的;(3)动点P从点O出发,沿折线OABD的路线移动过程中,设△OPD的面积为S,请直接写出S与t的函数关系式,并指出自变量t的取值范围;(4)试探究:当动点P在线段AB上移动时,能否在线段OA上找到一点Q,使四边形CQPD为矩形?并求出此时动点P的坐标.2008年湖北省黄冈市中考数学试卷参考答案与试题解析一、选择题(共7小题,每小题3分,满分21分)1.(3分)(2009•湘西州)要了解一批电视机的使用寿命,从中任意抽取40台电视机进行试验,在这个问题中,40是()A.个体B.总体C.样本容量D.总体的一个样本【分析】首先找出考查的对象是电视机的使用寿命,从中任意抽取40台电视机,40是指抽取的样本的个数,即样本容量.【解答】解:本题中任意抽取的40台电视机是样本,对于其中的40,只是样本中个体的数目,所以是样本容量.故选C.【点评】本题主要考查了样本容量的定义,注意样本容量没有单位.2.(3分)(2008•黄冈)计算的结果为()A.B.C.D.【分析】先算小括号里的,再把除法统一成乘法,约分化为最简.【解答】解:==,故选A.【点评】分式的四则运算是整式四则运算的进一步发展,在计算时,首先要弄清楚运算顺序,先去括号,再进行分式的乘除.3.(3分)(2008•黄冈)已知反比例函数,下列结论中,不正确的是()A.图象必经过点(1,2)B.y随x的增大而增大C.图象在第一、三象限内D.若x>1,则0<y<2【分析】根据反比例函数的性质用排除法解答.【解答】解:A、把点(1,2)代入反比例函数y=,得2=2,正确.B、∵k=2>0,∴在每一象限内y随x的增大而减小,不正确.C、∵k=2>0,∴图象在第一、三象限内,正确.D、若x>1,则y<2,正确.故选B.【点评】本题考查了反比例函数y=(k≠0)性质:①当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.4.(3分)(2013•德阳)如图,四个几何体分别为长方体、圆柱体、球体和三棱柱,这四个几何体中有三个的某一种视图都是同一种几何图形,则另一个几何体是()A.长方体B.圆柱体C.球体D.三棱柱【分析】几何体可分为柱体,锥体,球体三类,按分类比较即可.【解答】解:长方体、圆柱体、三棱体为柱体,它们的主视图都是矩形;球的三种视图都是圆形.故选:C.【点评】本题考查几何体的分类和三视图的概念.5.(3分)(2008•黄冈)下列说法中正确的是()A.是一个无理数B.函数的自变量x的取值范围是x>1C.8的立方根是±2D.若点P(﹣2,a)和点Q(b,﹣3)关于x轴对称,则a+b的值为5【分析】对每个选项分别求出正确结论,然后就可以进行验证.【解答】解:A、=2,是一个有理数,故A错误;C、正数有一个正的立方根,故C错误;D、两点若共于x轴对称,则横坐标相等,纵坐标互为相反数,得a=3,b=﹣2,则a+b=1,故D错误;B、根据二次根式和分式有意义的条件得x>1,故B正确;故选B.【点评】判断一个数是否是无理数,应先化简后判断;二次根式有意义的条件是被开方数大于或等于0,分式有意义的条件是分母不等于0;掌握立方根的性质和关于x轴对称的两点的坐标之间的关系.6.(3分)(2008•黄冈)下列命题不是真命题的是()A.一组数据﹣2,﹣1,0,1,2的方差是3B.要了解一批新型导弹的性能,采用抽样调查的方式C.购买一张福利彩票,中奖.这是一个随机事件D.分别写有三个数字﹣1,﹣2,4的三张卡片,从中任意抽取两张,则卡片上的两数之积为正数的概率为【分析】根据方差公式即可判断A,根据抽样调查的特点即可判断B,根据随机事件的定义即可判断C,根据概率的求法即可判断D.【解答】解:A、数据﹣2,﹣1,0,1,2的方差为S=[(﹣2)2+(﹣1)2+12+22]=2,故A错误,符合题意.B、采用全面调查的破坏性较强,故采用抽样调查的方式,正确,不符合题意;C、可能中奖,也可能不中奖,是随机事件,正确,不符合题意;D、在﹣1,﹣2,4三张卡片中抽取两张有一1与﹣2,﹣1与4,﹣2与4三种配对,只有一1与﹣2积为正,其概率为,正确,不符合题意;故选A.【点评】命题不是真命题,找到错误的命题即可;用到的知识点为:方差公式的求法;破坏性较强的调查要采用抽样调查;可能发生也可能不发生的事件叫随机事件;概率等于所求情况数与总情况数之比.7.(3分)(2008•黄冈)如图,已知梯形ABCD中,AD∥BC,AB=CD=AD,AC,BD相交于O点,∠BCD=60°,则下列说法错误的是()A.梯形ABCD是轴对称图形B.BC=2ADC.梯形ABCD是中心对称图形D.AC平分∠DCB【分析】利用已知条件,对四个选逐个验证,即可得到答案.【解答】解:A、根据已知条件AB=CD,则该梯形是等腰梯形,等腰梯形是轴对称图形,正确;B、过点D作DE∥AB交BC于点E,得到平行四边形ABED和等边三角形CDE.所以BC=2AD,正确;C、根据中心对称图形的概念,等腰梯形一定不是中心对称图形,错误;D、根据等边对等角和平行线的性质,可得AC平分∠BCD,正确.故选C.【点评】要熟悉这个上底和腰相等且底角是60°的等腰梯形的性质;理解轴对称图形和中心对称图形的概念.二、填空题(共5小题,满分33分)8.(9分)(2008•黄冈)计算:|﹣3|=3;=1;cos45°=.【分析】绝对值的性质:正数的绝对值等于它本身;负数的绝对值等于它的相反数;0的绝对值是0.任何不等于0的数的0次幂都等于1.熟记特殊角的锐角三角函数值.【解答】解:根据负数的绝对值等于它的相反数,得|﹣3|=3;根据不等于0的数的0次幂都等于1,得(﹣)0=1;根据特殊角的锐角三角函数值,得cos45°=.【点评】此题主要考查了绝对值、零次幂、特殊角的三角函数值的概念.9.(9分)(2008•黄冈)分解因式:a2﹣a=a(a﹣1);化简:=3;计算:(﹣2a)•(a3)=﹣a4.【分析】根据分解因式的方法,合并同类二次根式的法则,单项式的乘法法则计算.【解答】解:a2﹣a=a(a﹣1);5﹣2=(5﹣2)=3;(﹣2a)•(a3)=﹣a4.【点评】因式分解的步骤为:一提公因式、二看公式.合并同类二次根式时,同类二次根式的系数相加,根指数和被开方数不变.考查单项式乘以单项式的题目比较简单,只要正确利用法则细心计算即可.10.(9分)(2008•黄冈)若点P(2,k﹣1)在第一象限,则k的取值范围是k>1;直线y=2x+b经过点(1,3),则b=1;抛物线y=2(x﹣2)2+3的对称轴为直线x=2.【分析】(1)已知点所在的象限就是已知了点的横纵坐标的符号.(2)已知图象经过一个点,就是已知点在图象上,点的坐标满足解析式.(3)抛物线的顶点式一般形式中的h和k表示的意义,是解决第三个问题的关键.【解答】解:(1)∵点P(2,k﹣1)在第一象限,∴k﹣1>0,解得k>1;(2)把x=1,y=3代入y=2x+b中,得b=1;(3)抛物线y=2(x﹣2)2+3是顶点式,对称轴是x=2.【点评】准确识记一些基本知识是解题的关键,也是解题时考虑的出发点.11.(3分)(2008•黄冈)已知圆锥的底面直径为4cm,其母线长为3cm,则它的侧面积为6πcm2.【分析】圆锥的侧面积=底面周长×母线长÷2.【解答】解:底面直径为4cm,则底面周长=4π,侧面积=×4π×3=6πcm2.【点评】本题利用了圆的周长公式和扇形面积公式求解.12.(3分)(2008•黄冈)如图,△ABC和△DCE都是边长为2的等边三角形,点B、C、E在同一条直线上,连接BD,则BD的长为2.【分析】作DF⊥CE于F,构建两个直角三角形,运用勾股定理逐一解答即可.【解答】解:过D作DF⊥CE于F,根据等腰三角形的三线合一,得:CF=1.在直角三角形CDF中,根据勾股定理,得:DF2=3.在直角三角形BDF中,BF=BC+CF=2+1=3,根据勾股定理得:BD==2.【点评】熟练运用等腰三角形的三线合一和勾股定理.三、解答题(共8小题,满分66分)13.(6分)(2008•黄冈)解不等式组【分析】先解不等式组中的每一个不等式,再求出它们的公共解即可.【解答】解:由不等式(1)得:x<5由不等式(2)得:x≥3不等式组的解集为:3≤x<5【点评】解不等式组应遵循的原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.14.(7分)(2008•黄冈)已知:如图,点E是正方形ABCD的边AB上任意一点,过点D作DF⊥DE交BC的延长线于点F.求证:DE=DF.【分析】全等三角形是证明两条线段相等的重要方法之一.只要证明△ADE≌△CDF,即可得到DE=DF.【解答】证明:∵四边形ABCD是正方形,∴AD=CD,∠A=∠DCF=90°.又∵DF⊥DE,∴∠1+∠3=∠2+∠3.∴∠1=∠2.在Rt△DAE和Rt△DCF中,,∴Rt△DAE≌Rt△DCF(ASA).∴DE=DF.【点评】证明某两条线段相等,可证明他们所在的三角形全等,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.15.(7分)(2008•黄冈)2008年5月31日奥运会圣火传递活动在湖北武汉市内举行.我市红城中学校团委在学校七年级8个班中,开展了一次“迎奥运,为奥运加油”的有关知识比赛活动,得分最多的班级为优胜班级,比赛结果如下表:班级七(1)七(2)七(3)七(4)七(5)七(6)七(7)七(8)得分90908080908010090学生人数4646484749455050(1)请直接写出各班代表队得分数的平均数、众数和中位数;(2)学校决定:在本次比赛获得优胜的班级中,随意选取5名学生,免费送到武汉观看奥运圣火,小颖是七(7)班的学生,则她获得免费送到武汉观看奥运圣火的概率是多少?【分析】(1)本题考查统计的有关知识,找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.平均数是指在一组数据中所有数据之和再除以数据的个数.(2)利用频率来求算概率,九(7)是优胜班级.共有50人.每人被抽到的机会相同.因而小颖被选取的机会是.【解答】解:(1)根据平均数、众数和中位数的求法易得答案.其中平均分:=87.5分;众数:90分;中位数:90分;(2)七(7)的分数为100分,所以七(7)班为优胜班级.根据概率的求法有:七(7)班共50人,从中选出5名,选中的概率为.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.16.(8分)(2008•黄冈)已知:如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D 作DE⊥AC于点E.求证:DE是⊙O的切线.【分析】连接OD,只要证明OD⊥DE即可.【解答】证明:连接OD;∵OD=OB,∴∠B=∠ODB,∵AB=AC,∴∠B=∠C,∴∠C=∠ODB,∴OD∥AC,∴∠ODE=∠DEC;∵DE⊥AC,∴∠DEC=90°,∴∠ODE=90°,即DE⊥OD,∴DE是⊙O的切线.。

2008年湖北省鄂州市数学中考真题(word版含答案)

224-=()a a的取值范围是(A.B.C.D.45,AC)x1302=,12102=-210sin(18030)sin 30=+=-;因为2sin 452=2252=-225sin(18045)sin 45=+=-,由此猜sin(180)α+=240=( 图6AH B OC 1O1H 1A1C为半径的A与边BC AB AC的值为(B.4∠,BC=90,30CAB120到A△所扫过部分的面积(即阴影部分面积)为(.已知在O中,半径CD=,则弦,6αβ,为45,AD的长为30,PE图9;依据变化规律,请你写出抛物线组第3n y ,,于;,,10S ++的值.)问条件下,当n S ++的值不小于是否存在最大值,若存在,请求出此值;若不存在,请说明理由..解答:(2)a ∆=·····················又12x x +=2212(x x ∴+=12a ≤∴当12a =tan 303EG EP ==⨯1BF EG ∴== ················即 2.5AB AF BF =-=- 1.53033= A DB F CE PG22题图)小王得分为(0100)C,∴线段CD(230)A,,∴折线OAB又1122ADPS AD DP AP DF ==△AD 的度数为9045DEA ∴∠=X 取非负整数01X ∴=,,∴有三种购买方案:①③A 型设备又 2.5X ≤X ∴为1,2.1X =时,购买资金为:2X =时,购买资金为:)1114A ⎛⎫ ⎪⎝⎭,31A A ACA S =梯形10S ++1110++ 1111341011+-++-····················n S +1(1)n n ++++11n n ++-+····················109811242n n n n S S S S ---++++≥ 21111910242n n ∴--≥ 10n > 29n n ∴--2又10n > 1021n ∴<≤存在n 的最大值,其值为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
2008年湖北省武汉市中考数学试卷
第Ⅰ卷(选择题,共36分)
一、选择题(共12小题,每小题3分,共36分)
下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卡上将正确答案的代号涂黑。
1.小怡家的冰箱冷藏室温度是5℃,冷冻室温度是-2℃,则她家冰箱冷藏室温度比冷冻室
温度高(A)3℃. (B)-3℃. (C)7℃. (D)-7℃.
2.不等式x<3的解集在数轴上表示为

3.已知关于x的方程4x-3m=2的解是x=m,则m的值是
(A)2.(B)-2.(C)2. 7.(D)-2。7
4.计算上题的结果是(A)2.(B)±2.(C)-2.(D)4.
5.函数y= x-5姨 的自变量x的取值范围是(A)x>5. (B)x<5. (C)x≥5. (D)x≤5.
6.如图,六边形ABCDEF是轴对称图形.CF所在的直线是它的对称轴,若∠AFC+ ∠BCF=150°,
则∠AFE-∠BCD的大小是(A)150°.(B)300°.(C)210°.(D)330°.

7.如图是一个五环图案,它由五个圆组成.下排的两个圆的位置关系是
(A)内含.(B)外切.(C)相交.(D)外离.

8.如图,小雅家(图中点O处)门前有一条东西走向的公路,经测得有一水塔(图中点A处)伴于她
家北偏东60度500m处,那么水塔所在的位置到公路的距离AB是

(A)250m.(B)250。3 m.(C)500。33 m.(D)250。 2 m.
9.一个无盖的正方体盒子的平面展开图可以是下列图形中的
2

① ② ③
(A)只有图①. (B)图①、图②.
(C)图②、图③. (D)图①、图③.
10.“祝福北京”、“祝福奥运”是每个中国人良好的心愿.亮亮、兵兵和军军三个同学都有一套外形完全相
同,背面分别写有“祝福”、“北京”、“奥运”字样的三张卡片.他们分别从自己的一套卡片中随机抽取一张,
抽取的三张卡片中含有“祝福”“北京”“奥运”的概率是
(A)1:27.(B)1:9.(C)2:9.(D)1: 3.
11.2008年某市应届初中毕业生人数约10.8万.比去年减少约0.2万,其中报名参加高级中等学校招生考
试(简称中考)的人数约10.5万,比去年增加约0.3万,下列结论:
①与2007年相比,2008年该市应届初中毕业生人数下降了 0.210.8×100%;
②与2007年相比,2008年该市应届初中毕业生报名参加中考人数增加了 0.3 10.5×100%;
③与2007年相比,2008年该市应届初中毕业生报名参加中考人数占应届初中毕业生人数的百分比提高
了(10.5 10.8-10.211)×100%.
其中正确的个数是(A)0.(B)1.(C)2.(D)3.
12.下列命题:
①若a+b+c=0,则b2-4ac≥0;
② 若 b>a+c, 则 一 元 二 次 方 程ax2+bx+c=0有两个不相等的实数根;
③若 b=2a+3c,则一元二次方程ax2+bx+c=0有两个不相等的实数根;
④若b2-4ac>0,则二次函数y=ax2+bx+c的图象与坐标轴的公共点的个数是2或3.
其中正确的(A)只有①②③.(B)只有①③④.(C)只有①④. (D)只有②③④.
注意事项:
1.用钢笔或圆珠笔直接答在试卷上.
2.答卷前请将密封线内的项目填写清楚.
第Ⅱ卷(非选择题,共84分)
二、填空题(共4小题,每小题3分,共12分)
13.在创建国家生态园林城市活动中,某市园林部门为了扩大城市绿化面积,进行了大量的树木移栽.下
表记录的是在相同条件下移栽某种幼树的棵数与成活棵数:
依此估计这种幼树移栽成活的概率是__________(结果用小数表示,精确到0.1).
14.如图,直线y=kx+b经过A(-2,-1)和B(-3,0)两点,则不等式组1
2x

(第14题) (第15题)
15.如图,半径为5的⊙P与y轴交于点M(0,-4),N(0,-10),函数y=k
3

x(x<0)的图象过点P,则k=__________.
16.下列图案均是用长度相同的小木棒按一定规律拼搭而成:拼搭第1个图案需4根小木棒,拼搭第2
个图案需10根小木棒,……,依此规律,拼搭第8个图案需要小木棒_______根.

第1个 第2个 第3个 第4个
三、解答题(共9小题,共72分)
17.(本题6分)解方程:x2-x-5=0.18.(本题6分)先化简,再求值:(2x-3 x-1)÷x2-9x,其中x=2.
19.(本题6分)如图,点D,E在BC上,且FD∥AB,FE∥AC.求证:△ABC∽△FDE.

20.(本题7分)典典同学学完统计知识后,随机调查了她所在辖区若干名居民的年龄,钭调查的数据
绘制成如下扇形和条形统计图:
请根据以上不完整的统计图提供的信息,解答如下问题:(1)典典同学共调查了______名居民的年龄,
扇形统计图中a=______,b=______;(2)补全条形统计图;(3)若该辖区年龄在0-14岁的居民约有3500
人,请估计年龄在15-59岁的居民人数.

21.(本题7分)(1)点(0,1)向下平移2个单位后的坐标是_________,直线y=2x+1向下平移2个单
位后的解析式是__________________;(2)直线y=2x+1向右平移2个单位后的解析式是
__________________;(3)如图,已知点C为直线y=x上在第一象限内的一点,直线 y=2x+1交 y轴于点
A交x轴于点B,将直线 AB沿射线OC方向平移3 2姨个单位,求平移后的直线解析式.
4

22.(本题8分)如图,AB是⊙O的直 线 ,AC是 弦 ,∠BAC的平分线AD交⊙O于点D,DE⊥
AC,交AC的延长线于点E.OE交AD于点F.(1)求证:DE是⊙O的切线;(2)若AC
AB=35,求AFDF的值.

23.(本题10分)某商品的进价为每件30元,现在的售价为每件40元,每星期可卖出150件.市场调
查反映:如果每件的售价每涨1元(售价每件不能高于45元),那么每星期少卖10件.设每件涨价x元(x
为非负整数),每星期的销量为y件.(1)求y与x的函数关系式及自变量x的取值范围;(2)如何定价才
能使每星期的利润最大且每星期销量较大?每星期的最大利润是多少?

24.(本题10分)正方形ABCD中,点O是对角线AC的中点,P为对角线AC上一动点,过点P作
PF⊥DC于点F.如图1,当点P与点O重合时,显然有DF=CF.(1)如图2,若点P在线段AO上(不与
点A,O重合),PE⊥PB且PE交CD点E.
①求证:DF=EF,
②写出线段PC、PA、CE之间的一个等量关系式,并证明你的结论:(2)若点P在线段OC上(不与
点O,C重合),PE⊥PB且PE交直线CD于点E.请完成图3并判断(1)中的结论①、②是否分别成立?
若不成立,写出相应的结论(所写结论均不必证明).
5

【08武汉中考】25.(本题 12分)如图 1,抛物线y=ax2-3ax+b经过A(-1,0),C(3,2)两点,与y
轴交于点D,与x轴交于另一点B.(1)求此抛物线的解析式;(2)若直线y=kx-1(k≠0)将 四 边 形ABCD
面积二等分,求k的值;(3)如图2,过点 E(1,-1)作EF⊥x轴于点F,将△AEF绕平面内某点旋转 180°
后得△MNQ(点M,N,Q分别与 点 A,E,F对应),使点M,N在抛物线上,求点M,N的坐标.

2008年湖北省武汉市中考数学试题参考答案
选择题:
CBAAC,BDADC,BB。
填空题:

13. 0.9;14. 32x;15. 28; 16. 88.
解答题:

17.1212x;
18.11,35x;
19.略
20.⑴500,20%,12%;⑵略;⑶11900;

21.⑴(0,-1),21yx;⑵23yx;⑶22yx;

22.⑴略;⑵85;
23.⑴15010,05yxx且x为整数;⑵当售价为42元时,每周的利润最大且销量较大,最大利润
为1560元;
6

24.⑴ ①略;②PC-PA=2CE;⑵结论①仍成立;结论②不成立,此时②中三条线段的数量关系是PA
-PC=2CE;

25.⑴213222yxx;⑵43k;⑶M(3,2),N(1,3)

相关文档
最新文档