高中数学任意性与存在性问题探究
高考数学一轮复习突破双变量“存在性或任意性”问题

不必要条件.故选C.
13.已知p:|x+a|<2,q:x≥a,且p是q的充分不必要条件,则实数a的取值
范围是(
)
A.(-∞,-1]
B.(-∞,-1)
C.[1,+∞)
D.(1,+∞)
解析:A p:|x+a|<2,即p:-a-2<x<-a+2,记为A={x|-a-2<x
<-a+2}.q:x≥a,记为B={x|x≥a}.因为p是q的充分不必要条件,所以
.
解析:当x∈[0,3]时,f(x)min=f(0)=0,当x∈[1,2]时,g(x)max=g
1
1
1
(1)= -m,由f(x)min≥g(x)max,得0≥ -m,所以m≥ .
2
2
2
1
2
答案: , + ∞
1.(2023·开封模拟)命题“∀x∈R,x+|x|≥0”的否定为
A.∀x∈R,x+|x|<0
3
2−2,2−
2
,并且两个值域有公共部分.先求没有公共部分的情况,即2-2k>
3
1
4
1或2- k<0,解得k< 或k> ,所以要使两个值域有公共部分,k的取值范围是
2
2
3
1 4
,
2 3
.
答案:
1 4
,
2 3
三、形如“对任意x1∈A,任意x2∈B,使f(x1)>g(x2)成立”
【例3】 已知函数f(x)=x2-2x+3,g(x)=log2x+m,对任意的x1,
C.若2x为偶数,则x∈N
D.π是无理数
解析:B 对于A,∀x∈R,x2+2x+1=(x+1)2≥0,故A错误;对于B,含有
全称量词“任意”,是全称量词命题且是真命题,故B正确;对于C,当x=-1
求解任意性问题与存在性问题

3. 不同函数,相等关系 求值域
(1)x A, f (x) g(x) y f (x) g(x)有零点 (2)x1 A,x2 B, f (x1) g(x2)成立
{ f (x) | x A} {g(x) | x B}
(3)x1 A,x2 B, f (x1) g(x2)成立 { f (x) | x A} {g(x) | x B}
(1)若对 x [3,,3都] 有 f (x) 成g(立x),求 范围;k (2)若对 x [3,都3] 有 f (x) 成g(立x),求 范围;k
1.不同函数,相同变量 构造函数求最值
(1)x A, f (x) g(x)成立 [ f (x) g(x)]max 0 [g(x) f (x)]min 0
f (x1)max g(x2 )min
(2)x1 A,x2 B, f (x1) g(x2 )成立 f (x1)min g(x2 )min
(3)x1 A, x2 B, f (x1) g(x2 )成立 f (x1)min g(x2 )max
(4)x1 A, x2 B, f (x1) g(x2 )成立
f (x1)max g(x2 )max
活动探究
1.已知两个函数 f (x) 8x2 16x k, x [3,3]
g(x) 2x3 5x2 4x, x [3,3], k R
(1)若对 x [3,,3都] 有 f (x) g成(立x) ,求 范围k; (2)若对 x [3,都3] 有 f (x) 成g(立x),求 范围;k
(2)x A, f (x) g(x)成立 [ f (x) g(x)]min 0 [g(x) f (x)]max 0
高考数学函数中存在性和任意性问题分类解析

函数中存在性与任意性问题分类解析全称量词、特称量词以及全称命题与特称命题在近几年新课标高考卷与模拟卷中频频亮相成为高考的热点问题、特别就是全称量词”任意”与特称量词”存在”与函数情投意合风火情深,火借风势、风助火威,大有逾演逾烈之势、两种量词插足函数,使得函数问题意深难懂神秘莫测,问题显得更加扑朔迷离难度大增,同时题目也因此显得富有变化与新意、解决这类问题的关键就是揭开量词隐含的神秘面纱还函数问题本来面目,本文通过典型题目分类解析供参考、1、,,使得,等价于函数在上的值域与函数在上的值域的交集不空,即、例1已知函数与函数,若存在,使得成立,则实数的取值范围就是()解设函数与在上的值域分别为与,依题意、当时,,则,所以在上单调递增,所以即、当时,,所以单调递,所以即、综上所述在上的值域、当时,,又,所以在在上单调递增,所以即,故在上的值域、因为,所以或解得,故应选、2、对,,使得,等价于函数在上的值域就是函数在上的值域的子集,即、例2(2011湖北八校第二次联考)设,、①若,使成立,则实数的取值范围为___;②若,,使得,则实数的取值范围为___解①依题意实数的取值范围就就是函数的值域、设,则问题转化为求函数的值域,由均值不等式得,,故实数的取值范围就是、②依题意实数的取值范围就就是使得函数的值域就是函数的值域的子集的实数的取值范围、由①知,易求得函数的值域,则当且仅当即,故实数的取值范围就是、例3已知,它们的定义域都就是,其中就是自然对数的底数,、(1)求的单调区间;(2)若,且,函数,若对任意的,总存在,使,求实数的取值范围、解(1)略;(2)依题意实数的取值范围就就是使得在区间上的值域就是的值域的子集实数的取值范围、当时,由得,故在上单调递减,所以即,于就是、因,由得、①当时,,故在上单调递增,所以即,于就是、因为,则当且仅当,即、②当时,同上可求得、综合①②知所求实数的取值范围就是、3、已知就是在闭区间的上连续函,则对使得,等价于、例4已知,其中、(1)若就是函数的极值点,求实数的值;(2)若对任意的都有成立,求实数的取值范围、解(1)略;(2) 对,有,等价于有、当时,,所以在上单调递增,所以、因为,令得,又且,、①当时,,所以在在上单调递增,所以、令得这与矛盾。
2021年高考数学重难点复习:任意性与存在性问题

2021年高考数学重难点复习巧辨“任意性问题”与“存在性问题”一.方法综述含有参数的方程(或不等式)中的“任意性”与“存在性”问题,历来是高考考查的一个热点,也是高考复习中的一个难点.破解的关键在于将它们等价转化为熟悉的基本初等函数的最值或值域问题,而正确区分“任意性”与“存在性”问题也是解题的关键.本专题举例说明辨别“任意性问题”与“存在性问题”的方法、技巧.二.解题策略类型一 “∀x ,使得f(x)>g(x)”与“∃x ,使得f(x)>g(x)”的辨析(1)∀x ,使得f (x )>g (x ),只需h (x )min =[f (x )-g (x )]min >0.如图①.(2)∃x ,使得f (x )>g (x ),只需h (x )max =[f (x )-g (x )]max >0.如图②.【例1】【2020·河南濮阳一中期末】已知函数1()ln (0),()a f x a x a g x x x x =-≠=--. (Ⅰ)求()f x 的单调区间;(Ⅱ)当0a >时,若存在0[1,]x e ∈,使得()()00f x g x <成立,求实数a 的取值范围.【解析】(I )()f x 的定义域为'221(0,),().a a x f x a x x x++∞=--=- 所以,当0a >时,()'0fx <,()f x 在(0,)+∞上递减; 当0a <时,()'0f x >,所以,()f x 在(0,)+∞上递增.(II )在[]1e ,上存在一点0x 使00()()f xg x <成立, 即函数1()ln ah x a x x x x=-++在[]1,e 上的最小值小于0, ()'222(1)1+1()1x x a a a h x x x x x +-⎡⎤⎣⎦=--+-=. ①当1+a e ≥,即1a e ≥-时,()h x 在[]1,e 上单调递减,所以()h x 在[]1,e 上的最小值为()h e ,由()10a h e e a e+=+-<, 得222111,1,111e e e a e a e e e +++>>-∴>---Q ; ②当11a +≤,即0a ≤时,0a >Q ,不合乎题意;③当11a e <+<,即01a e <<-时,()h x 的最小值为()1h a +,0ln(1)1,0ln(1),a a a a <+<∴<+<Q 故(1)2ln(1)2h a a a a +=+-+>.此时(1)0h a +<不成立.综上所述,a 的取值范围是211e a >e +-. 【指点迷津】(1)这是较为常见的一类恒成立问题,运用数形结合的思想可知,当x 0≥0时,总有f (x 0)≥g (x 0),即f (x 0)-g (x 0)≥0(注意不是f (x )min ≥g (x )max ),可以转化为当x ≥0时,h (x )=f (x )-g (x )≥0恒成立问题.(2)存在x ≥0,使得f (x )≥g (x ),即至少有一个x 0≥0,满足f (x 0)-g (x 0)不是负数,可以转化为当x ≥0时,h (x )=f (x )-g (x )的函数值至少有一个是非负数.【举一反三】【2020·江西瑞金一中期中】已知函数()()ln f x x x a b =++,曲线()y f x =在点()()1,1f 处的切线为210x y --=.(1)求a ,b 的值;(2)若对任意的()1,x ∈+∞,()()1f x m x ≥-恒成立,求正整数m 的最大值.【解析】(1)由()()ln f x x x a b =++得:()ln 1f x x a '=++由切线方程可知:()1211f =-=。
任意与存在问题的解题策略

“任意”与“存在”问题的解题策略在现行的高中数学教学中,时常会接触到有关任意性、存在性的问题,而这些问题往往又是学生难以理解的知识,同时这些问题伴随着学生进入高校,如果对于这方面的问题模棱两可,影响他们对高等数学的学习,如高数的基础问题:数集的确界、极限的“ε-N”定义,对于这样的衔接性问题,有必要从宏观上把握,微观上深入.原本函数、不等式、方程涉及的问题就既广又难,若再与“任意、存在、唯一”等叙述语句相结合,更是难上加难,很多学生一直都有“恐函症”,现在又增“恐逻辑症”,一见任意、存在就发懵,下面我们将探讨的“任意”与“存在”问题的解题策略. 一.“任意”与“存在”的相等关系例1:{}2,1=A ,{}2,,1a a B =,A m ∈∀若,B n ∈∃,使得n m =,求a 的值。
分析:转化为集合的子集关系,容易得到B A ⊆略解:由B A ⊆,可知222==a a 或⇒22±==a a 或反思1: “∀”比“∃”范围小,从集合角度来看,“∀”是 “∃”的子集。
变式1:{}2,1=A ,{}2,1,0=B ,x x f =)(,xa x g =)(,A m ∈∀若,B n ∈∃,使得)()(n g m f =,求a 的值。
分析:先求出两函数的值域,可得D C ⊆略解:由D C ⊆,可得可知222==a a 或⇒22±==a a 或反思2:A x x f y ∈=),(的值域为C ,B x x g y ∈=),(的值域为D , A m ∈∀若,B n ∈∃,使得)()(n g m f =,则D C ⊆。
变式2:]8,2[=A ,]2,1[-=B ,x x x f 4)(21-=,x x f 22log )(=,x x g 2)(1=,a x x x g +-=2)(22A m ∈∀若,B n ∈∃,使得)]([)]([2121n g g m f f =,求a 的范围。
略解:设)(2x f 的值域为2A ,)(2x g 的值域为2B 易得]3,1[2=A ,]3,1[2a a B +-=.设21),(A x x f ∈的值域为1A ,)(1x g 的值域为1B易得]3,4[1--=A ,]26,22[1a a B +-=.由题意12929132642211-≤≤-⇒⎪⎩⎪⎨⎧-≥-≤⇒⎩⎨⎧-≥+-≤-⇒⊆a a a a a B A 。
双变量的“任意性”与 “存在性”五种题型的解题方法解析

1双变量的“任意性”与 “存在性”五种题型的解题方法 一、“存在=存在”型∃x 1∈D 1,∃x 2∈D 2,使得f (x 1)=g (x 2),等价于函数f (x )在D 1上的值域A 与函数g (x )在D 2上的值域B 的交集不为空集,即A ∩B ≠⌀.其等价转化的基本思想:两个函数有相等的函数值,即它们的值域有公共部分.【例1】 已知函数f (x )=x 2-23ax 3,a >0,x ∈R .g (x )=1x 2(1-x ).若∃x 1∈(-∞,-1],∃x 2∈-∞,-12 ,使得f (x 1)=g (x 2),求实数a 的取值范围.【解析】∵f (x )=x 2-23ax 3,∴f '(x )=2x -2ax 2=2x (1-ax ).令f '(x )=0,得x =0或x =1a .∵a >0,∴1a>0,∴当x ∈(-∞,0)时, f '(x )<0,∴f (x )在(-∞,-1]上单调递减, f (x )在(-∞,-1]上的值域为1+2a3,+∞ .∵g (x )=1x 2(1-x ),∴g '(x )=3x 2-2x (x 2-x 3)2=3x -2x 3(1-x )2.∵当x <-12时,g '(x )>0,∴g (x )在-∞,-12 上单调递增,∴g (x )<g -12 =83,∴g (x )在-∞,-12 上的值域为-∞,83.若∃x 1∈(-∞,-1],∃x 2∈-∞,-12 ,使得f (x 1)=g (x 2),则1+2a 3<83,a <52.故实数a 的取值范围是0,52.【变式1】 已知函数f (x )=-16x +112,0≤x ≤12,x 3x +1,12<x ≤1 和函数g (x )=a ·sin π6x -a +1(a >0),若存在x 1,x 2∈[0,1],使得f (x 1)=g (x 2)成立,则实数a 的取值范围是( )A.12,32 B.[1,2)C.12,2D.1,32【答案】选C 【解析】设函数f (x ),g (x )在[0,1]上的值域分别为A ,B ,则“存在x 1,x 2∈[0,1],使得f (x 1)=g (x 2)成立”等价于“A ∩B ≠⌀”.当0≤x ≤12时, f (x )=-16x +112单调递减,所以0≤f (x )≤112;当12<x ≤1时, f '(x )=x 2(2x +3)(x +1)2>0,所以f (x )=x 3x +1单调递增,112<f (x )≤12,故f (x )在[0,1]上的值域A =0,12.当x ∈[0,1]时,π6x ∈0,π6 ,y =sin π6x 在[0,1]上单调递增.又a >0,所以g (x )=a sin π6x -a +1在[0,1]上单调递增,其值域B =1-a ,1-a 2.2由A ∩B ≠⌀,得0≤1-a ≤12或0≤1-a 2≤12,解得12≤a ≤2.故选C .二、“任意=存在”型∀x 1∈D 1,∃x 2∈D 2,使得f (x 1)=g (x 2),等价于函数f (x )在D 1上的值域A 是函数g (x )在D 2上的值域B 的子集,即A ⊆B .其等价转化的基本思想:函数f (x )的任意一个函数值都与函数g (x )的某一个函数值相等,即f (x )的函数值都在g (x )的值域之中.【例2】 已知函数f (x )=4x 2-72-x,x ∈[0,1].(1)求f (x )的单调区间和值域;(2)设a ≥1,函数g (x )=x 3-3a 2x -2a ,x ∈[0,1].若对于任意的x 1∈[0,1],总存在x 0∈[0,1],使得g (x 0)=f (x 1)成立,求a 的取值范围.【解析】(1)f '(x )=-4x 2+16x -7(2-x )2=-(2x -1)(2x -7)(2-x )2,x ∈[0,1].令f '(x )=0,解得x =12或x =72(舍去).当x 变化时, f '(x ), f (x )的变化情况如下表所示:x 00,121212,11f '(x )-0+f (x )-72↘-4↗-3 所以f (x )的递减区间是0,12,递增区间是12,1 .f (x )min =f 12=-4,又f (0)=-72, f (1)=-3,所以f (x )max =f (1)=-3.故当x ∈[0,1]时, f (x )的值域为[-4,-3].(2)“对于任意的x 1∈[0,1],总存在x 0∈[0,1],使得g (x 0)=f (x 1)成立”等价于“在x ∈[0,1]上,函数f (x )的值域B 是函数g (x )的值域A 的子集,即B ⊆A ”.因为a ≥1,且g '(x )=3(x 2-a 2)<0,所以当x ∈[0,1]时,g (x )为减函数,所以g (x )的值域A =[1-2a -3a 2,-2a ].由B ⊆A ,得1-2a -3a 2≤-4且-2a ≥-3,又a ≥1,故1≤a ≤32.【变式2】 已知函数f (x )=x 2-23ax 3(a >0),x ∈R .(1)求f (x )的单调区间和极值;(2)若对于任意的x 1∈(2,+∞),都存在x 2∈(1,+∞),使得f (x 1)·f (x 2)=1.求a 的取值范围.【解析】 解析 (1)由已知,有f '(x )=2x -2ax 2(a >0).令f '(x )=0,解得x =0或x =1a .当x 变化时, f '(x ), f (x )的变化情况如下表:x(-∞,0)0,1a 1a 1a ,+∞3f '(x )-0+0-f (x )↘↗13a 2↘所以, f (x )的单调递增区间是0,1a;单调递减区间是(-∞,0),1a ,+∞ .当x =0时, f (x )有极小值,且极小值f (0)=0;当x =1a 时,f (x )有极大值,且极大值f 1a =13a2.(2)由f (0)=f 32a=0及(1)知,当x ∈0,32a 时, f (x )>0;当x ∈32a,+∞ 时, f (x )<0.设集合A ={f (x )|x ∈(2,+∞)},集合B =1f (x )|x ∈(1,+∞),f (x )≠0,则“对于任意的x 1∈(2,+∞),都存在x 2∈(1,+∞),使得f (x 1)·f (x 2)=1”等价于A ⊆B .显然,0∉B .下面分三种情况讨论:①当32a >2,即0<a <34时,由f 32a=0可知,0∈A ,而0∉B ,所以A 不是B 的子集.②当1≤32a ≤2,即34≤a ≤32时,有f (2)≤0,且此时f (x )在(2,+∞)上单调递减,故A =(-∞, f (2)),因而A ⊆(-∞,0);由f (1)≥0,有f (x )在(1,+∞)上的取值范围包含(-∞,0),即(-∞,0)⊆B .所以,A ⊆B .③当32a <1,即a >32时,有f (1)<0,且此时f (x )在(1,+∞)上单调递减,故B =1f (1),0,A =(-∞, f (2)),所以A 不是B 的子集.综上,a 的取值范围是34,32.三、“任意≥(≤、>、<)任意”型∀x 1∈D 1,∀x 2∈D 2,f (x 1)>g (x 2)恒成立,等价于f (x )min >g (x )max ,或等价于f (x )>g (x )max 恒成立,或等价于f (x )min >g (x )恒成立.其等价转化的基本思想是函数f (x )的任何一个函数值均大于函数g (x )的任何一个函数值.∀x 1∈D 1,∀x 2∈D 2,f (x 1)<g (x 2)恒成立,等价于f (x )max <g (x )min ,或等价于f (x )<g (x )min 恒成立,或等价于f (x )max <g (x )恒成立.其等价转化的基本思想是函数f (x )的任何一个函数值均小于函数g (x )的任何一个函数值.∀x 1∈D 1,∀x 2∈D 2,f (x 1)-g (x 2)>k 恒成立,等价于[f (x 1)-g (x 2)]min >k 恒成立,也等价于f (x )min-g (x )max >k .∀x 1∈D 1,∀x 2∈D 2,f (x 1)-g (x 2)<k 恒成立,等价于[f (x 1)-g (x 2)]max <k 恒成立,也等价于f (x )max-g (x )min <k .【例3】 设函数f (x )=x 3-x 2-3.(1)求f (x )的单调区间;(2)设函数g (x )=a x+x ln x ,如果对任意的x 1,x 2∈12,2,都有f (x 1)≤g (x 2)成立,求实数a 的取值范围.【解析】解析 (1)f '(x )=3x 2-2x .f '(x )>0时,x <0或x >23,f '(x )<0时,0<x <23.所以, f (x )的递增区间是(-∞,0),23,+∞;递减区间是0,23.4(2)由(1)知,函数f (x )在12,23 上单调递减,在23,2 上单调递增,而f 12=-258, f (2)=1,故f (x )在区间12,2上的最大值f (x )max =f (2)=1.“对任意的x 1,x 2∈12,2 ,都有f (x 1)≤g (x 2)成立”等价于“对任意的x ∈12,2,g (x )≥f (x )max 恒成立”,即当x ∈12,2时,g (x )=a x+x ln x ≥1恒成立,即a ≥x -x 2ln x 恒成立,记u (x )=x -x 2ln x 12≤x ≤2,则有a ≥u (x )max .u '(x )=1-x -2x ln x ,可知u '(1)=0.当x ∈12,1时,1-x >0,2x ln x <0,则u '(x )>0,所以u (x )在12,1上递增; 当x ∈(1,2)时,1-x <0,2x ln x >0,则u '(x )<0,所以u (x )在(1,2)上递减.故u (x )在区间12,2上的最大值u (x )max =u (1)=1,所以实数a 的取值范围是[1,+∞).【点拨】 (1)∀x 1∈D 1,∀x 2∈D 2,f (x 1)>g (x 2)恒成立,通常等价转化为f (x )min >g (x )max .这是两个独立变量--双变量问题,不等式两边f (x 1),g (x 2)中自变量x 1,x 2可能相等,也可能不相等;(2)对任意的x ∈[m ,n ],不等式f (x )>g (x )恒成立,通常等价转化为[f (x )-g (x )]min >0.这是单变量问题,不等式两边f (x ),g (x )的自变量x 相等.【变式3】 函数f (x )=mxx 2+1+1(m ≠0),g (x )=x 2e ax (a ∈R ).(1)直接写出函数f (x )的单调区间;(2)当m >0时,若对于任意的x 1,x 2∈[0,2], f (x 1)≥g (x 2)恒成立,求a 的取值范围.【解析】 (1)当m >0时,f (x )的递增区间是(-1,1);递减区间是(-∞,-1),(1,+∞).当m <0时,f (x )的递增区间是(-∞,-1),(1,+∞);递减区间是(-1,1).(2)当m >0时,“对于任意的x 1,x 2∈[0,2],f (x 1)≥g (x 2)恒成立”等价于“对于任意的x ∈[0,2],f (x )min ≥g (x )max 成立”.当m >0时,由(1)知,函数f (x )在[0,1]上单调递增,在[1,2]上单调递减,因为f (0)=1,f (2)=2m5+1>1,所以f (x )min =f (0)=1,故应满足1≥g (x )max .因为g (x )=x 2e ax ,所以g '(x )=(ax 2+2x )e ax .①当a =0时,g (x )=x 2,此时g (x )max =g (2)=4,不满足1≥g (x )max .②当a ≠0时,令g '(x )=0,得x =0或x =-2a .(i )当-2a≥2,即-1≤a <0时,在[0,2]上,g '(x )≥0,g (x )在[0,2]上单调递增,g (x )max =g (2)=4e 2a .由1≥4e 2a ,得a ≤-ln 2,所以-1≤a ≤-ln 2.(ii )当0<-2a <2,即a <-1时,在0,-2a上,g '(x )≥0,g (x )递增;在-2a ,2 上,g '(x )<0,g (x )递减.g (x )max =g -2a =4a 2e 2,由1≥4a 2e 2,得a ≤-2e ,所以a <-1.5(iii )当-2a<0,即a >0时,显然在[0,2]上,g '(x )≥0,g (x )单调递增,于是g (x )max =g (2)=4e 2a >4,此时不满足1≥g (x )max .综上,a 的取值范围是(-∞,-ln 2].四、“任意≥(≤、>、<)存在”型∀x 1∈D 1,∃x 2∈D 2,使得f (x 1)>g (x 2)成立,等价于f (x )min >g (x )min .其等价转化的基本思想是函数f (x )的任意一个函数值大于函数g (x )的某一个函数值,但并不要求大于函数g (x )的所有函数值.∀x 1∈D 1,∃x 2∈D 2,使得f (x 1)<g (x 2)成立,等价于f (x )max <g (x )max .其等价转化的基本思想是函数f (x )的任意一个函数值小于函数g (x )的某一个函数值,但并不要求小于函数g (x )的所有函数值.∀x 1∈D 1,∃x 2∈D 2,使得f (x 1)-g (x 2)>k 成立,等价于f (x )min -g (x )min >k .∀x 1∈D 1,∃x 2∈D 2,使得f (x 1)-g (x 2)<k 成立,等价于f (x )max -g (x )max <k .【例4】 函数f (x )=ln x -14x +34x-1,g (x )=x 2-2bx +4,若对任意的x 1∈(0,2),存在x 2∈[1,2],使得f (x 1)≥g (x 2)成立,求实数b 的取值范围.【解析】 “对任意的x 1∈(0,2),存在x 2∈[1,2],使得f (x 1)≥g (x 2)成立”等价于“f (x )在(0,2)上的最小值不小于g (x )在[1,2]上的最小值,即f (x )min ≥g (x )min (*)”.f '(x )=1x -14-34x 2=-(x -1)(x -3)4x 2,当x ∈(0,1)时, f '(x )<0, f (x )单调递减;当x ∈(1,2)时, f '(x )>0, f (x )单调递增.故当x ∈(0,2)时, f (x )min =f (1)=-12.又g (x )=(x -b )2+4-b 2,x ∈[1,2],①当b <1时,g (x )min =g (1)=5-2b >3,此时与(*)矛盾;②当b ∈[1,2]时,g (x )min =g (b )=4-b 2≥0,同样与(*)矛盾;③当b ∈(2,+∞)时,g (x )min =g (2)=8-4b ,由8-4b ≤-12,得b ≥178.综上,实数b 的取值范围是178,+∞ .【变式4】 已知函数f (x )=13x 3+x 2+ax .(1)若f (x )在区间[1,+∞)上单调递增,求a 的最小值;(2)若g (x )=x ex ,∀x 1∈12,2 ,∃x 2∈12,2 ,使得f '(x 1)≤g (x 2)成立,求a 的取值范围.【解析】 (1)由题设知f '(x )=x 2+2x +a ≥0,即a ≥-(x +1)2+1在[1,+∞)上恒成立,而y =-(x +1)2+1在[1,+∞)上单调递减,则y max =-3,∴a ≥-3,∴a min =-3.(2)“∀x 1∈12,2,∃x 2∈12,2 ,使f '(x 1)≤g (x 2)成立”等价于“x ∈12,2 时,f '(x )max ≤g (x )max 恒成立”.∵f '(x )=x 2+2x +a =(x +1)2+a -1在12,2上递增,∴f '(x )max =f '(2)=8+a ,又g '(x )=e x -xe x e 2x =1-x e x,6∴g (x )在(-∞,1)上递增,在(1,+∞)上递减.∴当x ∈12,2时,g (x )max =g (1)=1e ,由8+a ≤1e 得,a ≤1e -8,所以a 的取值范围是-∞,1e-8 .五、“存在≥(≤、>、<)存在”型若∃x 1∈D 1,∃x 2∈D 2,使得f (x 1)>g (x 2)成立,等价于f (x )max ≥g (x )min .其等价转化的基本思想是函数f (x )的某一个函数值大于函数g (x )的某一个函数值,即只要有这样的函数值即可.若∃x 1∈D 1,∃x 2∈D 2,使得f (x 1)<g (x 2)成立,等价于f (x )min <g (x )max .其等价转化的基本思想是函数f (x )的某一个函数值小于函数g (x )的某一个函数值,即只要有这样的函数值即可.若∃x 1∈D 1,∃x 2∈D 2,使得f (x 1)-g (x 2)>k 成立,等价于[f (x 1)-g (x 2)]max >k ,也等价于f (x )max-g (x )min >k .若∃x 1∈D 1,∃x 2∈D 2,使得f (x 1)-g (x 2)<k 成立,等价于[f (x 1)-g (x 2)]min <k ,也等价于f (x )min -g (x )max <k .【例5】 已知函数f (x )=4ln x -ax +a +3x(a ≥0).(1)直接写出函数f (x )的单调区间;(2)当a ≥1时,设g (x )=2e x -4x +2a ,若存在x 1,x 2∈12,2,使f (x 1)>g (x 2),求实数a 的取值范围.【解析】 (1)当a =0时,函数f (x )的递减区间为0,34,递增区间为34,+∞ .当0<a <1时,函数f (x )的递减区间为0,2--(a -1)(a +4)a,2+-(a -1)(a +4)a,+∞,递增区间为2--(a -1)(a +4)a ,2+-(a -1)(a +4)a.当a ≥1时, f (x )的递减区间为(0,+∞).(2)“存在x 1,x 2∈12,2 ,使f (x 1)>g (x 2)”等价于“ 当x ∈12,2时, f (x )max >g (x )min ”.由(1)知,当x ∈12,2时, f (x )max =f 12 =-4ln 2+32a +6,由g '(x )=2e x -4>0,得x >ln 2,所以g (x )在(0,ln 2)上单调递减,在(ln 2,+∞)上单调递增,故当x ∈12,2时,g (x )min =g (ln 2)=4-4ln 2+2a ,由f (x )max >g (x )min ,得-4ln 2+32a +6>4-4ln 2+2a ,又a ≥1,所以1≤a <4.【变式5】 设函数f (x )=xln x-ax .(1)若函数f (x )在(1,+∞)上为减函数,求实数a 的最小值;(2)若存在x 1,x 2∈[e ,e 2],使f (x 1)≤f '(x 2)+a 成立,求实数a 的取值范围.【解析】 (1)由题设知f '(x )=ln x -1(ln x )2-a ≤0在(1,+∞)上恒成立,则只需f '(x )max ≤0.又f '(x )=ln x -1(ln x )2-a =-1ln x -12 2+14-a ,7所以当1ln x =12,即x =e 2时, f '(x )max =14-a ,由14-a ≤0得a ≥14,故a 的最小值为14.(2)“存在x 1,x 2∈[e ,e 2],使f (x 1)≤f '(x 2)+a 成立”等价于“当x 1,x 2∈[e ,e 2]时, f (x 1)min ≤f '(x 2)max +a ”.由(1)知,当x ∈[e ,e 2]时, f '(x )max =f '(e 2)=14-a ,所以f '(x )max +a =14.则问题等价于“当x ∈[e ,e 2]时, f (x )min ≤14”.①当a ≥14时,由(1)得f '(x )max =14-a ≤0, f (x )在[e ,e 2]上为减函数,则f (x )min =f (e 2)=e 22-ae 2,由f (x )min ≤14,得a ≥12-14e 2.②当a <14时, f '(x )=-1ln x -12 2+14-a 在[e ,e 2]上的值域为-a ,14-a .(i )当-a ≥0,即a ≤0时, f '(x )≥0在[e ,e 2]恒成立,故f (x )在[e ,e 2]上为增函数,于是f (x )min =f (e )=e -ae ≥e >14,与f (x )min ≤14矛盾.(ii )当-a <0,即0<a <14时,由f '(x )的单调性和值域知,存在唯一的x 0∈(e ,e 2),使f '(x )=0,且满足:当x ∈(e ,x 0)时, f '(x )<0, f (x )为减函数;当x ∈(x 0,e 2)时, f '(x )>0, f (x )为增函数,所以f (x )min =f (x 0)=x 0ln x 0-ax 0≤14,x 0∈(e ,e 2).所以a ≥1ln x 0-14x 0>1ln e 2-14e >12-14=14,与0<a <14矛盾.综上,a 的取值范围是a ≥12-14e2.。
_任意性_存在性_问题剖析

类型五: “ 任意”、 “ 存在” ( 或“ 存在”、 “ 任意” )型
例5 ( 2 0 1 0年山东高考理 2 2 )已知函数 f ( x ) =l n x- 1-a a x+ -1 ( a ) . ∈R x ( 1 )当 a 1 时, 讨论 f ( x )的单调性; 2 1 时, 若对任意 x 1 4
4 0 x , 存在 x , x - 3 , 3 ] , 都有 f ( x ) <g ( x ) , 求实数 c 的 1 2∈ [ 1 2 取值范围. 分析: 存在 x , x -3 , 3 ] , 都有 f ( x ) <g ( x ) , 等价 1 2∈ [ 1 2
2 2 ( x ) ( x ) , 由f ( x ) =7 x - 2 8 x -c=7 ( x - 2 ) - 于f m i n <g m a x
2 2 1 1 a +b 2+ 2 为定值 2 2 ; O A O B ab 2 2 4 a b 2 2 2 A B| a +b. 2 2 | a +b
∴
2 2 4 a b 2 2 2 A B| a +b. 2 2 | a +b
这样结合平面几何知识由此题可知, 高考题第( Ⅱ)存 在半径 R 为
x +x 2 x +x +1 h ( x )= 2 , 则h ′ ( x )= , 故函数 h ( x ) 2 2 >0 2 x +1 ( 2 x +1 ) 2 在[ 1 , 2 ] 上是增函数, h ( x ) ( 1 )= , 所以实数 a 的取 m i n =h 3 值范围是 0 <a< 2 . 3
槡
2 2 a b 2 = a +b 2
= 的圆满足题意, 从而 8+4 3 槡
8×4 2 6 槡
证明: 设点 A ( | O A| c o s , | O A| s i n ) , 则点 B ( | O B| θ θ π π c o s ( , | O B| s i n ( ) , θ+ ) θ+ ) 2 2
高考数学_函数中存在性和任意性问题分类解析

函数中存在性和任意性问题分类解析全称量词、特称量词以及全称命题和特称命题在近几年新课标高考卷和模拟卷中频频亮相成为高考的热点问题.特别是全称量词”任意”和特称量词”存在”两种量词插足函数,使得函数问题意深难懂神秘莫测,问题显得更加扑朔迷离难度大增,同时题目也因此显得富有变化和新意.解决这类问题的关键是揭开量词隐含的神秘面纱还函数问题本来面目,本文通过典型题目分类解析供参考.一. 11x D ∃∈ ,22x D ∃∈ ,使得12()()f x g x =,等价于函数()f x 在1D 上的值域与函数()g x 在2D 上的值域的交集不空,即A B ≠∅.例1 已知函数31,(,1]12()111,[0,]6122x x x f x x x ⎧∈⎪⎪+=⎨⎪-+∈⎪⎩和函数()sin 1,(0)6g x a x a a π=-+>,若存在12[0,1]x x ∈、,使得12()()f x g x =成立,则实数的取值范围是( ) A 13(,]22B [1,2)C 1[,2]2 D 3[1,]2二.对 1122,x D x D ∀∈∃∈ ,使得12()()f x g x = ,等价于函数()f x 在1D 上的值域是函数()g x 在2D 上的值域的子集,即.例2 设233(),(2)2x x f x x x -+=>-,(),(1,2)x g x a a x =>> .①若0(2,)x ∃∈+∞ ,使0()f x m = 成立,则实数的取值范围为___;②若,,使得,则实数的取值范围为___ 例3已知,它们的定义域都是,其中是自然对数的底数,.(1)求()f x 的单调区间; (2)若,且,函数31()3g x bx bx =- ,若对任意的,总存在,使,求实数的取值范围.三、.已知是在闭区间的上连续函,则对使得,等价于.例4已知2(),()ln a f x x g x x x x=+=+ ,其中.(1)若是函数的极值点,求实数的值;(2)若对任意的都有成立,求实数的取值范围.练习:已知函数()ln ,a f x x x x =+ 321()2g x x mx n =-+,若函数的图象经过点(1,3)M - ,且在点处的切线线恰好与直线垂直. (1)求,m n 的值; (2)求函数的在上最大值和最小值;(3)如果对任意1,[,2]2s t ∈ 都有成立,求实数的取值范围.三、.已知是在闭区间的上连续函,则对x D ∀∈ 使得()()f x g x ≤ ,等价于()()()0h x f x g x =-≤ 在D 上恒成立四、.若对,,使,等价于在上的最小值不小于在上的最小值即min min ()()f x g x ≥(这里假设存在)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学任意性与存在性问题探究
函数中任意性和存在性问题探究
近年的高考中,全称命题和存在性命题与导数的结合成为了一大亮点。
本文将结合高考试题对此类问题进行归纳探究。
一、相关结论:
结论1:对于任意的x1∈[a,b]和x2∈[c,d],若f(x1)>g(x2),则有[f(x)]min>[g(x)]max;【如图一】
结论2:存在x1∈[a,b]和x2∈[c,d],使得f(x1)>g(x2),则有[f(x)]max>[g(x)]XXX;【如图二】
结论3:对于任意的x1∈[a,b]和存在x2∈[c,d],使得
f(x1)>g(x2),则有[f(x)]min>[g(x)]XXX;【如图三】
结论4:存在x1∈[a,b]和任意的x2∈[c,d],使得
f(x1)>g(x2),则有[f(x)]max>[g(x)]max;【如图四】
结论5:存在x1∈[a,b]和x2∈[c,d],使得f(x1)=g(x2),则
f(x)的值域和g(x)的值域交集不为空;【如图五】
例题1】:已知两个函数f(x)=8x+16x-k,g(x)=2x+5x+4x,x∈[-3,3],k∈R;
1) 若对于任意的x∈[-3,3],都有f(x)≤g(x),求实数k的取值范围;
2) 若存在x∈[-3,3],使得f(x)≤g(x),求实数k的取值范围;
3) 若对于任意的x1,x2∈[-3,3],都有f(x1)≤g(x2),求实数
k的取值范围;
解:
1)设h(x)=g(x)-f(x)=2x-3x-12x+k,问题可转化为:对于
x∈[-3,3],h(x)≥常数成立,即[h(x)]XXX≥常数。
由结论1可知,当f(x1)>g(x2)时,[f(x)]min>[g(x)]max,
即h(x)的最小值出现在f(x)和g(x)的交点处。
因此,我们可以
求出h(x)的导数h'(x)并列出变化情况表格,得到[h(x)]min=k-45.
因此,k≥45,即k∈[45,+∞)。
小结:对于闭区间I,不等式f(x)k对x∈IXXX成立当且
仅当[f(x)]XXX>k。
题目:已知函数f(x)=lnx-ax+2,(1)当a≤1-1/a(a∈R);x1时,讨论f(x)的单调性;(2)设g(x)=x-2bx+4,当a=2时,若对任意
x1∈(0,2),存在x2∈[1,2],使得f(x1)≥g(x2),求实数b的取值范围。
解析:
1) 当a≤1-1/a(a∈R)且x1时,讨论f(x)的单调性。
根据导数的定义,f'(x) = 1/x - a,令f'(x) = 0,得到x = 1/a,代入f''(x) = -1/x^2,可知当x。
1/a时,f(x)单调递增。
因此,
当a≤1-1/a时,函数f(x)在(0,1)上单调递减,在(1,+∞)上单调递增。
2) 设g(x) = x-2bx+4,当a=2时,若对任意x1∈(0,2),存在x2∈[1,2],使得f(x1)≥g(x2),求实数b的取值范围。
将a=2代入f(x),得到f(x) = lnx - 2x + 2.因为f(x)单调递减,所以要使得f(x1)≥g(x2),只需使得f(2)≥g(1),即ln2 - 4 + 2 ≥ 1 - 2b + 4,即b ≥ (ln2 - 1)/2.
因此,实数b的取值范围为[b,(ln2 - 1)/2]。
x),求满足f(x)1的x的取值范围.
解:
因为12sin(x)1,所以1f(x)1,故f(x)1无解.
注:该题没有实际意义,但是可以通过该题来理解
“f(x)f(x
max
f(x
2
型不等式的基本思想,即在给定区间范围内,函数值的上下限可以用函数的最大值和最小值来确定,从而简化问题的求解过程.
三〉、"f(x)0"型
例3:已知函数f(x)x sinx,求证:x[0,2π],均有f(x)0.
证明:
因为1sinx1,所以0x sinx x1,∴f(x)0.
注:该题是一个典型的“f(x)0”型不等式,该类型的不等式在数学证明中经常出现,需要掌握相应的求解方法和技巧.
第一段:
或"和"恒成立"都是不等式单调性的表现形式,在解题时需要注意这种类型不等式所包含的重要信息。
第二段:
已知$f(x)=\frac{1}{\log(x+1)},g(x)=\log(2x+t)$,若当
$x\in[0,1]$时,$f(x)\leq g(x)$恒成立,求实数$t$的取值范围。
解:$f(x)\leq g(x)$在$x\in[0,1]$时恒成立,即$x+1-2x-t\leq 0$在$[0,1]$上的最大值小于或等于零。
令$F(x)=x+1-2x-t$,
$F'(x)=\frac{1-4x+1}{2x+1}$,因为$x\in[0,1]$,所以$F(x)<0$,即$F(x)$在$[0,1]$上单调递减,$F(0)$是最大值。
因此,
$f(x)\leq F(0)=1-t\leq 0$,即$t\geq 1$。
第三段:
已知函数$f(x)=\frac{1}{3(49x+c)}$,若对任意
$x_1,x_2\in[-2,2]$,$x-x_2-3x+332<0$,$g(x)=-
\frac{332}{x+2}$,求$c$的取值范围。
解:因为对任意$x_1,x_2\in[-2,2]$,都有$f(x_1)0$时,$x>3$或$x-110$。
因为$x_1-1$或$t_1-1,t_2>-1$。
当$t_1=-
\frac{4}{3}$,$t_2=\frac{2}{3}$时,
$f(x_1)=\frac{1}{3(49x_1+c)}=-\frac{4}{3}<-
\frac{332}{x_2+2}=g(x_2)$,因此$c<-\frac{24}{7}$。
第四段:
已知函数$f(x)=-x+2x^2$,对任意$t_1,t_2\in[-
\frac{4}{3},\frac{2}{3}]$($t_1<t_2$),都有$|f(x_1)-
f(x_2)|\leq t$成立,当且仅当$t_1=-\frac{4}{3}$,
$t_2=\frac{2}{3}$时取等号。
解:因为$|f(x_1)-f(x_2)|\leq |[f(x)]_{max}-[f(x)]_{min}|$,
所以$|f(x_1)-f(x_2)|\leq 2$。
因为$f(x)=-x+2x^2$,所以
$[f(x)]_{max}=f(\frac{1}{2})=\frac{1}{2}$,$[f(x)]_{min}=f(-
\frac{1}{2})=\frac{3}{2}$。
因此,$|f(x_1)-f(x_2)|\leq
\frac{1}{2}+\frac{3}{2}=2$。
当$t_1=-\frac{4}{3}$,
$t_2=\frac{2}{3}$时,$f(x_1)=-\frac{4}{3}$,
$f(x_2)=\frac{2}{3}$,且$|f(x_1)-f(x_2)|=2$,因此此时取等号。
的问题。
已知函数$f(x)=x+ax+b$,对于$x_1,x_2\in(0,3\sqrt{3})$且$x_1\neq x_2$,总有$3|f(x_1)-f(x_2)|<|x_1-x_2|$成立,求实数$a$的范围。
解:由$f(x)=x+ax+b$得$f'(x)=1+a$,当
$x\in(0,3\sqrt{3})$时,$a<f'(x)<1+a$。
又因为$3|f(x_1)-
f(x_2)|<|x_1-x_2|$,所以$$
left|\frac{f(x_1)-f(x_2)}{x_1-x_2}\right|<\frac{1}{3}
即$$
left|\frac{(a+1)(x_1-x_2)}{x_1-x_2}\right|<\frac{1}{3} 所以$-1\leq a\leq 2$。