函数中的任意性与存在性关系PPT课件
3.1.1函数的概念课件(一)高一上学期数学人教A版必修一

C.A=R,B=R,f:x→y=x-1 2
D.A=Z,B=Z,f:x→y= 2x-1
2.函数y=f(x)的图象与直线x=2 023的公共点有
A.0个
B.1个
√C.0个或1个
D.以上答案都不对
3.若函数y=x2-3x的定义域为{-1,0,2,3},则其值域为_{_-__2_,0_,_4_}_.
问题3 通过对课本中的4个问题的分析,你能说出它们有什么不同点和 共同点吗? 不同点:课本中的问题1,2是用解析式刻画两个变量之间的对应关系,问 题3是用图象刻画两个变量之间的对应关系,问题4是用表格刻画两个变 量之间的对应关系. 共同点:①都包含两个非空数集,分别用A,B来表示; ②都有一个对应关系; ③对于数集A中的任意一个数x,按照对应关系,在数集B中都有唯一确 定的数y和它对应. 函数的本质特征
知识梳理
注意点: (1)A,B是非空的实数集. (2)定义域是非空的实数集A,但函数的值域不一定是非空实数集B,而是 集合B的子集. (3)函数定义中强调“三性”:任意性、存在性、唯一性. (4)函数符号“y=f(x)”是数学符号之一,不表示y等于f与x的乘积,f(x)也 不一定是解析式,还可以是图象或表格,或其他的对应关系(venn…). (5)除f(x)外,有时还用g(x),u(x),F(x),G(x)等符号表示函数.
由图象和表格呈现出来的变量间的对应关系比解析式更直观、形象.
年份y 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
恩格尔
系数 36.69 36.81 38.17 35.69 35.15 33.53 33.87 29.89 29.35 28.57
难点7-双变量的“任意性”“存在性”问题

难点7-双变量的“任意性”“存在性”问题本页仅作为文档页封面,使用时可以删除This document is for reference only-rar21year.March难点7 双变量的“任意性”与“存在性”问题1.“存在=存在”型∃x1∈D1,∃x2∈D2,使得f(x1)=g(x2),等价于函数f(x)在D1上的值域A与函数g(x)在D2上的值域B 的交集不为空集,即A∩B≠⌀.其等价转化的基本思想:两个函数有相等的函数值,即它们的值域有公共部分.典例1已知函数f(x)=x2-ax3,a>0,x∈R.g(x)=.若∃x1∈(-∞,-1],∃x2∈,使得f(x1)=g(x2),求实数a的取值范围.解析∵f(x)=x2-ax3,∴f '(x)=2x-2ax2=2x(1-ax).令f '(x)=0,得x=0或x=.∵a>0,∴>0,∴当x∈(-∞,0)时, f '(x)<0,∴f(x)在(-∞,-1]上单调递减, f(x)在(-∞,-1]上的值域为.∵g(x)=,∴g'(x)==.∵当x<-时,g'(x)>0,∴g(x)在上单调递增,∴g(x)<g=,∴g(x)在上的值域为.若∃x1∈(-∞,-1],∃x2∈,使得f(x1)=g(x2),则1+<,a<.故实数a的取值范围是.对点练已知函数f(x)=和函数g(x)=a·sin x-a+1(a>0),若存在x1,x2∈[0,1],使得f(x1)=g(x2)成立,则实数a的取值范围是( )A. B.[1,2)C. D.答案 C 设函数f(x),g(x)在[0,1]上的值域分别为A,B,则“存在x1,x2∈[0,1],使得f(x1)=g(x2)成立”等价于“A∩B≠⌀”.当0≤x≤时, f(x)=-x+单调递减,所以0≤f(x)≤;当<x≤1时, f '(x)=>0,所以f(x)=单调递增,<f(x)≤,故f(x)在[0,1]上的值域A=.当x∈[0,1]时,x∈,y=sin x在[0,1]上单调递增.又a>0,所以g(x)=asin x-a+1在[0,1]上单调递增,其值域B=.由A∩B≠⌀,得0≤1-a≤或0≤1-≤,解得≤a≤2.故选C.2.“任意=存在”型∀x1∈D1,∃x2∈D2,使得f(x1)=g(x2),等价于函数f(x)在D1上的值域A是函数g(x)在D2上的值域B的子集,即A⊆B.其等价转化的基本思想:函数f(x)的任意一个函数值都与函数g(x)的某一个函数值相等,即f(x)的函数值都在g(x)的值域之中.典例2 已知函数f(x)=,x∈[0,1].(1)求f(x)的单调区间和值域;(2)设a≥1,函数g(x)=x3-3a2x-2a,x∈[0,1].若对于任意的x1∈[0,1],总存在x∈[0,1],使得g(x0)=f(x1)成立,求a的取值范围.解析(1)f '(x)==-,x∈[0,1].令f '(x)=0,解得x=或x=(舍去).当x变化时, f '(x), f(x)的变化情况如下表所示:x01f '(x)-0+f(x)-↘-4↗-3所以f(x)的递减区间是,递增区间是.f(x)min =f=-4,又f(0)=-, f(1)=-3,所以f(x)max=f(1)=-3.故当x∈[0,1]时, f(x)的值域为[-4,-3].(2)“对于任意的x1∈[0,1],总存在x∈[0,1],使得g(x)=f(x1)成立”等价于“在x∈[0,1]上,函数f(x)的值域B是函数g(x)的值域A的子集,即B⊆A”.因为a≥1,且g'(x)=3(x2-a2)<0,所以当x∈[0,1]时,g(x)为减函数,所以g(x)的值域A=[1-2a-3a2,-2a].由B⊆A,得1-2a-3a2≤-4且-2a≥-3,又a≥1,故1≤a≤.对点练已知函数f(x)=x2-ax3(a>0),x∈R.(1)求f(x)的单调区间和极值;(2)若对于任意的x1∈(2,+∞),都存在x2∈(1,+∞),使得f(x1)·f(x2)=1.求a的取值范围.解析(1)由已知,有f '(x)=2x-2ax2(a>0).令f '(x)=0,解得x=0或x=.当x变化时, f '(x), f(x)的变化情况如下表:x(-∞,0)f '(x)-0+0-f(x)↘0↗↘所以, f(x)的单调递增区间是;单调递减区间是(-∞,0),.当x=0时, f(x)有极小值,且极小值f(0)=0;当x=时,f(x)有极大值,且极大值f=.(2)由f(0)=f=0及(1)知,当x∈时, f(x)>0;当x∈时, f(x)<0.设集合A={f(x)|x∈(2,+∞)},集合B=,则“对于任意的x 1∈(2,+∞),都存在x2∈(1,+∞),使得f(x1)·f(x2)=1”等价于A⊆B.显然,0∉B.下面分三种情况讨论:①当>2,即0<a<时,由f=0可知,0∈A,而0∉B,所以A不是B的子集.②当1≤≤2,即≤a≤时,有f(2)≤0,且此时f(x)在(2,+∞)上单调递减,故A=(-∞,f(2)),因而A⊆(-∞,0);由f(1)≥0,有f(x)在(1,+∞)上的取值范围包含(-∞,0),即(-∞,0)⊆B.所以,A⊆B.③当<1,即a>时,有f(1)<0,且此时f(x)在(1,+∞)上单调递减,故B=,A=(-∞,f(2)),所以A不是B的子集.综上,a的取值范围是.3.“任意≥(≤、>、<)任意”型∀x1∈D1,∀x2∈D2,f(x1)>g(x2)恒成立,等价于f(x)min>g(x)max,或等价于f(x)>g(x)max恒成立,或等价于f(x)min>g(x)恒成立.其等价转化的基本思想是函数f(x)的任何一个函数值均大于函数g(x)的任何一个函数值.∀x1∈D1,∀x2∈D2,f(x1)<g(x2)恒成立,等价于f(x)max<g(x)min,或等价于f(x)<g(x)min恒成立,或等价于f(x)max<g(x)恒成立.其等价转化的基本思想是函数f(x)的任何一个函数值均小于函数g(x)的任何一个函数值.∀x1∈D1,∀x2∈D2,f(x1)-g(x2)>k恒成立,等价于[f(x1)-g(x2)]min>k恒成立,也等价于f(x)min-g(x)max>k.∀x1∈D1,∀x2∈D2,f(x1)-g(x2)<k恒成立,等价于[f(x1)-g(x2)]max<k恒成立,也等价于f(x)max-g(x)min<k.典例3 设函数f(x)=x3-x2-3.(1)求f(x)的单调区间;(2)设函数g(x)=+xln x,如果对任意的x1,x2∈,都有f(x1)≤g(x2)成立,求实数a的取值范围.解析(1)f '(x)=3x2-2x.f '(x)>0时,x<0或x>,f '(x)<0时,0<x<.所以, f(x)的递增区间是(-∞,0),;递减区间是.(2)由(1)知,函数f(x)在上单调递减,在上单调递增,而f=-, f(2)=1,故f(x)在区间上的最大值f(x)max=f(2)=1.“对任意的x1,x2∈,都有f(x1)≤g(x2)成立”等价于“对任意的x∈,g(x)≥f(x)max恒成立”,即当x∈时,g(x)=+xln x≥1恒成立,即a≥x-x2lnx恒成立,记u(x)=x-x2ln x,则有a≥u(x)max.u'(x)=1-x-2xln x,可知u'(1)=0.当x∈时,1-x>0,2xln x<0,则u'(x)>0, 所以u(x)在上递增;当x∈(1,2)时,1-x<0,2xln x>0,则u'(x)<0,所以u(x)在(1,2)上递减.故u(x)在区间上的最大值u(x)max=u(1)=1,所以实数a的取值范围是[1,+∞).点拨 (1)∀x 1∈D 1,∀x 2∈D 2,f(x 1)>g(x 2)恒成立,通常等价转化为f(x)min >g(x)max .这是两个独立变量——双变量问题,不等式两边f(x 1),g(x 2)中自变量x 1,x 2可能相等,也可能不相等; (2)对任意的x∈[m,n],不等式f(x)>g(x)恒成立,通常等价转化为[f(x)-g(x)]min >0.这是单变量问题,不等式两边f(x),g(x)的自变量x 相等. 对点练函数f(x)=+1(m≠0),g (x)=x 2e ax (a∈R).(1)直接写出函数f(x)的单调区间;(2)当m>0时,若对于任意的x 1,x 2∈[0,2], f(x 1)≥g(x 2)恒成立,求a 的取值范围. 解析 (1)当m>0时,f(x)的递增区间是(-1,1);递减区间是(-∞,-1),(1,+∞). 当m<0时,f(x)的递增区间是(-∞,-1),(1,+∞);递减区间是(-1,1).(2)当m>0时,“对于任意的x 1,x 2∈[0,2],f(x 1)≥g(x 2)恒成立”等价于“对于任意的x∈[0,2],f(x)min ≥g(x)max 成立”.当m>0时,由(1)知,函数f(x)在[0,1]上单调递增,在[1,2]上单调递减,因为f(0)=1,f(2)=+1>1,所以f(x)min =f(0)=1,故应满足1≥g(x)max .因为g(x)=x 2e ax ,所以g'(x)=(ax 2+2x)e ax .①当a=0时,g(x)=x 2,此时g(x)max =g(2)=4,不满足1≥g(x)max .②当a≠0时,令g'(x)=0,得x=0或x=-.(i)当-≥2,即-1≤a<0时,在[0,2]上,g'(x)≥0,g(x)在[0,2]上单调递增,g(x)max =g(2)=4e 2a .由1≥4e 2a,得a≤-ln 2,所以-1≤a≤-ln 2.(ii)当0<-<2,即a<-1时,在上,g'(x)≥0,g(x)递增;在上,g'(x)<0,g(x)递减.g(x)max =g =,由1≥,得a≤-,所以a<-1.(iii)当-<0,即a>0时,显然在[0,2]上,g'(x)≥0,g(x)单调递增,于是g(x)max =g(2)=4e 2a >4,此时不满足1≥g(x)max .综上,a的取值范围是(-∞,-ln 2].4.“任意≥(≤、>、<)存在”型∀x1∈D1,∃x2∈D2,使得f(x1)>g(x2)成立,等价于f(x)min>g(x)min.其等价转化的基本思想是函数f(x)的任意一个函数值大于函数g(x)的某一个函数值,但并不要求大于函数g(x)的所有函数值.∀x1∈D1,∃x2∈D2,使得f(x1)<g(x2)成立,等价于f(x)max<g(x)max.其等价转化的基本思想是函数f(x)的任意一个函数值小于函数g(x)的某一个函数值,但并不要求小于函数g(x)的所有函数值.∀x1∈D1,∃x2∈D2,使得f(x1)-g(x2)>k成立,等价于f(x)min-g(x)min>k.∀x1∈D1,∃x2∈D2,使得f(x1)-g(x2)<k成立,等价于f(x)max-g(x)max<k.典例4 函数f(x)=ln x-x+-1,g(x)=x2-2bx+4,若对任意的x1∈(0,2),存在x2∈[1,2],使得f(x1)≥g(x2)成立,求实数b的取值范围.解析“对任意的x1∈(0,2),存在x2∈[1,2],使得f(x1)≥g(x2)成立”等价于“f(x)在(0,2)上的最小值不小于g(x)在[1,2]上的最小值,即f(x)min ≥g(x)min(*)”.f '(x)=--=,当x∈(0,1)时, f '(x)<0, f(x)单调递减;当x∈(1,2)时, f '(x)>0, f(x)单调递增.故当x∈(0,2)时, f(x)min=f(1)=-.又g(x)=(x-b)2+4-b2,x∈[1,2],①当b<1时,g(x)min=g(1)=5-2b>3,此时与(*)矛盾;②当b∈[1,2]时,g(x)min=g(b)=4-b2≥0,同样与(*)矛盾;③当b∈(2,+∞)时,g(x)min=g(2)=8-4b,由8-4b≤-,得b≥.综上,实数b的取值范围是.对点练已知函数f(x)=x3+x2+ax.(1)若f(x)在区间[1,+∞)上单调递增,求a的最小值;(2)若g(x)=,∀x1∈,∃x2∈,使得f '(x1)≤g(x2)成立,求a的取值范围.解析(1)由题设知f '(x)=x2+2x+a≥0,即a≥-(x+1)2+1在[1,+∞)上恒成立,而y=-(x+1)2+1在[1,+∞)上单调递减,则ymax =-3,∴a≥-3,∴amin=-3.(2)“∀x1∈,∃x2∈,使f '(x1)≤g(x2)成立”等价于“x∈时,f'(x)max ≤g(x)max恒成立”.∵f '(x)=x2+2x+a=(x+1)2+a-1在上递增,∴f '(x)max=f '(2)=8+a,又g'(x)==,∴g(x)在(-∞,1)上递增,在(1,+∞)上递减.∴当x∈时,g(x)max=g(1)=,由8+a≤得,a≤-8,所以a的取值范围是.5.“存在≥(≤、>、<)存在”型若∃x1∈D1,∃x2∈D2,使得f(x1)>g(x2)成立,等价于f(x)max≥g(x)min.其等价转化的基本思想是函数f(x)的某一个函数值大于函数g(x)的某一个函数值,即只要有这样的函数值即可.若∃x1∈D1,∃x2∈D2,使得f(x1)<g(x2)成立,等价于f(x)min<g(x)max.其等价转化的基本思想是函数f(x)的某一个函数值小于函数g(x)的某一个函数值,即只要有这样的函数值即可.若∃x1∈D1,∃x2∈D2,使得f(x1)-g(x2)>k成立,等价于[f(x1)-g(x2)]max>k,也等价于f(x)max-g(x)min>k.若∃x1∈D1,∃x2∈D2,使得f(x1)-g(x2)<k成立,等价于[f(x1)-g(x2)]min<k,也等价于f(x)min-g(x)max<k.典例5 已知函数f(x)=4ln x-ax+(a≥0).(1)直接写出函数f(x)的单调区间;(2)当a≥1时,设g(x)=2e x-4x+2a,若存在x1,x2∈,使f(x1)>g(x2),求实数a的取值范围.解析(1)当a=0时,函数f(x)的递减区间为,递增区间为.当0<a<1时,函数f(x)的递减区间为,,递增区间为.当a≥1时, f(x)的递减区间为(0,+∞).(2)“存在x1,x2∈,使f(x1)>g(x2)”等价于“ 当x∈时, f(x)max>g(x)min”.由(1)知,当x∈时, f(x)max=f=-4ln 2+a+6, 由g'(x)=2e x-4>0,得x>ln 2,所以g(x)在(0,ln 2)上单调递减,在(ln 2,+∞)上单调递增,故当x∈时,g(x)min=g(ln 2)=4-4ln 2+2a,由f(x)max >g(x)min,得-4ln 2+a+6>4-4ln 2+2a,又a≥1,所以1≤a<4.对点练设函数f(x)=-ax.(1)若函数f(x)在(1,+∞)上为减函数,求实数a的最小值;(2)若存在x1,x2∈[e,e2],使f(x1)≤f '(x2)+a成立,求实数a的取值范围.解析(1)由题设知f '(x)=-a≤0在(1,+∞)上恒成立,则只需f '(x)max≤0.又f '(x)=-a=-+-a,所以当=,即x=e2时, f '(x)max=-a,由-a≤0得a≥,故a的最小值为.11 (2)“存在x 1,x 2∈[e,e 2],使f(x 1)≤f '(x 2)+a 成立”等价于“当x 1,x 2∈[e,e 2]时,f(x 1)min ≤f '(x 2)max +a”.由(1)知,当x∈[e,e 2]时, f '(x)max =f '(e 2)=-a,所以f '(x)max +a=. 则问题等价于“当x∈[e,e 2]时, f(x)min ≤”.①当a≥时,由(1)得f '(x)max =-a≤0, f(x)在[e,e 2]上为减函数,则f(x)min =f(e 2)=-ae 2,由f(x)min ≤,得a≥-.②当a<时, f '(x)=-+-a 在[e,e 2]上的值域为. (i)当-a≥0,即a≤0时, f '(x)≥0在[e,e 2]恒成立,故f(x)在[e,e 2]上为增函数,于是f(x)min =f(e)=e-ae≥e>,与f(x)min ≤矛盾.(ii)当-a<0,即0<a<时,由f '(x)的单调性和值域知,存在唯一的x 0∈(e,e 2),使f '(x)=0,且满足:当x∈(e,x 0)时, f '(x)<0, f(x)为减函数;当x∈(x 0,e 2)时, f '(x)>0, f(x)为增函数,所以f(x)min =f(x 0)=-ax 0≤,x 0∈(e,e 2).所以a≥->->-=,与0<a<矛盾.综上,a 的取值范围是a≥-.。
专题03函数的概念与性质高一数学上学期期中考点(人教A版必修第一册)课件

偶函数
2 知识回归
知识回顾 8:幂函数的图象与性质
8.1、五个幂函数的图象 (记忆五个幂函数的图象 )
当 1, 2,3, 1 , 1 时,我们得到五个幂函数: 2
f
(x)
x
;
f
(x)
x2
;
f
(x)
x3
;
f
(x)
1
x2
;
f
(x)
x 1
2 知识回归
知识回顾 8:幂函数的图象与性质 8.2、五个幂函数的性质
3 典型例题讲与练
考点二:函数的值域
【典例
5】(2023·全国·高一专题练习)函数
f
(x)
8x x2
15 3x
4
的值域为(
)
A.
1 7
,
1 3
B.
8 7
,
2
C.
16 7
,
4
D.以上答案都不对
【详解】设题中函数为 y f x ,则 yx2 (3y 8)x 4y 15 0 ,
当 y 0 时, x 15 ;
2 知识回归
知识回顾 3:求函数解析式
(1)待定系数法:若已知函数的类型(如一次函数、二次函数,反比例等),
可用待定系数法.
(2)换元法:主要用于解决已知 f g x 这类复合函数的解析式,求函数 f x
的解析式的问题,在使用换元法时特别注意,换元必换范围.
(3)配凑法:由已知条件 f g x F x ,可将F x 改写成关于 g x 的表达式,
特别地,当函数 f (x) 在它的定义域上单调递增时,称它是减函数(decreasing function).
北师大版高中数学必修第一册 第二章 2-1《函数概念》课件PPT

1
=4,求x.
(())
(3)若
1
1
解:(1)f(2)=1+2 = 3,g(2)=22+2=6.
1
1
19
1
1+()
(2)g(f(2))=g 3 = 3 2+2= 9 , f(g(x))=
(3)
1
=x2+3=4,即x2=1,得x=±1.
(())
1
求复合函数或抽象函数的定义域应明确以下几点:
(1)函数f(x)的定义域是指x的取值范围所组成的集合.
(2)函数f(φ(x))的定义域是指x的取值范围,而不是φ(x)的取值范围.
(3) f(t),f(φ(x)),f(h(x))三个函数中的t,φ(x),h(x)在对应关系f下的范围相同.
(4)已知f(x)的定义域为A,求f(φ(x))的定义域,其实质是已知φ(x)的取值范围为A,求出x的取值范围.
都有意义的自变量的取值集合(即求各式子自变量取值集合的交集).
变式训练
求函数y= 2 + 3 −
1
2−
1
+ 的定义域.
2 + 3 ≥ 0,
3
解:要使函数有意义,需ቐ 2− > 0, 解得-2≤x<2,且x≠0,
≠ 0,
所以函数y= 2 + 3 −
1
2−
1
3
+ 的定义域为 ቚ− 2 ≤ < 2,且 ≠ 0 .
+ 2 ≠ 0,
≠ −2,
即ቊ
解得x<0,且x≠-2.
||− ≠ 0,
|| ≠ ,
二轮数学专题——函数中任意性与存在性问题

转化化归思想
显性问题
数形结合思想
主参换位法
分离参数法
数形结合法
研究最值
主参换位法 分类讨论思想 分离参数法
导数分析法
构造函数法 导数分析法
利用函数图象
求新函数的最值
求原函数的最值
结束
03:31:09
走近高考
练习1: (07安徽理科3)若对任意x R, 不等式|x | ax恒成立, 则实数a的取值范围是( A.a 1 B. | a | 1 ) C. | a | 1
f ( x1 )max g ( x2 )max
03:31:09
2.不同函数,相同变量
(1)x A, f ( x) g ( x)成立
[ f ( x) g ( x)]max 0 [ g ( x) f ( x)]min 0
(2)x A, f ( x) g ( x)成立
F ( x) f ( x) kg ( x) x x 4 x 2 e (2 x 2)
0 1)若k 0, F (0) 2(1 kex ) 0与题不符 . F (0) 2(1 ke ) 0 k 1. 2 x
方法反思:
构造函数法:某些任意性存在性问题,需要解决 函数的最值或值域,而没有简便快捷方法时,我 们可以尝试构造新函数,结合导数分析法,最值 定位法,探究函数性质,最终解决问题。
{ f ( x) | x A} {g ( x) | x B}
03:31:09
任意性存在性问题分类总结:
1.不同函数,不同变量(分别考虑) 2.不同函数,相同变量(构造函数)
3.相同函数,不同变量(考查最值差) 4.不同函数,相等关系(考查值域)
浅议函数中任意性与存在性问题

浅议函数中任意性与存在性问题姻文/陈刚盐城市阜宁县陈集中学,江苏阜宁224400函数的任意性与存在性问题,是一种常见题型,也是高考的热点之一。
它们既有区别又有联系,意义和转化方法各不相同,容易混淆。
对于这类问题,利用函数与导数的相关知识,可以把相等关系转化为函数值域之间的关系,不等关系转化为函数最值大小的比较。
下面结合实例来看看函数中的任意性与存在性问题在解题中的区别。
1. 若函数()f x 的定义域为D ,对任意x D Î时有()0f x ³恒成立min ()0f x Û³;()0f x £恒成立max ()0f x Û£。
例1. 设函数32()29128f x x x x c =-++,若对任意[0,3]x Î,都有2()f x c <成立,则实数c 的取值范围是解析 因为32()29128f x x x x c =-++,由2()f x c < 所以32229128x x x c c -++<,所以32229128x x x c c -+<-令32()2912g x x x x =-+,欲使2()8g x c c <-对任意[0,3]x Î恒成立,则需使max ()g x <28c c -对任意[0,3]x Î成立即可。
所以 2()61812g x x x ¢=-+ 令()0g x ¢=,得121,2x x ==,当(0,1)x Î时,()0g x ¢>,所以函数()g x 在区间(0,1)上单调递增;当(1,2)x Î时,()0g x ¢<,所以函数()g x 在区间(1,2)上单调递减;当(2,3)x Î时,()0g x ¢>,所以函数()g x 在区间(2,3)上单调递增.又由(1)5,(3)9g g ==,故当[0,3]x Î时,max ()9g x =由题意得 298c c <-,得91c c ><-或。
《函数的基本性质》函数的概念与性质PPT(第1课时函数的单调性)

第三章 函数的概念与性质
由函数单调性求参数范围的类型及处理方法 (1)由函数解析式求参数
栏目 导引
第三章 函数的概念与性质
(2)利用抽象函数单调性求范围 ①依据:定义在[m,n]上的单调递增(减)函数中函数值与自变 量的关系 f(a)<f(b)⇔am<≤b(a≤a>nb,),
m≤b≤n. ②方法:依据函数单调性去掉符号“f”,转化为不等式问题求解. [提醒] 单调区间是 D≠在区间 D 上单调. (1)单调区间是 D:指单调区间的最大范围是 D. (2)在区间 D 上单调:指区间 D 是单调区间的子集.
栏目 导引
第三章 函数的概念与性质
=(x1-x2)x1(x2x1x2-4). 因为 0<x1<x2<2, 所以 x1-x2<0,0<x1x2<4,x1x2-4<0, 所以 f(x1)-f(x2)>0,即 f(x1)>f(x2). 所以函数 f(x)=x+4x在(0,2)上单调递减.
栏目 导引
第三章 函数的概念与性质
栏目 导引
第三章 函数的概念与性质
(2)如果∀x1,x2∈D,当 x1<x2 时,都有__f_(x_1_)_>__f(_x_2_) ___,那么 就称函数 f(x)在区间 D 上单调递减(如图②) 特别地,当函数 f(x)在它的定义域上_单__调__递__减__时,我们就称它 是减函数.
栏目 导引
栏目 导引
第三章 函数的概念与性质
2.已知函数 f(x)=2x-+x1,证明:函数 f(x)在(-1,+∞)上为减 函数. 证明:∀x1,x2∈(-1,+∞), 且 x1<x2, 则 f(x1)-f(x2)=x21-+x11-x22-+x12
栏目 导引
第三章 函数的概念与性质
_任意性_存在性_问题剖析

类型五: “ 任意”、 “ 存在” ( 或“ 存在”、 “ 任意” )型
例5 ( 2 0 1 0年山东高考理 2 2 )已知函数 f ( x ) =l n x- 1-a a x+ -1 ( a ) . ∈R x ( 1 )当 a 1 时, 讨论 f ( x )的单调性; 2 1 时, 若对任意 x 1 4
4 0 x , 存在 x , x - 3 , 3 ] , 都有 f ( x ) <g ( x ) , 求实数 c 的 1 2∈ [ 1 2 取值范围. 分析: 存在 x , x -3 , 3 ] , 都有 f ( x ) <g ( x ) , 等价 1 2∈ [ 1 2
2 2 ( x ) ( x ) , 由f ( x ) =7 x - 2 8 x -c=7 ( x - 2 ) - 于f m i n <g m a x
2 2 1 1 a +b 2+ 2 为定值 2 2 ; O A O B ab 2 2 4 a b 2 2 2 A B| a +b. 2 2 | a +b
∴
2 2 4 a b 2 2 2 A B| a +b. 2 2 | a +b
这样结合平面几何知识由此题可知, 高考题第( Ⅱ)存 在半径 R 为
x +x 2 x +x +1 h ( x )= 2 , 则h ′ ( x )= , 故函数 h ( x ) 2 2 >0 2 x +1 ( 2 x +1 ) 2 在[ 1 , 2 ] 上是增函数, h ( x ) ( 1 )= , 所以实数 a 的取 m i n =h 3 值范围是 0 <a< 2 . 3
槡
2 2 a b 2 = a +b 2
= 的圆满足题意, 从而 8+4 3 槡
8×4 2 6 槡
证明: 设点 A ( | O A| c o s , | O A| s i n ) , 则点 B ( | O B| θ θ π π c o s ( , | O B| s i n ( ) , θ+ ) θ+ ) 2 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
1
【例】已 f(x)知 8x2函 1x6 数 a,g(x)2x35x24x, 分别求满足a的 下取 列值 条范 件围 时:
( 1 ) x [ 3 ,3 ]f,(x ) g (x );
令h(x) f(x)g(x) xD,h(x)0恒成立
h(x)ma x0,
h (x ) 0 得 x 1 ,或 x 2
2f(x)minf(x)max
.
7
宁波试卷最后一题处理
总结:函数
f ( x ), g ( x ) ,“翻译工作如下”:
( 1) x D , f ( x ) g ( x );
令 h(x) f (x) g (x)
x D , h ( x ) 0 h ( x ) max
( 2) x 0 D , f ( x 0 ) g ( x 0 )
方 法 m 1 f 二 (1 a ) 2,考 : m 察 g m( a a ) x 最g 后 ma(a x) ?,一个".值 0 0型 "是 求形 极如 限
变量分离
9
“变量分离”只是一种方法,有时可能也走不通,故平时 二种方式都应掌握,而不应局限于一种,否则一条路不 行时,就成了绝路。希望大家对这节课里的内容回去再 总结。
x D , h ( x ) min 0
( 3) x 1 , x 2 D , f ( x 1 ) g ( x 2 )
f ( x ) max g ( x ) min
( 4 ) x 1 D , 总存在
x 0 D , 使得
f ( x ) 的值域 g ( x ) 的值域
0,
( 6 ) x 1 ,x 2 [ 3 ,3 ]总 , |f( x 1 有 ) g ( x 2 )| 201
| |
f(x)ming(x)max|201 f(x)maxg(x)min|201
3 3
( 7 ) x 1 ,x 2 ,x 3 [ 3 , 3 ] 总 ,f ( x 1 ) f 有 ( x 2 ) f ( x 3 )
f ( x1)
g ( x 0 );
( 5 ) x 0 D , x 1 , x 2 D , 使得 g ( x 1 ) f ( x 0 ) g ( x 2 );
g g
( (
x x
) min ) max
f ( x ) min f ( x ) max
( 6 ) x 1 , x 2 [ 3 , 3 ], 总有 | f ( x 1 ) g ( x 2 ) | M
f(x)ma xg(x)min
f(x)ma xf(3)12a 0 g(x)6x21x04,g(x)0 x1,x2
3 g(x)mi n g(3)g ,(1)g ,(3 2)g ,(3)
21,1,
2278,111
120a 21
.
4
【例】已 f(x)知 8x2函 1x6 数 a,g(x)2x35x24x, 分别求满足a的 下取 列值 条范 件围 时:
( 5 ) x 0 [ 3 , 3 ] x 1 , x 2 [ 3 , 3 ] 使 ,g ( x 1 ) f ( x 得 0 ) g ( x 2 );
gg((xx))m m
in ax
f (x)min f (x)max
218a 111120a9a13
.
6
【例】已 f(x)知 8x2函 1x6 数 a,g(x)2x35x24x, 分别求满足a的 下取 列值 条范 件围 时:
(3)若对任意的a
(1,2],总存在x0
[
1 2
,1],使不等式f
(x0
)
Байду номын сангаас
m(1
a2
)成立,
求实数m的取值范围。
( 3 ) fm (x a ) x m ( 1 a 2 ) f( 1 ) m ( 1 a 2 )对 , a ( 1 ,2 ] 恒成立
方g 法 ( a ) f( 1 ) 一 m ( 1 a 2 )考 : ,g m ( a ) i 察 n 令 0 ,对 a ( 1 ,2 ] 恒成 设函数法立
.
10
h ( x ) m m a h x ( 3 ) h a ( 1 , ) h ( x 2 ) ,h ( 3 ) , m4 a 5 x a , 7 a ,2 0 a ,9 a
4 5 a0
.
2
【例】已 f(x)知 8x2函 1x6 数 a,g(x)2x35x24x, 分别求满足a的 下取 列值 条范 件围 时:
( 4 ) x 1 [ 3 , 3 ] 总 , x 0 [ 存 3 , 3 ] 使 ,f( x 在 1 ) g 得 ( x 0 );
f(x)的值 g域 (x)的值域
[ 8a ,12 a ]0 [ 2,1 1]11
1211 112 8 0aa9a13
.
5
【例】已 f(x)知 8x2函 1x6 数 a,g(x)2x35x24x, 分别求满足a的 下取 列值 条范 件围 时:
|
|
f ( x ) min f ( x ) max
g ( x ) max g ( x ) min
| M | .M
8
【练习】已知函数f (x) ln( 1 1 ax) x2 ax, a为常数,a 0 22
(1)若x 1 是函数f (x)的一个极值点,求a的值; 2
(2)求证:当0 a 2时,f (x)在[1, )上单调递增; 2
( 2 ) x 0 [ 3 ,3 ]f,(x 0)g (x 0);
x D ,h (x)m in 0 7a0
.
3
【例】已 f(x)知 8x2函 1x6 数 a,g(x)2x35x24x, 分别求满足a的 下取 列值 条范 件围 时:
( 3 ) x 1 ,x 2 [ 3 ,3 ]f( ,x 1 ) g ( x 2 );