(推荐)高考数学-函数中存在性和任意性问题分类解析

(推荐)高考数学-函数中存在性和任意性问题分类解析
(推荐)高考数学-函数中存在性和任意性问题分类解析

函数中存在性和任意性问题分类解析

全称量词、特称量词以及全称命题和特称命题在近几年新课标高考卷和模拟卷中频频亮相成为高考的热点问题.特别是全称量词”任意”和特称量词”存在”与函数情投意合风火情深,火借风势、风助火威,大有逾演逾烈之势.两种量词插足函数,使得函数问题意深难懂神秘莫测,问题显得更加扑朔迷离难度大增,同时题目也因此显得富有变化和新意.解决这类问题的关键是揭开量词隐含的神秘面纱还函数问题本来面目,本文通过典型题目分类解析供参考.

1.,,使得,等价于函数在上的值域与函数在上的值域的交集不空,即.

例1已知函数和函数,若存在,使得成立,则实数的取值范围是()

解设函数与在上的值域分别为与,依题意.

当时,,则,所以在上单调递增,所以即.

当时,,所以单调递,所以即.

综上所述在上的值域.

当时,,又,所以在在上单调递增,所以即,故在上的值域.

因为,所以或解得,故应选.

2.对,,使得,等价于函数在上的值域是函数在上的值域的子集,即.

例2(2011湖北八校第二次联考)设,.

①若,使成立,则实数的取值范围为___;②若,

,使得,则实数的取值范围为___

解①依题意实数的取值范围就是函数的值域.设

,则问题转化为求函数的值域,由均值不等式得,,故实数的取值范围是.

②依题意实数的取值范围就是使得函数的值域是函数的值域的子集的实数的取值范围.由①知,易求得函数的值域,则当且仅当即,故实数的取值范围是.

例3已知,它们的定义域都是,其中是自然对数的底数,.(1)求的单调区间;(2)若,且,函数,若对任意的,总存在,使,求实数的取值范围.

解(1)略;(2)依题意实数的取值范围就是使得在区间上的值域是的值域的子集实数的取值范围.

当时,由得,故在上单调递减,所以即,于是.

因,由得.

①当时,,故在上单调递增,所以

即,于是.因为,则当且仅当

,即.

②当时,同上可求得.

综合①②知所求实数的取值范围是.

3.已知是在闭区间的上连续函,则对使得,等价于.

例4已知,其中.(1)若是函数的极值点,求实数的值;(2)若对任意的都有成立,求实数的取值范围.

解(1)略;(2) 对,有,等价于有.

当时,,所以在上单调递增,所以.

因为,令得,又且,.

①当时,,所以在在上单调递增,所以

.令得这与矛盾。

②当时,当时,当时,所以在

上单调递减在上单调递增,所以.令得

,又,所以。

③当时,,所以在上单调递减,所以

.令得,又,所以。

综合①②③得所求实数的取值范围是。

另解同上求得,要证时,,即.由上知求需对参数进行分类讨论过程繁而长,其实可避免分类讨论,不等式恒成立问题往往转化最值问题来解决,逆向思维,由于难求,将退回到恒成立问题: 证时,即恒成立,只需证当时,恒成立,只需证.因为,令得.当时,当时,故,所以,故所

求实数的取值范围是。

点评这里“另解”将不等式恒成立问题与最值问题的单向转化变成双向转化,将一个需要分类讨论的最值问题转化为另一个不需要分类讨论的最值问题.

练习:已知函数,,若函数的图象经过点,且在点处的切线线恰好与直线垂直.(1)求的值;(2)求函数的在上最大值和最小值;(3)如果对任意都有成立,求实数的取值范围.

4.若对,,使,等价于在上的最小值不小于

在上的最小值即(这里假设存在)。

例5(2010年山东)已知函数.(1)当时,讨论的单调性;(2)设,当时,若对任意,存在,使,求实数的取值范围.

解(1)略;(2)依题意在上的最小值不小于在上的最小值即,于是问题转化为最值问题.

当时,,所以,则当时,;当时,,所以当时,

.

,①当时,可求得,由得

这与矛盾.②当时,可求得,由得这与矛盾.③当时,可求得,由

得.

综合①②③得实数的取值范围是.

(注:文档可能无法思考全面,请浏览后下载,供参考。可复制、编制,期待你的好评与关注!)

一次函数之全等三角形存在性

一次函数之全等三角形存在性(北师版)11.26 1.(本小题16分)如图,直线与x轴、y轴分别交于A,B两点,若x轴的负半轴、y轴的负半轴上分别 存在点E,F,使得△EOF与△AOB全等,则直线EF的表达式为( ) ? A. B. ? C. D. 1 2 2.(本小题16分)如图,直线与x轴、y轴分别交于A,B两点,点C是直线上不与A,B重合 的动点.过点C的另一直线CD与y轴相交于点D,若使△BCD与△AOB全等,则点C的坐标为( ) ? A. B. ? C. D.

3.(本小题16分)如图,直线y=-2x+4与x轴、y轴分别交于A,B两点,点P(x,y)是直线y=-2x+4上的一个动点, 过P作AB的垂线与x轴、y轴分别交于E,F两点,若△EOF与△AOB全等,则点P的坐标为( ). A. B. ? C. D. 4.(本小题16分)如图,直线y=x+2与x轴、y轴分别交于A,B两点,点C是直线y=x+2上不与A,B重合的动点.过 点C的另一直线CD与x轴相交于点D,若使△ACD与△AOB全等,则点C的坐标为( ) ? A. B. ? C. D. 4 5 5.(本小题18分)如图,直线AB与x轴、y轴分别交于A,B两点,已知A(2,0),B(0,4),线段CD的两端点在坐标 轴上滑动(点C在y轴上,点D在x轴上),且CD=AB.若满足点C在y轴负半轴上,且△COD和△AOB全等,则满足题意的点D有( )个. A. 2 B. 3 C. 4 D. 5

6.(本小题18分)如图,直线与x轴、y轴分别交于A,B两点,点C的坐标为(-3,0), P(x,y)是直线上的一个动点(点P不与点A重合).当△OPC的面积为时,点P的坐标为( ) ? A. B. C. D. 一次函数之等腰三角形存在性(北师版) 11.25 1.(本小题16分)如图,直线与x轴、y轴分别交于A,B两点,点P是x轴上的动点, 若使△ABP为等腰三角形,则点P的坐标是( ) A. B. C. D.

高考数学_函数中存在性和任意性问题分类解析

函数中存在性和任意性问题分类解析 湖北省阳新县高级中学邹生书 全称量词、特称量词以及全称命题和特称命题在近几年新课标高考卷和模拟卷中频频亮相成为高考的热点问题.特别是全称量词”任意”和特称量词”存在”与函数情投意合风火情深,火借风势、风助火威,大有逾演逾烈之势.两种量词插足函数,使得函数问题意深难懂神秘莫测,问题显得更加扑朔迷离难度大增,同时题目也因此显得富有变化和新意.解决这类问题的关键是揭开量词隐含的神秘面纱还函数问题本来面目,本文通过典型题目分类解析供参考. 1.,,使得,等价于函数在上的值域与函数在上的值域的交集不空,即. 例1已知函数和函数,若存在,使得成立,则实数的取值范围是() 解设函数与在上的值域分别为与,依题意. 当时,,则,所以在上单调 递增,所以即. 当时,,所以单调递,所以即. 综上所述在上的值域. 当时,,又,所以在在上单调递增,所以即,故在上的值域.

因为,所以或解得,故应选. 2.对,,使得,等价于函数在上的值域是函数在上的值域的子集,即. 例2(2011湖北八校第二次联考)设,. ①若,使成立,则实数的取值范围为___;②若 ,,使得,则实数的取值范围为___解①依题意实数的取值范围就是函数的值域.设,则问题转化为求函数的值域,由均值不等式得,,故实数的取值范围是. ②依题意实数的取值范围就是使得函数的值域是函数的值域的子集的实数的取值范围.由①知,易求得函数的值域,则 当且仅当即,故实数的取值范围是. 例3已知,它们的定义域都是,其中是自然对数的底数,.(1)求的单调区间;(2)若,且,函数,若对任意的,总存在,使,求实数的取值范围. 解(1)略;(2)依题意实数的取值范围就是使得在区间上的值域是 的值域的子集实数的取值范围. 当时,由得,故在 上单调递减,所以即,于是.

一次函数之存在性问题

一次函数之存在性问题 1. 如图,直线与坐标轴分别交于A,B两点,点C在y轴上,且,直 线CD⊥AB于点P,交x轴于点D. (1)求点P的坐标; (2)坐标系内是否存在点M,使以点B,P,D,M为顶点的四边形为平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.2. 如图,在平面直角坐标系中,直角梯形OABC的边OC,OA分别 与x轴、y轴重合,AB∥OC,∠AOC=90°,∠BCO=45°,BC=,点C的坐标为(-9,0). (1)求点B的坐标. (2)如图,直线BD交y轴于点D,且OD=3,求直线BD的表 达式.(3)若点P是(2)中直线BD上的一个动点,是否存在点P,使以O,D,P为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.

3. 如图,直线y=kx-4与x轴、y轴分别交于B,C两点,且. (1)求B点的坐标和k的值. (2)若点A(x,y)是第一象限内的直线y=kx-4上的一个动点,则当点A运动到什么位置时,△AOB的面积是6? (3)在(2)成立的情况下,x轴上是否存在点P,使△POA是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由. 4. 如图,在平面直角坐标系中,点A,B分别在x轴、y轴 上,OA=6,OB=12,点C是直线y=2x与直线AB的交点,点D在线段OC上,OD=. (1)求直线AB的解析式及点C的坐标; (2)求直线AD的解析式; (3)P是直线AD上的一个动点,在平面内是否存在点Q,使以 O,A,P,Q为顶点的四边形是菱形?若存在,求出点Q的坐标;若不存在,请说明理由.

5. 如图,直线与x轴、y轴分别交于A,B两点,点C的坐标为 (-3,0),P(x,y)是直线上的一个动点(点P不与点A重 合). (1)在P点运动过程中,试写出△OPC的面积S与x的函数关系式;(2)当P运动到什么位置时,△OPC的面积为,求出此时点P的坐标; (3)过P作AB的垂线分别交x轴、y轴于E,F两点,是否存在这样的点P,使△EOF≌△BOA?若存在,求出点P的坐标;若不存在,请说明理由. 一次函数之存在性问题

函数周期性分类解析以及习题练习

函数周期性分类解析 一.定义:若T 为非零常数,对于定义域内的任一x ,使)()(x f T x f = +恒成立 则f (x )叫做周期函数,T 叫做这个函数的一个周期。 二.重要结论 1、()()f x f x a =+,则()y f x =是以T a =为周期的周期函数; 2、 若函数y=f(x)满足f(x+a)=-f(x)(a>0),则f(x)为周期函数且2a 是它的一个周期。 3、 若函数()()f x a f x a +=-,则()x f 是以2T a =为周期的周期函数 4、 y=f(x)满足f(x+a)= () x f 1 (a>0),则f(x)为周期函数且2a 是它的一个周期。 5、若函数y=f(x)满足f(x+a)= () x f 1 - (a>0),则f(x)为周期函数且2a 是它的一个周期。 6、1() ()1() f x f x a f x -+= +,则()x f 是以2T a =为周期的周期函数. 7、1() ()1() f x f x a f x -+=- +,则()x f 是以4T a =为周期的周期函数. 8、 若函数y=f(x)满足f(x+a)= ) (1) (1x f x f -+(x ∈R ,a>0),则f(x)为周期函数且4a 是它的一个周 期。 9、 若函数y=f(x)的图像关于直线x=a,x=b(b>a)都对称,则f(x)为周期函数且2(b-a )是它的 一个周期。 10、函数()y f x =()x R ∈的图象关于两点()0,A a y 、()0,B b y ()a b <都对称,则函数 ()f x 是以()2b a -为周期的周期函数; 11、函数()y f x =()x R ∈的图象关于()0,A a y 和直线x b =()a b <都对称,则函数()f x 是以()4b a -为周期的周期函数; 12、若偶函数y=f(x)的图像关于直线x=a 对称,则f(x)为周期函数且2a 是它的一个周期。 13、若奇函数y=f(x)的图像关于直线x=a 对称,则f(x)为周期函数且4a 是它的一个周期。 14、若函数y=f(x)满足f(x)=f(x-a)+f(x+a)(a>0),则f(x)为周期函数,6a 是它的一个周期。

高考数学-函数中存在性和任意性问题分类解析

函数中存在性和任意性问题分类解析 全称量词、特称量词以及全称命题和特称命题在近几年新课标高考卷和模拟卷中频频亮相成为高考的热点问题.特别是全称量词”任意”和特称量词”存在”与函数情投意合风火情深,火借风势、风助火威,大有逾演逾烈之势.两种量词插足函数,使得函数问题意深难懂神秘莫测,问题显得更加扑朔迷离难度大增,同时题目也因此显得富有变化和新意.解决这类问题的关键是揭开量词隐含的神秘面纱还函数问题本来面目,本文通过典型题目分类解析供参考. 1.,,使得,等价于函数在上的值域与函 数在上的值域的交集不空,即. 例1已知函数和函数, 若存在,使得成立,则实数的取值范围是() 解设函数与在上的值域分别为与,依题意. 当时,,则,所以在上单调递增,所以即. 当时,,所以单调递,所以即 . 综上所述在上的值域. 当时,,又,所以在在上单调递增,所以 即,故在上的值域.

因为,所以或解得,故应选. 2.对,,使得,等价于函数在上的值域是函数在上的值域的子集,即. 例2(2011湖北八校第二次联考)设,. ①若,使成立,则实数的取值范围为___;②若 ,,使得,则实数的取值范围为___ 解①依题意实数的取值范围就是函数的值域.设 ,则问题转化为求函数的值域,由均值不等式得,,故实数的取值范围是. ②依题意实数的取值范围就是使得函数的值域是函数的值域的子集的实数的取值范围.由①知,易求得函数的值域,则 当且仅当即,故实数的取值范围是. 例3已知,它们的定义域都是,其中是自然对数的底数,.(1)求的单调区间;(2)若,且,函数,若对任意的,总存在,使,求实数的取值范围. 解(1)略;(2)依题意实数的取值范围就是使得在区间上的值域是 的值域的子集实数的取值范围. 当时,由得,故在 上单调递减,所以即,于是.

一次函数地存在性问题(共13题)

一次函数之存在性问题 知识点睛 函数背景下研究存在性问题,先把函数信息转化为几何信息,然后按照存在性问题来处理. 几何图形 一次函数坐标 1. 如图,直线2y x = +与坐标轴分别交于A ,B 两点,点C 在y 轴上,且12 OA AC =,直线CD ⊥AB 于点P ,交x 轴于点D . (1)求点P 的坐标; (2)坐标系是否存在点M ,使以点B ,P ,D ,M 为顶点的四边形为平行四边形?若存在,求出点M 的坐标;若不存在,请说明理由. 2. 如图,直线y =kx -4与x 轴、y 轴分别交于B ,C 两点,且4 3 OC OB =. (1)求B 点的坐标和k 的值. (2)若点A (x ,y )是第一象限的直线y =kx -4上的一个动点,则当点A 运动到什么位置时,△AOB 的面积是6? (3)在(2)成立的情况下,x 轴上是否存在点P ,使△POA 是等腰三角形?若存在,求出点P 的坐标;若不存在,请说明理由.

3.如图,在平面直角坐标系中,点A,B分别在x轴、y轴上,OA=6,OB=12,点C是直线y=2x 与直线AB的交点,点D在线段OC上,OD = (1)求直线AB的解析式及点C的坐标; (2)求直线AD的解析式; (3)P是直线AD上的一个动点,在平面是否存在点Q,使以O,A,P,Q为顶点的四边形是菱形?若存在,求出点Q的坐标;若不存在,请说明理由.

4. 如图,直线1 22 y x = +与x 轴、y 轴分别交于A ,B 两点,点C 的坐标为(-3,0) ,P (x ,y )是直线1 22 y x = +上的一个动点(点P 不与点A 重合) . (1)在P 点运动过程中,试写出△OPC 的面积S 与x 的函数关系式; (2)当P 运动到什么位置时,△OPC 的面积为27 8 ,求出此时点P 的坐标; (3)过P 作AB 的垂线分别交x 轴、y 轴于E ,F 两点,是否存在这样的点P ,使△EOF ≌△BOA ?若存在,求出点P 的坐标;若不存在,请说明理由. 6.如图,在直角坐标系中,一次函数y = 23 x +的图象与x 轴交于点A ,与y 轴交于点B . (1)已知OC ⊥AB 于C ,求C 点坐标; (2)在x 轴上是否存在点P ,使△PAB 为等腰三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由. x x

函数对称性周期性全解析

函数对称性与周期性研究学习报告 新高2011级35班数学 一、 同一函数的周期性、对称性问题(即函数自身) 1、 周期性:对于函数)(x f y =,如果存在一个不为零的常数T ,使得当x 取定义域内的每一个值时,都有 )()(x f T x f =+都成立,那么就把函数)(x f y =叫做周期函数,不为零的常数T 叫做这个函数的周期。如果所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小正周期。 2、 对称性定义(略),请用图形来理解。 3、 对称性: 我们知道:偶函数关于y (即x=0)轴对称,偶函数有关系式 )()(x f x f =- 奇函数关于(0,0)对称,奇函数有关系式 0)()(=-+x f x f 上述关系式是否可以进行拓展?答案是肯定的 探讨:(1)函数 )(x f y =关于a x =对称?)()(x a f x a f -=+ )()(x a f x a f -=+也可以写成)2()(x a f x f -= 或 )2()(x a f x f +=- 简证:设点),(11y x 在 )(x f y =上,通过)2()(x a f x f -=可知,)2()(111x a f x f y -==,即点)(),2(11x f y y x a =- 也在上,而点),(11y x 与点),2(11y x a -关于x=a 对称。得证。 若写成: )()(x b f x a f -=+,函数)(x f y =关于直线22)()(b a x b x a x +=-++= 对称 (2)函数)(x f y =关于点),(b a 对称?b x a f x a f 2)()(=-++ b x f x a f 2)()2(=-++上述关系也可以写成 或 b x f x a f 2)()2(=+- 简证:设点),(11y x 在)(x f y =上,即)(11x f y =,通过b x f x a f 2)()2(=+-可知, b x f x a f 2)()2(11=+-,所以1112)(2)2(y b x f b x a f -=-=-,所以点)2,2(11y b x a --也在)(x f y =上,而点)2,2(11y b x a --与),(11y x 关于),(b a 对称。得证。 若写成: c x b f x a f =-++)()(,函数)(x f y =关于点)2,2(c b a + 对称 (3)函数)(x f y =关于点b y =对称:假设函数关于b y =对称,即关于任一个x 值,都有两个y 值与其 对应,显然这不符合函数的定义,故函数自身不可能关于 b y =对称。但在曲线c(x,y)=0,则有可能会出现关于 b y =对称,比如圆04),(22=-+=y x y x c 它会关于y=0对称。 4、 周期性: (1)函数)(x f y =满足如下关系系,则T x f 2)(的周期为 A 、)()(x f T x f -=+ B 、)(1)()(1)(x f T x f x f T x f -=+= +或 C 、)(1)(1)2(x f x f T x f -+=+或) (1)(1)2(x f x f T x f +-=+(等式右边加负号亦成立) D 、其他情形

高考数学函数中存在性和任意性问题分类解析

函数中存在性与任意性问题分类解析 全称量词、特称量词以及全称命题与特称命题在近几年新课标高考卷与模拟卷中频频亮相成为高考的热点问题、特别就是全称量词”任意”与特称量词”存在”与函数情投意合风火情深,火借风势、风助火威,大有逾演逾烈之势、两种量词插足函数,使得函数问题意深难懂神秘莫测,问题显得更加扑朔迷离难度大增,同时题目也因此显得富有变化与新意、解决这类问题的关键就是揭开量词隐含的神秘面纱还函数问题本来面目,本文通过典型题目分类解析供参考、 1、,,使得,等价于函数在上的值域与函数 在上的值域的交集不空,即、 例1已知函数与函数,若存在,使得成立,则实数的取值范围就是() 解设函数与在上的值域分别为与,依题意、 当时,,则,所以在上单调递增,所以即、 当时,,所以单调递,所以即、 综上所述在上的值域、 当时,,又,所以在在上单调递增,所以即,故在上的值域、

因为,所以或解得,故应选、 2、对,,使得,等价于函数在上的值域就是函数在上的值域的子集,即、 例2(2011湖北八校第二次联考)设,、①若,使成立,则实数的取值范围为___;②若 ,,使得,则实数的取值范围为___解①依题意实数的取值范围就就是函数的值域、设,则问题转化为求函数的值域,由均值不等式得,,故实数的取值范围就是、 ②依题意实数的取值范围就就是使得函数的值域就是函数的值域的子集的实数的取值范围、由①知,易求得函数的值域,则当且仅当即,故实数的取值范围就是、例3已知,它们的定义域都就是,其中就是自然对数的底数,、(1)求的单调区间;(2)若,且,函数,若对任意的,总存在,使,求实数的取值范围、解(1)略;(2)依题意实数的取值范围就就是使得在区间上的值域就是的值域的子集实数的取值范围、 当时,由得,故在 上单调递减,所以即,于就是、

(完整版)一次函数与等腰三角形的存在性问题

一次函数与等腰三角形的存在性问题 一.选择题(共3小题) 1.在平面直角坐标系中有两点:A(﹣2,3),B(4,3),C是坐标轴x轴上一点,若△ABC是直角三角形,则满足条件的点C共有() A.2个B.3个C.4个D.6个 2.(2008?天津)在平面直角坐标系中,已知点A(﹣4,0),B(2,0),若点C在一次函数y=﹣x+2的图象上,且△ABC为直角三角形,则满足条件 的点C有() A.1个B.2个C.3个D.4个 3.(2016?江宁区一模)已知点A,B的坐标分别为(﹣4,0)和(2,0), 在直线y=﹣x+2上取一点C,若△ABC是直角三角形,则满足条件的点C 有() A.1个B.2个C.3个D.4个 二.填空题(共4小题) 4.(2015?杭州模拟)在平面直角坐标系xOy中,点A(﹣4,0),B(2,0),设点C是函数y=﹣(x+1)图象上的一个动点,若△ABC是直角三角形,则点C的坐标是. 5.(2009秋?南昌校级期末)在直角坐标系中,点A、B、C的坐标分别为(1,2)、(0,0)、(3,0),若以点A、B、C、D为顶点构成平行四边形,则点D 的坐标应为. 6.(2009秋?扬州校级期中)在平面直角坐标系中若△ABC的顶点坐标分别为:A(3,0)、B(﹣1,0)、C(2,3)、若以点A、B、C、D为顶点的四边形是平行四边形,则点D的坐标为. 7.(2010春?江岸区期中)一个平行四边形在平面直角坐标系中三个顶点的 坐标分别是(﹣1,﹣1),(﹣2,3),(3,﹣1),则第四个顶点的坐标 为. 三.解答题(共14小题) 8.四边形ABCD中,BD,AC相交于O,且BD⊥AC,求证:AB2+CD2=AD2+BC2.9.如图,直线y=﹣x+3与x轴、y轴分别交于点A,点B,在第一象限是 否存在点P,使以A,B,P为顶点的三角形是等腰直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.

函数的周期性练习题兼答案(供参考)

函数周期性分类解析 一.定义:若T 为非零常数,对于定义域内的任一x ,使)()(x f T x f =+恒成立 则f (x )叫做周期函数,T 叫做这个函数的一个周期。 二.重要结论 1、()()f x f x a =+,则()y f x =是以T a =为周期的周期函数; 2、 若函数y=f(x)满足f(x+a)=-f(x)(a>0),则f(x)为周期函数且2a 是它的一个周期。 3、 若函数()()f x a f x a +=-,则()x f 是以2T a =为周期的周期函数 4、 y=f(x)满足f(x+a)=() x f 1 (a>0),则f(x)为周期函数且2a 是它的一个周期。 5、若函数y=f(x)满足f(x+a)= ()x f 1- (a>0),则f(x)为周期函数且2a 是它的一个周期。 6、1()()1() f x f x a f x -+=+,则()x f 是以2T a =为周期的周期函数. 7、1()()1() f x f x a f x -+=-+,则()x f 是以4T a =为周期的周期函数. 8、 若函数y=f(x)满足f(x+a)= )(1)(1x f x f -+(x ∈R ,a>0),则f(x)为周期函数且4a 是它的一个周期。 9、 若函数y=f(x)的图像关于直线x=a,x=b(b>a)都对称,则f(x)为周期函数且2(b-a ) 是它的一个周期。 10、函数()y f x =()x R ∈的图象关于两点()0,A a y 、()0,B b y ()a b <都对称,则 函数()f x 是以()2b a -为周期的周期函数; 11、函数()y f x =()x R ∈的图象关于()0,A a y 和直线x b =()a b <都对称,则函 数()f x 是以()4b a -为周期的周期函数; 12、 若偶函数y=f(x)的图像关于直线x=a 对称,则f(x)为周期函数且2a 是它 的一个周期。 13、若奇函数y=f(x)的图像关于直线x=a 对称,则f(x)为周期函数且4a 是它的一个周期。 14、若函数y=f(x)满足f(x)=f(x-a)+f(x+a)(a>0),则f(x)为周期函数,6a 是它的一个周期。

2017年数学中考专题《存在性问题》

2017年数学中考专题《存在性问题》 题型概述 【题型特征】存在性问题是指判断满足某种条件的事物是否存在的问题,这类问题的知识覆盖面较广,综合性较强,题意构思非常精巧,解题方法灵活,对学生分析问题和解决问题的能力要求较高.存在性问题按定性可分为:肯定型和否定型.存在性问题在假设存在以后进行的推理或计算,对基础知识,基本技能要求较高,并具备较强的探索性.正确、完整地解答这类问题,是对我们知识、能力的一次全面的考验. 【解题策略】不同的存在性问题解法不同.下面按照解法及设问方式的不同将存在性问题分为代数方面的存在性问题(如方程根是否存在、最值是否存在等)、点的存在性问题(如构成特殊图形的点是否存在)并举例分析. (1)代数方面的存在性问题的解法思路是:将问题看成求解题,进行求解,进而从有解或无解的条件,来判明数学对象是否存在,这是解决此类问题的主要方法. (2)点的存在性问题的解法思路是:假设存在→推理论证→得出结论.若能导出合理的结果,就做出“存在”的判断;若导出矛盾,就做出不存在的判断. 真题精讲 类型一 代数方面的存在性问题 典例1 (2016·广东梅州)如图,在平面直角坐标系中,已知抛物线2 y x bx c =++过,,A B C 三点,点A 的坐标是(3,0),点C 的坐标是(0,-3),动点P 在抛物线上. (1)b = ,c = ,点B 的坐标为 ;(直接填写结果) (2)是否存在点P ,使得ACP ?是以AC 为直角边的直角三角形?若存在,求出所有符合条件的点P 的坐标;若不存在,说明理由; (3)过动点P 作PE 垂直y 轴于点E ,交直线AC 于点D ,过点D 作x 轴的垂线.垂足为F ,连接EF ,当线段EF 的长度最短时,求出点P 的坐标. 【解析】二次函数的图象及其性质,三角形中位线定理,应用数学知识综合解决问题的能力. 【全解】(1)-2 -3 (-1,0) (2)存在. 第一种情况,当以C 为直角顶点时,过点C 作1CP AC ⊥,交抛物线于点1P .过点1P 作y 轴的垂线,垂足是M .如图(1), ,90OA OC AOC =∠=?Q , 45OCA OAC ∴∠=∠=?. 190ACP ∠=?Q , 11 904545MCP CPM ∴∠=?-?=?=∠. 1MC MP ∴=.

(完整版)专题函数的周期性

专题函数的周期性 一知识点精讲 1 .周期函数的定义:对于f (x)定义域内的每一个x ,都存在非零常数T ,使得f(x T) f (x)恒成立,则称函数f (x)具有周期性,T叫做f (x)的一个周期,则kT (k Z,k 0 )也是f (x)的周期,所有周期中的最小正数叫 f (x)的最小正周期.周期函数的定义域一定是无限集 2性质 ①若f(x)的周期中,存在一个最小的正数,则称它为f(x)的最小正周期; 3?几种特殊的具有周期性的抽象函数: 函数y f x满足对定义域内任一实数x (其中a0为常数) (1) f x f:X a,则y f x的周期T a . (2) f x a f x,贝U f x的周期T2a . (3) f x a的周期T2a . ,贝U T x f x (4) f x a f x a,贝U f x的周期T2a . (5) f(x a)1 f (x),则f x 1 f(x)的周期 T2a . (6) f(x a) 1 f(x),则f 1 f (x) x的周期T4a数. (7) f(x a) 1 f (x),则f x 1 f(x) 的周期T4a . (8)函数y f (x)满足f (a x) f (a x)(a 0), 若f (x)为奇函数,则其周期为 T 4a,若f (x)为偶函数,则其周期为T 2a . (9)函数y f (x) x R的图象关于直线x a和x b a b都对称,则函数f (x)是 以2 b a为周期的周期函数. (10) 函数y f (x) x R的图象关于两点A a, y o > B b, y o a b都对称,则函数 f (x)是2 b a为周期的周期函数. (11) 函数y f (x) x R的图象关于A a, y0和直线x b a b都对称,则函数 f (x)是以4 b a为周期的周期函数. (12) f(x a) f(x) f (x-a),则f (x)的周期T 6a. 二典例解析 1. 设f(x)是(—a , +s)上的奇函数,f(x+2)= —f(x),当0W x w 1 时,f(x)=x ,则f(7.5)=( ) A.0.5 B. —0.5 C.1.5 D. —1.5 2. 若y=f(2x)的图像关于直线x a和x b(b a)对称,则f(x)的一个周期为( ) ②若周期函数f(x)的周期为T,则f( x)(0)是周期函数,且周期为 2 2

函数的任意性和存在性求解

专题复习—函数的任意性和存在性 已知两个函数k x x x f +-=2)(2,13)(3+-=x x x g (1)[]2,0∈?x ,都有)()(x g x f ≥成立,求k 的取值范围; (2)[]2,00∈?x ,使得)()(00x g x f ≥成立,求k 的取值范围; (3)若[]2,0,21∈?x x ,都有)()(21x g x f ≥成立,求k 的取值范围; (4)[]2,0,21∈?x x ,使得)()(21x g x f ≥成立,求k 的取值范围; (5)[]2,01∈?x ,[]2,02∈?x ,使得)()(21x g x f ≥成立,求k 的取值范围; (6)[]2,01∈?x ,[]2,02∈?x ,使得)()(21x g x f ≥成立,求k 的取值范围; 分析: 函数k x x x f +-=2)(2是一个二次函数,图像开口向上,对称轴为11 22=?--=x ,[]2,01∈,函数)(x f 在[]2,0上先减后增,且1)1()(min -==k f x f ,k f f x f ===)2()0()(max ; 函数13)(3+-=x x x g ,)1)(1(333)(2'-+=-=x x x x g ,令0)('=x g 得11=-=x x 或, 所以[]2,0)(在x g 上的1)1()(min -==g x g ,3)2()(max ==g x g , 解(1)依题意得,[]2,0∈?x ,0)()(≥-x g x f 恒成立,令)()()(x g x f x t -= 即01)(2 3≥-+++-=k x x x x t 恒成立,所以0)(min ≥x t 123)(2'++-=x x x t =)1)(13(+-+x x ,所以[]2,0)(在x t 上先↓↑后, 3)2(,1)0(-=-=k t k t ,03)(min ≥-=∴k x t ,解得3≥k (2):p []2,00∈?x ,使得)()(00x g x f ≥成立, :p ?[]2,0∈?x ,都有成立)()(x g x f <成立,令)()()(x g x f x t -= 即01)(2 3<-+++-=k x x x x t 恒成立,所以0)(max

一次函数存在性问题

一次函数动点问题 1 如图,已知直线1l 的解析式为63+=x y ,直线1l 与x 轴、y 轴分别相交于A 、B 两点,直线2l 经过B 、C 两点,点C 的坐标为(8,0),又已知点P 在x 轴上从点A 向点C 移动,点Q 在直线2l 从点C 向点B 移动.点P 、Q 同时出发,且移动的速度都为每秒1个单位长度,设移动时间为t 秒(101<

3 如图,在平面直角坐标系中,O是坐标原点,点A的坐标为(-4,0),点B的坐标为(0,b)(b>0).P是直线AB 上的一个动点,作PC⊥x轴,垂足为C.记点P关于y轴的对称点为P'(点P'不在y轴上),连结PP',P'A,P'C.设点P的横坐标为a. (1)当b=3时, ①求直线AB的解析式; ②若点P'的坐标是(-1,m),求m的值; (2)若点P在第一象限,记直线AB与P'C的交点为D.当P'D:DC=1:3时,求a的值; (3)是否同时存在a,b,使△P'CA为等腰直角三角形?若存在,请求出所有满足要求的a,b的值;若不存在, 请说明理由.

函数与导数中任意性和存在性问题探究

函数与导数中任意性和存在性问题探究 命题人:闫霄 审题人:冯昀山 一、相关结论: 结论1:min [,],()[()]x a b f x m f x m ?∈>?>; 结论2:max [,],()[()]x a b f x m f x m ?∈?>; 结论4:min [,],()[()]x a b f x m f x m ?∈?>;【如图一】 结论6:1212max min [,],[,],()()[()][()]x a b x c d f x g x f x g x ?∈?∈>?>;【如图二】 结论7:1212min min [,],[,],()()[()][()]x a b x c d f x g x f x g x ?∈?∈>?>;【如图三】 结论8:1212max max [,],[,],()()[()][()]x a b x c d f x g x f x g x ?∈?∈>?>;【如图四】 结论9:1212[,],[,],()()()x a b x c d f x g x f x ?∈?∈=?的值域和()g x 的值域交集不为空; 结论10:1212[,],[,],()()()x a b x c d f x g x f x ?∈?∈=?的值域是()g x 的值域的子集 【例题1】:已知两个函数2 3 2 ()816,()254,[3,3],f x x x k g x x x x x k R =+-=++∈-∈; (1) 若对[3,3]x ?∈-,都有()()f x g x ≤成立,求实数k 的取值范围; (2) 若[3,3]x ?∈-,使得()()f x g x ≤成立,求实数k 的取值范围; (3) 若对12,[3,3]x x ?∈-,都有12()()f x g x ≤成立,求实数k 的取值范围; 解:(1)设32 ()()()2312h x g x f x x x x k =-=--+,(1)中的问题可转化为: [3,3]x ∈-时,()0h x ≥恒成立,即min [()]0h x ≥。 ' 2()66126(2)(1)h x x x x x =--=-+;当x 变化时,'(),()h x h x 的变化情况列表如下: -3 (-3,-1) -1 (-1,2) 2 (2,3) 3 h '(x) + - + h(x) k-45 增函数 极大值 减函数 极小值 增函数 k-9 因为(1)7,(2)20h k h k -=+=-, 所以,由上表可知min [()]45h x k =-,故k-45≥0,得k ≥45,即k ∈[45,+∞). 小结:①对于闭区间I ,不等式f(x)k 对x ∈I 时恒成立?[f(x)]min >k, x ∈I. ②此题常见的错误解法:由[f(x)]max ≤[g(x)]min 解出k 的取值范围.这种解法的错误在于条件“[f(x)]max ≤[g(x)]min ”只是原题的充分不必要条件,不是充要条件,即不等价. (2)根据题意可知,(2)中的问题等价于h(x)= g(x)-f(x) ≥0在x ∈[-3,3]时有解,故[h(x)]max ≥0. 由(1)可知[h(x)]max = k+7,因此k+7≥0,即k ∈[-7,+∞). (3)根据题意可知,(3)中的问题等价于[f(x)]max ≤[g(x)]min ,x ∈[-3,3]. 由二次函数的图像和性质可得, x ∈[-3,3]时, [f(x)]max =120-k. 仿照(1),利用导数的方法可求得x ∈[-3,3]时, [g(x)]min =-21. 由120-k ≥-21得k ≥141,即k ∈[141,+∞). 说明:这里的x 1,x 2是两个互不影响的独立变量. 从上面三个问题的解答过程可以看出,对于一个不等式一定要看清是对“?x ”恒成立,还是“?x ”使之成立,同时还要看清不等式两边是同一个变量,还是两个独立的变量,然后再根据不同的情况采取不同的等价条件,千万不要稀里糊涂的去猜.. 【例题2】:(2010年山东理科22) 已知函数1()ln 1()a f x x ax a R x -=-+-∈; (1) 当1 2 a ≤ 时,讨论()f x 的单调性; (2)设2 ()24g x x bx =-+,当14a =时,若对1(0,2)x ?∈,2[1,2]x ?∈,使 12()()f x g x ≥,求实数b 的取值范围;

(完整版)一次函数与特殊四边形存在性问题(培优拓展)

一次函数与特殊四边形的存在性问题 (培优专题) 1.(2015春?通州区校级期中)如图,在直角坐标系中,A(0,1),B(0,3),P是x轴上一动点,在直线y=x上是否存在点Q,使以A、B、P、Q为顶点的四边形为平行四边形?若存在,画出所有满足情况的平行四边形,并求出对应的P、Q的坐标;若不存在,请说明理由. 2.(2015春?北京校级期中)已知直线y=x+3分别交x轴、y轴于点A、B. (1)求∠BAO的平分线的函数关系式;(写出自变量x的取值范围) (2)点M在已知直线上,点N在坐标平面内,是否存在以点M、N、A、O 为顶点的四边形为菱形?若存在,请直接写出点N的坐标;若不存在,说明理由.

3.(2010秋?吴江市校级期中)已知:如图,在矩形ABCD中,点E在AD 边上,AE>DE,BE=BC,点O是线段CE的中点. (1)试说明CE平分∠BED; (2)在直线AD上是否存在点F,使得以B、C、F、E为顶点的四边形是菱形?如果存在,试画出点F的位置,并作适当说明;如果不存在,请说明理由. 4.如图,在平面直角坐标系xOy,直线y=x+1与y=﹣2x+4交于点A,两直线与x轴分别交于点B和点C,D是直线AC上的一个动点,直线AB上是否存在点E,使得以E,D,O,A为顶点的四边形是平行四边形?若存在,求出点E的坐标;若不存在,请说明理由.

5.如图,点A的坐标是(2,1),点B的坐标是(5,1),过点A的直线l 的表达式为y=2x+b,点C在直线l上运动,在直线OA上是否存在一点D,使得以A,B,C,D为顶点的四边形是平行四边形?若存在,求出点D的坐标;若不存在,请说明理由. 6.(2012春?雨花区校级期末)如图,已知等边△ABC的边长为2,顶点A、B分别在x轴、y轴的正半轴上移动. (1)当OA=时,求点C的坐标. (2)在(1)的条件下,求四边形AOBC的面积. (3)是否存在一点C,使线段OC的长有最大值?若存在,请求出此时点C 的坐标;若不存在,请说明理由.

高中数学破题致胜微方法(求函数解析式):12.利用周期性求函数解析式 Word版含解析

利用周期性求函数解析式 周期性是函数的一种性质,当我们通过题目的已知条件,能够判断函数是周期函数时,再相关性质,求函数的解析式,就能简单一些了。今天我们就根据实际例子,看看如何利用周期性,求函数的解析式。 先看例题 例:设f (x )是定义在区间(,)-∞+∞上,且以2为周期的函数,对k Z ∈,用k I 表示区间(21,21)k k -+,已知当0x I ∈时,2 ()f x x =,求f (x )在k I 上的解析式 解:由已知,当k =0时,0(1,1)I =- 我们利用区间转移的方法,如果k x I ∈ 即0(21,21)2x k k x k I ∈-+?-∈ 121x k ?-<-< 则有:2 (2)(2)f x k x k -=- 又因为该函数以2为周期,所以有(2)(),f x k f x -= 所以函数在k I 上的解析式为:2()(2)f x x k =- 一般规律: 区间转移: 将未知区间上的自变量加(或减)周期的整数倍后,转化到已知区间。 进而求出,该区间上的函数解析式 再看一个例题加深印象 练:设f (x )是定义在R 上的奇函数,且其图象关于直线x =1对称,当[]2,0x ∈-时,()22.f x x x +=

当[]2,4x ∈时,求f (x )的解析式 首先通过题目条件,证明函数为周期函数 因为函数关于x =1对称,且函数为奇函数 所以有()(2)()f x f x f x +=-=- 又因为(2)()f x f x +=- 所以:()()(4)(2)[]f x f x f x f x +=-+=--= 所以函数为周期函数,且周期T =4 因为函数在[]2,0x ∈-上的解析式已知,所以 由[]2,4,4[2,0],x x ∈-∈- 可得:()22(4)2(4)(4)68.f x f x x x x x ----==+=+ 总结: 1.根据题目条件,判断、证明函数为周期函数. 2.将未知区间上的自变量加(或减)周期的整数倍后,转化到已知区间. 3.根据题目条件,以及函数性质,确定所求区间上的解析式 练习: 1.设f (x )是在(-∞,+∞)上以4为周期的函数,且f (x )是偶函数,在区间2,3]上时,f (x )=-2(x -3)2+4,求当x ∈1,2]时f (x )的解析式.若矩形ABCD 的两个顶点A 、B 在x 轴上,C 、D 在y =f (x )(0≤x ≤2)的图象上,求这个矩形面积的最大值. 2.已知函数y =f (x )是定义在R 上的周期函数,周期T =5,函数y =f (x )(-1≤x ≤1)是奇函数,又知y =f (x )在0,1]上是一次函数,在1,4]上是二次函数,且在x =2时,函数取得最小值,最小值为-5. (1)证明:f (1)+f (4)=0; (2)试求y =f (x ),x ∈1,4]的解析式; (3)试求y =f (x )在4,9]上的解析式. 答案:

一次函数与四边形存在性问题

一次函数与四边形综合专题 1.如图,将一个正方形纸片OABC放置在平面直角坐标系中,其中A(1,0),C(0,1),P为AB边上一个动点,折叠该纸片,使O点与P点重合,折痕l与OP交于点M,与对角线AC交于Q点 (Ⅰ)若点P的坐标为(1,),求点M的坐标; (Ⅱ)若点P的坐标为(1,t) ①求点M的坐标(用含t的式子表示)(直接写出答案) ②求点Q的坐标(用含t的式子表示)(直接写出答案) (Ⅲ)当点P在边AB上移动时,∠QOP的度数是否发生变化?如果你认为不发生变化,写出它的角度的大小.并说明理由;如果你认为发生变化,也说明理由. 2.如图,△OAB的一边OB在x轴的正半轴上,点A的坐标为(6,8),OA=OB,点P在线段OB上,点Q在y轴的正半轴上,OP=2OQ,过点Q作x轴的平行线分别交OA,AB于点E,F. (1)求直线AB的解析式; (2)若四边形POEF是平行四边形,求点P的坐标; (3)是否存在点P,使△PEF为直角三角形?若存在,请直接写出点P的坐标;

若不存在,请说明理由. 3.如图,在平面直角坐标系中,已知矩形OABC的两个顶点A、B 的坐标分别A (,0)、B(,2),∠CAO=30°. (1)求对角线AC所在的直线的函数表达式; (2)把矩形OABC以AC所在的直线为对称轴翻折,点O落在平面上的点D处,求点D的坐标; (3)在平面是否存在点P,使得以A、O、D、P为顶点的四边形为平行四边形?若存在,求出点P的坐标;若不存在,请说明理由. 4.如图,直线l与坐标轴分别交于A、B两点,∠BAO=45°,点A坐标为(8,0).动点P从点O出发,沿折线段OBA运动,到点A停止;同时动点Q也从点O出发,沿线段OA运动,到点A停止;它们的运动速度均为每秒1个单位长度. (1)求直线AB的函数关系式; (2)若点A、B、O与平面点E组成的图形是平行四边形,请直接写出点E的坐标; (3)在运动过程中,当P、Q的距离为2时,求点P的坐标. 5.在平面直角坐标系xOy中,过原点O及点A(0,2)、C(6,0)作矩形OABC,∠AOC的平分线交AB于点D.点P从点O出发,以每秒个单位长度的速度沿射线OD方向移动;同时点Q从点O出发,以每秒2个单位长度的速度沿x轴正方向移动.设移动时间为t秒. (1)当点P移动到点D时,t=秒;

相关文档
最新文档