八年级数学上册《第十三章 轴对称》单元测试卷-带答案(人教版)
【八年级】八年级数学上第十三章轴对称专项测试题(人教版共5份含答案)

【八年级】八年级数学上第十三章轴对称专项测试题(人教版共5份含答案)八年级数学人教版第十三章轴对称专项测试题(二)一、单选题(本大题共15个子题,每个子题得3分,共计45分)1、在中,,的垂直平分线交于点,交于点,且,则为().a、无法确定b.Cd.[答:]C【解析】解:如图所示.平均分配,,这是一个等腰三角形,,,而,且,,解得.所以正确的答案是:2、如图,以的顶点为圆心,适当长为半径画弧,交于点,交于点.再分别以点为圆心,大于的长为半径画弧,两弧在内部交于点,过点作射线,连接.则下列说法错误的是()a、这两点围绕这条线对称b.、两点关于所在直线对称c、这是一个等腰三角形d.射线是的平分线[答:]a【解析】解:连接、,根据作图得到、.在和,(),,即射线是的平分线,正确,不符合题意;根据图纸,是等腰三角形,正确,不符合题意;根据图纸,又射线平分,是的,垂直平分线,、两点关于所在直线对称,正确,不符合题意;根据图纸,它不能平均分配,不是的平分线,直线上的两点是不对称的和错误的,这符合问题的意思故答案为:、两点关于所在直线对称3.如果曲面的三个面都满足,则曲面的形状为()a.锐角三角形b、等边三角形c.直角三角形d、等腰三角形【答案】d[分析]解:=0,或或,就是,或者,因而三角形一定是等腰三角形.4.点和平面直角坐标系中的点(约)a.直线对称b、原点对称c.轴对称d、轴对称【答案】c[解析]解:平面直角坐标系中的点是轴对称的5、点在第二象限内,且,,则点关于轴的对称点的坐标为()A.b.Cd.[答:]d【解析】解:在第二象限内,且,,则点,关于轴的点的对称点的坐标为6、线段$mn$在直角坐标系中的位置如图所示,若线段$m^{\prime}n^{\prime}$与$mn$关于$y$轴对称,则点$m$的对应点$m^{\prime}$的坐标为()A.b.Cd.[答:]a【解析】解:根据坐标系可得点坐标是,因此,对应点的坐标为7、如图,中,,,则()A.b.Cd.[答:]d【解析】解:,,,.8.如图所示,in,,对分,in。
人教版八年级上册数学《轴对称》单元测试题(附答案)

15.如图,若∠A=15°,AB=BC=CD=DE=EF,则∠DEF等于_____.
三、解答题
16.如图,在平面直角坐标系中,A(1,2),B(3,1),C(﹣2,﹣1).
∴∠CBD=∠A+∠ACB=36°,
∵BC=CD,
∴∠CDB=∠CBD=36°,
∴∠DCE=∠A+∠CDA=18°+36°=54°,
∵CD=DE,
∴∠CED=∠DCE=54°,
∴∠EDF=∠A+∠AED=18°+54°=72°,
∵DE=EF,
∴∠EFD=ห้องสมุดไป่ตู้EDF=72°,
∴∠GEF=∠A+∠AFE=18°+72°=90°.
证明:(1)FC=AD;
(2)AB=BC+AD。
24.如图,在 中, 是 的中点,过点 的直线 交 于点 ,交 的平行线 于点 , 交 于点 ,连接 、 .
(1)求证: ;
(2)请你判断 与 的大小关系,并说明理由.
参考答案
一、选择题
1.下列图形中,不是轴对称图形的是( )
A. B. C. D.
【答案】A
A.10B.16C.8D.4
10.如图,在△ABC中,AB=AC=11,∠BAC=120°,AD是△ABC的中线,AE是∠BAD的角平分线,DF∥AB交AE的延长线于点E,则DF的长为()
A. 4.5B. 5C. 5.5D. 6
11.如图,等边△ABC 边长为4,AD是边BC上的中线,F是边AD上的动点,E是边AC上一点,若AE=2,则EF+CF取得最小值时,∠ECF的度数为( )
人教版八年级上册数学《轴对称》单元测试卷(含答案)

人教版数学八年级上学期《轴对称》单元测试考试时间:100分钟;总分:120分一、单选题(每小题3分,共30分)1.(2019·江苏南京一中初二期中)下列图案中,不是轴对称图形的是()A.B.C.D.2.(2018·河北初二期中)如果点P(﹣2,b)和点Q(a,﹣3)关于x轴对称,则a+b的值是()A.﹣1 B.1 C.﹣5 D.53.(2018·河北初二期中)如图,AB的垂直平分线分别交AB、AC于点D、E,AC=9,AE:EC=2:1,则点E到点B的距离为()A.5 B.6 C.7 D.8关于直线MN的轴对称图形,其中正确的是( ) 4.(2019·江苏初二期中)下面是四位同学作ABCA.B.C.D.5.(2019·江苏初二期中)如图,正方形网格中的每个小正方形边长都是1.已知A、B是两格点,若△ABC 为等腰三角形,且S△ABC=1.5,则满足条件的格点C有()A.1个B.2个C.3个D.4个6.(2019·江苏省盐城市初级中学初二期中)如图,点E是等腰三角形△ABD底边上的中点,点C是AE延长线上任一点,连接BC、DC,则下列结论中:①BC=AD;②AC平分∠BCD;③AC=AB;④∠ABC=∠ADC。
一定成立的是()A.②④B.②③C.①③D.①②7.(2019·山东初二期中)等腰三角形的两条边长分别为3cm和6cm,则它的周长为( ).A.12cm B.15cm C.12cm或15cm D.18cm或36cm8.(2019·山东初二期中)如图,在△ABC中,DE是边AB的垂直平分线,BC=8cm,AC=5cm,则△ADC 的周长为()A.14cm B.13cm C.11cm D.9cm9.(2017·广东初二月考)下列各点中,到三角形各顶点的距离相等的是()A.三个内角平分线的交点B.三条边的垂直平分线的交点C.三条中线的交点D.三条高线的交点10.(2019·湖北初二期中)上午8时,一条船从海岛A出发,以15n mile/h(海里/时,1n mile=1852m)的速度向正北航行,10时到达海岛B处,从A、B望灯塔C,测得NAC=42°,NBC=84°.则从海岛B到灯塔C的距离为()A .45n mileB .30n mileC .20n mileD .15n mile二、填空题(每小题4分,共24分)11.(2019·南京市浦口外国语学校初二期中)如图,四边形ABCD 是轴对称图形,BD 所在的直线是它的对称轴,AB =5 cm ,CD =3.5 cm ,则四边形ABCD 的周长为_____cm .12.(2019·如东县新店镇初级中学初二期中)如图,在△ABC 中,AB =AC ,D 是BC 的中点,∠BAD =34°,则∠C =_________°.13.(2019·安徽初二期中)如图,ABC △与A B C '''关于直线l 对称,且105A ∠=︒,30C '∠=︒,则B ∠=______.14.(2019·广西初二期中)如图,在ABC ∆中,DE 垂直平分AC ,若BCD ∆的周长是12,4BC =,则AB 的长______.15.(2019·北京市三帆中学初二期中)如图,在Rt △ABC 中,90B =∠ ,ED 是AC 的垂直平分线,交AC 于点D ,交BC 于点E .已知40C ∠=,则BAE ∠的度数为_________。
数学八年级上册《轴对称》单元测试题(带答案)

∵A B=A C,
∴
故选A.
[点睛]此题考查等腰三角形的性质及三角形的内角与外角等知识点的掌握情况.根据已知求得∠A=40°是正确解答本题的关键.
二、填空题
11.请写出两个具有轴对称性的汉字.
[答案]甲、由、中、田、日等(答案不唯一).
[解析]
[分析]
根据轴对称图形的概念,即可写出:甲,日,田等字.
6.已知M(0,2)关于x轴对称的点为N,线段MN的中点坐标是()
A.(0,﹣2)B.(0,0)C.(﹣2,0)D.(0,4)
[答案]B
[解析]
根据轴对称的性质,知线段MN的中点就是原点,即线段MN的中点坐标是(0,0).
故选B
7.在△A B C中,A B=A C,D为B C的中点,则下列结论:①∠B=∠C;②A D⊥B C;③∠B A C=2∠B A D;④A B,A C边上的中线的长相等.其中正确的结论有( )
故答案选:A.
[点睛]本题考查了用坐标表示轴对称的知识点,熟练掌握点关于x轴、y轴对称的点的坐标特点是解题的关键.
3.已知线段A B和点C,D,且C A=C B,D A=D B,那么直线C D是线段A B的( )
A. 垂线B. 平行线
C. 垂直平分线D. 过中点的直线
[答案]C
[解析]
[分析]
由已知C A=C B根据线段垂直平分线的性质的逆定理可得点C在A B的垂直平分线上,同理得点D的位置
[答案]D
[解析]
[分析]
此题中没有明确指出等边三角形的边长是等腰三角形的底边还是腰长,所以我们应该分两种情况进行分析.先求出等边三角形的边长,再分两种情况进行分析求解.
[详解]解:∵等边三角形周长为45Cm,
八年级上册数学《轴对称》单元测试(附答案)

人教版八年级上册《轴对称》单元测试卷考试时间:100分钟;总分:120分一、单选题(每小题3分,共30分)1.(2019·江苏南京一中初二期中)下列图形中不是轴对称图形的是( )A .B .C .D .2.(2018·天津初二期中)如果一个三角形一条边上的中点到其它两边距离相等,那么这个三角形一定是( ) A .等边三角形 B .等腰三角形 C .直角三角形 D .斜三角形3.(2018·河北初二期中)点P(2,﹣3)关于x 轴的对称点是P 1,P 1关于y 轴的对称点坐标是P 2,则P 2的坐标为( ) A .(2,﹣3) B .(﹣2,3) C .(﹣2,﹣3) D .(﹣3,﹣2)4.(2018·河北初二期中)如图,在△A B C 中,D E 是A C 的垂直平分线,A C =8C m,且△A B D 的周长为14C m,则△A B C 的周长为( )A .15C mB .18C m C .22C mD .25C m5.(2019·江苏初二期中)下列说法中正确的是( )A .两个全等三角形,一定是轴对称的B .两个轴对称的三角形,一定全等C .三角形的一条中线把三角形分成以中线为轴对称的两个图形D .三角形的一条高把三角形分成以高线为轴对称的两个图形6.(2019·江苏初二期中)在如图所示的网格纸中,有A 、B 两个格点,试取格点C ,使得△A B C 是等腰三角形,则这样的格点C 的个数是( )A .4B .6C .8D .107.(2018·天津初二期中)如图,ABC ∆的面积为6,3AC =,现将ABC ∆沿AB 所在直线翻折,使点C 落在射线AD 上的'C 处,P 为射线AD 上的任一点,则线段BP 的长不可能是( )A .3.8B .4C .5.5D .1008.(2019·江苏省盐城市初级中学初二期中)如图,在△A B C 中,A B =A C ,B D =C D ,下列结论不一定正确的是 ( )A .∠B =∠C B .AD ⊥B C C .A D 平分∠B A C D .A B =2B D9.(2019·山东初二期中)如图,在ABC ∆中,13AB AC ==,该三角形的面积为65,点O 是边BC 上任意一点,则点O 分别到边AB ,AC 的距离之和等于( )A .5B .6.5C .9D .1010.(2019·山东初二期中)如图,在Rt ABC ∆中,90B ∠=︒,20C ∠=︒,分别以点A 、C 为圆心,大于12AC 长为半径画弧,两弧相交于点M 、N ,连接MN ,与AC 、BC 分别交于点D 、E ,连接AE .则BAE ∠=( )A .20︒B .40︒C .50︒D .60︒二、填空题(每小题4分,共24分)11.(2018·天津初二期中)若等腰三角形有两条边的长为7C m ,15C m ,则第三边的长为____C m . 12.(2019·北京市三帆中学初二期中)已知:如图,在ABC △中,40B ∠=︒,点D 是BC 边上一点,且AC AD BD ==.则DAC ∠的度数为_____.13.如图,在ABC ∆中,,BO CO 分别是ABC ACB ∠∠,的平分线,且它们相交于点O,//OE AB ,//OF AC ,10BC =,则OEF ∆的周长为_____.14.已知等腰三角形的一个内角为70°,则它的顶角度数为_____.15.(2019·江苏初二期中)如图,直线l 是四边形A B C D 的对称轴,A D ∥B C ,∠D =128°,则∠B 的大小为______°.16.(2019·厦门市梧侣学校初二期中)如图,在ABC ∆中,AB AC =,30C ∠=,DA BA ⊥于点A ,若4CD cm =,则B D =__________.三、解答题一(每小题6分,共18分)17.(2019·呼和浩特市实验中学初二期中)已知等腰ABC ∆中,4AB =,周长是10,求BC 的长. 18.(2019·江西宜春九中初二期中)如图,已知:A B =A D ,B C =C D ,∠A B C =∠A D C ,A C 是否是线段B D 的垂直平分线?请说明理由.19.(2019·江苏初二期中)如右图,已知点P 是线段MN 外一点,请利用直尺和圆规画一点Q ,使得点Q 到M 、N 两点的距离相等,且点Q 与点M 、P 在同一条直线上.(保留作图痕迹)四、解答题二(每小题7分,共21分)20.(2019·江苏南京一中初二期中)在△A B C 中,A B =A C ,∠B A C =120°,A D ⊥B C ,且A D =A B ,∠ED F =60°,且∠ED F 两边分别交边A B ,A C 于点E ,F ,求证:B E =A F .21.(2019·江苏南京一中初二期中)如图所示,A D 为△A B C 的角平分线,D E ⊥A B 于点E ,D F ⊥A C 于点F ,连接EF 交A D 于点O .求证:A D 垂直平分EF .22.(2019·江苏初二期中)如图,△A B C 中,A D ⊥B C ,EF 垂直平分A C ,交A C 于点F,交B C 于点E,且B D=D E .(1)若∠B A E=40°,求∠C 的度数;(2)若△A B C 周长为14C m,A C =6C m,求D C 长.五、解答题三(每小题9分,共27分)23.(2019·江苏南京一中初二期中)如图,在长度为1个单位长度的小正方形组成的正方形中,点A ,B ,C 在小正方形的顶点上.(1)在图中画出与△A B C 关于直线l 成轴对称的△A ′B ′C ′(2)三角形A B C 的面积为 ;(3)在直线l 上找一点P ,使P A +PB 的长最短.24.(2019·山东初二期中)如图,在等腰Rt ABC ∆中,90ACB ∠=︒,AC CB =,F 是AB 边上的中点,点D 、E 分别在AC 、BC 边上运动,且始终保持AD CE =.连接DE 、DF 、EF .(1)求证:ADF CEF ∆≅∆;(2)试证明DFE ∆是等腰直角三角形;(3)若5AD =,7BE =,求AC 的长.25.(2019·江苏初二期中)如图所示,点O是等边三角形A B C 内一点,∠A OB =100°,∠B OC =α,D 是△AB C 外一点,且△A D C ≌△B OC ,连接OD .(1)求证:△C OD 是等边三角形;(2)当α=150°时,判断△A OD 的形状,并说明理由.(3)探究:当α=_____度时,△A OD 是等腰三角形.参考答案一、单选题(每小题3分,共30分)1.(2019·江苏南京一中初二期中)下列图形中不是轴对称图形的是()A .B .C .D .[答案]A[解析]根据轴对称图形的概念对各选项分析判断即可得解.[详解]A .不是轴对称图形,故本选项符合题意;B .是轴对称图形,故本选项不符合题意;C .是轴对称图形,故本选项不符合题意;D .是轴对称图形,故本选项不符合题意.故选A .[点睛]本题考查了轴对称图形的概念,掌握轴对称图形的概念是解答本题的关键.2.(2018·天津初二期中)如果一个三角形一条边上的中点到其它两边距离相等,那么这个三角形一定是() A .等边三角形 B .等腰三角形 C .直角三角形 D .斜三角形[答案]B[解析]本题根据已知条件可以通过证明三角形全等得出三角形的形状,注意:有效利用“等角对等边”.[详解]如图,∵D E⊥A B ,D F⊥A C ,∴∠B ED =∠D FC =90°,∵在△B D E和△C D F,B D =CD ,D E=D F,∴△D B E≌△D FC (HL),∴∠B =∠C ,∴A B =A C ,∴这个三角形一定是等腰三角形.故选B .[点睛]本题考查等腰三角形的判定;解题中两次运用了全等三角形的判定与性质及等量加等量和相等是比较关健的.3.(2018·河北初二期中)点P(2,﹣3)关于x轴的对称点是P1,P1关于y轴的对称点坐标是P2,则P2的坐标为( )A .(2,﹣3)B .(﹣2,3)C .(﹣2,﹣3)D .(﹣3,﹣2)[答案]B[解析]根据平面直角坐标系中对称点的规律解答即可.[详解]解:点P(2,﹣3)关于x轴的对称点是P1(2,3),P1关于y轴的对称点坐标P2的坐标为(﹣2,3).故选:B .[点睛]本题考查了坐标系中对称点的相关知识,难度不大,属于基本题型,熟知对称点的规律是解题的关键. 4.(2018·河北初二期中)如图,在△A B C 中,D E是A C 的垂直平分线,A C =8C m,且△A B D 的周长为14C m,则△A B C 的周长为( )A .15C mB .18C m C .22C mD .25C m[答案]C[解析]先根据线段垂直平分线的性质得到D A =D C ,再根据三角形的周长公式计算即可.[详解]解:∵D E是A C 的垂直平分线,∴D A =D C ,∵△A B D 的周长为14C m,∴A B +B D +A D =14C m,∴A B +B D +C D =14C m,即A B +B C =14C m,∴△A B C 的周长=A B +B C +A C =22C m,故选:C .[点睛]本题主要考查了线段垂直平分线的性质和三角形周长的计算,属于常考题型,熟练掌握线段垂直平分线的性质是关键.5.(2019·江苏初二期中)下列说法中正确的是( )A .两个全等三角形,一定是轴对称的B .两个轴对称的三角形,一定全等C .三角形的一条中线把三角形分成以中线为轴对称的两个图形D .三角形的一条高把三角形分成以高线为轴对称的两个图形[答案]B[解析]根据轴对称图形的概念对各选项分析判断即可得解.[详解]解:A 、两个全等三角形,一定是轴对称的错误,三角形全等位置上不一定关于某一直线对称,故本选项错误;B 、两个轴对称的三角形,一定全等,正确,故本选项正确;C 、三角形的一条中线把三角形分成以中线为轴对称的两个图形,错误,故本选项错误;D 、三角形的一条高把三角形分成以高线为轴对称的两个图形,错误,故本选项错误.故选:B .[点睛]本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.6.(2019·江苏初二期中)在如图所示的网格纸中,有A 、B 两个格点,试取格点C ,使得△A B C 是等腰三角形,则这样的格点C 的个数是()A .4B .6C .8D .10[答案]C[解析]分A B 是腰长时,根据网格结构,找出一个小正方形与A 、B 顶点相对的顶点,连接即可得到等腰三角形,A B 是底边时,根据线段垂直平分线上的点到线段两端点的距离相等,A B 垂直平分线上的格点都可以作为点C ,然后相加即可得解.[详解]解:如图,分情况讨论:①A B 为等腰△A B C 的底边时,符合条件的C 点有4个;②A B 为等腰△A B C 其中的一条腰时,符合条件的C 点有4个.故选:C .[点睛]本题考查等腰三角形的判定,解题的关键是掌握等腰三角形的判定,分情况讨论解决.7.(2018·天津初二期中)如图,ABC ∆的面积为6,3AC =,现将ABC ∆沿AB 所在直线翻折,使点C 落在射线AD 上的'C 处,P 为射线AD 上的任一点,则线段BP 的长不可能是( )A .3.8B .4C .5.5D .100[答案]A [解析]过B 作B N ⊥A C 于N ,B M ⊥A D 于M ,根据折叠得出∠C 'A B =∠C A B ,根据角平分线性质得出B N =B M ,根据三角形的面积求出B N ,即可得出点B 到A D 的最短距离是4,得出选项即可.[详解]如图:过B 作B N ⊥A C 于N ,B M ⊥A D 于M .∵将△A B C 沿A B 所在直线翻折,使点C 落在直线A D 上的C '处,∴∠C 'A B =∠C A B ,∴B N =B M . ∵△A B C 的面积等于6,边A C =3,∴12×A C ×B N =6,∴B N =4,∴B M =4,即点B 到A D 的最短距离是4,∴B P 的长不小于4,即只有选项A 的3.8不正确.故选A .[点睛]本题考查了折叠的性质,三角形的面积,角平分线性质的应用,解答此题的关键是求出B 到A D 的最短距离,注意:角平分线上的点到角的两边的距离相等.8.(2019·江苏省盐城市初级中学初二期中)如图,在△A B C 中,A B =A C ,B D =C D ,下列结论不一定正确的是 ( )A .∠B =∠CB .A D ⊥BC C .AD 平分∠B A C D .A B =2B D[答案]D [解析]在△A B C 中,A B =A C ,则△A B C 为等腰三角形,B D =C D ,则A D 为中线,根据等腰三角形的三线合一判断即可.[详解]∵在△A B C 中,A B =A C ,∴△A B C 为等腰三角形,∴∠B =∠C ,∵B D =C D ,∴A D ⊥B C ,A D 平分∠B A C ,不能得到A B =B C ,则无法证明A B =2B D ,故选D .[点睛]本题是对等腰三角形三线合一的考查,熟练掌握等腰三角形的三线合一性质是解决本题的关键. 9.(2019·山东初二期中)如图,在ABC ∆中,13AB AC ==,该三角形的面积为65,点O 是边BC 上任意一点,则点O 分别到边AB ,AC 的距离之和等于( )A .5B .6.5C .9D .10[答案]D [解析]根据等腰三角形的性质和三角形的面积公式解答即可.[详解]连接A O .∵在△A B C 中,A B =A C =13,该三角形的面积为65,∴三角形A B C 的面积=△A B O 的面积+△A C O 的面积=12A B •ON +12A C •OM =12A B •(ON +OM ) ∴12×13×(ON +OM )=65 解得:OM +ON =10.故选D .[点睛]本题考查了等腰三角形的性质,关键是根据等腰三角形的性质和三角形的面积公式解答.10.(2019·山东初二期中)如图,在Rt ABC ∆中,90B ∠=︒,20C ∠=︒,分别以点A 、C 为圆心,大于12AC 长为半径画弧,两弧相交于点M 、N ,连接MN ,与AC 、BC 分别交于点D 、E ,连接AE .则BAE ∠=( )A .20︒B .40︒C .50︒D .60︒[答案]C [解析]根据直角三角形两锐角互余可得∠B A C 的度数,根据题意可知MN 是线段A C 的垂直平分线,根据线段垂直平分线的性质得出A E =C E ,由等边对等角得出∠C A E =∠C =20°,即可得出结论. [详解]∵在Rt △A B C 中,∠B =90°,∠C =20°,∴∠B A C =70°.∵D E 垂直平分A C ,∴A E =C E ,∴∠C A E =∠C =20°,∴∠B A E =50°.故选C .[点睛]本题考查了作图﹣基本作图、线段垂直平分线的性质、等腰三角形的判定与性质,熟知垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.二、填空题(每小题4分,共24分)11.(2018·天津初二期中)若等腰三角形有两条边的长为7C m ,15C m ,则第三边的长为____C m .[答案]37.[解析]由于等腰三角形的两边长分别是7C m,15C m,没有直接告诉哪一条是腰,哪一条是底边,所以有两种情况,分别利用三角形的三边关系与三角形周长的定义求解即可.[详解]①当腰为15C m 时,三角形的周长为:15+15+7=37C m ;②当腰为7C m 时,7+7=14<15,三角形不成立;∴此等腰三角形的周长是37C m .故答案为:37.[点睛]本题考查了等腰三角形的性质与三角形的三边关系,利用分类讨论思想求解是解答本题的关键. 12.(2019·北京市三帆中学初二期中)已知:如图,在ABC △中,40B ∠=︒,点D 是BC 边上一点,且AC AD BD ==.则DAC ∠的度数为_____.[答案]20°[解析]根据等腰三角形的性质得到∠A D C =48°,再根据三角形外角的性质和等腰三角形的性质可求∠B 的度数.[详解]解:∵A D =B D , ∠B =40°, ∴∠B A D =∠B =40°, ∴∠A D C =∠B +∠B A D =80°,∵A C =A D ,∴∠A D C =∠C =80°,∴∠D A C =180°-∠A D C -∠C = 20°,故答案为:20°.[点睛]本题考查了等腰三角形的性质:①等腰三角形的两腰相等;②等腰三角形的两个底角相等,熟练掌握等腰三角形的性质是解题的关键.13.如图,在ABC ∆中,,BO CO 分别是ABC ACB ∠∠,的平分线,且它们相交于点O,//OE AB ,//OF AC ,10BC =,则OEF ∆的周长为_____.[答案]10.[解析]先根据角平分线的性质求出∠1=∠2,∠4=∠5,再根据平行线的性质求出∠1=∠3,∠4=∠6,通过等量代换可得,∠2=∠3,∠5=∠6,根据等腰三角形的判定定理及性质可得B E=OE,OF=FC ,即可解答.[详解]解:如图∵,BO CO 分别是ABC ACB ∠∠,的平分线,∴∠1=∠2,∠4=∠5,∵OE ∥A B ,OF ∥A C ,∴∠1=∠3,∠4=∠6,∴∠2=∠3,∠5=∠6,∴B E =OE ,OF =FC ,∴B C =B E +EF +FC =OE +EF +OF ,∵B C =10,∴OF +OE +EF =10∴△OEF 的周长=OF +OE +EF =10.[点睛]本题考查平行线的性质, 角平分线的定义, 等腰三角形的判定与性质.能结合角平分线的性质和平行线的性质判断△OEB 和△OFC 为等腰三角形是解决此题的关键.14.已知等腰三角形的一个内角为70°,则它的顶角度数为_____.[答案]70°或40°.[解析]已知等腰三角形的一个内角为70°,根据等腰三角形的性质可分情况解答:当70°是顶角或者70°是底角两种情况.[详解]此题要分情况考虑:①70°是它的顶角;②70°是它的底角,则顶角是180°−70°×2=40°.故答案为:70°或40°. [点睛]本题考查等腰三角形的性质, 三角形内角和定理.掌握分类讨论思想是解决此题的关键.15.(2019·江苏初二期中)如图,直线l 是四边形A B C D 的对称轴,A D ∥B C ,∠D =128°,则∠B 的大小为______°.[答案]52[解析]先求出C ∠的度数,然后利用对称性求出B[详解]解:∵A D ∥B C ,∴180D C ∠+∠=︒,∴180********C D ∠=︒-∠=-=又∵直线l 是四边形A B C D 的对称轴,∴52C B ∠=∠=故答案为:52.[点睛]主要考查了轴对称的性质及平行线的性质,正确理解相关性质是解答本题的关键.16.(2019·厦门市梧侣学校初二期中)如图,在ABC ∆中,AB AC =,30C ∠=,DA BA ⊥于点A ,若4CD cm =,则B D =__________.[答案]8C m[解析]根据A B =A C ,∠C =30°可得∠B =∠C =30°,∠B A C =120°,所以得出∠D A C =30°,所以A D =C D =4C m,然后在直角三角形A B D 中,30°角对应的直角边等于斜边的一半,所以B D =2A D ,进一步计算即可得出答案.[详解]∵A B =A C ,∠C =30°,∴∠B =∠C =30°,∠B A C =120°,∵DA BA ⊥,∴∠D A C =30°,又∵30C ∠=,∴A D =C D =4C m,在直角三角形A B D 中,∵∠B =30°,∴B D =2A D =8C m.[点睛]本题主要考查了直角三角形以及等腰三角形性质的综合运用,熟练掌握相关概念是解题关键.三、解答题一(每小题6分,共18分)17.(2019·呼和浩特市实验中学初二期中)已知等腰ABC ∆中,4AB =,周长是10,求BC 的长.[答案]2或3或4[解析]根据等腰三角形的腰的情况分类即可.[详解]解:①若A B =A C =4∵ABC ∆周长是10∴B C =10-A B -A C =2,满足三角形的三边关系;②若A C =B C则A C =B C =12(10-A B )=3,满足三角形的三边关系; ③若B C =A B∴此时B C =A B =4∴A C =10-A B -B C =2,满足三角形的三边关系;综上所述:B C 的长是2或3或4[点睛]此题考查的是已知等腰三角形周长求边长,解决此题的关键是根据等腰三角形的腰的情况分类讨论及根据构成三角形的条件判断是否舍取.18.(2019·江西宜春九中初二期中)如图,已知:A B =A D ,B C =C D ,∠A B C =∠A D C ,A C 是否是线段B D 的垂直平分线?请说明理由.[答案]A C 是线段B D 的垂直平分线.具体见解析.[解析]由A B =A D ,B C =C D ,根据线段垂直平分线的判定,可得:点A 在B D 的垂直平分线上,点C 在B D 的垂直平分线上,又由两点确定一条直线,即可证得结论.[详解]A C 是线段B D 的垂直平分线.理由:∵A B =A D ,B C =C D ,∴点A 在B D 的垂直平分线上,点C 在B D 的垂直平分线上,∴A C 是线段B D 的垂直平分线.[点睛]本题考查线段垂直平分线的性质,解题的关键是掌握线段垂直平分线的性质.19.(2019·江苏初二期中)如右图,已知点P是线段MN外一点,请利用直尺和圆规画一点Q,使得点Q到M、N两点的距离相等,且点Q与点M、P在同一条直线上.(保留作图痕迹)[答案]作图见解析[解析]先作出MN的垂直平分线,然后连接P,M两点,并延长交MN的垂直平分线于一点,则交点为所求.[详解]解:先作MN垂直平分l,连接P,M两点,延长PM交l于点Q ,则Q点为所求.[点睛]此题主要考查线段的垂直平分线的作法,熟知线段垂直平分线上到线段两个端点的距离相等是解题关键.四、解答题二(每小题7分,共21分)20.(2019·江苏南京一中初二期中)在△A B C 中,A B =A C ,∠B A C =120°,A D ⊥B C ,且A D =A B ,∠ED F=60°,且∠ED F两边分别交边A B ,A C 于点E,F,求证:B E=A F.[答案]见解析[解析]由等腰三角形三线合一的性质可得∠B A D =∠C A D =60°,由∠B A D =60°,A B =A D 证明△A B D 是等边三角形,得到B D =A D ,再由角的关系得∠A B D =∠D A C ,∠ED B =∠A D F,最后由角边角证明△B D E≌△A D F,由全等三角形的性质即可得出结论.[详解]连接B D ,如图所示:∵A B =A C ,A D ⊥B C ,∴∠B A D =∠C A D =12∠B A C .∵∠B A C =120°,∴∠B A D =∠C A D =60°.∵∠B A D =60°,A B =A D ,∴△A B D 是等边三角形,∴B D =A D ,∠A B D =∠A D B =60°.∵∠D A C =60°,∴∠A B D =∠D A C .∵∠ED B +∠ED A =∠ED A +∠A D F=60°,∴∠ED B =∠FD A .在△B D E与△A D F中,∵EBD DAFAD BDEDB FDA∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△B D E≌△A D F(A SA ),∴B E=A F.[点睛]本题考查了等边三角形的判定与性质,全等三角的判定与性质和角的和差以及等腰三角形的性质,重点掌握全等三角形的判定与性质,难点是作辅助线构建全等三角形.21.(2019·江苏南京一中初二期中)如图所示,A D 为△A B C 的角平分线,D E⊥A B 于点E,D F⊥A C 于点F,连接EF交A D 于点O.求证:A D 垂直平分EF.[答案]见解析[解析]由A D 为△A B C 的角平分线,得到D E=D F,推出∠A EF=∠A FE,得到A E=A F,根据等腰三角形三线合一的性质即可推出结论.[详解]∵A D 为△A B C 的角平分线,D E⊥A B ,D F⊥A C ,∴D E=D F,∠A ED =∠A FD =90°,∴∠D EF=∠D FE,∴∠A EF=∠A FE,∴A E=A F.∵A D 为△A B C 的角平分线,∴A D 垂直平分EF.[点睛]本题考查了角平分线的性质,等腰三角形的判定与性质,解答此题的关键是证A E=A F.22.(2019·江苏初二期中)如图,△A B C 中,A D ⊥B C ,EF垂直平分A C ,交A C 于点F,交B C 于点E,且BD =D E.(1)若∠B A E=40°,求∠C 的度数;(2)若△A B C 周长为14C m,A C =6C m,求D C 长.[答案](1)35°(2)4C m[解析](1)根据线段垂直平分线和等腰三角形性质得出A B =A E=C E,求出∠A EB 和∠C =∠EA C ,即可得出答案;(2)根据已知能推出2D E+2EC =8C m,即可得出答案.[详解](1)∵A D 垂直平分B E,EF垂直平分A C ,∴A B =A E=EC ,∴∠C =∠C A E,∵∠B A E=40°,∴∠A ED =70°,∴∠C =12∠A ED =35°;(2)∵△A B C 周长14C m,A C =6C m,∴A B +B E+EC =8C m,即2D E+2EC =8C m,∴D E+EC =D C =4C m.[点睛]本题考查了等腰三角形的性质,线段垂直平分线性质,三角形外角性质的应用,主要考查学生综合运行性质进行推理和计算的能力.五、解答题三(每小题9分,共27分)23.(2019·江苏南京一中初二期中)如图,在长度为1个单位长度的小正方形组成的正方形中,点A ,B ,C 在小正方形的顶点上.(1)在图中画出与△A B C 关于直线l成轴对称的△A ′B ′C ′(2)三角形A B C 的面积为;(3)在直线l上找一点P,使PA +PB 的长最短.[答案](1)见解析;(2)12.5;(3)见解析[解析](1)根据网格结构找出点A 、B 、C 关于直线l成轴对称的点A '、B '、C '的位置,然后顺次连接即可;(2)利用△A B C 所在的矩形的面积减去四周三个小直角三角形的面积,列式计算即可得解;(3)连接B 与点A 关于直线l的对称点A ',根据轴对称确定最短路线,A 'B 与直线l的交点即为所求的点P的位置.[详解](1)△A 'B 'C '如图所示;(2)S △A B C =6×5﹣12×6×1﹣12×5×5﹣12×4×1=30﹣3﹣12.5﹣2=30﹣17.5=12.5. 故答案为:12.5;(3)如图,点P 即为所求的使P A +PB 的长最短的点.[点睛]本题考查了利用轴对称变换作图,熟练掌握网格结构并准确找出对应点的位置是解答本题的关键. 24.(2019·山东初二期中)如图,在等腰Rt ABC ∆中,90ACB ∠=︒,AC CB =,F 是AB 边上的中点,点D 、E 分别在AC 、BC 边上运动,且始终保持AD CE =.连接DE 、DF 、EF .(1)求证:ADF CEF ∆≅∆;(2)试证明DFE ∆是等腰直角三角形;(3)若5AD =,7BE =,求AC 的长.[答案](1)证明见解析;(2)证明见解析;(3)12.[解析](1)根据等腰直角三角形的性质等到A F =C F ,∠A =∠FC E ,根据SA S 即可得出结论;(2)由(1)可得:D F =EF ,∠A FD =∠C FE ,进而得出∠D FE =90°,即可得出结论;(3)由(1)可得:A D =C E ,则有A C =B C =C E +B E =A D +B E ,即可得出结论.[详解](1)在等腰直角ABC ∆中,90ACB ∠=︒,AC BC =,∴45A B ∠=∠=︒.又∵F 是AB 中点,∴45ACF FCB ∠=∠=︒,即45A FCE ACF ∠=∠=∠=︒,且AF CF =.在ADF ∆与CEF ∆中,∵AD CE A FCE AF CF =⎧⎪∠=∠⎨⎪=⎩,∴()ADF CEF SAS ∆≅∆;(2)由(1)可知ADF CEF ∆≅∆,∴DF FE =,∴DFE ∆是等腰三角形.又∵AFD CFE ∠=∠,∴AFD DFC CFE DFC ∠+∠=∠+∠,∴AFC DFE ∠=∠.∵90AFC ∠=︒,∴90DFE ∠=︒,∴DFE ∆是等腰直角三角形.(3)由(1)可知ADF CEF ∆≅∆,∴A D =C E .∵A C =B C ,∴A C =B C =C E +B E =A D +B E =5+7=12.[点睛]本题考查了学生对全等三角形的判定与性质和等腰直角三角形的理解和掌握,稍微有点难度,属于中档题.25.(2019·江苏初二期中)如图所示,点O 是等边三角形A B C 内一点,∠A OB =100°,∠B OC =α,D 是△A B C 外一点,且△A D C ≌△B OC ,连接OD .(1)求证:△C OD 是等边三角形;(2)当α=150°时,判断△A OD 的形状,并说明理由.(3)探究:当α=_____度时,△A OD 是等腰三角形.[答案](1)见解析 (2)直角三角形,见解析 (3)100或130或160[解析](1)根据全等三角形的性质得到∠OC B =∠D C A ,C O =C D ,证明∠D C A +∠A C O =60°,根据等边三角形的判定定理证明;(2)根据全等三角形的性质得到∠A D C =∠B OC =150°,结合图形计算即可;(3)分A D =A O 、D A =D O 、OD =A O 三种情况,根据等腰三角形的性质,三角形内角和定理计算.[详解](1)证明:∵△A D C ≌△B OC ,∴∠OC B =∠D C A ,C O=C D ,∵△A B C 是等边三角形,∴∠A C B =60°,即∠OC B +∠A C O=60°,∴∠D C A +∠A C O=60°,又C O=C D ,∴△C OD 是等边三角形;(2)解:∵△A D C ≌△B OC ,∴∠A D C =∠B OC =150°,∵△C OD 是等边三角形,∴∠OD C =60°,∴∠A D O=∠A D C −∠OD C =90°,∠A OD =360°−100°−150°−60°=50°,∴∠OA D =40°,△A OD 是直角三角形;(3)解:当A D =A O时,设∠A OD =∠A D O=x, 则∠A D C =∠A D O+∠OD C =x+60°,∴∠B OC =x+60°,则100°+x+60°+x+60°=360°,解得,x=70°,则α=60°+70°=130°,当D A =D O时,设∠A OD =∠D A O=x,则∠A D O=180°−2x,∴∠A D C =∠A D O+∠OD C =180°−2x+60°, ∴∠B OC =240°−2x,则100°+240°−2x+x+60°=360°,解得,x=40°,则α=240°−2x=160°,当OD =A O时,设∠OA D =∠A D O=x,则∠A D C =∠A D O+∠OD C =x+60°,∴∠B OC =x+60°,则100°+x+60°+180°−2x+60°=360°,解得,x=40°,则α=60°+40°=100°,综上所述,当α为100°或130°或160°时,△A OD 是等腰三角形.[点睛]本题考查的是等边三角形的性质,全等三角形的性质,等腰三角形的判定,掌握全等三角形的性质定理,灵活运用分情况讨论思想是解题的关键.。
数学八年级上册《轴对称》单元测试题(附答案)

[答案]C
[解析]
[详解]试题解析:设A D=x,∵△A B C是等边三角形,∴∠A=∠B=∠C=60°,∵DE⊥A C于点E,EF⊥B C于点F,FG⊥A B,∴∠A DF=∠DEB=∠EFC=90°,∴BF=2x,∴B D=x,CF=12﹣2x,∴CE=2CF=24﹣4x,∴AE=12﹣CE=4x﹣12,∴A D=2AE=8x﹣24,∵A D+B D=A B,∴x+8x﹣24=12,∴x=4,∴B D=4.A D=A B-B D=12-4=8,故选C.
7.已知点P(5,-2)与点Q关于y轴对称,则Q点的坐标为()
A.(-5,2)B.(-5,-2)C.(5,2)D.(5,-2)
[答案]B
[解析]
[分析]
平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(-x,y),即关于纵轴的对称点,纵坐标不变,横坐标变成相反数;这样就可以求出Q的对称点的坐标.
A. 3B. 4C. 8D. 9
7.已知点P(5,-2)与点Q关于y轴对称,则Q点的坐标为()
A. (-5,2)B. (-5,-2)C. (5,2)D. (5,-2)
8.如图,在锐角△A B C中,A B=4 ,∠B A C=45°,∠B A C的平分线交B C于点D,M、N分别是A D和A B上的动点,则BM+MN的最小值是()
人教版八年级上册《轴对称》单元测试卷
(时间:120分钟 满分:150分)
一、单选题(共10题;共28分)
1.下列交通标志是轴对称图形的是( )
A. B. C. D.
2.下面的图形中,既是轴对称图形又是中心对称图形的是()
A. B. C. D.
3.如图所示是4×5的方格纸,请在其中选取一个白色的方格并涂黑,使图中阴影部分是一个轴对称图形,这样的涂法有( )
2021-2022学年人教版八年级数学上册第十三章轴对称单元测试训练卷(含答案)

人教版八年级数学上册第十三章轴对称单元测试训练卷一、选择题(共8小题,4*8=32)1.下图均由正六边形与两条对角线所组成,其中不是轴对称图形的是( )2.已知MN是线段AB的垂直平分线,下列说法中正确的是()A.与AB距离相等的点在MN上B.与点A和点B距离相等的点在MN上C.与MN距离相等的点在AB上D.AB垂直平分MN3.若点A(1+m,1-n)与点B(-3,2)关于y轴对称,则m+n的值是( )A.-5 B.-3 C.3 D.14.已知等腰△ABC的周长为18 cm,BC=8 cm,若△ABC与△A′B′C′全等,则△A′B′C′的腰长等于()A.8 cm B.2 cm或8 cmC.5 cm D.8 cm或5 cm5.如图,AB=AC=AD,若∠BAD=80°,则∠BCD等于( )A.80° B.100° C.140° D.160°6.下面给出的几种三角形:①有两个角为60°的三角形;②三个外角都相等的三角形;③一边上的高也是这边上的中线的三角形;④有一个角为60°的等腰三角形.其中是等边三角形的有( )A.4个B.3个C.2个D.1个7.如图,将三角形纸片ABC沿直线DE折叠后,使得点B与点A重合,折痕分别交BC,AB于点D,E.如果AC=5 cm,△ADC的周长为17 cm,那么BC的长为( )A.7 cm B.10 cm C.12 cm D.22 cm8.如图,在四边形ABCD中,∠C=50°,∠B=∠D=90°,E,F分别是BC,DC上的点,当△AEF的周长最小时,∠EAF的度数为()A.50° B.60° C.70° D.80°二.填空题(共6小题,4*6=24)9.如图,△ABC沿着直线MN折叠后,与△DEF完全重合,AC,DF交于点P. 点B的对称点是______;10. 如图,在△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为__ __.11. 如图,把一张长方形的纸片ABCD沿EF折叠,点C,D分别落在C′,D′的位置上,EC′交AD于点G,已知∠EFG=56°,那么∠BEG=_____.12. 如图是一个风筝的图案,它是轴对称图形,EF是对称轴.若∠A=90°,∠AED=130°,∠C=45°,则∠BFC的度数为__ __.13. 如图,已知点M是∠ABC内一点,分别作出点M关于直线AB,BC的对称点M1,M2,连接M1M2分别交AB于点D,交BC于点E,若M1M2=3 cm,则△MDE的周长为__ __cm.14. 如图,∠BOC=9°,点A在OB上,且OA=1,按下列要求画图:以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;再以A1为圆心,1为半径向右画弧交OB 于点A2,得第2条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;…;这样画下去,直到得到第n条线段之后就不能再画出符合要求的线段了,则n=________.三.解答题(共5小题,44分)15.(6分) 如图,在所给网格图(每小格边长均是1的正方形)中完成下列各题:(1)画出格点△ABC(顶点均在格点上)关于直线DE对称的△A1B1C 1;(2)在DE上画出点P,使PB1+PC最小;(3)在DE上画出点Q,使QA+QC最小.16.(8分) 请仅用无刻度的直尺完成下列画图,不写画法,保留画图痕迹.(1)如图①,四边形ABCD中,AB=AD,∠B=∠D,画出四边形ABCD的对称轴m;(2)如图②,四边形ABCD中,AD∥BC,∠A=∠D,画出BC边的垂直平分线n.17.(8分) 如图,在△ABC中,点D在BC上,AD的垂直平分线EF交BC的延长线于点F.若∠FAC=∠B,求证:AD平分∠BAC.18.(10分) 如图,在等边△ABC中,点D为AC上一点,CD=CE,∠ACE=60°.(1)求证:△BCD≌△ACE;(2)延长BD交AE于点F,连接CF,若AF=CF,猜想线段BF,AF的数量关系,并证明你的猜想.19.(12分) 如图所示,已知△ABC中,AB=AC=BC=10厘米,M,N分别从点A,B同时出发,沿三角形的边顺时针运动,已知点M的速度是1厘米/秒,点N的速度是2厘米/秒,当点N第一次到达B点时,M,N同时停止运动.(1)M,N同时运动几秒后,M,N两点重合?(2)M,N同时运动几秒后,可得等边三角形AMN?(3)M,N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN,如果存在,请求出此时M,N运动的时间?参考答案1-4DBDD 5-8CBCD9.点E10.1311.68°12.140°13.314.915.解:(1)作图略(2)连接B 1C 交DE 于点P ,则P 点就是所求的点 (3)Q 为AC 1(或CA 1)与DE 的交点16.解:(1)如图①,直线m 即为所求(2)如图②,直线n 即为所求17.证明:∵EF 垂直平分AD ,∴FA =FD.∴∠FAE =∠FDE.∵∠FAE =∠FAC +∠CAD ,∠FDE =∠B +∠BAD ,∴∠FAC +∠CAD =∠B +∠BAD.又∵∠FAC =∠B ,∴∠CAD =∠BAD.∴AD 平分∠BAC18.解:(1)∵△ABC 是等边三角形,∴BC =AC ,∠BCD =60°.∵∠ACE =60°,∴∠BCD=∠ACE.在△BCD 和△ACE 中,⎩⎪⎨⎪⎧CD =CE ,∠BCD =∠ACE ,BC =AC ,∴△BCD ≌△ACE(SAS) (2)BF =2AF.证明如下:∵AF =CF ,AB =BC ,BF =BF ,∴△ABF ≌△CBF(SSS),∴∠ABD=∠CBD =12∠ABC =30°.由(1)知△BCD ≌△ACE ,∴∠CAE =∠CBD =30°,∴∠BAF =∠BAC +∠CAE =90°.又∵∠ABF =30°,∴BF =2AF19.解:(1)设点M ,N 运动x 秒后,M ,N 两点重合,x +10=2x ,解得x =10,即M ,N 同时运动10秒后,M ,N 两点重合(2)设点M ,N 运动t 秒后,可得到等边三角形AMN ,如图①,AM =t×1=t ,AN =AB -BN=10-2t.∵△AMN 是等边三角形,∴t =10-2t ,解得t =103 .即点M ,N 运动103秒后,可得到等边三角形AMN(3)当点M ,N 在BC 边上运动时,可以得到以MN 为底边的等腰三角形,由(1)知,10秒时M ,N 两点重合,恰好在点C 处.如图②,假设△AMN 是等腰三角形,则AN =AM ,∴∠AMN =∠ANM.∴∠AMC =∠ANB.∵AB =BC =AC ,∴∠C =∠B.在△ACM 和△ABN 中, ⎩⎪⎨⎪⎧∠C =∠B ,∠AMC =∠ANB ,AC =AB ,∴△ACM ≌△ABN(AAS).∴CM =BN ,设当点M ,N 在BC 边上运动时,M ,N 运动的时间y 秒时,△AMN 是等腰三角形,则CM =y -10,NB =30-2y ,∴y-10=30-2y ,解得y =403 .即当点M ,N 在BC 边上运动403秒时,得到以MN 为底边的等腰△AMN。
数学八年级上册《轴对称》单元综合测试(附答案)

[解析]
[分析]
根据等边三角形三线合一得到B D垂直平分C A,所以C D= ,另有 ,从而求出BE的长度.
[详解]解:由于△A B C是等边三角形,则其三边相等,B D也是A C的垂直平分线,即A B=B C=C A=6,A D=D C=3,已知CE=C D,则CE=3.而BE=B C+CE,因此BE=6+3=9.
其中C9本题主要考查等腰三角形的判定,根据题意画圆是解题的关键.
12.室内墙壁上挂一平面镜,小明在平面镜内看到他背后墙上时钟的示数如图所示,则这时的实际时间应是()
A.3:40B.8:20C.3:20D.4:20
[答案]A
[解析]
根据镜面对称的性质,分析可得题中所显示的时刻与3:40成轴对称,所以此时实际时刻为3:40.
故选A.
13.如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有()
A.1个B.2个C.3个D.3个以上
[答案]D
[解析]
[详解]试解:如图在OA、OB上截取OE=OF=OP,作∠MPN=60°.
∵OP平分∠AOB,
[答案]A
[解析]
[分析]
根据轴对称的定义和性质进行判断.
[详解]A.轴对称图形的对称点不一定在对称轴的两侧,还可以在对称轴上;符合题意
B.两个关于某直线对称的图形一定全等;正确,不符合题意
C.两个成轴对称的图形对应点的连线的垂直平分线是它们的对称轴;正确,不符合题意
D.平面上两个全等 图形不一定关于某直线对称;正确,不符合题意
先根据三角形内角和定理求出底角 度数,再利用直角三角形两锐角互余即可求出.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学上册《第十三章轴对称》单元测试卷-带答案(人教版)
一、单选题
1.下列图形中,是轴对称图形的有()
A.1个B.2个C.3个D.4个
2.等腰三角形的两条边长分别为15cm和7cm,则它的周长为()
A.37cm B.29cm C.37cm或29cm D.无法确定
3.在平面直角坐标系中,点P (-1,2 )关于x轴的对称点的坐标为()
A.(-1,-2 )B.(1,-2 )
C.(2,-1 )D.(-2,1 )
4.等腰三角形的两个内角的比是1:2,则这个等腰三角形是()
A.锐角三角形B.直角三角形
C.锐角三角形或直角三角形D.以上结论都不对
5.如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E处,则∠A等于()
A.25°B.30°C.45°D.60°
6.如图,在△ABC中,AB、AC的垂直平分线分别交BC于点E、F,若∠BAC=112∘,则∠EAF为()
A.38∘B.40∘C.42∘D.44∘
7.如图,等腰△ABC中,点D,E分别在腰AB,AC上,添加下列条件,不能判定△ABE≌△ACD的是()
A.∠DCB=∠EBC B.∠ADC=∠AEB
C.AD=AE D.BE=CD
8.如图,在△ABC中,已知∠B和∠C的平分线相交于点F,过F作DE∥BC,交AB于点D,交AC于点E,若BD+CE=9,则线段DE的长为().
A.9 B.8 C.7 D.6
二、填空题
9.已知点P(3,m)关于x轴的对称点为Q(n,2),则2n﹣m= .
10.已知△ABC中,AB=AC=4,∠A=60°,则△ABC的周长为.
11.如图,在锐角△ABC中,AC=10,S△ABC=25且∠BAC的平分线交BC于点D,点M,N分别是AD 和AB上的动点,则BM+MN的最小值是
12.如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线交AB于点D,交AC于点E,连接BE,则∠CBE 的度数为.
13.如图,ΔABC中∠ACB=90°,AC=6和BC=8,CD是ΔABC的角平分线,点E是AC的中点,P是CD上一点,则ΔAEP周长的最小值是.
三、解答题
14.平面直角坐标系中,△ABC的三个顶点坐标分别为A(0,4),B(2,4),C(3,﹣1).
(1)试在平面直角坐标系中,标出A、B、C三点
(2)求△ABC的面积
(3)若△A1B1C1与△ABC关于x轴对称,写出A1、B1、C1的坐标.
15.已知等腰三角形一腰上的中线将三角形的周长分为9cm和15cm两部分,求这个等腰三角形的底边长和腰长.
16.已知,如图,△ABC是正三角形,D,E,F分别是各边上的一点,且AD=BE=CF.请你说明△DEF是正三角形.
17.已知等腰△ABC一腰上的中线BD把三角形的周长分成21cm和12cm两部分,求底边BC的长.
18.如图.
(1)在网格中画出△ABC关于y轴对称的△A1B1C1;
(2)写出△ABC关于x轴对称的△A2B2C2的各顶点坐标;
(3)在y轴上确定一点P,使PA+PB最短.(只需作图保留作图痕迹)
19.如图,已知△ABC中,∠B=∠C,AB=8厘米,BC=6厘米,点D为AB的中点.如果点P在线段BC上以每秒2厘米的速度由B点向C点运动,同时,点Q在线段CA上以每秒a厘米的速度由C点向A点运动,设运动时间为t(秒)(0≤t≤3).
(1)用的代数式表示PC的长度;
(2)若点P、Q的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;
(3)若点P、Q的运动速度不相等,当点Q的运动速度a为多少时,能够使△BPD与△CQP全等?
参考答案
1.B
2.A
3.A
4.C
5.B
6.D
7.D
8.A
9.8
10.12
11.5
12.30°
13.3+3√5
14.(1)解:如图所示:
(2)解:
由图形可得:AB=2,AB边上的高=|﹣1|+|4|=5
AB×5=5.
∴△ABC的面积=1
2
(3)解:
∵A(0,4),B(2,4),C(3,﹣1),△A1B1C1与△ABC关于x轴对称∴A1(0,﹣4)、B1(2,﹣4)、C1.(3,1).
15.解:如图,
△ABC 是等腰三角形,AB =AC ,BD 是AC 边上的中线.
设△ABC 的腰长为xcm ,则AD =DC = 12 xcm.
分下面两种情况解:
①AB +AD =x + 12 x =9,∴x =6.∵三角形的周长为9+15=24(cm)
∴三边长分别为6cm ,6cm ,12cm.6+6=12,不符合三角形的三边关系,舍去;
②AB +AD =x + 12 x =15,∴x =10.∵三角形的周长为24cm
∴三边长分别为10cm ,10cm ,4cm ,符合三边关系.
综上所述,这个等腰三角形的底边长为4cm ,腰长为10cm.
16.解:∵△ABC 为等边三角形,且AD=BE=CF ,∴AE=BF=CD ,又∵∠A=∠B=∠C=60°,∴△ADE ≌△BEF ≌△CFD (SAS ),∴DF=ED=EF ,∴△DEF 是等边三角形.
17.解:∵△ABC 是等腰三角形,
∴AB =AC
∵BD 是AC 边上的中线
∴AD =CD
设AB =AC =xcm ,BC =ycm
∵BD 把三角形的周长分成21cm 和12cm 两部分
∴有AB +AD =21cm ,CD +BC =12cm 或AB +AD =12cm ,CD +BC =21cm 两种情况
则有:①{x +x 2=21x 2
+y =12 解得: {x =14y =5
即AB =AC =14cm ,BC =5cm ,根据三角形构成的条件可知,能够成三角形;
②{x +x 2=12
x 2+y =21
解得: {x =8y =17
即AB =AC =8cm ,BC =17cm ,根据三角形构成的条件可知,不能够成三角形,不符合题意;
综上所述,等腰三角形底边BC为5cm.
18.(1)解:如图所示:
(2)解:A2(﹣3,﹣2),B2(﹣4,3),C2(﹣1,1)(3)解:连结AB1或BA1交y轴于点P,则点P即为所求
19.(1)解:BP=2t,则PC=BC﹣BP=6﹣2t
(2)解:△BPD和△CQP全等
理由:∵t=1秒∴BP=CQ=2×1=2厘米
∴CP=BC﹣BP=6﹣2=4厘米
∵AB=8厘米,点D为AB的中点
∴BD=4厘米.
∴PC=BD
在△BPD和△CQP中
{BD=PC
∠B=∠C
BP=CQ
∴△BPD≌△CQP(SAS)
(3)解:∵点P、Q的运动速度不相等,∴BP≠CQ
又∵△BPD≌△CPQ,∠B=∠C
∴BP=PC=3cm,CQ=BD=4cm
∴点P,点Q运动的时间t= BP
2 = 3
2
秒
∴V Q= CQ
t = 43
2
= 8
3
厘米/秒。