流体力学NS方程推导过程

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

流体力学N S方程推导过

It was last revised on January 2, 2021

流体力学N S方程简易推导过程

小菜鸟0 引言

流体力学的NS方程对于整个流体力学以及空气动力学等领域的作用非常显着,不过其公式繁琐,推导思路不容易理顺,最近重新整理了一下NS方程的推导,记录一下整个推导过程,供自己学习,也可以供大家交流和学习。

1 基本假设

空气是由大量分子组成,分子做着无规则热运动,我们可以想象,随着观察尺度的逐渐降低,微观情况下流体的速度密度和温度等物理量不可能与宏观情况相同,其物理量存在间断的现象,例如我们在空间中取出一块控制体,当控制体中存在分子时,该控制体的密度等量较大,不存在时就会为0,这在微观尺度下是常见。不过随着观察尺度增加,在宏观情况下,控制体积内包含大量分子,控制体积的压力密度温度速度等物理量存在统计平均结果,这个结果是稳定的,例如流场变量的压力密度和温度满足理想气体状态方程。

自然界中宏观情况的流体运动毕竟占据大多数,NS方程限定了自己的适用条件为宏观运动,采用稍微专业一点难度术语是流体满足连续介质假设。连续介质假设的意思就是说,我们在流场中随意取出流体微团,这个流体微团在宏观上是无穷小的,因此整个流场的物理量可以进行数学上的极限微分积分等运算;同时,这个流体微团在微观上是无穷大的,微团中包含了大量分子,以至于可以进行分子层面的统计平均,获得我们通常见到的流场变量。

连续介质假设成立需要满足:所研究流体问题的最小空间尺度远远大于分子平均运动自由程(标准状况下空气的平均分子自由程在十分之一微米的量级,具体值可以参考分子运动理论),这在大多数宏观情况下都是成立的,也是NS方程能够广泛采用的基础,即使在湍流中,也是成立的,因此才保证NS方程也适用于描述湍流。

有些情况下连续介质假设不成立,存在哪些情况第一种是空间尺度特别小,例如热线风速仪的金属丝,直径通常在1~5微米量级,最小流体微团已经接近分子平均运动自由程,连续介质假设不能直接使用,类似情况还包括激波,激波面受到压缩,其尺度也较小,为几个分子平均自由程量级,不过采用连续介质假设进行激波内流场计算时,计算结果仍然可以得到比较合理,并且与实际情况相符,这也给激波问题的研究和解决带来了基础性的保证;第二种是分子平均运动自由程特别大,分子平均运动自由程是指两个分子之间碰撞距离的平均值,这个结果与分子有效直径,分子运动速度等相关,宏观上来讲,温度越高、压力越大,分子平均运动自由程越大,而在高空情况下,压力非常低,自由程可能很大,并且大到与飞行器尺度相近,于是连续介质假设失效,此时必须考虑稀薄气体效应。在层流边界层情况下,分子平均运动自由程与边界层之间存在近似关系:

从这个关系中,可以发现,当马赫数非常大但是同时雷诺数非常小的时候,流场微小尺度才可能达到分子平均运动自由程lmd的程度。可以想象一下,在大多数我们能观察到的情况下,上述公式的结果都是非常小的,满足连续介质假设,这个公式不成立的情况在大气层外边缘,此时大气分子之间平均动量交换降低,导致粘性变得非常小,雷诺数很高,因此公式计算结果急剧降低,导致连续介质假设失效。

前面讨论了连续介质建设成立的条件以及不成立的例子,下面讨论的都是连续介质假设范围内的结果。

2 连续性方程:质量守恒定律的流体表达

根据质量守恒定律,我们知道,在流场取的控制体满足如下物理规律:控制体的总质量不随着运动而变化的,在运动过程中控制体始终由相同流体微团组成,因此利用流场物理量将物理规律用数学公式表达可得:

根据引论1中的内容,上式左边随体导数可以采用两种形式的偏导数表示:

(1)微元体表达形式:

根据引论1中微元体的随体导数关系可以得到:

或者 (2)张量表达形式:

3 动量方程:牛顿第二定律的流体表达

根据牛顿第二定律,流场中取出控制体满足如下规律:某一时刻,控制体中所有流体微团的总动量随时间的变化率=控制体中所有流体微团受到的合力。控制体受力主要包括表面力和体积力,表面力作用于物体表面,例如压力等应力,表面力可以分解为法向力和切向力,法向力通常为压力,切向力通常为粘性力(当然这不是绝对,因为法向力还包括流场可压缩性引起的法向应力);体积力作用于流场中每一个流体微团,例如重力,电磁力等。

因此,牛顿第二定律可以表达为:控制体总动量随时间变化率=控制体表面力合力+控制体体积力合力(为了推导方便,下面将体积力忽略,在重力等法向力影响较大时,将该项加入即可)。

利用流场变量可以将上述定律表达为数学公式:

其中根据引论1和引论2,可知方程左边具有两种偏导数表达形式,

(1)微元体表达形式:

根据引论2,上式左边具有这两种偏导数表达形式(一种根据定义,一种引入质量守恒关系):

(2)张量表达形式:

根据引论2,上式左边具有两种偏导数表达形式(一种定义,一种引入质量守恒):

(3)补充说明1:粘性应力表达式

上述公式中,我们将表面力表达为表面压力+粘性力的形式,其中表面压力为法向力,粘性力由流体粘性引起,包括法向力和切向力,根据各项同性假设,粘性应力张量可以表达为:

其中,\miu 称为动力粘性系数。

根据Stokes 假设,在通常情况下,体积粘性系数,于是上述粘性应力表达为:

(4)补充说明2:粘性应力的空间导数

在动量方程中,粘性应力的空间导数可以表达为:

如果流场为不可压缩s=0并且粘性系数不随空间改变,即温度不变,可以简化为:

(5)补充说明3:动力粘性系数表达式:

=0D v Dt

ρρ+∇⋅1=-D v Dt ρρ∇⋅2'=03

μλμ=+

该公式中动力粘性系数是流体的基本变量,该系数表征流体分子之间动量交换的快慢程度,与流场的温度相关,与压力等其他变量关系较小,在温度为100到1900K 范围,可以采用Sutherland 公式进行表达:

其中,T ref =,T0和\miu0则可以采用任何温度的结果,例如在常温288K 情况下,动力粘性系数为。

4 能量方程:能量守恒定律的流体表达

根据能量守恒定律,流场中取出控制体满足如下物理规律:

控制体的总能量增加=控制体受到外力做功+外界向控制体热传导

采用流场变量可以将该物理定律表达为数学形式(e=CvT 表示流场内能,内能可以采用定容比热乘以温度得到):

其中,根据引论1和2可知,方程左边具有两种偏导数表达形式:

(3) 微元体表达形式:

根据引论1和2可知上式具有两种偏导数表达形式:

(2)张量表达形式

A: 总能公式E=e+ v 2/2

根据引论1和引论2,上式左边具有两种偏导数表达形式:

B: 内能公式e=E- v 2/2

将总能关系式代入上述公式可得:

因此可得内能关系式为:

根据引论1和引论2上式左边具有两种偏导数表达形式,略。

C :焓公式h=e+p/rou

将内能关系式代入上式可得:

根据引论1和引论2上式左边具有两种偏导数表达形式,略。

D :总焓公式h0=h+v 2/2=E+p/rou

注意上式中采用了引论2中的内容,将焓关系式代入上式可得:

于是可得总焓关系式为:

根据引论1和引论2上式左边具有两种偏导数表达形式,略。

E :熵公式Tds=dh-dp/rou

根据熵公式,可得熵的随体导数为:

根据引论1和引论2,上式左边具有两种偏导数表达形式,略。

根据熵公式,可以知道,熵的增加主要来自两个部分,一是粘性力引起,二是热传导引起,如果流场中粘性应力和热传导都可以忽略,则流场满足等熵关系。

(3)补充说明:粘性力耗散

几个公式中都存在粘性力的做功项,称之为耗散项fai ,该项具体表达式可以表示为:

()2222211111=t 22222D e v e v v e v e v v e v D t t ρρρρρ∂∂⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++⋅∇+=++∇⋅+ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥∂∂⎝⎭⎝⎭⎝⎭⎝⎭⎝

⎭⎣⎦⎣⎦21==t t 2t t t ij i i i i i i i j Du Du De D DE DE DE p E v u u u u D D D Dt D Dt D x x τρρρρρρρ∂∂⎛⎫⎛⎫--=-=-+ ⎪ ⎪∂∂⎝⎭⎝⎭

()()=t ij i j ij i i i ij j j j j i j j j j u De T p T pu u k u u ps k D x x x x x x x x x τρττ⎛⎫⎛⎫∂∂∂∂∂∂∂∂∂-++-+=-++ ⎪ ⎪ ⎪ ⎪∂∂∂∂∂∂∂∂∂⎝⎭⎝⎭

相关文档
最新文档