abaqus经典算例

合集下载

abaqus屈曲分析实例

abaqus屈曲分析实例

整个计算过程包括2个分析步,第1步做屈曲分析,笫2步做极限强度分析。

第1步:屈曲分析载荷步定义如下:Step 1-InitialStep 2- Buckle® Re Mbs M^nce C^wvoini live 2oc*$ *l^*«4 tjdp V :i.Jsa&# 录 +r A AJIu fffiC© fe3 Ha »<r epr a.c o 刖匚匹国o Ma&/3SiU*MMMC. Thit Hncticn «4I cruet a nrw p«ri a?d•»•••*> ;r•»•»<• < r*w 4 «»wmb>y fa-t n>rr •: OfEYcmv Se«今 gh 3,gqcvKeiry C*p*»9r « ♦O?lec?■ %«no«v C5廉 H5Wr> MM fa Tin* FortiSv Al€ *dep6»? ve^ tb<yrdc7 AtietiWf 二 Medel | ;狄2Eld 迫,“ j s&a夭 sufAuun*- \ M z t»e ^otop<e«l ou port )L>jUx9)lo t JeiWA Tc«D -^lQZlll«hQ we'Eejewwiw b>w* biE Glcte 」r»>w* 69D eJe*MKi r»jw* bee<i T?»* te:d*L d,说M? ■ ■ 20S27»l^:匕飞口 +r \nu fez: 匚圄国-a.SZ O A «MJ 划电口麻久&E ••却■一 .、・ 9 tf MwMtO) • aModHl6 b 5 131B& merdxR $>CWfcr*»9*^ s£ Zac®“ IraftetH U匕“rb ・2更 K«4dCu^u!R« 虫 Hntwr GUput b伽》ezi5 &■心 AcUxv« V H H«*»ctnr« 易 htecMtlar. hra,日 CcrtadCcrtra 0C«Wl >«wt K Ccctect sub lx權 CwMoarSt Hj fiUdi_n ,.. • •! •MCg WtW Swtfc lk2 pe**j<t»fo<C^ta 知 bynxHrt| <c»t*ve C4«c«lki«x f«v «ep oW Prc«・hr ・ t>". liwar p«nwbia«ko ▼ freque."拯 sufAuunThe 11«-51>^ )L>4ldH9jjn-2 “9 wioZ S *0 SxeU>* oil^ 51 “ed S iU* TO . <S0 . I 9ia ihe wtcc 0 . -SOOuscdftM-)i«jidfsnn -2 & 切 >0 . -ISO -MO mtb rew :t no 心 &逐Ply OCCOIIMV * 巧恪tc»:«L -5Moe>»* bw tZfft to ・D7cp 炉、?ZlHWr? Me"“乡“r»x HMldrann ・2 vd 乡 tygeJa* 400 0 0 with x*w :» «o tfi* oc<»Hifer«* 刃乡并在Model-Edit Keywords 的图中位置加入下面的文字,输出屈曲模态 *nodefile, global=yesU,® fit v<e»>si M E Of»r I«K “g deM ¥匚通国□ O Q€P# « • A mi 席邙0 fc3B ft •©« ©Eti.Z O "^■3剜电口丽:*> 5・<<b,w “ | >-dt»"W :aModd-l8 右 Dr Ol0 (八 »2 txta«e• IraHev 匕 ES a<A 2JJ a-> 禺: 虫n^sc^fiuir^ 虫 Hntorr Ottput to[*心》移 b ALT“A KM N H Htrxtijrw 易htefMtiar. Rr«|0 Ccctwct C«rtro Q U<Wt J^tWt K CerentSuUU § (cent 心b 僖 C«v^c«ar St87 fiekh ・H ・广 !Zfee '0 gpE 或5 o?lir« . 4S0 . I OS He Wtcc Q . -50Q 切,0 -ISO -HO with resc^:' rocct4LMV* 5^te«I~1 The “叭ei»x *« "33U* WM>X )ldqidf.9Jlh-2 W5 tX«i5Jd' -_u* *:<>*L 如心乂 r«s tc«> 处* to *i 两论 M dQidrann-: iw^Jdire^p 43i?2il wx»9 Wt«7 400 0 0 with r*MOKt to tt»*ccordiraex;«4jT W& D«UU MC . (X>1 ® Ht tgisi Mew $>ep gx< O#»£< 代《a •比 :匕飞口 +r \nu 吐二ti MW$CDr. Mpdri l F b 5 131 M 匕 Mad.O)0 CWfcr*»9*^ K 2 Mac® • Iraftet fr ti ^«rt>» t :<A 25 a* uii 更 K*l3CM^U!R4 虫 Hntw-f GUput b伽於心丹 &■心 V 辽 l*W*»ctisr« 易 htecMtlar. hra 日 CcrtadCcrtra 9 (如WJ2 \fi Ccctect SUU lx £|.Cc^^aaf C*ft 117 fiUdiLas _________________L_ McdW 1 5»?Pi[Z fcE feE J£臭 “zwi»x W *0 Sxe U>* oil^ (JsfxteO S Q" TO . <S0 . I 9ia ihe wtcc 0 . -S00 liscdftM-)i«jidfsnn -2 *■« txoasJdred 切 »o . -iso -HO with rew :' no 心 d^enbly OCCOILMV * 巧恪tc >:•!?. JM -s&we las t«<» ^oved to *D ''Te^p ^3i«eiii«u9 : •■Hwtaraiih-2 対5 列ord 5 $00 0 0 vjth to ocordNac ,▼別n^r •Me2MW2?Abaqus/CAE 6.11-1 Mode! Data base: G:\2014 年项目'gesid” 妙叙 TfSCoMHr 合同'逼壬左=20140724kbequ^iCreate job 名称为"Buckling n点击continue,完成第1步的汁算。

abaqus屈曲分析实例

abaqus屈曲分析实例

abaqus屈曲分析实例整个计算过程包括2个分析步,第1步做屈曲分析,第2步做极限强度分析。

第1步:屈曲分析载荷步定义如下:Step 1-InitialStep 2- Buckle并在Model-Edit Keywords 的图中位置加入下面的文字,输出屈曲模态 *nodefile, global=yes U,Create job 名称为“Buckling”点击continue,完成第1步的计算。

第2步:极限强度分析将“buckle”分析步替换为“riks”分析步在Basic选项卡中,Nlgeom:选择打开在Instrumentation选项卡中,定义如下参数,然后点击OK定义一个新计算工作,输入名称,点击continue在Parallelization选项卡,选择2个CPU,如下所示,点击OK。

在此编辑Model-edit keywords,删除“第1步”加入的文字“*nodefile, global=yes U,”,并在下图位置加入下段文字:*imperfection, file=buckling, step=11, 2.5点击OK,再保存文件。

最后提交计算。

提取计算结果进入visualization Module点击Create XY data选择ODB filed output,点击continue选项卡,选择跨中载荷加载点,最后点击save。

重复上一步操作,Position 选择Unique Nodal ,U :spatial displacement 选择 U3,再点击elements/nodes 选项卡,选择板格中心点,最后点击save 。

点击Create XY data, 选择operate on XY data,点击continue择保存的Point load曲线,点击最后一行Create XY Data与Save as。

abaqus形貌优化计算案例

abaqus形貌优化计算案例

【导言】1. 介绍abaqus形貌优化计算的背景和意义2. 简要说明本文将以某个具体案例为例,详细介绍abaqus形貌优化计算的过程和结果【背景】1. 说明abaqus是什么软件,以及形貌优化计算的概念和应用范围2. 引出本文将要介绍的案例,即某个特定工程问题的形貌优化计算过程【案例描述】1. 详细描述这个工程问题的背景和需求2. 介绍该工程问题的初始设计和现有方案的缺陷或不足之处3. 阐述需要进行形貌优化计算的原因和目的【abaqus形貌优化计算过程】1. 罗列出进行形貌优化计算所需要的前期准备工作,包括材料性质的参数设定、加载条件的给定等2. 详细说明具体的abaqus形貌优化计算流程,包括模型建立、加载应力场、设定拓扑优化目标等步骤3. 在每个步骤中加入相关的截图、图表或计算结果,以便读者能够清晰地理解每个步骤的操作和计算原理4. 可适当引入一些相关的数学推导或理论解释,加深读者对形貌优化计算方法的理解【结果分析】1. 展示并解释形貌优化计算的最终结果2. 对比形貌优化前后的模型参数和性能指标,分析优化后的模型设计在性能上的改善和优势3. 可参考文献和实验数据,从理论和实际角度论证形貌优化计算的有效性和可行性【结论】1. 总结本文介绍的abaqus形貌优化计算案例,强调其在工程设计中的重要性和应用价值2. 可以展望未来形貌优化计算在相关领域的发展前景,以及可能的拓展方向和研究重点【致谢】1. 感谢相关机构或个人在该案例研究中提供的支持和帮助2. 致敬相关领域的专家学者和工程师们的努力和贡献【参考文献】1. 列出本文中涉及的相关文献和资料来源2. 参考文献的格式要符合要求的标准,包括作者、篇名、来源、出版年份等信息【附录】1. 如果有需要,可以在文章末尾附上一些相关的补充资料,如模型文件、数据表格、程序代码等以上就是整篇文章的大致结构和内容安排。

在撰写时,要注意语言通顺、表述清晰、严谨客观,以达到高质量、易读、结构合理的文章要求。

ABAQUS时程分析法计算地震反应的简单实例

ABAQUS时程分析法计算地震反应的简单实例

ABAQUS时程分析法计算地震反应的简单实例ABAQUS时程分析法计算地震反应的简单实例(在原反应谱模型上修改)问题描述:悬臂柱高12m,工字型截面(图1),密度7800kg/m3,EX=2.1e11Pa,泊松比0.3,所有振型的阻尼比为2%,在3m高处有一集中质量160kg,在6m、9m、12m处分别有120kg的集中质量。

反应谱按7度多遇地震,取地震影响系数为0.08,第一组,III类场地,卓越周期Tg=0.45s。

图1 计算对象第一部分:反应谱法几点说明:λ本例建模过程使用CAE;λ添加反应谱必须在inp中加关键词实现,CAE不支持反应谱;λ*Spectrum不可以在keyword editor中添加,keyword editor不支持此关键词读入。

λ ABAQUS的反应谱法计算过程以及后处理要比ANSYS方便的多。

操作过程为:(1)打开ABAQUS/CAE,点击create model database。

(2)进入Part模块,点击create part,命名为column,3D、deformation、wire。

continue(3) Create lines,在分别输入0,0回车;0,3回车;0,6回车;0,9回车;0,12回车。

(4)进入property模块,create material,name:steel,general-->>density,mass density:7800mechanical-->>elasticity-->>elastic,young‘s modulus:2.1e11,poisson’s ratio:0.3.(5) Create section,name:Section-1,category:beam,type:beam,Continuecreate profile, name: Profile-1, shape:I,按图1尺寸输入界面尺寸,ok。

Abaqus 6.10 典型案例详解(第一期)

Abaqus 6.10 典型案例详解(第一期)

Abaqus 6.10 典型案例详解(1)-桁架结构静力分析如图1所示的桁架结构,各个杆的长度和约束如图1所示,材料为钢,弹性模量为2.96E6, 横截面积为100cm2, 求该结构的节点位移,单元位移和支反力。

100100342图 1 桁架结构图步骤1:打开Abaqus 6.10软件,出现界面,图2按新建,按保存,文件名为Static analysis of symmetric structure 。

步骤2: 菜单Module 选择Part, 单击红框线里的,出现图4的Create Part 对话框,Name 输入Link ,Modeling Space 选择2D Planar , Type 选择Deformable, Base Feature 选择Wire , Approximate size 为:800,单击continue, 进入草图环境,见图5。

图 3 图 4图 5 单击左边工具箱,输入坐标值(0,0),(200,0),(100,80),(0,80),右键Cancel Procedure,再次点击,(0,0),(100,80),按鼠标中键,点击下面Done,见图6,就得到图7,图6图7步骤3:菜单Module选择Property, 点击左边工具箱,弹出对话框,图8,输入名称Link, 选择Mechanical-Elasticity-Elastic, 下面输入Young’s Modulus: 2.96E6, Poisson’s Ratio: 0.3,点击OK,见图9。

图8 图9点击,按图10选择,Continue,接着在对话框Edit Section选择Link, 点击OK,见图11。

图10 图11点击工具箱,框选整个桁架,点击下面Done, 弹出的Edit Section Assignment, 单击OK,变成下图12图12步骤4:菜单Module选择Assembly, 点击工具箱,在Create Instance对话框中单击OK,见图13,得图14。

abaqus有限元动力学标准算例

abaqus有限元动力学标准算例

《从简到繁,深入理解Abaqus有限元动力学标准算例》1. 引言Abaqus有限元分析软件是一款广泛应用于工程领域的计算机辅助工程(CAE)软件,其中动力学分析是其重要功能之一。

Abaqus有限元动力学标准算例作为该软件的核心模块之一,在工程实践中具有重要意义。

本文将以Abaqus有限元动力学标准算例为主题,逐步深入探讨其原理、应用及工程实践中的价值。

2. Abaqus有限元动力学标准算例的基本概念Abaqus有限元动力学标准算例是Abaqus分析软件中用于动力学分析的一种标准模型。

其基本原理是基于有限元分析理论,通过离散化求解结构动力学问题,包括振动、冲击、动态加载等。

Abaqus有限元动力学标准算例通过精确求解结构在动态加载下的响应,为工程实践中的结构动力学性能评估提供了重要支持。

3. Abaqus有限元动力学标准算例的应用领域Abaqus有限元动力学标准算例广泛应用于航空航天、汽车制造、建筑工程、机械制造等领域。

在航空航天领域,Abaqus有限元动力学标准算例可用于模拟飞机在飞行过程中的结构响应,评估飞机的结构性能。

在汽车制造领域,Abaqus有限元动力学标准算例可用于评估汽车在碰撞事故中的结构强度和安全性能。

在建筑工程领域,Abaqus 有限元动力学标准算例可用于分析建筑结构在地震或风载作用下的响应,指导结构设计和改进。

4. Abaqus有限元动力学标准算例的工程价值Abaqus有限元动力学标准算例在工程实践中具有重要价值。

通过模拟结构在动态加载下的响应,可以评估结构的动力学性能,为工程设计和优化提供依据。

Abaqus有限元动力学标准算例可以预测结构在特定工况下的振动响应和疲劳损伤,指导结构材料的选择和使用。

Abaqus有限元动力学标准算例还可以用于事故分析和安全性评估,保障工程结构在各种特殊工况下的可靠性和安全性。

5. 个人观点和理解在我看来,Abaqus有限元动力学标准算例作为Abaqus分析软件的重要功能模块,对工程实践中的结构动力学分析起着至关重要的作用。

abaqus屈曲分析实例

整个计算过程包括2个分析步,第1步做屈曲分析,第2步做极限强度分析第1步:屈曲分析载荷步定义如下:Step 1-I nitialStep 2- Buckle]" BldMll% "Gfi hSM "Btifr女问g RM :L44Lai4Jlb L-l-SteJ SW34 to*- &mp»hjiv9匂Pl DjeMfi.c-5 ba^a bm "一 ~Z te -!^l -Si|| v*V* IA4W f*i <pd貝呎■吟1 和訐ym 印炖d FMffv 讹V 匚曲反..76^* + r 、::和A£T 巴:T=肛八FT •-百只“二o 土- .丫E案H IB ndi 4'B-rtBPCT14 FBW5^/W r«vfFK 口[• J甲■g CiM#»i4n M»oh totiG A g w^rirj出戶ii >W1MW4 >W#iTl4ChW曲比£丹71 怕iKSdUK«rtrin 导>F1MBB5M/WU ■T-**n *li«r I ll^hfli wThe jaj^.4toe 1 iibQL>j4| .h-2 內贞 J^r 11411 X>v m 均Lbit S KJ -1 Silled 3 EBri? pLufiE -汕 4 耳 D I si 泊■« 0TOD l&sm iy*i»Je !i?d bv 呵 ■怙O . -Ifcu 町临 Xrtpftii r* ihe 自他迈灯 曲妣仙哙 白jrttE The- K ^±L isi-SDfrse- :hs 当 be«i ami ID 'J T^*p AZLQIL L ISLCA :-se- 1 TT*s "4TAI1" Ikhli ^f4l :h-9 W IVAntJiB'^fl ■帀 *4111 h I 10 1 iw*AW^ihl f iwwl I riAFe -4B4B-A* 并在 Model-Edit Keywords*no defile, global=yesU,聞 孕 ”询詡 fit 审 0(*r T*$l< Ruy-hi 孑母 ¥*口占■❷建It 十亡叫乐口輯1 •占0 lb S3'Void««dm« : 9 弱 »W M I .CL I .yariUi b **TI 插 ■ FA VW MT * 心■l* 町 E 岂 Std* g .Flibi■ y g 村啤. J "oft Ia* It 迅Qg I 宝 H ET I UTT Uid^ut t3 *W *«iTfc- 弘 4f Mu»Fr ] n ★”■■也… 册 feMvidrttar M fLcmtad 诵 CcmdllMMik Id C-uffin.1! 9 Mid lx (■miitov'h 'ZfftHeur bet 卜 J £«4* rt. ■— -■-,N^nd. —$ 1 ■曹 e R 1 °IfMK nev *w 居 The Ji-^.4hje ] UDQL3-J4I .n-J 沖女 j'lir alCil J>v 切 xbc^- atjft glic 讯 试 Ebt* pCy fili TQ . . I xiid "d 耳Or Q -iOD Ififi in-u w UitiJfl sd K 说 TBP .亠I 汕 «l!fa frSMcj C* llw 冃论迈叩 xcmLDi 哙 nwi««tr :4=-L ftss t«e& xF w □ T -**p Ai&^ZL L IMA :-seii j * ■ih * i>¥ii "i4i ii -I -t>A4 TYE 巾尼‘旳! B 帀 *rn n ■:riF YW «T in ib* 钻巒■nlM ・ e 1力『円「0,何■比 I 4- IJ I ■ Ml 曲 |Tfl4 hr r- fckdiie 4wne- M?p-]J 2加 甘植小乜CL fa W 31 E El KUhF* !1, 审 WlitM '■ g ^Ktd -IHC EIl ⑷册冇 Qg K aii e/y - B A ‘ 宝Hwlwr U I J^U ! t3 W-^SM B -in «U 4rrt^Ta* %n I H H wli aE 甘 hltnarl 旨內岭A] H CjMivi CdMT9 if C-OHKlInMt : 昭 I Mali创(-miitoMilj■ Ejwrfnr fact .f Mb乞H B 『鼻為& -x J r T n 一 :w 0 MoM fMhW-L ■灰 OM4L LE 中鼻Eai OfMW rti p T !--^ IdHI f - A ・■*<< X ・(V )屮 d 1*",・L=> ":昭!:站我 tbrian I ;E ■毗 CH-^R W«W^r. r<jw|a<r or ■ftoritf flvfFML LMII ^ sewihiH ・ ・H rr*Mi «<h rapd TK I M ar 4-cai p^ak^ad ■3=n> #ia ari -jn^tDr cad Ktk wrii:・ Mid… . PF T4J P «■ c * ® '■ ■ 29WW^ n.^.的图中位置加入下面的文字,输出屈曲模态Create job 名称为“ Buckling点击continue ,完成第1步的计算(D &eJfiew Sfte 口 Output Other loo-S Mug-in? Q [予 &J*nager..s & ModflL| Copy Modd 卜宕htod 亡呻O^Kt —\二也・ 甘 L宀 Ed4 Anri butts • Modd Viewport: 匕匕口人t 2 3 4 Modu *t 「-: Modd : x Rf^inw ► L 占 | Q slrt 电 . C> C^al ibralsDFS 4 S' Sectior-g (2221 _. -ix n __ i —. tafn第2步:极限强度分析将“ buckle ”分析步替换为“ riks ”分析步”二AE - -4J 1Bk 歴詔#1 嶠如pxt 垦w Qwpv* Other £M I*H呼戸屮L MRk +<* %女X M iM UnPnUdA 1®I {jiad— Vipjrptitl 乩疏1IF Jib-lpji Othgr Icids. s ij^'ns. £j?lp 审I J3S-中C叫匚却u g M 1Morit Re^yiii舜I制讶甘:QI |2 Meddf (I)::誠贰右ParH Q|jf |?< Mawfiaic i;7)宫Giibr』口M菟Sr Swtbn, [223fc> ZT I8UIbupt lilF*=,Qi Pi"; i; HiE 伍*M«teriali [2| fir tiEH-i.蛊h«Bor-s J_ - I 幸Pr^le i (KB■出Al i^ltlLiji 咼bbt印L -S Hitch Conlcxl Orl t S^piHeM B*»C C-iPTEr-*Time PALE AdMlJirftrratIwac Elm. &Hlfomtc iHipp^rtifi*Cc^ldc s■Cmitr;AddsAmoIrtLLo^di <^7W Ai HmEEiDMd &l Urd-rCall^pse JLJI LlndtrAridOHisscryModUt r 趾P■心ESIM CK:U I« rSlep在Basic 选项卡中,Nlgeom :选择打开在Instrumentation 选项卡中,定义如下参数,然后点击 Oih«rTI «•4^-rarpJlk ■ P -.uadlumbar & hcd«fn»rM :Iniiid Mnmurn MagnumArc le-^ih rKmiwc C J OI. L£-D15 ilfOJdE^mjied nzcdJ 1Ncrtt: Used] off tu rcompute :he DA lobd pruRiHiorin ry 口書定义一个新计算工作,输入名称,点击 con ti nueOK N JIE ■: Rika。

ABAQUS线性静力学分析实例

ABAQUS线性静力学分析实例ABAQUS(全称为Abaqus FEA)是一种广泛使用的有限元分析软件。

它可用于进行结构、热、电、磁、多物理场等各类工程问题的数值模拟和分析。

在本文中,我们将介绍一个ABAQUS线性静力学分析的实例。

假设我们要分析一个悬臂梁的变形和应力分布。

悬臂梁是一种常见的结构,通常由一根固定在一端的梁杆组成,另一端悬空。

我们将使用ABAQUS来计算这个悬臂梁的变形和应力。

首先,我们需要创建模型。

在ABAQUS中,可以通过几何建模或直接输入节点和单元的方式来创建模型。

这里我们使用几何建模来构建一个悬臂梁。

在ABAQUS的图形用户界面中,选择"Part",然后使用"Sketch"工具绘制悬臂梁的剖面。

在剖面绘制完成后,选择"Extrude"工具将其拉伸为所需长度。

接下来,我们需要定义材料特性。

在这个实例中,我们假设悬臂梁是由钢材料构成的。

在ABAQUS中,可以通过创建相应的材料属性来定义材料的性能。

选择"Material",然后创建一个具有适当材料属性的钢材料。

随后,我们需要定义悬臂梁的边界条件。

在这个实例中,我们将在悬臂梁的固定端施加一个约束,防止其发生位移。

在ABAQUS中,可以选择"Assembly",然后选择"Constraints"来设置边界条件。

在这里我们选择固定一个端点。

完成边界条件的设置后,我们需要划分网格。

在ABAQUS中,使用网格划分将悬臂梁划分成小的单元,以便数值计算。

选择"Mesh",然后选择适当的网格划分方式和单元类型。

然后,我们需要定义加载条件。

在这个实例中,我们将在悬臂梁的空悬端施加一个垂直向下的加载。

在ABAQUS中,可以选择"Loading",然后选择适当的加载类型和大小。

现在,所有的模型设置都完成了,我们可以进行分析。

ABAQUS例题

对于梁的分析可以使用梁单元、壳单元或是固体单元。

Abaqus的梁单元需要设定线的方向,用选中所需要的线后,输入该线梁截面的主轴1方向单位矢量(x,y,z),截面的主轴方向在截面Profile设定中有规定。

注意:因为ABAQUS软件没有UNDO功能,在建模过程中,应不时地将本题的CAE模型(阶段结果)保存,以免丢失已完成的工作。

简支梁,三点弯曲,工字钢构件,结构钢材质,E=210GPa,μ=0.28,ρ=7850kg/m3(在不计重力的静力学分析中可以不要)。

F=10kN,不计重力。

计算中点挠度,两端转角。

理论解:I=2.239×10-5m4,w中=2.769×10-3m,θ边=2.077×10-3。

文件与路径:顶部下拉菜单File, Save As ExpAbq00。

一部件1 创建部件:Module,Part,Create Part,命名为Prat-1;3D,可变形模型,线,图形大约范围10(程序默认长度单位为m)。

2 绘模型图:选用折线,从(0,0)→(2,0)→(4,0)绘出梁的轴线。

3 退出:Done。

二性质1 创建截面几何形状:Module,Property,Create Profile,命名为Profile-1,选I型截面,按图输入数据,l=0.1,h=0.2,b l=0.1,b2=0.1,t l=0.01,t2=0.01,t3=0.01,关闭。

2 定义梁方向:Module,Property,Assign Beam Orientation,选中两段线段,输入主轴1方向单位矢量(0,0,1)或(0,0,-1),关闭。

3 定义截面力学性质:Module,Property,Create Section,命名为Section-1,梁,梁,截面几何形状选Profile-1,输入E=210e9(程序默认单位为N/m2,GPa=109 N/m2),G=82.03e9,ν=0.28,关闭。

abaqus脊柱算例 -回复

abaqus脊柱算例-回复如何使用Abaqus进行脊柱建模和分析。

脊柱是人体的重要组成部分,对于正确的姿势和身体功能具有重要作用。

因此,了解脊柱在不同荷载情况下的行为对于设计和优化人体工程学设备以及理解相关疾病的发展具有重要意义。

Abaqus是一种常用的有限元分析软件,可以用于建模和模拟脊柱的行为。

本文将介绍如何使用Abaqus 进行脊柱建模和分析。

第一步:导入脊柱的几何形状通过Abaqus的几何模块,可以导入脊柱的实际几何形状。

通常,医学影像如CT或MRI可以提供脊柱的三维表面数据。

在Abaqus中,可以使用拓扑模块或CAD工具导入这些数据,然后生成脊柱的几何模型。

第二步:定义脊柱的材料属性选择适当的材料属性对于准确模拟脊柱的行为非常重要。

人体组织是一种复杂的组合物,具有非线性和各向异性的特性。

通常,在Abaqus中使用材料模型来描述这些特性。

可以使用实验数据或文献中提供的材料参数来定义脊柱的材料属性。

根据需要可以选择线性或非线性模型。

第三步:划分网格在进行有限元分析之前,需要将脊柱模型划分为有限元网格。

Abaqus提供了多种网格划分算法和工具,用户可以根据需要选择合适的划分方法。

划分网格时,要尽量保持网格的均匀性和合理的密度,以获得准确的结果。

第四步:施加边界条件和荷载在模拟脊柱的行为时,需要考虑施加在脊柱上的边界条件和荷载。

边界条件包括固定边界和约束条件。

在Abaqus中,可以通过定义适当的约束和边界条件来实现这些。

例如,可以选择固定某些节点来模拟脊柱的固定端或支撑点。

荷载是指施加在脊柱上的外部力或力矩。

可以使用Abaqus的载荷模块来定义这些荷载。

这些载荷可以是静态的或动态的,可以模拟日常生活中的活动或特定的运动要求。

第五步:运行分析和解算一切准备就绪后,可以开始运行脊柱分析。

在Abaqus中,可以选择不同的分析类型,包括静力学分析、模态分析和动力学分析等。

根据需要选择适当的分析类型。

在运行分析之前,还需要选择适当的求解器和设置求解选项。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7 ABAQUS/CAE典型例题 我们将通过ABAQUS/CAE完成上面模型图的建模及分析过程。

首先我们创建几何体 一、创建基本特征: 1、首先运行ABAQUS/CAE,在出现的对话框内 选择Create Model Database。 2、从Module列表中选择Part,进入Part模块

3、选择Part→Create来创建一个新的部件。在 提示区域会出现这样一个信息。

4、CAE弹出一个如右图的对话框。将这个部件 命名为Hinge-hole,确认Modeling Space、Type和Base Feature的选项如右图。 5、输入0.3作为Approximate size的值。点击 Continue。ABAQUS/CAE初始化草图,并显示格子。 6、在工具栏选择Create Lines: Rectangle(4 Lines) ,在提示栏出现如下的提示后,输入(0.02,0.02)和

(-0.02,-0.02),然后点击3键鼠标的中键(或滚珠)。 7、在提示框点击OK按钮。CAE弹出 Edit Basic Extrusion对话框。

8、输入0.04作为Depth的数值,点击 OK按钮。 二、在基本特征上加个轮缘 1、在主菜单上选择Shape→Solid→Extrude。 2、选择六面体的前表面,点击左键。 3、选择如下图所示的边,点击左键。 7

4、如右上图那样利用 图标创建三条线段。 5、在工具栏中选择Create Arc: Center and 2 Endpoints 6、移动鼠标到(0.04,0.0),圆心,点击左键,然后将鼠标移到(0.04,0.02)再次点击鼠标左键,从已画好区域的外面将鼠标移到(0.04,-0.02),这时你可以看到在这两个点之间出现一个半圆,点击左键完成这个半圆。 7、在工具栏选择Create Circle: Center and Perimeter 8、将鼠标移动到(0.04,0.0)点击左键,然后将鼠标移动到(0.05,0.0)点击左键。 9、从主菜单选择Add→Dimension→Radial,为刚完成的圆标注尺寸。 10、选择工具栏的Edit Dimension Value图标 11、选择圆的尺寸(0.01)点击左键,在提示栏输入0.012,按回车。再次点击Edit Dimension Value,退出该操作。 12、点击提示栏上的Done按钮。 13、在CAE弹出的Edit Extrusion对话框内输入0.02作为深度的值。CAE以一个箭头表示拉伸的方向,点击Clip可改变这个方向。点击OK,完成操作。 三、创建润滑孔 1、进入Sketch模块,从主菜单选择Sketch→Create, 命名为Hole,设置0.2为Approximate Size的值,点击Continue。 2、创建一个圆心在(0,0),半径为0.003的圆,然后点击 Done,完成这一步骤。 3、回到Part模块,在Part下拉菜单中选择Hinge-hole。 4、在主菜单中选择Tools→Datum,按右图所示选择对 话框内的选项,点击Apply。 5、选择轮缘上的一条边,见下图,参数的值是从0到1, 如果,箭头和图中所示一样就输入0.25,敲回车,否则就输入 0.75。ABAQUS/CAE在这条边的1/4处上创建一个点。 6、创建一个基线,在Create Datum对话框内选择Axis, 7

在Method选项中选择2 Points,点击Apply。选择圆的中心点和刚才创建的基点,ABAQUS/CAE将创建如右上图所示的基线。 7、在Create Datum对话框内选择Plane,在Method中选择Point and normal,点击OK,选择刚才创建的基点和基线。你的模型将如左下图所示。

8、从主菜单中选择Shape→Cut→Extrude,选择创建的基准面和右上图所示的边,点击左键。 9、从主菜单中选择Add→Sketch,选择hole然后点击OK,在提示栏中点击Translate 通过下面两步将Hole移到最终位置。 A:先点击hole的圆心,然后点击创建的基点,圆心就移动到了以基点上。 B:点击工具拦中的Edit Vertex Location, 然后点击移动后的圆心(基点),点击提示拦的Done,再点击提示拦中随后出现的Translate按钮,输入(0,0)和(0,0.01)敲回车,最后点击Done。 10、在Edit Cut Extrusion对话框中选择Blind作为Type的选项,0.015作为深度,如果需要可以选择Flip改变箭头的方向,然后点击OK。 四、创建不含润滑孔的铰链 1、从主菜单选择Part→Copy→Hinge-hole,命名新的部件为Hinge-solid,点击OK。 2、在Part下拉菜单中选中Hinge-Soild,从工具栏里选择Delete Feature 选中创建的基点,点击提示栏里的Yes,删除基点和他的子特征。 五、创建一个刚体销钉 1、从主菜单里选择Part→Create,命名为Pin,选择 Modeling Space为3D, 类型为Analytical rigid,选择 Revolved shell为基本的特征,输入0.2作为 Approximate size的值,然后点击Continue。 2、从工具栏选择Create Lines: Connected创建一条 从(0.012,0.03)到(0.012,-0.03)的直线,然后点击Done,退 出草图。 3、从主菜单中,选择Tools→Reference Point, 选择销钉周线顶部的点。保存模型数据为hinge.cae。

接下来我们将为建立好的几何模型添加材料,并将其组装起来。 一、创建材料 1、进入Property模块,在主菜单中选择Material→Create来创建一个新的材料。 2、在Edit Material对话框,命名这个材料为Steel,选择Mechanical→Elasticity→ Elastic,在杨氏模量中输入209.E9,输入0.3作为泊松比。点击OK,退出材料编辑。 3、从主菜单中选择Section→Create,在Create Section对话框中定义这个区域为SoildSection,在Category选项中接受Soild作为默认的选择,在Type选项中接受Homogeneous作为默认的选择,点击Continue。 7

4、在出现的Edit Section对话框中选择Steel作为材料,接受1作为Plane stress/strain thickness,并点击OK。 5、在Part中选择Hinge-hole,从主菜单中选择Assign→Section,选择整个Part,ABAQUS将会把你选择的区域高亮化,在对话栏点击Done,在出现的Assign Section对话框中点击OK。 6、重复第五步,为Hinge-soild分配材料。 二、部件组装 1、进入Assembly模块,从主菜单中选择Instance→Create,在Create Instance对话框中选择Hinge-hole,点击Apply。 2、在Create Instance对话框中选择Hinge-soild,选中Auto-offset from other instances,点击OK。 3、从主菜单中,选择Constraint→Face to Face,选择左下图所示的表面,再选择如右下图的表面,点击Flip,如果两个箭头同向,点击OK,在提示栏输入0.04,敲回车。

4、从主菜单中选择Constraint→Coaxial,先选择如左下图所示的孔,再选择如右下图所示的孔,点击Flip如果箭头如右下图所示,点击OK。

5、从主菜单中选择Constraint→Edge to Edge,选择如左下图所示的边,再选择如右下图所示的边,点击Flip如果箭头如右下图所示,点击OK。完成铰链的组装。

6、从主菜单中选择Instance→Create,选择Pin,点击OK。 7、从主菜单中选择Constraint→Coaxial,选择Pine和铰链中的孔,如果需要点击Flip,点击OK。显示如 7

左下图所示。 8、从主菜单中选择Instance→Translate,选择Pine,点击Done,在CAE警告信息栏中点击Yes。在提示栏输入(0,0,0)和(0,0,0.02),敲回车。在提示栏点击OK。最终的构形如右上图显示。

接下来,我们定义分析步,接触,边界条件以及加载。 一、定义分析步。 1、进入Step模块,从主菜单中选择Step→Create,命名这个分析步为Contact,接受默认的Static, General,点击Continue。在出现的Edit Step对话框中,接受所有默认选择,并点击OK,创建一个分析步。 2、重复上一步,创建一个分析步,命名为Load,在Edit Step对话框中,进入Incrementation子选项,输入0.1为Initial Increment Size。点击OK,完成分析步的创建。 3、为输出结果创建几何集,在主菜单选择Tools→Set→Create,命名这个几何集为ndisp-output,点击Continue。选择如左下图所示的点。点击Done,完成该步骤。

4、采用相同的技术,定义右上图所选的面为fixed-face-output,所选的边为hole-output。 5、从主菜单中选择Output→Field Output Requests→Manager,从出现的对话框中选择F-output-1,点击Edit,删除变量PE,PEEQ和PEMAG,删除选择Forces/Reactions,点击OK,点击Dismiss退出Field Output Requests Manager。 6、从主菜单中选择Output→History Output Requests→Manager,从出现的对话框中选择H-output-1,点击Edit,在Domain中选择Set name,并选择ndisp-output,去掉Energy选项,输入U1,U2,U3。点击OK。 7、创建新的历史输出,为Fixed-face-output输出变量RF1,为Hole-output输出变量S11,MISES和E11。点击Dismiss,退出History Output Requests Manager。 8、从主菜单中选择Tools→Set→Create,命名为Monitor,点击Continue,选择ndisp-output集中为于Hinge-Soild上的点,点击Done,完成几何集的创建。 9、从主菜单中选择Output→DOF Monitor,选中Monitor a degree of freedom throughout the analysis,在Point region选择Monitor,在Degree of freedom中输入1,点击OK。

相关文档
最新文档