滚筒洗衣机ABAQUS流固耦合实例分析(步骤)
基于MpCCI的Abaqus和Fluent流固耦合案例

基于MpCCI 的Abaqus 和Fluent 流固耦合案例mafuyin摘要:通过MpCCI 流固耦合接口程序,对某薄壁管道流动中的传热过程进行了Abaqus 和Fluent 相结合的流固耦合仿真分析。
信息介绍了从建模、设置到求解计算和后处理的全过程,对相关研究人员具有参考意义。
1 分析模型用三维建模软件solidworks 建立了一个管径为1m 的弯管,结构尺寸如图1a 所示,管的结构如图1b 所示,流体的模型如图1c 所示。
值得注意的是,由于拓扑特征的原因,这样的管壁模型无法通过对圆环扫略直接生成,而需先通过对大圆的扫略生成实心的模型(类似于流体模型),然后进行抽壳得到管壁的模型。
用同样的方法对大圆半径减去管壁厚度的圆进行扫略得到流体模型。
a. 尺寸关系b. 管壁结构c. 流体模型图1. 几何模型示意图图2. 流固耦合传热分析模型示意图内壁面(耦合面) 速度入口v=6m/s; T in =600K 外壁面压力出口 P=0Pa ;T out =300K由于管壁结构和流体的热学行为不同,传热系数等都不一样,所以属于典型的流固耦合传热问题,热学模型如图2所示。
即管的一端为流体速度入口,一端为压力出口,给定流体外壁面一个初始温度600K,流体入口速度为6m/s,温度为600K,出口相对大气压力为0Pa,出口温度为300K。
需要求解流体和管壁的温度场分布情况。
2 流体模型将图1c的流体模型以Step格式导入Fluent软件通常使用的前处理器Gambit 中,如图3a所示。
设置求解器为,然后划分体网格,网格尺寸为100mm,类型为六面体单元,一共生成4895个体单元,网格如图3b所示。
a. 导入Gambit软件中的流体模型b. 流场的网格模型图3. 流体模型及网格示意图进行网格划分后,需定义边界条件,在Gambit软件中先分别定义速度入口(VELOCITY_INLET)、压力出口(PRESSURE_OUTLET)和壁面(Wall)三组边界条件,具体参数设置在Fluent软件中进行。
Abaqus液固耦合-大桶水的跌落分析

Abaqus液固耦合-⼤桶⽔的跌落分析该实例应⽤了abaqus的以下技术:--⽤abaqus/cae中的体积系数⼯具箱来模拟欧拉单元中的材料分布。
--使⽤欧拉-拉格朗⽇接触算法来模拟液体材料流动与结构材料边界的相互作⽤的⾼速动⼒学事件。
--使⽤光滑质点流体动⼒学(SPH)技术在⼀个纯拉格朗⽇环境下,来模拟⾼速动⼒学事件。
问题描述:在消费品包装⾏业中,为了节省使⽤物理模型进⾏实验的时间和成本,使⽤仿真模拟技术是⼀个不错的选择,跌落测试是模拟⼀个物体撞击刚性表⾯,通常被⽤来观察⼀个物体在苛刻环境条件下的响应。
本实例模拟⼀个⼏乎充满⽔的⾼密度的聚⼄烯塑料桶从300mm⾼处以⼀个斜度撞击到刚性地⾯上的响应。
⼀个真实的模拟必须描述出撞击时刻地⾯与塑料桶,⽔与塑料桶之间的相互作⽤⼒,以及塑料桶上⾯的应⼒和应变结果来判断结构的强度⽔平。
⼏何模型和装配体效果图如上图2所⽰,本模型中塑料桶被定义为⼀个有塑性强化的材料模型。
液体⽔被定义为⼀个近乎不可压缩,近乎⽆粘性的⽜顿流体。
整个模型受到重⼒载荷,刚性地⾯完全固定。
整个装配件设置为⽆摩擦的通⽤接触。
具体的模型定义参考abaqus实例⼿册,2.3.2 Impact of a water-filled bottle分析难点:本模型模拟的难点在于液体和固体在撞击的时候的⾼度⾮线性。
分别使⽤液固耦合的分析⽅法和SPH技术来模拟。
流固耦合就是使⽤欧拉单元来模拟流体材料,并使⽤拉格朗⽇单元来模拟结构材料。
结构的边界和流体的边界可以产⽣接触。
并且要模拟欧拉单元内的材料分布。
⽤欧拉单元模拟的分析部件可以克服⼤变形时⽹格严重变形问题。
在欧拉⽹格中,材料在固定的⽹格内流动,在每⼀个增量步中,计算每个单元内的材料分布,也就体积填充率。
通过材料分布来描述流体的变形状态。
因此,欧拉材料边界⽐传统的拉格朗⽇材料边界更适合⽤来描述极度的⼤变形现象,⽐如液体晃动。
⽹格中,使⽤⼀个规则的⽴⽅体来模拟欧拉区域。
ABAQUS流固耦合

当只进行渗流计算时:1.由于Abaqus中缺乏非耦合的孔压单元,这时可采用耦合单元,但要约束住所有位移的自由度。
2.渗流材料参数选择。
在CAE中都是在(Material-creat-other-pore fluid)选项中。
1)Gel:定义凝胶微粒吸湿膨胀的发育过程,这在一般的岩土分析中应用不多。
2)Moisture swelling:定义由于吸湿饱和所引起的固体骨架体积膨胀(或负吸力引起的骨架收缩)。
3)(3)Permeability:定义饱和介质的渗透系数,该渗透系数可以在type选项中定义为各向同性、正交各向异性和各向异性,并且可以根据Void Ratio定义为孔隙比的函数。
在Suboptions中选择Saturation Dependent 参数来指定与饱和度相关性系数ks(s),缺省设置为ks=s3,而非饱和介质渗透系数k’=ksk 选择Velocity dependence参数可以激活Forchheimer定律,缺省的是Darcy定律4)Pore Fluid Expansion:定义固体颗粒与流体体积热变化效应。
5)Porous Bulk Moduli:定义固体颗粒与流体体积模量。
6)Sorption:定义负孔隙压力与饱和度之间的相关性。
当type=Absorption时,定义吸湿曲线,type=Exsorption时定义排水曲线。
3、载荷及边界条件1)通过(Load-creat-step-fluid-surface pore fluid)选项定义沿着单元表面的外法线方向的渗流速度vn,当考虑降雨影响时可采用此载荷2)边界条件(Boundary condition-creat-other-pore pressure)选项定义孔压边界条件,此时要先假定浸润面的位置,然后定义浸润面上的孔压为零,Abaqus会在后续的分析计算中自动计算出浸润面的位置。
Abaqus默认的是不透水边界。
3)当渗流自由面遇到临空的自由排水面时,需要定义一个特殊的边界条件。
一种基于abaqus-starccm+的流固耦合计算方法

一种基于abaqus-starccm+的流固耦合计算方法基于Abaqus和STAR-CCM+的流固耦合计算方法可以分为以下几个步骤:1. 几何建模和网格划分:使用Abaqus进行固体部件的几何建模,定义流体区域和固体区域。
然后使用STAR-CCM+进行流体网格划分和固体网格划分。
2. 材料属性和约束条件定义:使用Abaqus定义固体部件的材料属性,包括弹性模量、泊松比、密度等。
使用Abaqus定义固体部件的边界条件和加载条件,包括约束条件、力、压力等。
使用STAR-CCM+定义流体区域的材料属性,包括密度、粘度等。
使用STAR-CCM+定义流体区域的边界条件和加载条件,包括速度、压力、流量等。
3. 边界条件传递:将Abaqus中定义的固体部件的边界条件传递给STAR-CCM+,将STAR-CCM+中定义的流体区域边界条件传递给Abaqus。
这个过程可以使用接口程序或者脚本实现。
4. 解算过程:使用Abaqus和STAR-CCM+分别进行固体和流体的独立求解,得到固体的位移和应力以及流体的速度和压力分布。
5. 耦合过程:将固体位移场和流体速度场进行耦合,计算固体表面上的应力和流体内部的压力之间的相互作用。
这个过程通常使用迭代法进行求解。
6. 后处理:根据需要,进行结果的后处理和分析,包括应力分布、位移分布、流速分布、压力分布等等。
总结起来,基于Abaqus和STAR-CCM+的流固耦合计算方法主要包括几何建模和网格划分、材料属性和约束条件定义、边界条件传递、解算过程、耦合过程以及后处理等步骤。
这样的方法可以用来研究流固耦合问题,如液体在固体表面的流动、液体对固体的冲击、固体表面对液体的阻力等等。
Abaqus热流固耦合——围绕圆柱形热源进行固结

Abaqus热流固耦合——围绕圆柱形热源进行固结翻译抖音号abaquser,qq443941211这个问题提出了在圆柱形热源周围饱和土壤中固结的解决方案。
布克和萨维维杜(Booker and Savvidou,1985)对该问题进行了研究,它代表了埋在饱和土壤中的放射性废物罐问题的理想化。
由于来自罐的热辐射而发生的温度变化导致孔隙水的膨胀量大于土壤中的孔隙,导致热源周围的孔隙压力增加。
产生的孔隙压力梯度将孔隙流体驱离热源,导致孔隙压力随时间消散。
Booker和Savvidou开发了针对点热源深埋在饱和土壤中的基本问题的分析解决方案。
随后,他们使用该分析解决方案得出了圆柱热源周围固结问题的近似解决方案。
该问题为Abaqus中的耦合热固结能力提供了验证。
饱和土壤的分析需要耦合应力-扩散方程的解,Abaqus中使用的公式在《Abaqus理论指南》第2.8节“多孔介质分析”中有详细描述。
热固结能力还可以与应力扩散方程完全耦合地求解传热方程(同时考虑传导和对流效应),从而模拟孔隙压力对孔隙流体和管道中温度场的影响。
土壤,反之亦然。
定义几何形状和材料特性的参数的数值是基于Lewis和Schrefler(2000)对这个问题进行的参数研究中给出的细节。
问题描述问题设置如图1.15.7-1所示。
半径为0.1604m,高度为2.5m的圆柱形热源被埋在半径和高度均等于10m的圆柱形土壤中。
实际上,土壤的圆柱形体积代表了围绕热源的无限介质。
重力被忽略了。
由于边界条件(下面将详细讨论),问题基本上是一维的,唯一的梯度是在径向上。
分析的目的是预测整个土壤质量,特别是热源附近的孔隙压力和温度随时间的变化。
几何和模型利用垂直方向的对称性,仅对问题的一半进行建模。
使用三维和轴对称的温度-孔压力元件均可解决此问题。
为了呈现结果,选择了三维元素类型C3D8RPT。
三维分析和轴对称分析均使用基本三维8节点或轴对称4节点元素以及修饰的四面体元素的不同变体(例如,积分和混合)进行。
流固耦合过程_教程

湖南大学先进动力流固耦合过程(仅耦合热边界)准备软件:¾AVL-FIRE¾Hypermesh(用于划分和处理网格)¾ABAQUS(熟悉inp文件结构和语句)¾MSC-Patran湖南大学先进动力以AVL-FIRE安装目录下面简单例子为例,位于以下目录:D(安装盘符):\AVL\FIRE\v(版本号)\exam湖南大学先进动力第一步:CFD计算所有设置与例子中保持一致湖南大学先进动力第一步计算CFD的时候,不需要选上Mesh FEM format,只需指定输出Frequency即可。
湖南大学先进动力第一步计算完之后会产生一个htcc 文件,如下图:湖南大学先进动力第二步:耦合面网格及固体网格获取为了便于统一坐标位置和热边界插值,不用例子中的FEM 网格。
FEM 网格将从CFD 网格(cyl.flm )中“抽取”,如下图,在Fire 中导出.nas 格式文件。
湖南大学先进动力在hypermesh中TOOl>faces 板块中把流体网格的外表面抽取,然后删除两端面的面网格选择全部网格(displayed)即可湖南大学先进动力通过3D>elem offset 来获得实体网格湖南大学先进动力第三步:映射(mapping )热边界条件上一步得到的面网格导出为.nas 文件(如sur_mesh_for_mapping.nas )FIRE 中FEM Interface中设置如下两图湖南大学先进动力保存之后,Start ,next 直到如图所示界面,输入-fem –mode=mapping湖南大学先进动力第四步:查看热边界结果(这一步不是必需的,为了Mapping之后会产生一个包含热边界的inp文件,用于后续的固体温度场计算。
湖南大学先进动力映射距离与用例子比较(用三角形面单元)湖南大学先进动力第五步:在MSC-Patran 中做MPC注意:这里的面网格节点号和单元号要与前面用来mapping 的面网格对应上,可以在patran 或者hypermesh 中通过renumber 来实现,固体网格最好也把节点号和单元号renumber ,记下所有的节点号和单元号,以备后用。
Abaqus热流固耦合——围绕圆柱形热源进行固结

Abaqus热流固耦合——围绕圆柱形热源进行固结翻译抖音号abaquser,qq443941211这个问题提出了在圆柱形热源周围饱和土壤中固结的解决方案。
布克和萨维维杜(Booker and Savvidou,1985)对该问题进行了研究,它代表了埋在饱和土壤中的放射性废物罐问题的理想化。
由于来自罐的热辐射而发生的温度变化导致孔隙水的膨胀量大于土壤中的孔隙,导致热源周围的孔隙压力增加。
产生的孔隙压力梯度将孔隙流体驱离热源,导致孔隙压力随时间消散。
Booker和Savvidou开发了针对点热源深埋在饱和土壤中的基本问题的分析解决方案。
随后,他们使用该分析解决方案得出了圆柱热源周围固结问题的近似解决方案。
该问题为Abaqus中的耦合热固结能力提供了验证。
饱和土壤的分析需要耦合应力-扩散方程的解,Abaqus中使用的公式在《Abaqus理论指南》第2.8节“多孔介质分析”中有详细描述。
热固结能力还可以与应力扩散方程完全耦合地求解传热方程(同时考虑传导和对流效应),从而模拟孔隙压力对孔隙流体和管道中温度场的影响。
土壤,反之亦然。
定义几何形状和材料特性的参数的数值是基于Lewis和Schrefler(2000)对这个问题进行的参数研究中给出的细节。
问题描述问题设置如图1.15.7-1所示。
半径为0.1604m,高度为2.5m的圆柱形热源被埋在半径和高度均等于10m的圆柱形土壤中。
实际上,土壤的圆柱形体积代表了围绕热源的无限介质。
重力被忽略了。
由于边界条件(下面将详细讨论),问题基本上是一维的,唯一的梯度是在径向上。
分析的目的是预测整个土壤质量,特别是热源附近的孔隙压力和温度随时间的变化。
几何和模型利用垂直方向的对称性,仅对问题的一半进行建模。
使用三维和轴对称的温度-孔压力元件均可解决此问题。
为了呈现结果,选择了三维元素类型C3D8RPT。
三维分析和轴对称分析均使用基本三维8节点或轴对称4节点元素以及修饰的四面体元素的不同变体(例如,积分和混合)进行。
abaqus FSI流固耦合教程(模板参考)

医疗模板
45
3、流固耦合操作与实例
后处理: 1、管道的压力云图 2、管道转弯处的位移随时间变化 3、流体的速度剖面图 4、显示流线
医疗模板
46
4、流热耦合操作与实例
医疗模板
47
4、流热耦合操作与实例
实例题目:单芯片的电路板流热耦合分析[1] 分析对象:芯片与周围介质 分析平台:ABAQUS 6.12 分析类型:双向流热耦合 分析目标:了解芯片传导换热的状况
医疗模板
28
2 abaqus流固耦合简介
医疗模板
29
2 abaqus流固耦合简介
(4)定义边界和载荷
医疗模板
30
2 abaqus流固耦合简介
医疗模板
31
2 abaqus流固耦合简介
医疗模板
32
2 abaqus流固耦合简介
医疗模板
33
2 abaqus流固耦合简介
医疗模板
34
2 abaqus流固耦合简介
48
4、热流耦合操作与实例
1、建立几何模型 PCB板尺寸 7.8X11.6X0.16 cm 芯片尺寸 3X3X0.7 cm 发热块尺寸 1.8X1.8X0.3cm 核心尺寸 0.75X0.75X0.2cm 空气尺寸 27.8X20X12.56 cm
医疗模板
49
4、热流耦合操作与实例
• 单元类型DC3D8 • 初始温度293K • 体热通量50mW/s/mm3 • 瞬态热传递分析步,初始增量0.01s;CFD分析;总仿真
医疗模板
13
1 abaqus/CFD模块简介
医疗模板
14
1 abaqus/CFD模块简介
1.3 入门实例
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例子的来源是Abaqus CLE的官方教程,可是写的太粗线条,我还是搞了两天才做
出了这个例子。
其实就是个滚筒洗衣机带着洗衣机里的水一起转的问题。
1. 分别为Eulerian domain和Lagrangian domain建立两个part
建立Lagrangian domain的Part,类型设置为Discrete rigid,并设置Reference Point。
建立Eulerian domain的Part,类型设置为Eulerian,要注意Eulerian domain 和Lagrangian domain要保证有重叠的部分,这是一种弱耦合,数据在两个区域间抛来抛去,所以网格要有重叠部分。
这导致在Eulerian domain里有的部分是有材料的,有的地方是没有材料的。
为了之后设置材料分布时候方便,要把part实现划出几个辅助的partition。
黄色虚线是在划分partition时,为了指明
Extrude/Sweep方向用到的辅助坐标轴。
2. 定义水的材料属性
选择状态方程模型EOS中Us-Up,设置声速c0=1483m/s;密度为1000kg/m3;粘度为0.001kg/ms。
并把截面属性赋给Eulerian domain。
3. 把两个Part组装起来
4. 新建一个Step-1
5. 为Eulerian domain和Lagrangian domain划分网格
6. 设置接触
新建一个Contact Property ,因为不是普通的面和面的接触,水中的任何的一个部
分可能在流动区域里的任何一个地方和Lagrangian domain接触,设置Tangential Behavior为Rough,赋给水和洗衣机之间的关系。
新建一个Interaction,把刚才的Contact Property赋给它。
更重要的是设置接触的两个Surface。
其中一个Surface是Lagrangian domain 部分的内侧面,为Geometry类型,另一个Surface是Eulerian domain的全部网格,为Mesh类型。
7. 加载Load
为全模型加载重力场。
为Eulerian domain施加一个Boundary Conidition,为了在前后两个方向限制住水,限制要覆盖所有水可能会流到的区域。
水运动到这个区域就让它的z方向速度变为0,这样水就不会流出洗衣机。
下面为Lagrangian domain施加Boundary Condition,让洗衣机转动,在1s内转动3个弧度,分别在Initial和Step-1设置BC-2。
最后设置在Eulerian domain的材料填充,虽然已经把水的材料的截面属性赋给了整个Eulerian domain区域,但是默认情况下所有Eulerian domain都是Void,即没有材料(下图中材料为0,Void为1),这也是在新建Eulerian截面属性的时候,出现这两个材料的原因。
为Eulerian domain的Part中初始存在水的部分设置Predefined Field材料。
为初始存在水的partition新建一个Set,在Part的这个set中设置材料为1,Void 为0,其他部分不用设置,依然是默认的材料为0,Void为1,即没有材料填充。
8. 设置Field Output Request
尤其要选中Volume/Thickness/Coordinates 中的EVF ,element volume fraction ,为了观察水的流动。
9. 提交Job计算
10. 后处理
在Result-Field Output设置显示EVF_VOID看液体的流动。
红色部分void为1,没有水,蓝色部分void为0,有水。
为了让显示的更加清晰,设置不显示没有水的Eulerian domain区域。
将阈值改为100%,Spectrums改为Blue to red。
设置ODB Display Options和Options-Common,让结果显示为理想状态。
最后将动画结果存储为avi格式,Animate-History Time,Save As。
File-Print存储截图。