轨迹方程的五种求法例题

合集下载

第九讲 曲线的轨迹方程的求法

第九讲     曲线的轨迹方程的求法

第九讲曲线的轨迹方程的求法例1如图所示,已知P(4,0)是圆x2+y2=36内的一点,A、B是圆上两动点,且满足∠APB=90°,求矩形APBQ的顶点Q的轨迹方程例2设点A和B为抛物线y2=4px(p>0)上原点以外的两个动点,已知OA⊥OB,OM⊥AB,求点M的轨迹方程,并说明它表示什么曲线例3某检验员通常用一个直径为2 cm和一个直径为1 cm的标准圆柱,检测一个直径为3 cm的圆柱,为保证质量,有人建议再插入两个合适的同号标准圆柱,问这两个标准圆柱的直径为多少?例4已知A、B为两定点,动点M到A与到B的距离比为常数λ,求点M的轨迹方程,并注明轨迹是什么曲线巩固练习1 已知椭圆的焦点是F 1、F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q ,使得|PQ |=|PF 2|,那么动点Q 的轨迹是( ) A 圆 B 椭圆 C 双曲线的一支 D 抛物线2 设A 1、A 2是椭圆4922y x +=1的长轴两个端点,P 1、P 2是垂直于A 1A 2的弦的端点,则直线A 1P 1与A 2P 2交点的轨迹方程为( )A 14922=+y xB 14922=+x yC 14922=-y xD 14922=-x y 3 △ABC 中,A 为动点,B 、C 为定点,B (-2a ,0),C (2a ,0),且满足条件sin C -sin B =21sin A ,则动点A 的轨迹方程为_________4 高为5 m 和3 m 的两根旗杆竖在水平地面上,且相距10 m ,如果把两旗杆底部的坐标分别确定为A (-5,0)、B (5,0),则地面观测两旗杆顶端仰角相等的点的轨迹方程是_________5 已知椭圆2222by a x +=1(a >b >0),点P 为其上一点,F 1、F 2为椭圆的焦点,∠F 1PF 2的外角平分线为l ,点F 2关于l 的对称点为Q ,F 2Q 交l 于点R (1)当P 点在椭圆上运动时,求R 形成的轨迹方程;(2)设点R 形成的曲线为C ,直线l y =k (x +2a )与曲线C 相交于A 、B 两点,当△AOB 的面积取得最大值时,求k 的值。

轨迹方程的求法 通用精品课件

轨迹方程的求法 通用精品课件

以直线DC为x轴,线段DC的中点为原点建立直角坐标系。
设椭圆方程为 x 2
y2 +
= 1 (a>b>0)

a2 b2
|AD| + |AC| = 2a,|BD| + |BC| = 2a
所以,|AD| + |BD| + |AC| + |BC| = 4a 即 8 + 4 2 = 4a
例8. 等腰直角三角形ABC中,斜边BC
在已知曲线上运动,代入已知曲线得出M的方 程.M和P是什么关系?回到图中仔细分析,连 接AQ会怎么样?点M与Δ AFQ是什么关系?


xP


yP
1 3x 2
3y 2
本题答案: y2 8 (x 1). 33
轨迹为以(-1/3,0)顶点,开口向右的抛物线(除去顶点).
18.已知直线L1⊥直线L2,垂足为M,点N ∈L2,(如图)以A,B为端点 的曲线段C上任意一点到L1的距离与到N的距离相等.若ΔAMN 为锐角三角形,且|AM|=√17,|AN|=3,|BN|=6.建立适当的坐标系,
(A)圆 (B)双曲线 (C)椭圆 (D)抛物线
6.已知一曲线是与两个定点O(0,0)、A(3,0)距离的比为 1:2的点的轨迹,则此曲线的方程是__(x___1_)2___y_2 __4__.
x2 y2 1 (x 3)2 y2 2
平方化简得:(x 1)2 y2 4 (P78)
4.当所求动点的运动受一些几何量(距离、角度、 斜率、坐标等)制约时,可考虑用参数法求解.
5.求得的轨迹方程要与动点的轨迹一一对应,否则要 “多退少补”,多余的点要剔除,不足的点要补充.

高中数学求轨迹方程的六种常用技法

高中数学求轨迹方程的六种常用技法

求轨迹方程六种常用技法轨迹方程探求是解析几何中根本问题之一,也是近几年来高考中常见题型之一。

学生解这类问题时,不善于提醒问题内部规律及知识之间相互联系,动辄就是罗列一大堆坐标关系,进展无目大运动量运算,致使不少学生丧失信心,半途而废,因此,在平时教学中,总结与归纳探求轨迹方程常用技法,对提高学生解题能力、优化学生解题思路很有帮助。

本文通过典型例子阐述探求轨迹方程常用技法。

1.直接法根据条件及一些根本公式如两点间距离公式,点到直线距离公式,直线斜率公式等,直接列出动点满足等量关系式,从而求得轨迹方程。

例1.线段,直线相交于,且它们斜率之积是,求点轨迹方程。

解:以所在直线为轴,垂直平分线为轴建立坐标系,那么,设点坐标为,那么直线斜率,直线斜率由有化简,整理得点轨迹方程为练习:1.平面内动点到点距离与到直线距离之比为2,那么点轨迹方程是。

2.设动直线垂直于轴,且与椭圆交于、两点,是上满足点,求点轨迹方程。

3. 到两互相垂直异面直线距离相等点,在过其中一条直线且平行于另一条直线平面内轨迹是〔〕A.直线B.椭圆C.抛物线D.双曲线2.定义法通过图形几何性质判断动点轨迹是何种图形,再求其轨迹方程,这种方法叫做定义法,运用定义法,求其轨迹,一要熟练掌握常用轨迹定义,如线段垂直平分线,圆、椭圆、双曲线、抛物线等,二是熟练掌握平面几何一些性质定理。

例2.假设为两顶点,与两边上中线长之与是,那么重心轨迹方程是_______________。

解:设重心为,那么由与两边上中线长之与是可得,而点为定点,所以点轨迹为以为焦点椭圆。

所以由可得故重心轨迹方程是练习:4.方程表示曲线是〔〕A.椭圆 B.双曲线 C.线段 D.抛物线3.点差法圆锥曲线中与弦中点有关问题可用点差法,其根本方法是把弦两端点坐标代入圆锥曲线方程,然而相减,利用平方差公式可得,,,等关系式,由于弦中点坐标满足,且直线斜率为,由此可求得弦中点轨迹方程。

例3.椭圆中,过弦恰被点平分,那么该弦所在直线方程为_________________。

求轨迹方程的五种方法

求轨迹方程的五种方法

求轨迹方程的五种方法
1.参数方程法:利用参数方程表示曲线上任意一点的坐标,一般形式为x=f(t),y=g(t),其中t为参数。

2. 一般式法:将曲线的一般式y=ax^2+bx+c和y=k(x-h)^2+v表示成标准式,然后进行配凑,求得曲线的轨迹方程。

3.隐式方程法:将曲线的形状表示成一些等式或者不等式,通过解方程或者判断不等式的不等关系确定曲线的轨迹方程。

4.极坐标方程法:对于极坐标系下的曲线,可通过极坐标方程
r=f(θ)来表示其轨迹方程。

5.向量函数法:将曲线表示为向量函数,即曲线上的任意一点p处的位置矢量可以表示为一个向量f(t),则曲线的轨迹方程可以表示为
r(t)=f(t)。

求轨迹方程的一般方法

求轨迹方程的一般方法

求轨迹方程的一般方法(一)求轨迹方程的一般方法:1. 定义法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程。

2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。

3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ), y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。

4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。

5:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这种问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。

一:用定义法求轨迹方程例1:已知ABC ∆的顶点A ,B 的坐标分别为(-4,0),(4,0),C 为动点,且满足,sin 45sin sin C A B =+求点C 的轨迹。

【变式】:已知圆的圆心为M 1,圆的圆心为M 2,一动圆与这两个圆外切,求动圆圆心P 的轨迹方程。

二:用直译法求轨迹方程例2:一条线段AB 的长等于2a ,两个端点A 和B 分别在x 轴和y 轴上滑动,求AB 中点P 的轨迹方程?【变式】: 动点P (x,y )到两定点A (-3,0)和B (3,0)的距离的比等于2(即2||||=PB PA ),求动点P 的轨迹方程?三:用参数法求轨迹方程此类方法主要在于设置合适的参数,求出参数方程,最后消参,化为普通方程。

求轨迹方程的常用方法(经典)

求轨迹方程的常用方法(经典)

求轨迹方程的常用方法(一)求轨迹方程的一般方法:1. 待定系数法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程,也有人将此方法称为定义法。

2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。

3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ),y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。

4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。

5.几何法:若所求的轨迹满足某些几何性质(如线段的垂直平分线,角平分线的性质等),可以用几何法,列出几何式,再代入点的坐标较简单。

6:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这灯问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。

(二)求轨迹方程的注意事项:1. 求轨迹方程的关键是在纷繁复杂的运动变化中,发现动点P 的运动规律,即P 点满足的等量关系,因此要学会动中求静,变中求不变。

)()()(0)(.2为参数又可用参数方程表示程轨迹方程既可用普通方t t g y t f x ,y x ,F ⎩⎨⎧=== 来表示,若要判断轨迹方程表示何种曲线,则往往需将参数方程化为普通方程。

求点的轨迹方程的六种常见方法

BC CD DA
解:以AB所在直线为x轴,过o垂直AB 直线为y轴,建立如图直角坐标系.
DF
y
C
依题意有A(-2,0),B(2,0),C(2,4a),D(-2,4a)
P
E
设 BE CF DG =k(0≤k≤1),由此有
G
BC CD DA
A
o
Bx
E(2,4ak), F(2-4k,4a), G(-2,4a-4ak) 直线OF的方程为 2ax+(2k-1)y=0……………①
且 BE CF DG .P为GE与OF的交点(如图). BC CD DA
问:是否存在两个定点,使P到这两点的距离的和为定值?若存在, 求出这两点的坐标及此定值;若不存在,请说明理由.
y
DF
C
E P
G设条件,首先求出点P坐标满足的方程,据此再判断是否存在两点,
使得P到两定点距离的和为定值.按题意有A(2, 0),B(2, 0),C(2, 4a),D(, 2, 4a).
整理得
x2 1
(y a)2 a2
1.
2
当a2 1 时,点P的轨迹为圆弧,所以不存在符合题意的两点 2
当a2 1 时,点P的轨迹为椭圆的一部分,点P到该椭圆焦点的距离的和为定长. 2
当a2 1 时,点P到椭圆两个焦点( 1 a2 , a)和( 1 a2 , a)的距离之和为定值 2.
2
2
• 以下举一个例子说明:
1.定义法
【例1】在ΔABC中,已知BC=a,当动点A满足条件sinC-sinB= 1 sinA时, 2
求动点A的轨迹方程.
解:以BC边所在直线为x轴,以线段BC的垂直平分线为y轴建立直角坐标系.
因为sinC-sinB= 1 sinA,由正弦定理得:AB - AC = 1 BC ,

高三高考数学中求轨迹方程的常见方法

高考数学中求轨迹方程的常见方法一、直接法当所求动点的要满足的条件简单明确时,直接按“建系设点、列出条件、代入坐标、整理化简、限制说明”五个基本步骤求轨迹方程, 称之直接法.例1 已知点)0,2(-A 、).0,3(B 动点),(y x P 满足2x PB PA =⋅,则点P 的轨迹为( ) A .圆 B .椭圆 C .双曲线 D .抛物线解:),3(),,2(y x y x --=---= ,2)3)(2(y x x +---=⋅∴226y x x +--=. 由条件,2226x y x x =+--,整理得62+=x y ,此即点P 的轨迹方程,所以P 的轨迹为抛物线,选D.二、定义法定义法是指先分析、说明动点的轨迹满足某种特殊曲线(如圆、椭圆、双曲线、抛物线等)的定义或特征,再求出该曲线的相关参量,从而得到轨迹方程.例2 已知ABC ∆中,A ∠、B ∠、C ∠的对边分别为a 、b 、c ,若b c a ,,依次构成等差数列,且b c a >>,2=AB ,求顶点C 的轨迹方程.解:如右图,以直线AB 为x 轴,线段AB 的中点为原 点建立直角坐标系. 由题意,b c a ,,构成等差数列,∴b a c +=2, 即4||2||||==+AB CB CA ,又CA CB >,∴C 的轨迹为椭圆的左半部分.在此椭圆中,1,2='='c a ,3='b ,故C 的轨迹方程为)2,0(13422-≠<=+x x y x . 三、代入法当题目中有多个动点时,将其他动点的坐标用所求动点P 的坐标y x ,来表示,再代入到其他动点要满足的条件或轨迹方程中,整理即得到动点P 的轨迹方程,称之代入法,也称相关点法、转移法.例3 如图,从双曲线1:22=-y x C 上一点Q 引直线2:=+y x l 的垂线,垂足为N ,求线段QN 的中点P 的轨迹方程.解:设),(),(11y x ,Q y x P ,则)2,2(11y y x x N --.ΘN 在直线上,.22211=-+-∴y y x x ① 又l PN ⊥得,111=--x x y y 即011=-+-x y y x .②联解①②得⎪⎪⎩⎪⎪⎨⎧-+=-+=22322311x y y y x x .又点Q 在双曲线C 上,1)223()223(22=-+--+∴x y y x ,化简整理得:01222222=-+--y x y x ,此即动点P 的轨迹方程.四、几何法几何法是指利用平面几何或解析几何知识分析图形性质,发现动点的运动规律和要满足的条件,从而得到动点的轨迹方程.例4 已知点)2,3(-A 、)4,1(-B ,过A 、B 作两条互相垂直的直线1l 和2l ,求1l 和2l 的交点M 的轨迹方程.解:由平面几何知识可知,当ABM ∆为直角三角形时,点M 的轨迹是以AB 为直径的圆.此圆的圆心即为AB 的中点)1,1(--,半径为25221=AB ,方程为13)1()1(22=+++y x . 故M 的轨迹方程为13)1()1(22=+++y x .五、参数法参数法是指先引入一个中间变量(参数),使所求动点的横、纵坐标y x ,间建立起联系,然后再从所求式子中消去参数,得到y x ,间的直接关系式,即得到所求轨迹方程.例5 过抛物线px y 22=(0>p )的顶点O 作两条互相垂直的弦OA 、OB ,求弦AB 的中点M 的轨迹方程.解:设),(y x M ,直线OA 的斜率为)0(≠kk ,则直线OB 的斜率为k1-.直线OA 的方程为kx y =,由⎩⎨⎧==px y kx y 22解得⎪⎪⎩⎪⎪⎨⎧==kp y k px 222,即)2,2(2k p k p A ,同理可得)2,2(2pk pk B -. 由中点坐标公式,得⎪⎪⎩⎪⎪⎨⎧-=+=pk kpy pk k px 22,消去k ,得)2(2p x p y -=,此即点M 的轨迹方程. 六、交轨法求两曲线的交点轨迹时,可由方程直接消去参数,或者先引入参数来建立这些动曲线的联系,然后消去参数来得到轨迹方程,称之交轨法.例6 如右图,垂直于x 轴的直线交双曲线12222=-by a x 于M 、N 两点,21,A A 为双曲线的左、右顶点,求直线M A 1与N A 2的交点P 的轨迹方程,并指出轨迹的形状.解:设),(y x P 及),(),,(1111y x N y x M -,又)0,(),0,(21a A a A -,可得直线M A 1的方程为)(11a x a x y y ++=①;直线N A 2的方程为)(11a x ax y y -+-=②. ①×②得)(22221212a x ax y y ---=③. 又,1221221=-b y a x Θ)(2122221x a a b y -=-∴,代入③得)(22222a x ab y --=,化简得12222=+by a x ,此即点P 的轨迹方程. 当b a =时,点P 的轨迹是以原点为圆心、a 为半径的圆;当b a ≠时,点P 的轨迹是椭圆.高考动点轨迹问题专题讲解(一)选择、填空题1.( )已知1F 、2F 是定点,12||8F F =,动点M 满足12||||8MF MF +=,则动点M 的轨迹是 (A )椭圆 (B )直线 (C )圆 (D )线段2.( )设(0,5)M ,(0,5)N -,MNP ∆的周长为36,则MNP ∆的顶点P 的轨迹方程是(A )22125169x y +=(0x ≠) (B )221144169x y +=(0x ≠) (C )22116925x y +=(0y ≠) (D )221169144x y +=(0y ≠) 3.与圆2240x y x +-=外切,又与y 轴相切的圆的圆心轨迹方程是 ;4.P 在以1F 、2F 为焦点的双曲线221169x y -=上运动,则12F F P ∆的重心G 的轨迹方程是 ; 5.已知圆C:22(16x y ++=内一点()A ,圆C 上一动点Q , AQ 的垂直平分线交CQ 于P 点,则P 点的轨迹方程为 .2214x y += 6.△ABC 的顶点为(5, 0)A -、(5, 0)B ,△ABC 的内切圆圆心在直线3x =上,则顶点C 的轨迹方程是 ;221916x y -=(3x >) 变式:若点P 为双曲线221916x y -=的右支上一点,1F 、2F 分别是左、右焦点,则△12PF F 的内切圆圆心的轨迹方程是 ;推广:若点P 为椭圆221259x y +=上任一点,1F 、2F 分别是左、右焦点,圆M 与线段1F P 的延长线、线段2PF 及x 轴分别相切,则圆心M 的轨迹是 ;7.已知动点M 到定点(3,0)A 的距离比到直线40x +=的距离少1,则点M 的轨迹方程是 .212y x =8.抛物线22y x =的一组斜率为k 的平行弦的中点的轨迹方程是 .4kx =(28k y >) 9.过抛物线24y x =的焦点F 作直线与抛物线交于P 、Q 两点,当此直线绕焦点F 旋转时, 弦PQ 中点的轨迹方程为 . 解法分析:解法1 当直线PQ 的斜率存在时, 设PQ 所在直线方程为(1)y k x =-与抛物线方程联立,2(1),4y k x y x=-⎧⎨=⎩ 消去y 得 2222(24)0k x k x k -++=. 设11(,)P x y ,22(,)Q x y ,PQ 中点为(,)M x y ,则有21222,22(1).x x k x k y k x k ⎧++==⎪⎪⎨⎪=-=⎪⎩消k 得22(1)y x =-. 当直线PQ 的斜率不存在时,易得弦PQ 的中点为(1,0)F ,也满足所求方程.故所求轨迹方程为22(1)y x =-. 解法2 设11(,)P x y ,22(,)Q x y ,由2112224,4.y x y x ⎧=⎪⎨=⎪⎩ 得121212()()4()y y y y x x -+=-,设PQ 中点为(,)M x y ,当12x x ≠时,有121224y y y x x -⋅=-,又1PQ MF yk k x ==-,所以,21yy x ⋅=-,即22(1)y x =-. 当12x x =时,易得弦PQ 的中点为(1,0)F ,也满足所求方程. 故所求轨迹方程为22(1)y x =-.10.过定点(1, 4)P 作直线交抛物线:C 22y x =于A 、B 两点, 过A 、B 分别作抛物线C 的切线交于点M, 则点M 的轨迹方程为_________.44yx =-(二)解答题1.一动圆过点(0, 3)P ,且与圆22(3)100x y ++=相内切,求该动圆圆心C 的轨迹方程. (定义法)2.过椭圆221369x y +=的左顶点1A 作任意弦1A E 并延长到F ,使1||||EF A E =,2A 为椭圆另一顶点,连结OF 交2A E 于点P , 求动点P 的轨迹方程.3.已知1A 、2A 是椭圆22221x y a b+=的长轴端点,P 、Q 是椭圆上关于长轴12A A 对称的两点,求直线1PA 和2QA 的交点M 的轨迹.(交轨法)4.已知点G 是△ABC 的重心,(0,1), (0,1)A B -,在x 轴上有一点M ,满足||||MA MC =u u u r u u u u r , GM AB R λλ=(∈)u u u u r u u u r.(1)求点C 的轨迹方程;(2)若斜率为k 的直线l 与点C 的轨迹交于不同两点P 、Q ,且满足||||AP AQ =u u u r u u u r,试求k 的取值范围.解:(1)设(,)C x y ,则由重心坐标公式可得(,)33x y G . ∵ GM AB λ=u u u u r u u u r ,点M 在x 轴上,∴ (,0)3xM .∵ ||||MA MC =u u u r u u u u r,(0,1)A -,∴= 2213x y +=. 故点C 的轨迹方程为2213x y +=(1y ≠±).(直接法) (2)设直线l 的方程为y kx b =+(1b ≠±),11(,)P x y 、22(,)Q x y ,PQ 的中点为N .由22,3 3.y kx b x y =+⎧⎨+=⎩消y ,得222(13)63(1)0k x kbx b +++-=.∴ 22223612(13)(1)0k b k b ∆=-+->,即22130k b +->. ①又122613kbx x k+=-+,∴212122262()221313k b b y y k x x b b k k -+=++=+=++, ∴223(,)1313kb bN k k-++. ∵ ||||AP AQ =u u u r u u u r,∴ AN PQ ⊥,∴ 1ANk k =-,即 221113313bk kb k k ++=--+, ∴2132k b +=,又由①式可得 220b b ->,∴ 02b <<且1b ≠.∴ 20134k <+<且2132k +≠,解得11k -<<且k ≠. 故k 的取值范围是11k -<<且3k ≠±. 5.已知平面上两定点(0,2)M -、(0,2)N ,P 为一动点,满足MP MN PN MN ⋅=⋅u u u r u u u u r u u u r u u u u r.(Ⅰ)求动点P 的轨迹C 的方程;(直接法)(Ⅱ)若A 、B 是轨迹C 上的两动点,且AN NB λ=u u u r u u u r.过A 、B 两点分别作轨迹C 的切线,设其交点为Q ,证明NQ AB ⋅u u u r u u u r为定值.解:(Ⅰ)设(,)P x y .由已知(,2)MP x y =+u u u r ,(0,4)MN =u u u u r ,(,2)PN x y =--u u u r, 48MP MN y ⋅=+u u u r u u u u r.PN MN ⋅=u u u r u u u u r……………………………………………3分∵MP MN PN MN ⋅=⋅u u u r u u u u r u u u r u u u u r ,∴48y+= 整理,得 28x y =.即动点P 的轨迹C 为抛物线,其方程为28x y =.6.已知O 为坐标原点,点(1,0)E -、(1,0)F ,动点A 、M 、N 满足||||AE m EF =u u u r u u u r(1m >),0MN AF =⋅u u u u r u u u r ,1()2ON OA OF =+u u u r u u u r u u u r,//AM ME u u u u r u u u r .求点M 的轨迹W 的方程.解:∵0MN AF ⋅=u u u u r u u u r ,1()2ON OA OF =+u u u r u u u r u u u r,∴ MN 垂直平分AF .又//AM ME u u u u r u u u r,∴ 点M 在AE 上,∴ ||||||||2AM ME AE m EF m +===u u u u r u u u r u u u r u u u r ,||||MA MF =u u u r u u u r ,∴ ||||2||ME MF m EF +=>u u u r u u u r u u u r ,∴ 点M 的轨迹W 是以E 、F 为焦点的椭圆,且半长轴a m =,半焦距1c =, ∴ 22221b a c m =-=-.∴ 点M 的轨迹W 的方程为222211x y m m +=-(1m >). 7.设,x y R ∈,,i j 为直角坐标系内,x y 轴正方向上的单位向量,若向量(2)a xi y j =++r,(2)b xi y j =+-r , 且||||8a b +=r r.(1)求点(,)M x y 的轨迹C 的方程;(定义法)(2)过点(0,3)作直线l 与曲线C 交于A 、B 两点,设OP OA OB =+u u u r u u u r u u u r,是否存在这样的直线l ,使得四边形OAPB 是矩形?若存在,求出直线l 的方程,若不存在,试说明理由.解:(1)2211216x y +=; (2)因为l 过y 轴上的点(0,3).若直线l 是y 轴,则,A B 两点是椭圆的顶点.Q 0OP OA OB =+=u u u r u u u r u u u r,所以P 与O 重合,与四边形OAPB 是矩形矛盾.故直线l 的斜率存在,设l 方程为3y kx =+,1122(,),(,)A x y B x y .由223,1,1216y kx x y =+⎧⎪⎨+=⎪⎩ 消y 得22(43)18210,k x kx ++-=此时22(18)4(43)(21)k k ∆=-+->0恒成立,且1221843k x x k +=-+,1222143x x k=-+, Q OP OA OB =+u u u r u u u r u u u r,所以四边形OAPB 是平行四边形.若存在直线l ,使得四边形OAPB 是矩形,则OA OB ⊥,即0OA OB ⋅=u u u r u u u r.1122(,),(,)OA x y OB x y ==u u u r u u u rQ , ∴ 12120OA OB x x y y ⋅=+=u u u r u u u r.即21212(1)3()90k x x k x x ++++=.2222118(1)()3()4343k k k k k +⋅-+⋅-++ 90+=.2516k =,得5k =. 故存在直线l :53y x =+,使得四边形OAPB 是矩形. 8.如图,平面内的定点F 到定直线l 的距离为2,定点E 满足:||EF uuu r =2,且EF l ⊥于G ,点Q 是直线l 上一动点,点M 满足:FM MQ =u u u u r u u u u r ,点P 满足://PQ EF u u u r u u u r ,0PM FQ ⋅=u u u u r u u u r.(I )建立适当的直角坐标系,求动点P 的轨迹方程;(II )若经过点E 的直线1l 与点P 的轨迹交于相异两点A 、B ,令AFB θ∠=, 当34πθπ≤<时,求直线1l 的斜率k 的取值范围. 解:(1)以FG 的中点O 为原点,以EF 所在直线为y 轴,建立平面直角坐标系xoy ,设点(,)P x y ,则(0, 1)F ,(0, 3)E ,:1l y=-.∵ FM MQ =u u u u r u u u u r ,//PQ EF u u u r u u u r ,∴(,1)Q x -,(, 0)2xM .∵0PM FQ ⋅=u u u u r u u u r ,∴ ()()(2)02xx y -⨯+-⨯-=,即所求点P 的轨迹方程为24x y =. (2)设点))(,(),,(212211x x y x B y x A ≠设AF 的斜率为1k ,BF 的斜率为2k ,直线1l 的方程为3+=kx y由⎩⎨⎧=+=yx kx y 432…………6分 01242=--kx x 得1242121-==+∴x x k x x …………7分 9)4(44221222121==⋅=∴xx x x y y646)(22121+=++=+k x x k y y …………8分4216484||||cos 2222++-=+--=⋅=∴k k k k FB FA θ…………10分由于πθπ<≤43 2242122cos 122-≤++-<--≤<-∴k k 即θ…………11分 222242222≥∴≥++∴k k k解得4488-≤≥k k 或…………13分∴直线1l 斜率k 的取值范围是}8,8|{44-≥≥k k k 或9.如图所示,已知定点(1, 0)F ,动点P 在y 轴上运动,过点P 作PM 交x 轴于点M ,并延长MP 到点N ,且0PM PF ⋅=u u u u r u u u r ,||||PM PN =u u u u r u u u r.(1)求动点N 的轨迹方程;(2)直线l 与动点N 的轨迹交于A 、B 两点,若4OAOB ⋅=-u u u r u u u r,且||AB ≤l的斜率k 的取值范围.解:(1)设(,)N x y ,由||||PM PN =u u u u r u u u r得(,0)M x -,(0, )2y P ,(,)2y PM x =--u u u u r ,(1,)2yPF =-u u u r ,又0PM PF ⋅=u u u u r u u u r ,∴204yx -+=,即动点N 的轨迹方程为24y x =. 10.已知点(0, 1)F ,点M 在x 轴上,点N 在y 轴上,P 为动点,满足0MN MF ⋅=u u u,0MN MP +=u u u u r u u u r r .(1)求P 点轨迹E 的方程; (2)将(1)中轨迹E 按向量(0, 1)a=r平移后得曲线E ',设Q 是E '上任一点,过Q 作圆22(1)1x y ++=的两条切线,分别交x 轴与A 、B 两点,求||AB 的取值范围. 解:(1)设(, 0)M a 、(0, )N b 、(,)P x y ,则(,)MN a b =-u u u u r 、(, 1)MF a =-u u u r、(, )MP x a y =-u u u r.由题意得(, )(, 1)0,(, )(,)(0, 0).a b a a b x a y -⋅-=⎧⎨-+-=⎩ ∴ 20,, ,2a b xa b y ⎧+=⎪⎨==-⎪⎩ ∴ 214y x =, 故动点P 的轨迹方程为214y x =. 11.如图()A m 和(,)B n 两点分别在射线OS 、OT 上移动,且12OA OB ⋅=-u u u r u u u r ,O 为坐标原点,动点P 满足OP OA OB =+u u u r u u u r u u u r.(1)求m n ⋅的值; (2)求P 点的轨迹C 的方程,并说明它表示怎样的曲线?(3)若直线l 过点(2, 0)E 交(2)中曲线C 于M 、N 两点,且3ME EN =u u u r u u u r,求l 的方程. 解:(1)由已知得1()(,)22OA OB m n mn ⋅=⋅=-=-u u u r u u u r, ∴14mn =.(2)设P 点坐标为(,)x y (0x >),由OP OA OB =+u u u r u u u r u u u r得(,)()(,)x y m n =+())m n m n =+-,∴,)x m n y m n =+⎧⎪⎨=-⎪⎩ 消去m ,n 可得2243y x mn -=,又因14mn =,∴ P 点的轨迹方程为221(0)3y x x -=>.它表示以坐标原点为中心,焦点在x 轴上,且实轴长为2,焦距为4的双曲线2213y x -=的右支.(3)设直线l 的方程为2x ty =+,将其代入C 的方程得 223(2)3ty y +-= 即 22(31)1290t y ty -++=,易知2(31)0t -≠(否则,直线l的斜率为 又22214436(31)36(1)0t t t ∆=--=+>, 设1122(,),(,)M x y N x y ,则121222129,3131t y y y y t t -+==-- ∵ l 与C 的两个交点,M N 在y 轴的右侧212121212(2)(2)2()4x x ty ty t y y t y y =++=+++2222291234240313131t t t t t t t -+=⋅+⋅+=->---,∴ 2310t -<,即2103t <<,又由120x x +>同理可得 2103t <<,由3ME EN =u u u r u u u r 得 1122(2,)3(2,)x y x y --=-, ∴ 121223(2)3x x y y -=-⎧⎨-=⎩由122222123231t y y y y y t +=-+=-=--得22631t y t =-, 由21222229(3)331y y y y y t =-=-=-得222331y t =--, 消去2y 得2222363(31)31t t t =--- 解之得:2115t = ,满足2103t <<. 故所求直线l0y --=0y +-=.12.设A ,B分别是直线y x =和y x =上的两个动点,并且||AB =u u u r P 满足OP OA OB =+u u u r u u u r u u u r.记动点P 的轨迹为C .(I ) 求轨迹C 的方程;(II )若点D 的坐标为(0,16),M 、N 是曲线C 上的两个动点,且DM DN λ=u u u u r u u u r,求实数λ的取值范围.解:(I )设(,)P x y ,因为A 、B分别为直线y x =和y x =上的点,故可设11(,)5A x x,22(,)5B x x -. ∵OP OA OB =+u u u r u u u r u u u r ,∴1212,)x x x y x x =+⎧⎪⎨=-⎪⎩.∴1212,x x x x x y +=⎧⎪⎨-=⎪⎩.又AB =u u u r ∴2212124()()205x x x x -++=.∴22542045y x +=. 即曲线C 的方程为2212516x y +=. (II ) 设N (s ,t ),M (x ,y ),则由λ=,可得(x ,y-16)=λ (s ,t-16).故x s λ=,16(16)y t λ=+-.∵ M 、N 在曲线C 上, ∴⎪⎪⎩⎪⎪⎨⎧=+-+=+ 1.16)1616t (25s 1,16t 25s 22222λλλ消去s 得116)1616t (16)t 16(222=+-+-λλλ.由题意知0≠λ,且1≠λ,解得 17152t λλ-=. 又4t ≤, ∴421517≤-λλ. 解得 3553≤≤λ(1≠λ).故实数λ的取值范围是3553≤≤λ(1≠λ). 13.设双曲线22213y x a -=的两个焦点分别为1F 、2F ,离心率为2. (1)求此双曲线的渐近线1l 、2l的方程;(y x =)(2)若A 、B 分别为1l 、2l 上的动点,且122||5||AB F F =,求线段AB 的中点M 的轨迹方程,并说明是什么曲线.(22317525xy +=) 提示:||1010AB =⇒=,又11y x =,22y x =, 则1221)yy x x +=-,2112)y y x x -=+. 又 122x x x =+,122y y y =+代入距离公式即可.(3)过点(1, 0)N 是否存在直线l ,使l 与双曲线交于P 、Q 两点,且0OP OQ ⋅=u u u r u u u r,若存在,求出直线l 的方程;若不存在,说明理由.(不存在)14.已知点(1, 0)F ,直线:2l x =,设动点P 到直线l 的距离为d ,已知||PF =,且2332d ≤≤. (1)求动点P 的轨迹方程;15.如图,直线:1l ykx =+与椭圆22:2C ax y +=(1a >)交于A 、B 两点,以OA 、OB 为邻边作平行四边形OAPB (O 为坐标原点). (1)若1k=,且四边形OAPB 为矩形,求a 的值;(3a =)(2)若2a =,当k 变化时(k R ∈),求点P 的轨迹方程.(22220x y y +-=(0y ≠))16.双曲线C :22221x y a b-=(0a >,0b >)的离心率为2,其中(0,)A b -,(, 0)B a ,且22224||||||||3OA OB OA OB +=⋅u u u r u u u r u u u r u u u r .(1)求双曲线C 的方程;(2)若双曲线C 上存在关于直线l :4y kx =+对称的点,求实数k 的取值范围.解:(I )依题意有:2222222c 2,a 4a b a b ,3a b c .⎧=⎪⎪⎪+=⎨⎪⎪+=⎪⎩解得:.2,3,1===c b a所求双曲线的方程为.1322=-y x ………………………………………6分 (Ⅱ)当k=0时,显然不存在.………………………………………7分当k≠0时,设双曲线上两点M 、N 关于直线l 对称.由l ⊥MN ,直线MN 的方程为1y x b k=-+.则M 、N 两点的坐标满足方程组由221y x b,k3x y 3.⎧=-+⎪⎨⎪-=⎩消去y 得2222(3k 1)x 2kbx (b 3)k 0-+-+=.…………………9分 显然23k10-≠,∴2222(2kb)4(3k 1)(b 3)k 0∆⎡⎤=---+>⎣⎦.即222k b 3k 10+->. ①设线段MN 中点D (00x ,y )则02202kb x ,3k 13k b y .3k 1-⎧=⎪⎪-⎨⎪=⎪-⎩∵D (00x ,y )在直线l 上,∴22223k b k b 43k 13k 1-=+--.即22k b=3k 1- ② 把②带入①中得 222k b +bk 0>,解得b 0>或b 1<-.∴223k 10k ->或223k 1<-1k -.即k >或1k 2<,且k≠0. ∴k的取值范围是11(,(,0)(0,))22-∞-+∞U U U .…………………14分 17.已知向量OA u u u r=(2,0),OC u u u r =AB =(0,1),动点M 到定直线y =1的距离等于d ,并且满足OM u u u u r ·AM u u u u r =K(CM u u u u r ·BM u u u u r -d 2),其中O 为坐标原点,K 为参数.(Ⅰ)求动点M 的轨迹方程,并判断曲线类型;(Ⅱ)如果动点M 的轨迹是一条圆锥曲线,其离心率e 满足33≤e ≤22,求实数K 的取值范围. 18.过抛物线24y x =的焦点作两条弦AB 、CD ,若0AB CD ⋅=u u u r u u u r ,1()2OM OA OB =+u u u u r u u u r u u u r ,1()2ON OC OD =+u u u r u u u r u u u r .(1)求证:直线MN 过定点;(2)记(1)中的定点为Q ,求证AQB ∠为钝角;(3)分别以AB 、CD 为直径作圆,两圆公共弦的中点为H ,求H 的轨迹方程,并指出轨迹是什么曲线.19.(05年江西)如图,M 是抛物线上2y x =上的一点,动弦ME 、MF 分别交x 轴于A 、B 两点,且MA MB =.(1)若M 为定点,证明:直线EF 的斜率为定值;xyOA BEF M(2)若M 为动点,且90EMF∠=o ,求△EMF 的重心G 的轨迹.思路分析:(1)由直线MF (或ME )方程与抛物线方程组成的方程组解出点F 和点E 的坐标,利用斜率公式来证明;(2)用M 点的坐标将E 、F 点的坐标表示出来,进而表示出G 点坐标,消去0y 即得到G 的轨迹方程(参数法).解:(1)法一:设200(,)M y y ,直线ME 的斜率为k (0k >),则直线MF 的斜率为k -,方程为200()y y k x y -=-.∴由2002()y y k x y y x⎧-=-⎪⎨=⎪⎩,消x 得200(1)0ky y y ky -+-=,解得01F ky y k-=,∴ 202(1)F ky x k -=, ∴0022000022211214(1)(1)2E F EFE F ky ky y y k k k k ky ky ky x x y k k k -+---====---+--(定值).所以直线EF 的斜率为定值. 法二:设定点00(,)M x y ,11(,)E x y 、22(,)F x y ,由200211,y x y x ⎧=⎪⎨=⎪⎩ 得 010101()()y y y y x x -+=-,即011ME k y y =+;同理 021MF k y y =+.∵MA MB =,∴ ME MF k k =-,即010211y y y y =-++,∴ 1202y y y +=-.所以,1212221212120112EF y y y y k x x y y y y y --====---+(定值). 第一问的变式:过点M 作倾斜角互补的直线ME 、MF ,则直线EF 的斜率为定值;根据不同的倾斜角,可得出一组平行弦.(2)90,45,1,EMF MAB k ∠=∠==o o当时所以直线ME 的方程为200()y y k x y -=-由2002y y x y y x⎧-=-⎪⎨=⎪⎩得200((1),1)E y y --同理可得200((1),(1)).F y y +-+设重心G (x , y ),则有222200000000(1)(1)23333(1)(1)333M E F M E F y y y y x x x x y y y y x x x y ⎧+-+++++===⎪⎪⎨+--+++⎪===-⎪⎩消去参数0y 得2122()9273y x x =->. 20.如图,ABCD 是边长为2的正方形纸片,沿某动直线l 为折痕将正方形在其下方的部分向上翻折,使得每次翻折后点B 都落在边AD 上,记为B ',折痕l 与AB 交于点E ,点M 满足关系式EM EB EB '=+u u u u r u u u r u u u r.(1)建立适当的直角坐标系,求点M 的轨迹方程; (2)若曲线C 是由点M 的轨迹及其关于边AB 对称的曲线组成的,F 是AB 边上的一点,4BA BF =u u u r u u u r,过点F 的直线交曲线C 于P 、Q 两点,且PF FQ λ=u u u r u u u r ,求实数λ的取值范围.。

轨迹方程的求法

轨迹方程的求法一、直接法求轨迹方程的一般步骤:“建、设、限、代、化” 1、建立恰当的坐标系; 2、设动点坐标(),x y ;3、限制条件列出来(如一些几何等量关系);4、代入:用坐标代换条件,得到方程(),0f x y =;5、化简(最后要剔除不符合条件的点).例1、过点()2,4P 作两条互相垂直的直线1l 、2l ,1l 交x 轴于A 点,2l 交y 轴于B 点,求线段AB 的中点M 的轨迹方程.巩固训练1:平面内动点M 与两定点()1,0A -、()2,0B 构成MAB ∆,且2MBA MAB ∠=∠,求动点M 的轨迹方程.巩固训练2:已知点A 、B 的坐标分别为()5,0-、()5,0,直线AM 、BM 相交于点M ,且它们的斜率之积是49-,求点M 的轨迹方程.巩固训练3:已知直角坐标平面上的点()2,0Q 和圆221C x y +=:,动点M 到圆C 的切线长与MQ 的比等于常数(0)λλ>,求动点M 的轨迹方程.二、定义法:如果动点的轨迹满足某已知曲线的定义,则可以依据定义求出轨迹方程.如圆、椭圆、双曲线、抛物线等. 规律可寻:(1)利用定义法求轨迹方程时,还要看所求轨迹是否是完整的圆、椭圆、双曲线、抛物线,如果不是完整的曲线,则应对其中的变量x 或y 进行限制.例2、(1)求与圆221:(3)1C x y ++=外切,且与222:(3)81C x y -+=内切的动圆圆心P 的轨迹方程.(2)已知圆221:(3)1C x y ++=和圆222:(3)9C x y -+=,动圆M 同时与圆1C 及圆2C 相外切,求动圆圆心M 的轨迹方程.巩固训练1:已知1,02A ⎛⎫- ⎪⎝⎭,B 是圆221:42F x y ⎛⎫-+= ⎪⎝⎭(F 为圆心)上一动点,线段AB 的垂直平方线交BF 于点P ,求点P 的轨迹方程.巩固训练2:已知1,02A ⎛⎫- ⎪⎝⎭,B 是圆2211:24F x y ⎛⎫-+= ⎪⎝⎭(F 为圆心)上一动点,线段AB 的垂直平方线交BF 于点P ,求点P 的轨迹方程.巩固训练3:在平面直角坐标系xOy 中,点M 到点()1,0F 的距离比它到y 轴的距离多1,求点M 的轨迹方程.巩固训练4:已知点1F 、2F 分别是椭圆22:171617C x y +=的两个焦点,直线1l 过点2F 且垂直于椭圆长轴,动直线2l 垂直1l 于点G ,线段1GF 的垂直平分线交2l 于点H ,求点H 的轨迹方程.巩固训练5:在极坐标系Ox 中,直线l 的极坐标方程为sin 2ρθ=,点M 是直线l 上任意一点,点P 在射线OM 上,且满足4OP OM ⋅=,记点P 的轨迹方程为C ,求曲线C 的极坐标方程.三、相关点法:有些问题中,其动点满足的条件不便用等式列出,但动点是随着另一动点(称之为相关点)而运动的,如果相关点所满足的条件是明显的,这时我们可以用动点坐标表示相关点坐标,根据相关点所满足的方程即可求得动点的轨迹方程. “相关点法”的基本步骤:(1)设点:设被动点的坐标为(),x y ,主动点的坐标为()00,x y ;(2)求关系式:求出两个动点坐标之间的关系式()()00,,x f x y y g x y =⎧⎪⎨=⎪⎩; (3)代换:将上述关系式代入已知曲线方程,便可得到所求动点的轨迹方程.例3、已知点P 是圆22:4C x y +=上任意一点,过点P 作x 轴的垂线段PD ,D 为垂足,当点P 在圆上运动时,求线段PD 的中点M 的轨迹方程.巩固训练1:已知在ABC ∆中,()2,0A -,()0,2B -,第三个顶点C 在曲线231y x =-上动点,求ABC ∆的重心的轨迹方程.巩固训练2:已知点P 是圆22:25C x y +=上任意一点,点D 是点P 在x 轴上的投影,点M 为PD 上一点,且满足45MD PD =,当点P 在圆上运动时,求点M 的轨迹方程.四、参数法:如果动点(),P x y 的坐标之间的关系不容易找,可以考虑将,x y 用一个或几个参数表示,最后消参数,得出,x y 之间的关系式,即轨迹方程.常用参数有角度θ、直线的斜率、点的横、纵坐标,线段的长度等.例4、过抛物线24y x =的顶点O 引两条互相垂直的直线分别与抛物线相交于,A B 两点,求线段AB 的中点P 的轨迹方程.巩固训练1:设椭圆方程为2214y x +=,过点()0,1M 的直线l 交椭圆于,A B ,O 是坐标原点,直线l 的动点P 满足()12OP OA OB =+,当直线l 绕点M 旋转时,求点P 的轨迹方程.五、交轨法:写出动点所满足的两个轨迹方程后,组成方程组分别求出,x y ,再消去参数,即可求解,这种方法一般适合于求两条动直线交点的轨迹方程.例5、设1A 、2A 是椭圆22195x y +=的长轴的两端点,1P 、2P 是垂直于12A A 的弦的端点,求直线11A P 与22A P 的交点的轨迹方程.巩固训练1:已知双曲线2212x y -=的左、右顶点分别为1A 、2A ,点()11,P x y 、()11,Q x y -是双曲线上不同的两个动点,求直线1A P 与2A Q 的交点的轨迹E 的方程.。

求轨迹方程的常用方法及例题

求解轨迹方程的常用方法主要有以下几种:
参数方程法:通过引入参数,将轨迹上的点的坐标表示为参数的函数形式,然后通过给定参数的取值范围,确定轨迹上的点的位置关系。

隐式方程法:将轨迹方程中的自变量与因变量通过一个方程联系起来,形成一个隐式方程,然后通过对方程进行求解和化简,得到轨迹的几何性质。

极坐标方程法:对于某些曲线,使用极坐标系可以更方便地描述其轨迹。

通过将轨迹上的点的极坐标表示,可以得到轨迹的极坐标方程。

下面是一个例题:
例题:求解椭圆的轨迹方程。

解答:椭圆是一个平面上的闭合曲线,其定义特点是到两个焦点的距离之和恒定。

我们可以使用参数方程法来求解椭圆的轨迹方程。

假设椭圆的焦点为F1和F2,长轴长度为2a,短轴长度为2b。

取参数θ,定义点P在椭圆上的坐标为(x, y)。

那么根据椭圆的定义,可以得到以下参数方程:
x = a * cos(θ) y = b * sin(θ)
其中,θ的取值范围为0到2π。

通过给定θ的取值范围,我们可以得到椭圆上的点的坐标关系。

进一步化简参数方程,可以得到椭圆的隐式方程:
(x^2 / a^2) + (y^2 / b^2) = 1
这就是椭圆的轨迹方程,其中a和b分别为椭圆的长轴和短轴长度。

以上是求解轨迹方程的常用方法和一个椭圆轨迹方程的例题。

根据具体的问题和曲线类型,选择合适的方法进行求解和推导。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动点轨迹方程的求法 【2 】
一.直接法
按求动点轨迹方程的一般步骤求,其进程是建系设点,列出几多么式,坐标代换,化简整顿,重要用于动点具有的几何前提比较显著时.
例1已知直角坐标平面上点Q (2,0)和圆C :12
2
=+y x ,动点M 到圆C 的切线长与MQ 的比等于常数()0>λλ
(如图),求动点M 的轨迹方程,解释它表示什么曲线.
【解析】:设
M (x,y ),直线
MN
切圆
C

N,则有
λ=MQ
MN ,即
λ
=-MQ
ON
MO 2
2
,
λ
=+--+2
2
22)2(1y
x y x .整顿得
0)41(4)1()1(222222=++--+-λλλλx y x ,这就是动点M 的轨迹方程.若1=λ,方程化
为45=
x ,它表示过点)0,4
5
(和x 轴垂直的一条直线;若λ≠1,方程化为2222
222)1(3112-+=+-λλλλy x )-(,它表示认为)0,12(22-λλ圆心,1
3122-+λλ为半径的圆.
二.代入法
若动点M (x,y )依附已知曲线上的动点N 而活动,则可将转化后的动点N 的坐标入已知曲线的方程或知足的几何前提,从而求得动点M 的轨迹方程,此法称为代入法,一般用于两个或两个以上动点的情形.
例2 已知抛物线12
+=x y ,定点A (3,1),B 为抛物线上随意率性一点,点P 在线段AB 上,且有BP:PA=1:2,当点B 在抛物线上变动时,求点P 的轨迹方程,并指出这个轨迹为哪种曲线. 【解析】:设
),(),,(11y x B y x P ,由题设,P
分线段AB 的比
2==
PB AP λ,∴.2121,212311++=++=
y y x x 解得2
1
23,232311-=-=y y x x .又点B 在抛物线12+=x y 上,其坐标合适抛物线方程,∴.1)2
3
23()2123(2+-=-x y 整顿得点P 的轨迹方程为
),3
1
(32)31(2-=-x y 其轨迹为抛物线.
三.界说法
若动点活动的纪律知足某种曲线的界说,则可依据曲线的界说直接写出动点的轨迹方程.此法一般用于求圆锥曲线的方程,在高考中常填空.选择题的情势消失.
例3 若动圆与圆4)2(2
2
=++y x 外切且与直线x=2相切,则动圆圆心的轨迹方程是 (A )012122
=+-x y (B )012122
=-+x y (C )082
=+x y (D )082
=-x y
【解析】:如图,设动圆圆心为M,由题意,动点M 到定圆圆心(-2,0)的距离等于它到定直线x=4的距离,故所求轨迹是以(-2,0)为核心,直线x=4为准线的抛物线,并且p=6,极点是(1,0),启齿向左,所以方程是)1(122
--=x y .选(B ).
例4 一动圆与两圆12
2
=+y x 和01282
2
=+-+x y x 都外切,则动圆圆心轨迹为 (A )抛物线 (B )圆 (C )双曲线的一支 (D )椭圆
【解析】:如图,设动圆圆心为M,半径为r,则有
.
1,2,
1=-+=+=MO MC r MC r MO 动点M 到两定点的距离之差
为1,由双曲线界说知,其轨迹是以O.C 为核心的双曲线的左支,选(C ). 四.参数法
若动点P (x,y )的坐标x 与y 之间的关系不易直接找到,而动点变化受到另一变量的制约,则可求出x.y 关于另一变量的参数方程,再化为通俗方程.
例5设椭圆中间为原点O,一个核心为F (0,1),长轴和短轴的长度之比为t .(1)求椭圆的方程;(2)设经由原点且斜率为t 的直线与椭圆在y 轴右边部分的交点为Q,点P 在该直线上,且
12-=t t OQ
OP ,当t 变化时,求点P 的轨迹方程,并解释轨迹是什么图形.
【解析】:(1)设所求椭圆方程为).0(122
22
>>b a b x a y =+由题意得⎪⎩⎪
⎨⎧==-,
,
122t b
a b a 解得
⎪⎪⎩
⎪⎪⎨
⎧-=-=.11.122222t b t t a 所以椭圆方程为222222)1()1(t y t x t t =-+-. (2)设点),,(),,(11y x Q y x P 解方程组⎩⎨⎧==-+-,,)1()1(1122122122tx y t y t x t t 得
⎪⎪⎩
⎪⎪⎨⎧-=-=.)1(2,)1(2121
21t t y t x 由12
-=t t OQ OP 和1x x OQ OP =得⎪⎪⎩⎪⎪⎨⎧-=-=⎪⎪⎩⎪⎪⎨⎧==,
2
,
2,222
2
t
y t x t y t x 或
个中t >1.消去t,得点P 轨迹方程为)22(222
>=
x y x 和)2
2
(222-<-=x y x .其轨迹为抛物线y x 222
=在直线2
2=x 右侧的部分和抛物线y x 222
-=在直线22-=x 在侧的部分. 五.交轨法
一般用于求二动曲线交点的轨迹方程.其进程是选出一个恰当的参数,求出二动曲线的方程或动点坐标合适的含参数的等式,再消去参数,即得所求动点轨迹的方程. 例6 已知两点)2,0(),2,2(Q P -以及一条直线ι:y=x,设长为2的线段AB 在直线λ上移动,求
直线PA 和QB 交点M 的轨迹方程.
【解析】:PA 和QB 的交点M (x,y )随A.B 的移动而变化,故可设)1,1(),,(++t t B t t A ,则PA :
),2)(2(2
2
2-≠++-=
-t x t t y QB :
).1(1
1
2-≠+-=
-t x t t y 消去t,得
.082222=+-+-y x y x 当t=-2,或t=-1时,PA 与QB 的交点坐标也知足上式,所以点M 的
轨迹方程是.082222
2
=+--+-y x x y x
以上是求动点轨迹方程的重要办法,也是常用办法,假如动点的活动和角度有显著的关系,还可斟酌用复数法或极坐标法求轨迹方程.但无论用何办法,都要留意所求轨迹方程中变量的取值规模.。

相关文档
最新文档