高中物理必备知识点原子的核式结构模型总结
高中人教物理选择性必修二专题16 光电效应和原子结构——教师版

专题16 光电效应和原子结构(教师版)一、目标要求目标要求 重、难点 光电效应 重难点 康普顿效应 原子的核式结构模型 重点 氢原子光谱与玻尔氢原子模型重点二、知识点解析1.光电效应(1)光电效应现象:光照射在金属板上,金属板表面有电子逸出的现象,把这种电子叫做光电子; (2)爱因斯坦光电效应方程爱因斯坦认为,光是由一个个不可分割的能量子组成,频率为ν的光的能量子为hν,h 为普朗克常量,这些能量子称为光子.光电效应中,金属中电子吸收一个光子获得能量,其中一部分用于克服金属原子引力做功,剩下的能量表现为光电子的初动能E k :0E h W k ν=-其中W 0称为金属的逸出功,是使电子脱离金属原子束缚所需做功的最小值,不同金属的逸出功不相同.(3)光电效应的规律:如图1所示①饱和电流逐渐增大两板之间的电压,电流表示数开始时逐渐增大,后保持不变,说明单位时间从K 板逸出的电图1子个数是确定的;光电流的最大值称为饱和电流;入射光的光照强度越大,单位时间内发生光电效应的光电子数目越多,饱和光电流越大;②遏止电压设光电子逸出时的初速度为v 0,改变两极板的电性,使光电子逸出后做减速运动,当电流表示数恰好为零时,两极板间的电压称为遏止电压,用U c 表示:20012c e eU m v h W ν==-可见遏止电压与入射光的频率和金属种类有关,与入射光的光照强度无关; 光电流与电压的关系如图2所示:③截止频率(极限频率)只有入射光的频率超过某一极限值时才会发生光电效应,这个极限值称为入射光的截止频率ν0; 令E k =0,即0=hν0-W 0,解得00W hν=,可见截止频率与金属的种类有关; 若某频率的光照射金属板时不发生光电效应,则无论怎样增大光照强度都不能使金属逸出光电子;而若某频率的光能使金属发生光电效应,极微弱的光照强度也能产生光电子.④瞬时性:当入射光的频率超过截止频率,无论入射光光照强度如何,从照射到逸出光电子的时间不超过10-9s ,即光电效应几乎是瞬时的.2.康普顿效应(1)光的散射:光在介质中与物质微粒相互作用,从而使得传播方向发生变化,这种现象称为光的散射; (2)康普顿效应:美国物理学家康普顿在研究石墨对X 射线的散射作用时,发现部分散射光的波长变长了,经过大量的实验,康普顿提出,光子除了具有能量ε=hν外,同时具有动量p ,如图3所示;图2图3光子的动量为:h pλ=康普顿效应中,光子与晶体中的电子发生碰撞,将一部分动量转移给电子,从而光子的动量减小,对应的波长增大.3.原子结构(1)电子的发现:英国物理学家J.J.汤姆孙认为阴极射线是一种带电粒子流,并在1897年测定了组成阴极射线的粒子的比荷,并将其命名为电子.(2)原子核式结构①汤姆孙的“枣糕模型”:汤姆孙认为原子是一个实心球体,正电荷弥漫性地均匀分布在球体内部,电子镶嵌其中,如图4所示.但“枣糕”模型不能解释高速电子流能透过原子的现象.②卢瑟福的“核式结构”:1911年新西兰英籍物理学家卢瑟福在用α粒子轰击金箔时,发现大部分粒子都穿透金箔,少数粒子有偏转,极少数粒子有较大角度的偏转;卢瑟福认为:在原子内部,正电部分仅占很小的空间,通过计算,原子的直径大约为10-10m,但带正电的核的直径仅有10-15m,而电子充斥在原子空旷的内部中高速运动,如图5所示,这就是卢瑟福提出的原子核式结构.图4(3)质子的发现:1918年,提出原子核式结构的卢瑟福用α粒子轰击氮核得到质子;(4)中子的发现:自卢瑟福发现质子后,科学界认为原子核是由质子组成的,但这与原子的质量有较大的差异,因此卢瑟福预言,原子核内还应有一种不带电的粒子,这种粒子的质量与质子相近;1932年由英国物理学家查德威克利用α粒子轰击铍核得到了这种粒子,并命名为中子.4.玻尔的原子模型利用经典物理学解释原子结构仍然有一定的困难,丹麦物理学家玻尔提出了自己的原子结构假说.(1)轨道量子化电子的轨道半径不是连续的,而是有特定的半径,即电子的轨道是量子化的而不是连续的,原子核内存在分立的轨道;若电子绕原子运动的最小半径为r1,则第n条轨道的半径满足:r n=n2r1电子只能在这些特定的轨道中运动,不可能出现在任意相邻两条轨道之间.(2)能量量子化电子在不同轨道运动时,原子具有不同的能量,玻尔将这些不同的能量值称为能级,原子中具有确定能量的稳定状态称为定态;当电子在最低轨道中运动时,原子具有最小的能量,把原子处于最低能量的状态称为基态,其他能量状态称为激发态;以氢原子核为例,已知电子带电荷量为-e,氢原子核带电荷量为+e,相距为R的Q和q之间具有的电势能为p kQqER=,设电子的轨道半径为r n根据库仑力提供向心力:222nen nv ek mr r=可得电子的动能:22k122e nnkeE m vr==,以及电势能:2p2nkeEr=-故电子在第n条轨道上时,原子的能量为2k p2 nnke E E Er =+=-图5结合r n=n2r1,可知各能级之间的能量满足:12 nE En=氢原子中,E1=-13.6eV.(3)能级跃迁①跃迁:原子由一个能量状态变为另一个能量状态的过程叫做跃迁,对应内部电子轨道的变化,这个过程是不连续的;②频率条件:当电子从某高能级E n向低能级E m跃迁时,会放出能量为hν的光子,hν的大小由前后两个能级的能量差决定:hν=E n-E m,这个规律叫做频率条件;同样,电子从低能级向高能级跃迁时,需要吸收的光子的能量也由频率条件决定,若光子的能量不符合任意两能级的能量差值,电子不会吸收该光子.图6是氢原子的能级图,电子从n=3跃迁至n=1能级;③光子种类:大量电子从第n激发态向基态跃迁时,辐射出的光子种类为(1)2n nk-=种,即跃迁过程中会辐射k种频率的光.④电离:以氢原子为例,使电子彻底脱离原子核束缚的过程称为电离,恰好使电子脱离原子核所需要的能量称为电离能,电子处于不同能级所需要的电离能不相同,即E电=-E n三、考查方向题型1:光电效应的图像分析典例一:(2019高考理综天津卷)如图为a、b、c三种光在同一光电效应装置中测的光电流和电压的关系。
高中物理《原子结构》知识梳理

用心 爱心 专心 1 高中物理《原子结构》知识梳理【电子的发现】1897年汤姆生发现电子,提出原子的枣糕模型,揭开了研究原子结构的序幕。
【原子的核式结构模型】1.1909年起英国物理学家卢瑟福做了α粒子轰击金箔的实验,即α粒子散射实验2.卢瑟福在1911年提出原子的核式结构学说【氢原子的光谱】1.光谱的种类:发射光谱:物质发光直接产生的光谱。
炽热的固体、液体及高温高压气体发光产生连续光谱;稀薄气体发光产生线状谱,不同元素的线状谱线不同,又称特征谱线。
吸收光谱:连续谱线中某些频率的光被稀薄气体吸收后产生的光谱,元素能发射出何种频率的光,就相应能吸收何种频率的光,因此吸收光谱也可作元素的特征谱线。
2.氢原子的光谱是线状的(这些亮线称为原子的特征谱线),即辐射波长是分立的。
3.基尔霍夫开创了光谱分析的方法:利用元素的特征谱线(线状谱或吸收光谱)鉴别物质的分析方法。
【波尔的原子模型】1.卢瑟福的原子核式结构学说跟经典的电磁理论发生矛盾2.玻尔理论的假设:原子只能处于一系列不连续的能量状态中,在这些状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量,这些状态叫做定态。
氢原子的各个定态的能量值,叫做它的能级。
原子处于最低能级时电子在离核最近的轨道上运动,这种定态叫做基态..;原子处于较高能级时电子在离核较远的轨道上运动的这些定态叫做激发态。
原子从一种定态(设能量为E n )跃迁到另一种定态(设能量为E m )时,它辐射(或吸收)一定频率的光子,光子的能量由这两种定态的能量差决定,即末初E E h -=γ 原子的不同能量状态跟电子沿不同的圆形轨道绕核运动相对应。
3.玻尔计算公式:r n =n 2 r 1 , E n = E1/n 2 (n=1,2,3¼¼)r 1 =0.53´10-10m , E 1 = -13.6eV ,4.玻尔模型的成功之处在于它引入了量子概念(提出了能级和跃迁的概念,能解释气体导电时发光的机理、氢原子的线状谱),局限之处在于它过多地保留了经典理论(经典粒子、轨道等),无法解释复杂原子的光谱。
原子的核式结构模型定稿

电荷数 Z =质子数=原子序数
质量数 A =核子数
=质子数+中子数
1 1
H
X 元素符号表示: A Z
同位素:
质子数相同而中子数不同的原
2 1
H
子,叫同位素。其原子的核外电
子都相同,因而化学性质相同,
但物理性质不同。
3 1
H
课堂小结:
粒子散射实验现象及卢瑟福提出原子的核式结构模型:
原子的核式结构
十八章 原子结构
新课标高中物理选修3-5
原子复杂结构的发现过程
原子 (中性) 电子(一) 正电荷? 设想?
汤姆生 质是由不可分割的 微粒(叫原子)组 成。
2、100多年前
化学反应中原子的种类和数目 不变,化学上倍比定律的发现 等证实了物质的原子性结构, 认为原子是不可再分的、物质 是由原子组成的。
第四条现象可看出,α粒子在原子中碰到了比他质量 大的多的东西
在原子中心有一个很小的核,叫原子核. 原子的全部正电荷和几乎全部质量都集中在原子核里. 带负电的电子在核外空间绕着核旋转. 原子的核式结构的提出
三. 原子的核式结构的提出
α粒子穿过原子时,电子对α粒子运动的影响很小, 影响α粒子运动的主要是带正电的原子核。 而绝大多数的α粒子穿过原子时离核较远,受到的 库仑斥力很小,运动方向几乎没有改变,只有极少 数α粒子可能与核十分接近,受到较大的库仑斥力, 才会发生大角度的偏转 。
杰出贡献:1897年发现电子(荣获1906年诺贝尔物理奖)
汤姆生
一、汤姆孙的原子模型
汤姆孙认为:原子是一个球体;正电荷均匀 分布在整个球内,而电子都象布丁中的葡萄干 那样镶嵌在内。
“枣糕模型”
正电荷
高中物理选修3-5第十八章第59讲 原子的核式结构模型 氢原子光谱 原子能级

第59讲原子的核式结构模型氢原子光谱原子能级考情剖析(注:①考纲要求及变化中Ⅰ代表了解和认识,Ⅱ代表理解和应用;②命题难度中的A 代表容易,B代表中等,C代表难)知识 整合知识网络基础自测一、原子结构 1.电子的发现英国物理学家____________________发现了电子. 2.α粒子散射实验1909~1911年,英国物理学家____________和他的助手进行了用α粒子轰击金箔的实验,实验发现绝大多数α粒子穿过金箔后基本上仍沿______________方向前进,但有少数α粒子发生了大角度偏转,偏转的角度甚至大于______________,也就是说它们几乎被“撞”了回来.3.原子的核式结构模型在原子中心有一个很小的核,原子全部的__________________和几乎全部__________________都集中在核里,带负电的电子在核外空间绕核旋转.4.三种原子模型的对比二、氢原子光谱与玻尔理论1.光谱(1)光谱用光栅或棱镜可以把光按波长展开,获得光的____________________(频率)和强度分布的记录,即光谱.(2)光谱分类有些光谱是一条条的____________,这样的光谱叫做线状谱.有的光谱是连在一起的____________,这样的光谱叫做连续谱.(3)氢原子光谱的实验规律巴耳末线系是氢原子光谱在可见光区的谱线,其波长公式1λ=________________________,(n=3,4,5,…),R是里德伯常量,R=1.10×107m-1,n为量子数.2.玻尔理论(1)定态原子只能处于一系列____________的能量状态中,在这些能量状态中原子是__________________的,电子虽然绕核运动,但并不向外辐射能量.(2)跃迁原子从一种定态跃迁到另一种定态时,它辐射或吸收一定频率的光子,光子的能量由这两个定态的能量差决定,即hν=__________________.(h是普朗克常量,h=6.63×10-34 J·s)(3)轨道原子的不同能量状态跟电子在不同的圆周轨道绕核运动相对应.原子的定态是________________,因此电子的可能轨道也是________________________________________________________________________.3.玻尔模型的局限性玻尔模型的成功之处在于引入了量子化观点,其不足之处在于保留了轨道的观念.量子力学中,核外电子并没有确定的轨道,玻尔的电子轨道,只不过是电子出现____________的地方,把电子的概率分布用图象表示时,用小黑点的稠密程度代表概率的大小,其结果如同电子在原子核周围形成云雾,称为“电子云”.三、氢原子的能级、能级公式1.氢原子的能级和轨道半径(1)氢原子的能级公式:E n=__________(n=1,2,3,…),其中E1为基态能量,其数值为E1=__________.(2)氢原子的半径公式:r n=____________________(n=1,2,3,…),其中r1为基态半径,又称玻尔半径,其数值为r1=0.53×10-10 m.2.氢原子的能级图能级图如图所示.重点阐述重点知识概述能级图中相关量意义的说明难点释疑1.氢原子跃迁时电子动能、电势能与原子能量的变化(1)原子能量:E n =E kn +E pn =E 1n2,随n 增大而增大,其中E 1=-13.6 eV.(2)电子动能:电子绕氢原子核运动时静电力提供向心力,即k e 2r 2=m v 2r ,所以E k n =ke 22r n,随r 增大而减小.(3)电势能通过库仑力做功判断电势能的增减. 当轨道半径减小时,库仑力做正功,电势能减小;反之,轨道半径增大时,电势能增加. 2.关于光谱线条数的两点说明(1)一群氢原子跃迁发出可能的光谱线条数为N =C 2n=n (n -1)2. (2)一个氢原子跃迁发出可能的光谱线条数最多为(n -1).【典型例题1】 (1)能量为E i 的光子照射基态氢原子,刚好可使该原子中的电子成为自由电子.这一能量E i 称为氢的电离能.现用一频率为ν的光子从基态氢原子中击出了一电子,该电子在远离核以后速度的大小为____________(用光子频率ν、电子质量m 、氢原子的电离能E i 和普朗克常量h 表示).(2)氢原子在基态时轨道半径r 1=0.53×10-10 m ,能量E 1=-13.6 eV ,求氢原子处于基态时:①电子的动能;②原子的电势能;③用波长是多少的光照射可使其电离?温馨提示(2)由圆周运动规律、能量守恒定律和光电效应方程易解本题.记录空间【变式训练1】如图所示为氢原子最低的四个能级,当氢原子在这些能级间跃迁时:(1)有可能放出多少种能量的光子?(2)在哪两个能级间跃迁时,所放出光子波长最长?波长是多少?【变式训练2】如图所示,氢原子从n>2的某一能级跃迁到n=2的能级,辐射出能量为2.55 eV的光子.问:(1)最少要给基态的氢原子提供多少电子伏特的能量,才能使它辐射出上述能量的光子?(2)请在图中画出获得该能量后的氢原子可能的辐射跃迁图.易错诊所1.光子的发射和吸收(1)能级的跃迁根据玻尔模型,原子只能处于一系列的不连续的能量状态中,这些状态分基态和激发态两种.其中原子在基态时是稳定的,原子在激发态时是不稳定的,当原子处于激发态时会自发地向较低能级跃迁,经过一次或几次跃迁到达基态.【注意】①原子能级跃迁时,处于激发态的原子可能经过一次跃迁回到基态;也可能由较高能级的激发态先跃迁到较低能级的激发态,最后回到基态.一个原子由较高能级回到基态,到底发生了几次跃迁,是不确定的.②物质中含有大量的原子,各个原子的跃迁方式也是不统一的.有的原子可能经过一次跃迁就回到基态.而有的原子可能经过几次跃迁才回到基态.(2)光子的发射原子能级跃迁时以光子的形式放出能量,原子在始末两个能级E m和E n(m>n)间跃迁时发射光子的能量可由下式表示:hν=E m-E n由上式可以看出,能级的能量差越大,放出光子的频率就越高.(3)光子的吸收光子的吸收是光子发射的逆过程,原子在吸收了光子后会从较低能级向较高能级跃迁.两个能级的能量差值仍是一个光子的能量.其关系式仍为hν=E m-E n.【说明】由于原子的能级是一系列不连续的值,则任意两个能级差也是不连续的,故原子只能发射一些特定频率的光子,同样也只能吸收一些特定频率的光子.但是.当光子能量足够大时,如光子能量E≥13.6 eV时,则处于基态的氢原子仍能吸收此光子并发生电离.2.原子能级跃迁问题跃迁是指电子从某一轨道跳到另一轨道,而电子从某一轨道跃迁到另一轨道对应着原子就从一个能量状态(定态)跃迁到另一个能量状态(定态).(1)跃迁时电子动能、原子势能与原子能量的变化.当轨道半径减小时,库仑引力做正功,原子的电势能E p减小,电子动能增大,原子能量减小.反之,轨道半径增大时,原子电势能增大,电子动能减小,原子能量增大.(2)使原子能级跃迁的两种粒子——光子与实物粒子.原子若是吸收光子的能量而被激发,则光子的能量必须等于两能级的能量差,否则不被吸收.不存在激发到n=2时能量有余,而激发到n=3时能量不足,则可激发到n=2的问题.原子还可吸收外来实物粒子(例如自由电子)的能量而被激发,由于实物粒子的动能可全部或部分地被原子吸收,所以只要入射粒子的能量大于或等于两能级的能量差值(E=E m-E n),均可使原子发生能级跃迁.【典型例题2】试计算处于基态的氢原子吸收波长为多少的光子,电子可以跃迁到n =2轨道上.温馨提示大于或小于这个能量均不能发生上述跃迁.记录空间【变式训练3】欲使处于基态的氢原子激发,下列措施可行的是()①用10.2 eV的光子照射;②用11 eV的光子照射;③用14 eV的光子照射;④用动能为11 eV的电子碰撞.A.①②③B.①③④C.②③④D.①②④随堂演练1.在卢瑟福的α粒子散射实验中,有极少数α粒子发生了大角度的偏转,其原因可能是()A.原子的正电荷和绝大部分质量集中在一个很小的核上B.正电荷在原子中是均匀分布的C.原子中存在着带负电的电子D.原子只能处于一系列不连续的能量状态中2.关于玻尔的原子模型理论,下面说法正确的是()A.原子可以处于连续的能量状态中B.原子能量状态不可能是连续的C.原子中的电子在核外轨道上运动时,要向外辐射能量D.原子核外电子在轨道上运动时,不向外辐射能量3.卢瑟福通过α粒子散射实验,判断出原子中心有一个很小的核,并由此提出了原子的核式结构学说.如图所示的平面示意图中①、③两条线表示α粒子运动的轨迹,则沿②所示方向射向原子核的α粒子可能的运动轨迹是()第3题图A.轨迹a B.轨迹bC.轨迹c D.轨迹d4.已知氢原子的基态能量为-13.6eV,用能量为12.3eV的光子去照射一群处于基态的氢原子,受光子照射后,下列关于氢原子跃迁的说法中正确的是()A.原子能跃迁到n=2的轨道上去B.原子能跃迁到n=3的轨道上去C.原子能跃迁到n=4的轨道上去D.原子不能跃迁到其他轨道上去5.(多选)(1)氢原子的核外电子由离原子核较远的轨道跃迁到离核较近的轨道上时,下列说法中正确的是()A.氢原子的能量增加B.氢原子的能量减少C.氢原子要吸收一定频率的光子D.氢原子要放出一定频率的光子(2)在氢原子光谱中,电子从较高能级跃迁到n=2能级发出的谱线属于巴耳末线系,若一群氢原子自发跃迁时发出的谱线中只有2条属于巴耳末线系,则这群氢原子自发跃迁时最多发出__________一条不同频率的谱线.第59讲 原子的核式结构模型氢原子光谱 原子能级知识整合 基础自测一、1.汤姆孙 2.卢瑟福 原来 90° 3.正电荷 质量二、1.(1)波长 (2)亮线 光带 (3)R ⎝⎛⎭⎫122-1n 2 2.(1)不连续 稳定 (2)E m -E n (3)不连续的 不连续的 3.概率最大三、1.(1)1n2E 1 -13.6 eV (2)n 2r 1重点阐述【典型例题1】 (1)能量为E i 的光子照射基态氢原子,刚好可使该原子中的电子成为自由电子.这一能量E i 称为氢的电离能.现用一频率为ν的光子从基态氢原子中击出了一电子,该电子在远离核以后速度的大小为____________(用光子频率ν、电子质量m 、氢原子的电离能E i 和普朗克常量h 表示).(2)氢原子在基态时轨道半径r 1=0.53×10-10 m ,能量E 1=-13.6 eV ,求氢原子处于基态时:①电子的动能; ②原子的电势能;③用波长是多少的光照射可使其电离?【答案】 (1)2(hν-E i )m(2)①13.6eV ②-27.2eV ③9.14×10-8m 【解析】 (1)由能量守恒得12mv 2=h ν-E i ,解得电子速度为v =2(hν-E i )m.(2)①设处于基态的氢原子核外电子速度为v 1,则k e 2r 21=mv 2r 1.所以电子动能E k1=12mv 21ke 22r 1=9×109×(1.6×10-19)22×0.53×10-10×1.6×10-19eV =13.6eV. ②因为E 1=Ek 1+Ep 1,所以Ep 1=E 1-Ek 1=-13.6eV -13.6eV =-27.2eV . ③设用波长为λ的光照射可使氢原子电离:hcλ=0-E 1.所以λ=-hc E 1=-6.63×10-34×3×108-13.6×1.6×10-19m =9.14×10-8m. 【点评】 与能级有关的能量问题的规范求解1.一般解题步骤(1)分析已知量,根据库仑力提供核外电子做圆周运动的向心力列圆周运动动力学方程.(2)根据处于某定态原子的能量等于电子动能与电子电势能之和列方程,求电势能. (3)原子发生能级跃迁时能量与吸收或放出光子(或实物粒子)的能量相等,可列方程求光子的频率或相关物理量.2.对氢原子能级跃迁的进一步理解 (1)原子从低能级向高能级跃迁:吸收一定能量的光子,当一个光子的能量满足hν=E末-E 初时,才能被某一个原子吸收,使原子从低能级E 初向高能级E 末跃迁,而当光子能量hν大于或小于E 末-E 初时都不能被原子吸收.(2)原子从高能级向低能级跃迁,以光子的形式向外辐射能量,所辐射的光子能量恰等于发生跃迁时的两能级间的能量差.(3)当光子能量大于或等于13.6 eV 时,也可以被处于基态的氢原子吸收,使氢原子电离;当处于基态的氢原子吸收的光子能量大于13.6 eV 时,氢原子电离后,电子具有一定的初动能.(4)原子还可以吸收外来实物粒子(例如自由原子)的能量而被激发.由于实物粒子的动能可全部或部分被原子吸收,所以只要入射粒子的能量大于或等于两能级的能量差值(E =E m -E n ),均可使原子发生能级跃迁.(5)跃迁时电子动能、原子势能与原子能量的变化当轨道半径减小时,库仑引力做正功,原子的电势能减小,电子动能增大,原子能量减小.反之,轨道半径增大时,原子电势能增大,电子动能减小,原子能量增大.变式训练1 (1)6种 (2)第4能级向第3能级跃迁 1.88×10-6m【解析】 (1)N =n (n -1)2=4×(4-1)2种=6种.(2)氢原子由第4能级向第3能级跃迁时,能量差最小,辐射的光子波长最长.由hν=E 4-E 3 得:h cλ=E 4-E 3所以λ=hcE 4-E 3= 6.63×10-34×3×108[-0.85-(-1.51)]×1.6×10-19m≈1.88×10-6 m.变式训练2 (1)12.75eV (2)如图所示 【解析】 (1)氢原子从n >2的某一能级跃迁到n =2的能级,辐射光子的频率应满足hν=E n -E 2=2.55eV ,E n =hν+E 2=-0.85eV ,所以n =4,基态氢原子要跃迁到n =4的能级,应提供:ΔE =E 4-E 1=12.75eV .(2)辐射跃迁图如图所示.【典型例题2】 试计算处于基态的氢原子吸收波长为多少的光子,电子可以跃迁到n =2轨道上.【答案】 1.22×10-7m【解析】 氢原子基态对应的能量E 1=-13.6 eV ,电子在n =2的轨道上时,氢原子的能量为E 2=E 122=-3.4 eV ,氢原子核外电子从n =1轨道跃迁到n =2轨道需要的能量:ΔE =E 2-E 1=10.2 eV =1.632×10-18J.由玻尔理论有:hν=ΔE ,又ν=c/λ,所以chλ=ΔE.11 λ=ch ΔE =3×108×6.63×10-341.632×10-18m =1.22×10-7m. 变式训练3 B 【解析】 由原子的跃迁条件知:氢原子在各能级间跃迁时,只有吸收能量值刚好等于某两能级能量之差的光子(即hν=E 初-E 终).由氢原子能级关系不难算出10.2 eV 刚好为氢原子n =1和n =2的两能级能量之差,而11 eV 则不是氢原子基态和任一激发态的能量之差,因而氢原子只能吸收前者被激发,而不能吸收后者.对于14 eV 的光子,其能量大于氢原子的电离能(13.6 eV),足以使氢原子电离——使电子脱离核的束缚而成为自由电子,因而不受氢原子能级间跃迁条件的限制.由能的转化和守恒定律不难知道,氢原子吸收14 eV 的光子电离后产生的自由电子还应具有0.4 eV 的动能.另外,用电子去碰撞氢原子时,入射电子的动能可全部或部分地被氢原子吸收,所以只要入射电子的动能大于或等于基态和某个激发态能量之差,也可使氢原子激发,由以上分析知选项B 正确.随堂演练1.A 【解析】 卢瑟福根据α粒子散射实验提出核式结构模型:在原子的中心有一很小的核,原子的全部正电荷和几乎全部的质量都集中在原子核上,带负电的电子在核外空间里绕核高速旋转.本题答案为选项A.2.BD 【解析】 根据玻尔模型中能级的量子化可知,A 错,B 正确;而原子核外电子处于不同能级时,电子虽然加速运动,但不向外辐射能量,C 错,D 正确.3.A 【解析】 α粒子的运动轨迹夹在速度与合力的方向之间并向合力的一侧偏转,沿②所示方向的α粒子所受原子核的作用力的合力方向向下,故轨迹为a ,即A 正确.4.D 【解析】 由E =13.6n 2 eV 可知: E 1=-13.6 eV, E 2=-3.4 eVE 3=-1.51 eV, E 4=-0.85 eV则:E 2-E 1=10.2 eV<12.3 eVE 3-E 1=12.09 eV<12.3 eVE 4-E 1=12.75 eV>12.3 eV所以处于基态的氢原子不可能吸收该光子,因而氢原子不能跃迁到其他轨道上去.正确答案为选项D.5.(1)BD (2)6【解析】 (1)氢原子的核外电子离原子核越远,氢原子的能量(包括动能和势能)越大.当氢原子的核外电子由离原子核较远的轨道跃迁到离核较近的轨道上时,原子的能量减少,氢原子要放出一定频率的光子.显然,选项B 、D 正确.(2)氢原子发出的光谱线中有2条属于巴耳末线系,说明电子是从n =4能级向低能级跃迁的,因此可发出的谱线条数为n =C 24=6(条).。
原子的核式结构模型

原子的核式结构模型一、背景在深入研究原子的内部结构后,科学家们得出了一种关于原子构造的理论,即核式结构模型。
这个模型揭示了原子中心的秘密,为我们打开了理解物质世界的新视角。
二、核式结构模型的提出19世纪末,卢瑟福通过α粒子散射实验,发现原子中心有一个密集的原子核,其体积仅占据原子体积的几千分之一。
同时,他发现原子核周围环绕着电子,这些电子沿着轨道运动,就像行星围绕太阳运动一样。
这一发现,彻底改变了我们对原子的理解。
三、核式结构模型的内容核式结构模型的主要内容是:原子由一个位于中心的原子核和核外电子组成,电子在特定轨道上运动,并受到原子核的吸引。
原子核由质子和中子组成,其质量约占原子质量的99.9%,而电子的质量几乎可以忽略不计。
因此,原子的大部分体积是由原子核占据的。
四、核式结构模型的意义核式结构模型的提出,为我们理解原子的性质和行为提供了基础。
它解释了为什么原子在化学反应中会形成稳定的化合物,为什么元素之间会有不同的化学亲和力等等。
这一模型成为了现代化学的基础,为我们的科技发展提供了重要的理论基础。
五、结论总的来说,原子的核式结构模型是科学史上的一个重大突破,它为我们打开了理解物质世界的新视角。
然而,随着科技的发展,我们还需要更深入的研究和探索,以揭示原子内部的更多秘密。
让我们期待更多的科学发现,以更好地理解这个美丽的物质世界。
原子的核式结构模型一、背景在深入研究原子的内部结构后,科学家们得出了一种关于原子构造的理论,即核式结构模型。
这个模型揭示了原子中心的秘密,为我们打开了理解物质世界的新视角。
二、核式结构模型的提出19世纪末,卢瑟福通过α粒子散射实验,发现原子中心有一个密集的原子核,其体积仅占据原子体积的几千分之一。
同时,他发现原子核周围环绕着电子,这些电子沿着轨道运动,就像行星围绕太阳运动一样。
这一发现,彻底改变了我们对原子的理解。
三、核式结构模型的内容核式结构模型的主要内容是:原子由一个位于中心的原子核和核外电子组成,电子在特定轨道上运动,并受到原子核的吸引。
原子的核式结构模型学习教材PPT课件

阴极射线应用
电子示波器中的示波管、电视的显像管、电子显微 镜等都是利用阴极射线在电磁场作用下偏转、聚焦 以及能使被照射的某些物质,如硫化锌发荧光的性 质工作的.高速的阴极射线打在某些金属靶极上能 产生X射线,可用于研究物质的晶体结构。阴极射 线还可直接用于切割、熔化、焊接等。
在19世纪末年,物理学有三项重大的实验发现,这就 是X射线、放射性和电子。电子的发现具有更伟大的 意义,因为这一事件使人们认识到自然界还有比原子 更小的实物。电子的发现打开了通向原子物理学的大 门 ,人们开始研究原子的结构 .
1856-1940英国剑桥大学 实验物理学家
电子的发现~~汤姆孙
1. 测阴极射线的电荷 2. 使阴极射线在静电场中偏转。 3. 测阴极射线的荷质比。从以上两实验, 汤姆生 已可明确无误地证明阴极射线是由某种带负电的微 粒组成。这种微粒是什么,汤姆生进一步对阴极射 线的荷质比进行了大量的测量。最后得到阴极射线 微粒的质荷比为10-11千克/库仑, 比氢离子的质荷 比10-8千克/库仑小千倍。
• 教学重点: • (1)引导学生自主思考讨论在于对粒子散射实验的结果 分析从而否定葡萄干布丁模型,得出原子的核式结构; • (2)在教学中渗透和让学生体会物理学研究方法,渗透 三个物理学方法:模型方法,黑箱方法和微观粒子的碰撞 方法。 • 教学难点: • 引导学生小组自主思考讨论在于对粒子散射实验的结果分 析从而否定葡萄干布丁模型,得出原子的核式结构 • 教学方法: • 教师启发、引导,学生讨论、交流。 • 教学用具: • 投影片,多媒体辅助教学设备。
在原子的中心有一个很小的核,叫做原子核.
原子的全部正电荷和几乎全部质量都集中在原 子核里.
带负电的电子在核外空间绕着核旋转.
原子核的核式结构
新教材鲁科版高中物理选择性必修第三册第4章原子结构知识点考点重点难点提炼汇总
第4章原子结构第1节电子的发现与汤姆孙原子模型...................................................................... - 1 -第2节原子的核式结构模型...................................................................................... - 5 -第3节光谱与氢原子光谱.......................................................................................... - 9 -第4节玻尔原子模型................................................................................................ - 13 - 第1节电子的发现与汤姆孙原子模型一、物质结构的早期探究1.古人对物质的认识(1)我国西周的“五行说”认为万物是由金、木、水、火、土五种基本“元素”组成的.(2)古希腊的亚里士多德认为万物的本质是土、水、火、空气四种“元素”,天体则由第五种“元素”——“以太”构成.(3)古希腊哲学家德谟克利特等人建立了早期的原子论,认为宇宙间存在一种或多种微小的实体,叫作“原子”.2.通过实验了解物质的结构(1)1661年,玻意耳以化学实验为基础建立了科学的元素论.(2)19世纪初,道尔顿提出了原子论,认为原子是元素的最小单位.(3)1811年,意大利化学家阿伏伽德罗提出了分子假说,指出分子可以由多个相同的原子组成.3.19世纪初期形成的分子—原子论认为,在物质的结构中存在着分子、原子这样的层次,宏观物质的化学性质决定于分子,而分子则由原子组成.原子是构成物质的不可再分割的最小颗粒,它既不能创生,也不能消灭.二、电子的发现及汤姆孙模型1.阴极射线:科学家在研究稀薄气体放电时发现,当玻璃管内的气体足够稀薄时,阴极发出一种射线,这种射线能使玻璃管壁发出荧光,这种射线称为阴极射线.2.汤姆孙对阴极射线本质的探究(1)通过实验:巧妙利用静电偏转力和磁场偏转力相抵消等方法,确定了阴极射线粒子的速度,并测量出了粒子的比荷.(2)换用不同材料的阴极和不同的气体,所得粒子的比荷相同,这说明不同物质都能发射这种带电粒子,它是各种物质中共有的成分.3.结论(2)不同物质都能发射这种带电粒子,它是各种物质中共有的成分,比最轻的氢原子的质量还要小得多,汤姆孙将这种带电粒子称为电子.(3)电子的发现说明原子具有一定的结构,即原子是由电子和其他物质组成的.4.电子发现的意义:电子的发现揭开了认识原子结构的序幕.5.19世纪末微观世界三大发现(1)1895年伦琴发现了X射线.(2)X射线发现后不久,贝可勒尔发现了放射性.(3)1897年汤姆孙发现了电子.6.汤姆孙的原子模型原子带正电的部分充斥整个原子,很小很轻的电子镶嵌在球体的某些固定位置,正像葡萄干嵌在面包中那样.阴极射线的研究如图所示,在阴极和阳极之间加上高电压,可看到阴极射线从阴极射线管中的阴极发出,射向阳极.(1)怎样判定阴极射线是不是电磁辐射?(2)根据带电粒子在电、磁场中的运动规律,哪些方法可以判断运动的带电粒子所带电荷的正负?提示:(1)电磁辐射是电磁波的辐射,若使阴极射线通过电场或磁场,看传播方向是否受其影响则可判定是不是电磁辐射.(2)带电粒子垂直进入匀强电场时,正负电荷的偏转方向不同,偏转方向与场强方向相同(相反)的粒子带正(负)电,不带电者不偏转.带电粒子垂直进入匀强磁场时,做匀速圆周运动,所受的洛伦兹力提供向心力,根据左手定则可知其电性.(1)现象:真空玻璃管两极加上高电压,可看到玻璃管壁上发出荧光及管中物体在玻璃壁上的影.(2)命名:德国物理学家戈德斯坦将阴极发出的射线命名为阴极射线.(3)猜想②阴极射线是带电微粒.(4)验证:英国物理学家汤姆孙让阴极射线在电场和磁场中偏转,发现阴极射线带负电并测出了粒子的比荷,进而发现电子.(5)实验:密立根通过“油滴实验”精确测定了电子的电荷量和电子的质量. 2.电子比荷的测定方法(1)让带电粒子通过相互垂直的电场和磁场(如图甲),让其做匀速直线运动,根据二力平衡,即F 洛=F 电(Bqv =qE ),得到粒子的运动速度v =E B.甲 乙(2)撤去电场(如图乙),保留磁场,让粒子单纯地在磁场中运动,由洛伦兹力提供向心力,即Bqv =m v 2r,根据轨迹偏转情况,由几何知识求出其半径r .(3)由以上两式确定粒子的比荷表达式:q m =EB 2r. 【例1】 汤姆孙用来测定电子的比荷(电子的电荷量与质量之比)的实验装置如图所示.真空管内的阴极K 发出的电子(不计初速度、重力和电子间的相互作用)经加速电压加速后,穿过小孔C 沿中心轴O 1O 的方向进入到两块水平正对放置的平行极板P 和P ′间的区域内.当极板间不加偏转电压时,电子束打在荧光屏的中心O 点处,形成了一个亮点;加上偏转电压U 后,亮点偏离到O ′点(O ′点与O 点的竖直间距为d ,水平间距可忽略不计).此时,在P 和P ′间的区域内,再加上一个方向垂直于纸面向里的匀强磁场.调节磁场的强弱,当磁感应强度的大小为B 时,亮点重新回到O 点.已知极板水平方向的长度为l 1,极板间距为b ,极板右端到荧光屏的距离为l 2.(1)求打在荧光屏O 点的电子速度的大小. (2)推导出电子的比荷的表达式.(3)上述实验中,未记录阴极K 与阳极A 之间的加速电压U 0,根据上述实验数据能否推导出U 0的表达式?说明理由.思路点拨:解此题两个关键:(1)电子在电场中做类平抛运动,在电磁场中做匀速直线运动,受到的电场力和洛伦兹力平衡.(2)仔细分析其物理过程写出比荷表达式.[解析] (1)当电子受到的电场力与洛伦兹力平衡时,电子做匀速直线运动,亮点重新回到中心O 点,设电子的速度为v ,则evB =eE ,得v =E B ,又E =U b ,得v =U Bb.(2)当极板间仅有偏转电场时,电子以速度v 进入后,在竖直方向做匀加速运动,加速度a =eU mb, 电子在水平方向做匀速运动,在电场内的运动时间t 1=l 1v, 电子在电场中运动,竖直向上偏转的距离d 1=12at 21=el 21U2mv 2b ,离开电场时竖直向上的分速度v ⊥=at 1=el 1Umvb, 电子离开电场后做匀速直线运动,经t 2时间到达荧光屏,则t 2=l 2v,t 2时间内向上运动的距离d 2=v ⊥t 2=eUl 1l 2mv 2b,电子向上的总偏转距离d =d 1+d 2=eU mv 2b (l 1l 2+l 12) 可解得e m =2UdB 2bl 1l 1+2l 2. (3)能.由动能定理可得eU 0=12mv 2-0,已知v 和em 的表达式,可推导出U 0的表达式.[答案] (1)UBb(2)2Ud B 2bl 1l 1+2l 2(3)见解析分析阴极射线的两点注意(1)阴极射线的本质是高速电子流,在电磁场中运动时,所受电场力与洛伦兹力远大于所受重力,故研究电磁力对电子运动的影响时,一般不考虑重力的影响.(2)应用左手定则时,要注意负电荷运动的方向与它形成的电流方向相反,即应用左手定则时负电荷运动的方向应与四指所指的方向相反.汤姆孙原子结构模型电子是原子的一个组成部分,电子带负电,且质量很小,远小于原子的质量.但原子呈电中性,原子内还有带正电的具有大部分原子质量的部分,这部分物质是什么?与电子是怎么分布在原子中的?提示:原子核;原子核在原子中心,电子绕核旋转.带负电的电子,而原子通常是电中性的,那么原子中一定含有带正电的部分.电子的质量很小,因此,原子的质量主要集中在带正电的部分,原子中带正电的部分和带负电的电子是怎样分布的呢?2.汤姆孙原子模型的特点:汤姆孙认为原子是一个直径约为10-10 m的球体,正电荷均匀分布在整个球体中,带负电的电子镶嵌在其中,就好像面包中嵌着一粒粒葡萄干一样.如图所示为汤姆孙原子模型的示意图.【例2】人们对原子结构的认识有一个不断深化的过程,下列先后顺序中符合史实的是( )①道尔顿提出的原子论②德谟克利特的古典原子论③汤姆孙提出的“葡萄干面包”原子模型A.①②③B.②①③C.③②①D.③①②B[对于探索构成物质的最小微粒,古希腊哲学家德谟克利特建立了早期的原子论,19世纪初,道尔顿提出了原子论,汤姆孙发现电子后,提出了“葡萄干面包”模型,故选项B 正确.]第2节原子的核式结构模型一、α粒子散射实验1.实验目的α粒子通过金箔时,用这些已知的粒子与金属内的原子相互作用,根据粒子的偏转情况来获得原子内部的信息.2.实验方法用由放射源发射的α粒子束轰击金箔,利用荧光屏接收,探测通过金箔后的α粒子偏转情况.3.实验结果绝大多数α粒子穿过金箔后仍沿原来的方向前进,但是有少数α粒子发生了较大的偏转,有极少数α粒子偏转角超过了90°,有的甚至被原路弹回,α粒子被反射回来的概率竟然有18 000.二、卢瑟福原子结构模型1.核式结构模型(1)原子的内部有一个很小的核,叫原子核,原子的全部正电荷和几乎全部质量都集中在原子核内,带负电的电子在核外绕核运动.(2)原子的核式结构模型又被称为行星模型.2.原子的大小(1)原子直径数量级:10-10 m.(2)原子核直径数量级:10-15 m.α粒子散射实验分析(1)如图所示为α粒子散射的实验装置.实验过程中,α粒子为什么会发生大角度散射?(2)由α粒子散射实验的结果为何可以说明原子核尺度很小,但几乎占有全部质量?提示:(1)α粒子受到原子核的库仑力.(2)绝大多数α粒子穿过金箔后仍沿原来方向前进,说明带正电荷部分很小,少数α粒子被“撞了回来”说明遇到了质量很大的部分.的目的是想验证汤姆孙原子模型的正确性,实验结果却成了否定汤姆孙原子模型的有力证据.在此基础上,卢瑟福提出了原子核式结构模型.2.否定汤姆孙的原子结构模型(1)质量远小于原子的电子,对α粒子的运动影响完全可以忽略,不应该发生大角度偏转.(2)α粒子在穿过原子时,受到各方向正电荷的斥力基本上会相互平衡,对α粒子运动方向的影响不会很大,也不应该发生大角度偏转.(3)α粒子的大角度偏转,否定汤姆孙的原子结构模型.3.大角度偏转的实验现象分析(1)由于电子质量远小于α粒子质量,所以电子不可能使α粒子发生大角度偏转.(2)使α粒子发生大角度偏转的只能是原子中带正电的部分.按照汤姆孙原子模型,正电荷在原子内是均匀分布的,α粒子穿过原子时,它受到的两侧斥力大部分抵消,因而也不可能使α粒子发生大角度偏转,更不能使α粒子反向弹回,这与α粒子散射实验相矛盾.(3)实验现象表明原子绝大部分是空的,原子的几乎全部质量和所有正电荷都集中在原子中心的一个很小的核上,否则,α粒子大角度散射是不可能的.【例1】如图所示为卢瑟福α粒子散射实验装置的示意图,图中的显微镜可在圆周轨道上转动,通过显微镜前相连的荧光屏可观察α粒子在各个角度的散射情况.下列说法中正确的是( )A.在图中的A、B两位置分别进行观察,相同时间内观察到屏上的闪光次数一样多B.在图中的B位置进行观察,屏上观察不到任何闪光C.卢瑟福选用不同金属箔片作为α粒子散射的靶,观察到的实验结果基本相似D.α粒子发生散射的主要原因是α粒子撞击到金原子核后产生反弹C[α粒子散射实验现象:绝大多数α粒子沿原方向前进,少数α粒子有大角度散射.所以A处观察到的α粒子多,B处观察到的α粒子少,所以选项A、B错误;α粒子发生散射的主要原因是受到金原子核库仑斥力的作用,所以选项D错误,C正确.]解决α粒子散射实验问题的技巧(1)熟记实验装置及原理.(2)核外电子不会使α粒子的速度发生明显改变.(3)汤姆孙的原子模型不能解释α粒子的大角度散射.(4)少数α粒子发生了大角度偏转,甚至反弹回来,表明这些α粒子在原子中的某个地方受到了质量、电荷量均比它本身大得多的物体的作用.(5)绝大多数α粒子在穿过厚厚的金原子层时运动方向没有明显变化,说明原子中绝大部分是空的,原子的质量、电荷量都集中在体积很小的核内.卢瑟福原子结构模型汤姆孙发现电子后建立了“葡萄干面包”模型,卢瑟福根据α粒子散射实验推翻了“葡萄干面包”模型,建立了核式结构模型.(1)卢瑟福的核式结构模型是最科学的吗?(2)如何理解原子内绝大部分是空的?提示:(1)卢瑟福的核式结构模型是比汤姆孙的“葡萄干面包”模型更科学的模型,但不是最科学的模型,随着人们认识水平的不断提高,原子结构模型也在不断更新.(2)原子核的半径数量级为10-15 m,原子的半径数量级为10-10 m,原子核的体积只相当于原子体积的10-5,故原子内部绝大部分是空的.汤姆孙原子模型卢瑟福原子模型卢瑟福的原子模型有些像太阳系,电子绕核运动就像太阳系的行星绕太阳运动一样,因此,卢瑟福的核式结构模型又被称为行星模型.2.两种原子模型的对比汤姆孙的葡萄干面包模型卢瑟福的原子核式模型分布情况正电荷和质量均匀分布,负电荷镶嵌在其中正电荷以及几乎全部质量集中在原子中心的一个极小核内,电子质量很小,分布在很大空间内受力情况α粒子在原子内部时,受到的库仑斥力相互抵消,几乎为零少数靠近原子核的α粒子受到的库仑力大,而大多数离核较远的α粒子受到的库仑力较小偏转情况不会发生大角度偏转,更不会弹回绝大多数α粒子运动方向不变,少数α粒子发生大角度偏转,极少数α粒子偏转角度超过90°,有的甚至被弹回分析结论不符合α粒子散射现象符合α粒子散射现象(1)原子内的电荷关系:原子核的电荷数与核外的电子数相等,非常接近它们的原子序数.(2)原子核的组成:原子核由质子和中子组成,原子核的电荷数等于原子核的质子数.(3)原子半径的数量级是10-10m ,原子核半径的数量级是10-15m ,两者相差十万倍之多.【例2】 (多选)根据α粒子散射实验,卢瑟福提出了原子的核式结构模型.如图所示为原子核式结构模型的α粒子散射图景,图中实线表示α粒子运动轨迹.其中一个α粒子在从a 运动到b ,再运动到c 的过程中,α粒子在b 点时距原子核最近.下列说法正确的是( )A .卢瑟福在α粒子散射实验中发现了电子B .α粒子出现较大角度偏转的原因是α粒子运动到b 时受到的库仑斥力较大C .α粒子从a 到c 的运动过程中电势能先减小后变大D .α粒子从a 到c 的运动过程中加速度先变大后变小BD [汤姆孙对阴极射线的探究使他发现了电子,A 错;α粒子出现较大角度偏转的原因是靠近原子核时受到较大的库仑斥力作用,B 对;α粒子从a 到c 受到的库仑力先增大后减小,加速度先变大后变小,电势能先增大后减小,C 错,D 对.]分析α粒子散射实验中的力电问题常用的规律(1)库仑定律:F =kq 1q 2r 2,用来分析α粒子和原子核间的相互作用力. (2)牛顿第二定律:该实验中α粒子只受库仑力,可根据库仑力的变化分析加速度的变化.(3)功能关系:根据库仑力做功,可分析动能的变化,也能分析电势能的变化. (4)原子核带正电,其周围的电场相当于正点电荷的电场,注意应用其电场线和等势面的特点.第3节 光谱与氢原子光谱一、光谱 1.定义用光栅或棱镜可以把各种颜色的光按波长展开,获得光的波长(频率)和强度分布的记录,即光谱.2.分类(1)线状谱:由一条条的亮线组成的光谱. (2)连续谱:由连在一起的光带组成的光谱. 3.特征谱线各种原子的发射光谱都是线状谱,且不同原子的亮线位置不同,故这些亮线称为原子的特征谱线.4.光谱分析(1)定义:利用原子的特征谱线来鉴别物质和确定物质的组成成分. (2)优点:灵敏度高. 二、氢原子光谱 1.气体发光原理(1)气体放电:玻璃管中稀薄气体在强电场的作用下会电离,形成自由移动的正负电荷,于是气体变成导体,导电时会发光.(2)氢光谱:从氢气放电管可以获得氢原子光谱. 2.巴耳末公式(1)公式:1λ=R ⎝ ⎛⎭⎪⎫122-1n 2(n =3,4,5…).(2)意义:巴耳末公式以简洁的形式反映了氢原子的线状光谱,即辐射波长的分立特征.光谱和光谱分析早在17世纪,牛顿就发现了白光通过三棱镜后的色散现象,并把实验中得到的彩色光带叫作光谱,如图所示.研究光谱有哪方面的意义?提示:光是由原子内部电子的运动产生的,因此光谱研究是探索原子结构的重要途径.2.太阳光谱(1)太阳光谱的特点:在连续谱的背景上出现一些不连续的暗线,是一种吸收光谱.(2)对太阳光谱的解释:阳光中含有各种颜色的光,但当阳光透过太阳的高层大气射向地球时,太阳高层大气中含有的元素会吸收它自己特征谱线的光,然后再向四面八方发射出去,到达地球的这些谱线看起来就暗了,这就形成了连续谱背景下的暗线.3.光谱分析这种方法的优点是非常灵敏而且迅速.某种元素在物质中的含量达10-10克,就可以从光谱中发现它的特征谱线将其检查出来.光谱分析在科学技术中有广泛的应用:(1)检查物质的纯度.(2)鉴别和发现元素.(3)天文学上光谱的红移表明恒星的远离等.【例1】(多选)下列关于光谱和光谱分析的说法中,正确的是( )A.太阳光谱和白炽灯光谱都是线状谱B.煤气灯火焰中燃烧的钠蒸气或霓虹灯产生的光谱都是线状谱C.进行光谱分析时,可以用线状谱,不能用连续光谱D.我们能通过光谱分析鉴别月球的物质成分BC[太阳光谱中的暗线是太阳发出的连续光谱经过太阳大气层时产生的吸收光谱,正是太阳发出的光谱被太阳大气层中存在的对应元素吸收所致,白炽灯发出的是连续光谱,A错误;月球本身不会发光,靠反射太阳光才能使我们看到它,所以不能通过光谱分析鉴别月球的物质成分,D错误;光谱分析只能是线状谱和吸收光谱,连续光谱是不能用来做光谱分析的,C 正确;煤气灯火焰中燃烧的钠蒸气或霓虹灯都是稀薄气体发出的光,产生的光谱都是线状谱,B 正确.]光谱分析可以使用发射光谱中的线状谱,也可以使用吸收光谱,因它们都有原子自身的特征谱线,但不能使用连续光谱.氢原子光谱(1)巴耳末是依据核式结构理论总结出巴耳末公式的吗?(2)根据巴耳末公式可知氢原子发光的波长是分立值,它是人为规定的吗?提示:(1)不是.巴耳末公式是由当时已知的可见光中的部分谱线总结出来的,不是依据核式结构理论总结出来的.(2)不是.巴耳末公式准确反映了氢原子发光的实际波长,其波长的分立值并不是人为规定的.1.氢原子的光谱从氢气放电管可以获得氢原子光谱,如图所示.2.氢原子光谱的特点在氢原子光谱图中的可见光区内,由右向左,相邻谱线间的距离越来越小,表现出明显的规律性.3.巴耳末公式(1)巴耳末对氢原子光谱的谱线进行研究得到了下面的公式:1λ=R ⎝ ⎛⎭⎪⎫122-1n 2,n =3,4,5…该公式称为巴耳末公式.(2)公式中只能取n ≥3的整数,不能连续取值,波长是分立的值. 4.其他谱线除了巴耳末系,氢原子光谱在红外和紫外光区的其他谱线,也都满足与巴耳末公式类似的关系式.【例2】 根据巴耳末公式,指出氢原子光谱巴耳末线系的最长波长和最短波长所对应的n ,并计算其波长.[解析] 对应的n 越小,波长越长,故当n =3时,氢原子发光所对应的波长最长. 当n =3时,1λ1=1.10×107×⎝ ⎛⎭⎪⎫122-132m -1 解得λ1=6.55×10-7m .当n =∞时,波长最短,1λ=R ⎝ ⎛⎭⎪⎫122-1n 2=R ×14,λ=4R =41.1×107 m =3.64×10-7m .[答案] 当n =3时,波长最长为6.55×10-7m 当n =∞时,波长最短为3.64×10-7m巴耳末公式的应用方法及注意问题(1)巴耳末公式反映氢原子发光的规律特征,不能描述其他原子. (2)公式中n 只能取整数,不能连续取值,因此波长也是分立的值.(3)公式是在对可见光区的四条谱线分析时总结出的,在紫外区的谱线也适用. (4)应用时熟记公式,当n 取不同值时求出一一对应的波长λ.第4节 玻尔原子模型一、玻尔原子模型 1.玻尔原子模型(1)原子中的电子在库仑力的作用下,绕原子核做圆周运动. (2)电子绕核运动的轨道是量子化的.(3)电子在这些轨道上绕核的转动是稳定的,且不产生电磁辐射. 2.定态当电子在不同轨道上运动时,原子处于不同的状态,原子在不同的状态中具有不同的能量,即原子的能量是量子化的,这些量子化的能量值叫作能级,原子具有确定能量的稳定状态,称为定态.能量最低的状态叫作基态,其他的能量状态叫作激发态.3.跃迁当电子从能量较高的定态轨道(其能量记为E m )跃迁到能量较低的定态轨道(其能量记为E n ,m >n )时,会辐射能量为hν的光子,该光子的能量hν=E m -E n ,这个式子被称为频率条件,又称辐射条件.二、氢原子的能级结构1.能级:按照玻尔的原子理论,原子只能处于一系列不连续的能量状态.在每个状态中,原子的能量值都是确定的,各个确定的能量值叫作能级.2.氢原子在不同能级上的能量和相应的电子轨道半径为E n =E 1n2(n =1,2,3…);r n =n 2r 1(n =1,2,3…),式中E 1≈-13.6 eV ,r 1=0.53×10-10m .3.氢原子的能级结构图三、玻尔理论对氢光谱的解释、玻尔理论的局限性 1.玻尔理论对氢光谱的解释 (1)解释巴耳末公式①按照玻尔理论,从高能级跃迁到低能级时辐射的光子的能量为hν=E m -E n . ②巴耳末公式中的正整数n 和2正好代表能级跃迁之前和之后所处的定态轨道的量子数n 和2.并且理论上的计算和实验测量的里德伯常量符合得很好.(2)解释氢原子光谱的不连续性原子从较高能级向低能级跃迁时,辐射光子的能量等于前后两个能级差,由于原子的能级是分立的,所以放出的光子的能量也是分立的,因此原子的发射光谱只有一些分立的亮线.2.玻尔理论的局限性 (1)成功之处玻尔理论第一次将量子观念引入原子领域,提出了定态和跃迁的概念,成功解释了氢原子光谱的实验规律.(2)局限性保留了经典粒子的观念,把电子的运动仍然看作经典力学描述下的轨道运动. (3)电子云原子中的电子没有确定的坐标值,我们只能描述电子在某个位置出现概率的多少,把电子这种概率分布用疏密不同的点表示时,这种图像就像云雾一样分布在原子核周围,故称电子云.对玻尔原子模型的理解如图所示为分立轨道示意图.分立轨道示意图(1)电子的轨道有什么特点?(2)氢原子只有一个电子,电子在这些轨道间跃迁时伴随什么现象发生?提示:(1)电子的轨道是不连续的,是量子化的.(2)电子在轨道间跃迁时会吸收光子或放出光子.(1)轨道半径只能是一些不连续的、某些分立的数值.(2)轨道半径公式:r n =n 2r 1,式中n 称为量子数,对应不同的轨道,只能取正整数.氢原子的最小轨道半径r 1=0.53×10-10m .2.能量量子化(1)与轨道量子化对应的能量不连续的现象.(2)其能级公式:E n =E 1n2,式中n 称为量子数,对应不同的轨道,n 取值不同,基态取n =1,激发态n =2,3,4…;量子数n 越大,表示能级越高.对氢原子,以无穷远处为势能零点时,基态能量E 1=-13.6 eV .3.跃迁原子从一种定态(设能量为E m )跃迁到另一种定态(设能量为E n )时,它辐射(或吸收)一定频率的光子,光子的能量由这两种定态的能量差决定:所以,电子如果从一个轨道到另一个轨道,不是以螺旋线的形状改变其半径大小的,而是从一个轨道上“跳跃”到另一个轨道上,玻尔将这种现象称为跃迁.【例1】 氢原子辐射出一个光子后,根据玻尔理论,下述说法正确的是( )。
物理选修3-5人教版 18.2原子的核式结构模型 (共12张PPT)(1)(完美版下载)
D. 说明原子的电子只能在某些不连续的轨道上运动
3. 当 α 粒子被重核散射时,如图所示的运动轨迹哪
些是不可能存在的 ( BC )
原子和原子核 D
核
C
B
A
每个人都有潜在的能量,只是很容易被习惯所掩盖,被时间所迷离,被惰性所消磨。把命运寄托在自己身上,这是这个世界上最美妙的心思。为此努力,拼搏,不舍 满了魔鬼,学会控制他。如果你还认为自己还年轻,还可以蹉跎岁月的话,你终将一事无成,老来叹息。在实现理想的路途中,必须排除一切干扰,特别是要看清那 气,免百日之忧信心、毅力、勇气三者具备,则天下没有做不成的事改变自己是自救,影响别人是救人。当你感到无助的时候,还有一种坚实的力量可以依靠,那就 想未来是妄想,最好把握当下时刻。幸福不在得到多,而在计较少。改变别人,不如先改变自己。一个人能走多远,要看他有谁同行;一个人有多优秀,要看他有谁 要看他有谁相伴。同样的一瓶饮料,便利店里2块钱,五星饭店里60块,很多的时候,一个人的价值取决于所在的位置。忙碌是一种幸福,让我们没时间体会痛苦; 实地感受生活;疲惫是一种享受,让我们无暇空虚。10、我是世界上独一无二的,我一定会成功!成功者往往有个计划,而失败者往往有个托辞。成功者会说:“我 说:那不是我的事。成功三个条件:机会;自己渴望改变并非常努力;贵人相助亿万财富买不到一个好的观念;好的观念却能让你赚到亿万财富。一个讯息从地球这 秒,而一个观念从脑外传到脑里却需要一年,三年甚至十年。要改变命运,先改变观念。人生的成败往往就在于一念之差。鸟无翅膀不能飞,人无志气不成功。成功 个人不成功是因为两个字——恐惧。一个会向别人学习的人就是一个要成功的人。人要是惧怕痛苦,惧怕种种疾病,惧怕不测的事情,惧怕生命的危险和死亡,他就 的完善是本,财富的确立是末。傲不可长,欲不可纵,乐不可极,志不可满。在人之上,要把人当人;在人之下,要把自己当人。锲而舍之,朽木不折;锲而不舍, 至也,不精不诚,不能动人。我觉得坦途在前,人又何必因为一点小障碍而不走路呢?对时间的慷慨,成功不是将来才有的,而是从决定去做的那一刻起,持续累积 约,而败于奢靡。企业家收获着梦想,又在播种着希望;原来一切辉煌只代表过去,未来永远空白。一个最困苦、最卑贱、最为命运所屈辱的人,只要还抱有希望, 为何一生匍匐前进,形如蝼蚁世界上只有想不通的人,没有走不通的路。世上那有什么成功,那只是努力的另一个代名词罢了。所谓英雄,其实是指那些无论在什么 人。微笑不用本钱,但能创造财富。赞美不用花钱,但能产生气力。分享不用过度,但能倍增快乐。微笑向阳,无畏悲伤。我们不知道的事情并不等于没发生,我们 存在。我们渴望成功,首先要志在成功。我要让未来的自己为现在的自己感动。想哭就哭,想笑就笑,不要因为世界虚伪,你也变得虚伪了。小鸟眷恋春天,因为它 笑对人生,能穿透迷雾;笑对人生,能坚持到底;笑对人生,能化解危机;笑对人生,能照亮黑暗。学在苦中求,艺在勤中练。不怕学问浅,就怕志气短。一个细节 都缘于一个梦想和毫无根据的自信。永远不要嘲笑你的教师无知或者单调,因为有一天当你发现你用瞌睡来嘲弄教师实际上很愚蠢时,你在社会上已经碰了很多钉子 胜过多言;坦率胜过伪装,自然胜过狡辩;心静何来多梦,苦索不如随缘。有一种落差是,你配不上自己的野心,也辜负了所受的苦难。最可怕的不是有人比你优秀 你更努力。最有希望的成功者,并不是才干出众的人而是那些最善利用每一时机去发掘开拓的人。昨天如影——记住你昨天的挫折和失败的教训;今天如画快乐和幸 绘;明天如梦——珍惜今天,选择好自己的目标,努力地为自己的明天去寻求和拼搏。不曾扬帆,何以至远方。不论你在什么时候开始,重要的是开始之后就不要轻 种,再肥的沃土也长不出庄稼,不去奋斗,不去创造,再美的青春也结不出硕果。不要盘算太多,要顺其自然。该是你的终会得到。成大事不在于力量多少,而在能 者最重要的条件,就是每天精力充沛的努力工作,不虚掷光阴。从未跌倒算不得光彩,每次跌倒后能再战起来才是最大的荣耀。脆弱的心灵创伤太多,追求才是愈合 经历的太少,所以总是把一些琐碎的小事看得很重。当你知道你不在是你的时候,你才是真正的你!漫无目的的生活就像出海航行而没有指南针。人生多一份感恩, 言都收起来,所有的呐喊都咽下去。成功六机握机当你握着两手沙子时,一定就拿不到地上那颗珍珠了。快乐在满足中求,烦恼多从欲中来。人若有志,万事可为。 就是要集中你所有的智慧,所有的热诚,把今天的事情做得尽善尽美。在茫茫沙漠,唯有前进时的脚步才是希望的象征。在我们了解什么是生命之前,我们已将它消 是有钱人的世界,也不是有权人的世界,它是有心人的世界。这个世界上任何奇迹的产生都是经过千辛万苦的努力而得的,首先承认自己的平凡,然后用千百倍的努 者,其厉害之处不在于能指挥多少君子,而在于能驾驭多少小人。追逐着鹿的猎人看不到脚下的高山。
高中物理选修3-5原子的核式结构模型ppt课件
达到1800
思考:
① 1微米厚的金箔内含3000层原子 层,绝大多数α粒子穿过金箔仍 沿原方向前进说明什么?
② 少数α粒子的大角度偏转甚至反 弹是怎么造成的?
(3)卢瑟福的核式结构模型
原子中带正电部分的体积很小,但几乎占有 全部质量,电子在正电体的外面运动.
3.原子核的电荷与尺度
(1).确定各种元素原子核的电荷
原子的核式结构模型
1.汤姆孙的原子模型:
原子是一个球体,正电荷弥漫性地均匀分 布在整个球体内,电子镶嵌其中。
汤姆孙的原子模型
枣糕模型
2. α粒子散射实验
(1)
(2)实验现象:
• 绝大多数α粒子穿过金箔后,基本上沿原方
向前进
• 少数α粒子发生了较大的偏转 • 极少数α粒子偏转角度超过900 ,有的甚至
(2)估算原子核的尺度 核半径 10-15 ---- 10-14 哪些运动轨 迹是不可能存在的?
练习2.关于卢瑟福原子核式结构学说的内
容,下述正确的是:(
)
A.原子是一个质量均匀分布的球体; B.原子的质量全部集中在原子核内; C.原子的正电荷全部集中在一个很小的核内; D.原子核的半径约为10 -10 m。
人教版高中物理选修3-5课件原子的核式结构模型——丰满版
二、 粒子散射实验
1909~1911年, 英国物理学家卢 瑟福和他的学生 盖革和马斯顿进
行了 粒子散射
实验。
卢瑟福
(一)装置简介:
(二)实验结果:
1 .绝大多数α粒子:沿原方向前进
2 .少数α粒子:发生大角度偏转,
甚至偏角超过900
3.极少数α粒子发生大角度偏转,
有的甚至被弹回。
原子半径大小约为10 -10米 原子核半径大约 为 10 –15米
问题门诊:
1、为什么不能用电子显微镜来 观察原子的结构?
2、粒子散射实验装置为什么要 放在真空中?
3、散射实验用的是金箔、铂箔 等重金属箔,为什么不用轻金 属箔,如铝箔等?
谢谢!
(三)对实验结果进行分析:
1、影响 电子 因素: 正电荷
2、电子的 α粒子的质量是电子
影响:
质量的7300倍
(四)正电荷对粒子散射的影响:
1、汤姆孙原子模型的解释困难:
2、少数α粒子:发生大角度偏转, 甚至偏角超过900,说明占原子质量 绝大部分的带正电的那部分物质集 中在很小的空间范围内,为什么?
高中物理课件
灿若寒星整理制作
热烈欢迎各位老师
莅临指导
1897年,汤姆孙对阴极 射线研究,发现了电子, 说明原子是可再分的, 原子是中性的,因此推 断出原子中还有带正电 的物质.那么这两种物 质是怎样构成原子的呢?
汤姆孙
原子的核式结构模型
江苏省沭阳高级中学 姜祖国
一、汤姆生的原子模型
1、理论依据: 2、建立的模型: 3、解释的现象: 4、遇到的困难:
(五)卢瑟福——原子的核式结构
1. 在原子的 中心有
一个很小的核称为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 电子的发现2. 原子的核式结构3. 氢原子光谱4. 玻尔的原子模型二. 知识归纳、总结:(一)电子的发现1、阴极射线(1)产生:在研究气体导电的玻璃管内有阴、阳两极,当两极间加一定电压时,阴极便发出一种射线,这种射线为阴极射线。
(2)阴极射线的特点:碰到荧光物质能使其发光。
2、汤姆孙的发现(1)阴极射线电性的发现为了研究阴极射线的带电性质,他设计了如图18-1-2所示装置,从阴极发出的阴极射线,经过与阳极相连的小孔,射到管壁上,产生荧光斑点;用磁铁使射线偏转,进入集电圆筒;用静电计检测的结果表明,收集到的是负电荷。
(2)测定阴极射线粒子的比荷。
图18-1-3如图18-1-3所示,从阴极K发出的阴极射线通过一对平行金属板P、P'间的匀强电场,发生偏转,偏转角θ与电场强度E、极板长度L以及带电粒子的速度v的关系:tanθ=①然后再加一垂直于电场方向的匀强磁场,使粒子所受到的电场力与磁场力平衡,不发生偏转,由此可得:②将②式代入①式,并代入实验数据,求得这种粒子的比荷为说明:①汤姆孙通过进一步的实验,发现当改变阴极材料时,测得的比荷都相同,表明这种粒子是各种材料的共有成分,1898年,汤姆孙测出这种粒子所带电荷与氢离子的电荷数值接近,从而证明这种粒子的质量约是氢离子的千分之一,至此,这种粒子的“身份”已经明确;它是一种带负电的质量很小的粒子,物理学家把这种粒子叫做电子。
②现在测得电子的比荷为e/m=1.75881×1011C/kg.电子的电荷量为e=1.60219×10-19C,从而计算出电子的质量为m=9.10953×10-31kg.③电子的质量约为氢原子质量的(二)原子的核式结构1、汤姆孙的枣糕式模型图18-2-1J·J·汤姆孙于1904年提出来的模型,汤姆孙在发现电子后,便投入了对原子内部结构的探索,他运用丰富的想象,提出了原子枣糕模型(图18-2-1),在这个模型里,汤姆孙把原子看作一个球体,正电荷均匀地分布在整个球内,电子像枣糕上的枣子一样嵌在球中,被正电荷吸引着,原子内正、负电荷相等,因此原子的整体呈中性,汤姆孙的模型是第一个有一定科学依据的原子结构模型,而不是哲学思辨的产物。
2、粒子散射实验1909~1911年卢瑟福和他的助手做了用α粒子轰击金箔的实验,获得了重要的发现。
(1)实验装置(如图18-2-2所示)图18-2-2(2)实验结果绝大多数α粒子穿过金箔后基本上仍沿原来的方向前进,但是有少数α粒子发生了较大的偏转,极少数粒子被反向弹回。
3、原子的核式结构卢瑟福依据α粒子散射实验的结果,提出了原子的核式结构:在原子中心有一个很小的核,叫原子核,原子的全部正电荷和几乎全部质量都集中在核里,带负电的电子在核外空间绕核旋转。
图18-2-3按照卢瑟福的核式结构学说,可以很容易地解释α粒子的散射实验现象,如图18-2-3所示。
按照这个模型,由于原子核很小,大部分α粒子穿过金箔时都离核很远,受到的斥力很小,它们的运动几乎不受影响;只有极少数α粒子从原子核附近飞过,明显地受到原子核的库仑斥力而发生大角度的偏转。
(三)氢原子光谱1、发射光谱:物质发光直接产生的光谱从实际观察到的物质发光的发射光谱可分为连续谱和线状谱。
(1)连续谱:连续分布着的包含着从红光到紫光的各种色光的光谱。
产生:是由炽热的固体、液体、高压气体发光而产生的。
(2)线状谱:只含有一些不连续的亮线的光谱,线状谱中的亮线叫谱线。
产生:由稀薄气体或金属蒸气(即处于游离态下的原子)发光而产生的,观察稀薄气体放电用光谱管,观察金属蒸气发光可把含有该金属原子的物质放到煤气灯上燃烧,即可使它们汽化后发光。
2、吸收光谱:高温物体发出的白光通过物质后,某些波长的光波被物质吸收后产生的光谱。
产生:由炽热物体(或高压气体)发出的白光通过温度较低的气体后产生。
例如:让弧光灯发出的白光通过低温的钠气,可以看到钠的吸收光谱。
若将某种元素的吸收光谱和线状谱比较可以发现:各种原子吸收光谱的暗线和线状谱和亮线相对应,即表明某种原子发出的光和吸收的光的频率是特定的,故吸收光谱和线状谱中的暗线比线状谱中的亮线要少一些。
3、光谱分析各种元素的原子都有自己的特征谱线,如果在某种物质的线状谱或吸收谱中出现了若干种元素的特征谱线,表明该物质中含有这种元素的成分,这种对物质进行化学组成的分析和鉴别的方法称为光谱分析。
其优点:灵敏、快捷、检查的最低量是10-10克。
4、光谱分析的应用(1)光谱分析在科学技术中有着广泛的应用,例如,在检测半导体材料硅和锗是不是达到高纯度要求时,就要用到光谱分析。
(2)历史上,光谱分析还帮助人们发现了许多新元素,例如,铷和铯就是人们通过分析光谱中的特征谱线而发现的。
(3)利用光谱分析可以研究天体的物质成分,19世纪初在研究太阳光谱时,人们发现它的连续光谱中有许多暗线,通过仔细分析这些暗线,并把它们跟各种原子的特征谱线对照,人们知道了太阳大气层中含有氢、氦、氮、碳、氧、铁、镁、硅、钙、钠等几十种元素。
(4)光谱分析还能鉴定食品的优劣。
例如,通过分析茶叶的近红外光谱,测定其各种化学成分的含量,就可以鉴定茶叶的优劣、级别、真假以及品种等。
(5)用光谱分析还可以鉴定文物,例如:1978年在新石器时代遗址浙江省余姚县河姆渡村,人们挖掘出一件木质漆碗,器壁外涂有一层朱红色的涂料,且微有光泽,借助光谱分析,鉴定出这种涂料与马王堆出土的漆皮类似,因此漆工艺的历史可追溯至7000年前。
5、氢原子光谱的实验规律氢原子是自然界中最简单的原子,对它的光谱线的研究获得的原子内部结构的信息,对于研究更复杂的原子的结构有指导意义。
(1)氢原子的光谱图18-3-3从氢气放电管可以获得氢原子光谱,如图18-3-3所示,氢原子的光谱为线状谱。
(2)巴耳末公式: n = 3,4,5…6、经典理论的困难按经典理论原子是不稳定的,原子发光的光谱应为连续光谱,事实原子不但稳定而且发光的光谱为线状光谱。
图18-3-4(1)按照经典物理学,核外电子受到原子核的库仑引力的作用,不可能是静止的,它一定在以一定的速度绕核转动,既然电子在运动,它的电磁场就在变化,而变化的电磁场会激发电磁波,也就是说,它将自己绕核转动的能量以电磁波的形式辐射出去,因此,电子绕核转动这个系统是不稳定的,电子会失去能量,最后一头栽到原子核上,但是事实不是这样,原子是个很稳定的系统如图18-3-4所示。
(2)根据经典电磁理论,电子辐射的电磁波的频率,就是它绕核转动的频率,电子越转能量越小,它离原子核就越来越近,转得也就越来越快,这种变化是连续的,也就是说,我们应该看到原子辐射的各种频率(波长)的光,即原子的光谱应该总是连续的,而实际上我们看到的是分立的线状谱。
(四)玻尔的原子模型1、玻尔模型玻尔认为,围绕原子核运动的电子轨道半径只能是某些分立的数值,这种现象叫做轨道量子化;不同的轨道对应着不同的状态,在这些状态中,尽管电子在做变速运动,却不辐射能量,因此这些状态是稳定的;原子在不同的状态中具有不同的能量,所以原子的能量也是量子化的。
将以上内容进行归纳,玻尔理论有三个要点:(1)原子只能处于一系列的不连续的能量状态中,在这些状态中原子是稳定的,电子虽然绕核旋转,但并不向外辐射能量,这些状态叫定态。
(2)原子从一种定态(能量为E1)跃迁到另一定态(能量为E2)时,它辐射(或吸收)一定频率的光子,光子的能量由这两个定态的能量差决定,即hv=E2-E1。
可见,电子如果从一个轨道到另一个轨道,不是以螺旋线的形状改变半径大小的,而是从一个轨道上“跳跃”到另一个轨道上,玻尔将这种现象称为跃迁。
(3)原子的不同能量状态对应于电子沿不同圆形轨道运动,原子的定态是不连续的,因而电子的可能轨道是分立的,(满足mvr=,n叫量子数,这种轨道的不连续现象叫轨道量子化),轨道半径r n=n2r1。
2、能级在玻尔模型中,原子的可能状态是不连续的,因此各状态对应的能量也是不连续的,这些能量值叫做能级。
各状态的标号1、2、3……叫做量子数,通常用n表示,能量最低的状态叫做基态,其他状态叫做激发态,基态和各激发态的能量分别用E1、E2、E3…代表。
(1)氢原子的能级及玻尔对氢光谱的解释对氢原子而言,核外的一个电子绕核运行时,若半径不同,则对应着的原子能量也不同,若使原子电离,外界必须对原子做功,使电子摆脱它与原子核之间的库仑力的束缚,所以原子电离后的能量比原子其他状态的能量都高,我们把原子电离后的能量记为0,则其他状态下的能量值就是负的。
原子各能级的关系为:(n=1、2、3…)对于氢原子而言,基态能量:E1=-13.6eV其他各激发态的能级为:E2=-3.4 eVE3=-1.51 eV(2)能级图氢原子的能级图如图18-4-1所示18-4-13、光子的发射和吸收(1)能级的跃迁根据玻尔模型,原子只能处于一系列的不连续的能量状态中,这些状态分基态和激发态两种,其中原子在基态时是稳定的,原子在激发态时是不稳定的,当原子处于激发态时会自发地向较低能级跃迁,经过一次或几次跃迁到达基态。
(2)光子的发射原子能级跃迁时以光子的形式放出能量,原子在始末两个能级E m和E n(m>n)间跃迁时发射光子的频率可由下式表示:hv=E m-E n由上式可以看出,能级差越大,放出光子的频率就越高。
(3)光子的吸收光子的吸收是光子发射的逆过程,原子在吸收了光子后会从较低能级向较高能级跃迁,两个能级的差值仍是一个光子的能量,其关系式仍为hv=E m-E n4、原子能级跃迁问题跃迁是指电子从某一轨道跳到另一轨道,而电子从某一轨道跃迁到另一轨道对应着原子就从一个能量状态(定态)跃迁到另一个能量状态(定态)。
(1)跃迁时电子动能、原子势能与原子能量的变化原子中原子核带电荷量为+Ze,核外电子带电荷量为-e,电子在半径为r的轨道上绕核做匀速圆周运动时,库仑力提供向心力,则有:则电子绕核运动的动量在原子中,由于原子核与核外电子库仑引力的作用而具有电势能,电势能属于相互作用的系统——原子,由库仑力所做的功与电势能变化的关系可知:电子绕核运动的轨道半径r 增大时,库仑引力F做负功,原子的电势能E p增大。
通常取r→∞时的电势能为零,电子在半径为r的轨道上的电势能:(2)使原子能级跃迁的两种粒子——光子与电子原子若是吸收光子的能量而被激发,其光子的能量必须等于两能级的能量差,否则不被吸收,不存在激发到n=2时能量有余,而激发到n=3时能量不足,则可激发到n=2的问题。
原子还可吸收外来电子(自由电子)的能量而被激发,只要入射电子的能量大于或等于两能级的能差差值(E=E m-E n),均可使原子发生能级跃迁。