生物化学代谢复习之糖代谢、脂质代谢

合集下载

生物化学脂质代谢知识点总结

生物化学脂质代谢知识点总结

生物化学脂质代谢知识点总结脂质代谢是生物体中一系列与脂类物质的合成、降解和调节相关的生化过程。

脂质是生物体中重要的结构和功能分子,参与细胞膜的组成、能量储存、信号传导等生理过程。

以下是关于生物化学脂质代谢的几个重要知识点的总结:1. 脂质的分类:脂质包括甘油三酯、磷脂、固醇等多种类别。

甘油三酯是主要的能量储存形式,磷脂是细胞膜的主要组成成分,固醇则参与胆汁酸合成和激素合成。

2. 脂质合成:脂质合成发生在细胞质中的内质网和高尔基体。

甘油三酯合成通过甘油磷酸酯化反应,将甘油与三个脂肪酸酯化生成甘油三酯。

磷脂合成主要通过甘油磷酸酰化和酰基转移反应来完成。

3. 脂质降解:脂质降解主要发生在细胞质中的脂质滴。

甘油三酯降解通过脂肪酸的β氧化途径进行,其中脂肪酸在线粒体内通过一系列酶的作用逐步分解为乙酰辅酶A,进而进入三羧酸循环产生能量。

磷脂降解则通过磷脂酶的作用将磷酸酯键水解。

4. 脂质调节:脂质代谢的调节是通过多种调控机制实现的。

例如,脂质合成受到胰岛素的正调控,而脂质降解则受到激素敏感脂酶等酶的调控。

此外,转录因子、信号通路和代谢产物等也参与了脂质代谢的调控过程。

5. 脂质与疾病:脂质代谢紊乱与多种疾病有关。

例如,高脂血症与动脉粥样硬化的发生密切相关;脂肪酸代谢紊乱可导致脂肪肝的发生;固醇代谢异常则与高胆固醇血症和冠心病等疾病有关。

6. 脂质代谢与药物研发:研究脂质代谢对于药物研发具有重要意义。

许多药物通过调节脂质代谢来治疗相关疾病,如胆固醇降低药物和抗肥胖药物等。

脂质代谢是生物体中一系列与脂类物质的合成、降解和调节相关的生化过程。

了解脂质代谢的知识点可以帮助我们更好地理解生物体内脂质的功能和相关疾病的发生机制,为药物研发提供参考。

生物化学糖代谢知识点总结.doc

生物化学糖代谢知识点总结.doc

生物化学糖代谢知识点总结.doc糖代谢是指生物体利用糖类化合物进行生命活动所必需的合成和降解过程。

它是个复杂的化学反应链和代谢过程,涉及到多种生化反应和多个酶催化反应,同时也是维持生命的重要过程之一。

下面是生物化学糖代谢的知识点总结:1. 糖类化合物基础糖类化合物是指一类多元醇与醛或酮葡萄糖分子通过缩合反应而生成的化合物。

这类化合物可以简单分为单糖、双糖、多糖三类,其中单糖是构成生物体多种糖的基础单位。

最常见的单糖有葡萄糖(Glucose)、果糖(Fructose)、半乳糖(Galactose)等。

2. 糖代谢途径在生物体内,主要进行糖代谢途径分为两条:糖异构化途径和糖解途径。

前者是指糖分子在酶催化作用下转化为异构体的途径,后者是指将糖分子降解成各个代谢产物的途径。

单糖由异构化途径进入糖酵解途径,经过一系列酶催化反应分解为乳酸、丙酮酸或二氧化碳和水,产生 ATP 和 NADH 等物质能转化为化学能。

3. 糖异构化糖异构化途径是指糖分子在酶的催化作用下转化成异构体的过程。

在此过程中,一个糖分子的环化结构中的羟基与卤代物发生相互作用,使糖分子的环化结构发生变化,形成不同的异构体。

最常见的糖异构化途径有麦芽糖异构酶、果糖-1,6-二磷酸酶等。

根据研究,大多数人的肝脏细胞及小肠上皮细胞将小分子碳水化合物转化为葡萄糖。

但其他组织细胞也可以利用糖异生途径,这个过程包括在非糖元(如脂肪酸和氨基酸)存在的情况下,从前体化合物的合成中生成葡萄糖。

胰岛素及其反性会对该过程产生影响。

生物化学糖代谢涉及的范围很广,尤其和人和动物的生命健康息息相关,因此相应的研究和应用价值也很高。

随着现代科技水平的不断提高,生物化学糖代谢的概念和技术也在不断地完善和拓展。

糖代谢与脂代谢的关系

糖代谢与脂代谢的关系

糖代谢与脂代谢的关系引言糖代谢和脂代谢是人体新陈代谢的两个重要方面。

糖代谢是指人体对碳水化合物的摄入和利用过程,而脂代谢则是指对脂肪的摄入、合成和分解过程。

糖代谢和脂代谢之间存在着密切的关系,两者相互影响并共同维持着人体的代谢平衡。

本文将从多个角度对糖代谢与脂代谢的关系进行探讨。

一、糖代谢与脂代谢的基本过程1. 糖代谢的基本过程糖代谢包括碳水化合物的消化、吸收和利用过程。

首先,人体摄入的碳水化合物在口腔中经过淀粉酶的作用开始被分解,然后进入胃和小肠进行进一步的消化。

消化完成后,葡萄糖通过肠道上皮细胞进入血液循环,并被运输到各个组织和细胞中。

在细胞内,葡萄糖经过糖酵解或三羧酸循环氧化,最终产生能量和代谢产物。

2. 脂代谢的基本过程脂代谢涉及脂肪的摄入、合成和分解过程。

脂肪主要由甘油和脂肪酸组成。

在人体内,脂肪可以通过食物摄入,也可以通过肝脏合成。

脂肪酸可以在肾上腺素和胰岛素的调节下进入脂肪细胞,并与甘油结合形成三酯。

当机体需求能量增加时,脂肪酸会被分解成甘油和游离脂肪酸,再通过脂肪酸氧化产生能量。

二、糖代谢与脂代谢的相互关系1. 糖代谢对脂代谢的影响糖代谢能影响脂代谢的多个环节。

首先,糖代谢的产物葡萄糖可以被转化为甘油磷酸,参与三酰甘油的合成,从而促进脂肪的合成。

其次,高血糖状态下,胰岛素的分泌增加,促进脂肪的摄入和合成。

此外,糖代谢异常还可导致脂代谢紊乱,如糖尿病患者常出现脂质代谢紊乱,表现为胆固醇升高和甘油三酯增多。

2. 脂代谢对糖代谢的影响脂代谢也会影响糖代谢的正常进行。

首先,脂代谢产物如游离脂肪酸可以干扰胰岛素的作用,抑制糖的利用,导致胰岛素抵抗和糖尿病的发生。

其次,脂肪的摄入过多会引发肥胖,进而导致脂肪组织的胰岛素抵抗性增加,进一步加剧糖代谢紊乱。

3. 糖代谢和脂代谢的协调调控糖代谢和脂代谢之间的关系是相互影响、相互调节的。

一方面,胰岛素在调节糖代谢的同时也影响脂代谢,胰岛素可以促进脂肪的合成和抑制脂肪的分解。

生物化学总结复习笔记

生物化学总结复习笔记

11章.蛋白质的降解和氨基酸的代谢1.蛋白质的酶促降解1.1.细胞内蛋白质的降解一般认为真核细胞对蛋白质的降解有两个体系.其一是溶酶体降解.其二是依赖ATP,在细胞溶胶中以泛素标记的选择性蛋白质的降解.1.2外源蛋白质的酶促降解外源蛋白质进入体内,必须先经过水解作用变为小分子的氨基酸,然后才能被吸收.就高等动物来说,外界食物蛋白质经消化吸收的氨基酸和体内合成及组织蛋白质经降解的氨基酸,共同组成体内氨基酸代谢库.所谓氨基酸代谢库即指体内氨基酸的总量.氨基酸代谢库中的氨基酸大部分用于合成蛋白质,一部分可以作为能源,体内有一些非蛋白质的含氮化合物也是以某些氨基酸作为合成的原料.2.氨基酸的分解代谢氨基酸的共同分解代谢途径包括脱氨基作用和脱羧基作用两个方面.氨基酸经脱氨基作用生成氨及α-酮酸.氨基酸经脱羧基作用产生二氧化碳及胺.胺可随尿直接排出,也可在酶的作用下,转化为可被排出的物质和合成体内有用的物质.氨基酸脱氨基的方式有氧化脱氨基作用、转氨基作用、联合脱氨基作用、非氧化脱氨基作用和脱酰胺基作用.3.氨的排泄方式水生动物排氨鸟类及爬行动物排尿酸哺乳动物排尿素尿素是哺乳动物蛋白质代谢的最终产物10章.脂质代谢1脂质的酶促水解1.1三酰甘油的酶促水解三酰甘油是重要的储能物质.在脂肪酶的作用下水解为甘油和脂肪酸.甘油可氧化供能也可糖酵解途径生成糖.脂肪酸可彻底氧化供能.1.2磷脂的酶促水解磷脂酶A1和A2分别专一的出去Sn-1位或sn-2位上的脂肪酸,生成的仅含有一个脂肪酸的产物称溶血磷脂.溶血磷脂是一种很强的表面活性剂,能使细胞膜和红细胞膜溶解.2.脂肪酸的β-氧化作用2.1脂肪酸的β-氧化作用是指:脂肪酸在氧化分解时,碳链的断裂发生在脂肪酸的β位,即脂肪酸的碳链的断裂方式是每次切除2个碳原子.细胞溶胶中的长链脂肪酸首先被活化为脂酰辅酶A,然后长链脂酰辅酶A在肉碱的携带下进入线粒体.需要肉碱脂酰转移酶脂肪酸的β-氧化作用四步:脱氢、加水、再脱氢、硫解.循环一次,产生少两个碳原子的脂酰辅酶A和一分子乙酰辅酶A.1mol软脂酸彻底氧化需要进行7次β-氧化,产生8mol乙酰辅酶A.每次β-氧化产生1mol FADH2 和1mol NADH+H+ ,则共产生7molFADH2和7molNADH+H+ .进入呼吸链氧化生成28mol ATP1.5×7+2.5×7=28;8mol 乙酰辅酶A进入TCA循环氧化可生成80molATP10×8;这样1mol软脂酸彻底氧化一共产生108molATP,因活化时消耗2molATP,故净得106molATP.不饱和脂肪酸的氧化与饱和脂肪酸基本相同,单不饱和脂肪酸氧化需要△3-顺,△2-反烯脂酰辅酶A异构酶;多不饱和脂肪酸氧化还需要△2-反,△4-顺二烯脂酰辅酶A还原酶和△3-反,△2-反烯脂酰辅酶A异构酶的共同作用.3.酮体乙酰乙酸、β-羟丁酸和丙酮,统称为酮体.酮体在肝中产生,可被肝外组织利用.酮体的生成:在肝中脂肪酸的氧化不是很完全,二分子的乙酰辅酶A可以缩合成乙酰乙酰辅酶A;乙酰乙酰辅酶A再与一分子乙酰辅酶A缩合成β-羟-β-甲戊二酸单酰辅酶A,后者裂解成乙酰乙酸;乙酰乙酸在肝线粒体中可以还原生成β-羟丁酸,乙酰乙酸可以脱羧生成丙酮.酮体的氧化:在肝中形成的乙酰乙酸和β-羟丁酸进入血液循环后送至肝外组织,通过三羧酸循环循环氧化.β-羟丁酸首先氧化成乙酰乙酸,然后乙酰乙酸在β-酮脂酰辅酶A转移酶或乙酰乙酸硫激酶的作用下,生成乙酰乙酸辅酶A,再与第二个辅酶A作用形成两分子一线辅酶A,乙酰辅酶A可进入三羧酸循环循环进行氧化.9.糖的分解代谢1.淀粉的酶促水解1.1 α-淀粉酶可以水解淀粉中任何部位的α-1,4糖苷键,β-淀粉酶只能从非还原端开始水解.,β-淀粉酶不能水解α-1,6糖苷键.水解淀粉中的α-1,6糖苷键的酶是α-1,6糖苷酶.2.糖的分解代谢途径包括糖酵解、三羧酸循环、戊糖磷酸途径、葡萄糖醛酸途径、乙醛酸途径.3.糖酵解无氧条件下,1mol葡萄糖变成2mol丙酮酸并伴随ATP生成的过程称为糖酵解.丙酮酸的三条代谢去路:①在组织缺氧情况下丙酮酸还原为乳酸;②酵母菌可以使丙酮酸还原为乙醇;③有氧条件下,丙酮酸转化为乙酰辅酶A,进入三羧酸循环,彻底氧化为二氧化碳和水.糖酵解从葡萄糖开始,分为10步酶促反应,均在细胞液中进行.糖酵解的调控:从单细胞生物到高等动植物都存在糖酵解过程,其生理意义主要是释放能量,使机体在缺氧情况下仍能进行生命活动.糖酵解的中间产物可为机体提供碳骨架.糖酵解主要受3中酶的调控:①果糖磷酸激酶;①果糖磷酸激酶是最关键的限速酶.1.ATP/AMP比值对该酶活性的调节具有重要的生理意义.当ATP浓度较高时,果糖磷酸激酶几乎无活性,糖酵解作用减弱;当AMP积累,ATP减少时,酶活性恢复,糖酵解作用增强.2.氢离子H可抑制果糖磷酸激酶的活性,防止肌肉中形成过量乳酸而使血液酸中毒.3.柠檬酸可增加ATP对酶活性的抑制作用.果糖-2,6-二磷酸能消除ATP对酶的抑制效应,使酶活化.②己糖激酶活性的调节.果糖-6-磷酸是的别构抑制剂.③丙酮酸激酶活性的调节.果糖-1,6-二磷酸是丙酮酸激酶的激活剂;丙氨酸是该酶的别构抑制剂.ATP、乙酰CoA 也可以抑制该酶的活性.糖酵解中ATP的变化:糖酵解阶段中,由己糖激酶和果糖磷酸激酶催化的两步反应,各消耗1分子的ATP.在丙糖阶段,甘油酸—1,3—二磷酸和烯醇丙酮酸磷酸经底物水平磷酸化反应,个生成1分子ATP,由于果糖—1,6—二磷酸在醛缩酶催化下裂解,相当于生成2分子甘油醛—3—磷酸.因此,每分子葡萄糖在糖酵解阶段净生成2分子ATP.在糖酵解过程中有3步不可逆反应,分别由己糖激酶、果糖磷酸激酶和丙酮酸激酶.其中果糖磷酸激酶是最关键的限速酶,其活性被ATP、柠檬酸所抑制;被AMP和果糖-2,6-二磷酸变构激活.2.糖的有氧分解将糖的有氧分解分为3个阶段,第一是糖酵解阶段,第二是丙酮酸进入线粒体被氧化脱羧成乙酰辅酶A.第三阶段是乙酰辅酶A进入柠檬酸循环生成二氧化碳和水.三羧酸循环循环:乙酰CoA和草酰乙酸缩合为柠檬酸进入三羧酸循环循环.丙酮酸经三羧酸循环循环途径能形成12.5个ATP,每分子葡萄糖能产生2分子的丙酮酸,将产生25个ATP.柠檬酸合酶、异柠檬酸脱氢酶与α-酮戊二酸脱氢酶系是调控三羧酸循环循环的限速酶.其活性受ATP、NADH等物质的抑制.葡萄糖在有氧条件下氧化分解为二氧化碳和水净生成32分子ATP.乙醛酸途径两种关键酶是苹果酸合酶和异柠檬酸裂解酶.戊糖磷酸途径:两个5碳糖相加生成3碳和7碳糖,后二者相加在生成6碳和4碳糖,5碳与4碳糖相加生成3碳和6碳糖.糖原的分解与合成的关键酶是磷酸化酶与糖原合酶.糖异生:糖异生作用是指非糖物质如甘油,生糖氨基酸和乳酸等合成葡萄糖或糖原的过程.为什么糖异生并非完全是糖酵解的逆转反应8新陈代谢总论和生物氧化1ATP是生物细胞内能量代谢的偶联剂.从低等的单细胞生物到高等的人类,能量的释放、贮存和利用都是以ATP 为中心.ATP含有一个磷酯键和两个由磷酸基团形成的磷酸酐键.6 酶1酶的概念与特点:酶是具有高效性与专一性的生物催化剂.三层含义:一,酶是催化剂;二,酶是生物催化剂;三,酶在行使催化剂功能时,具有高效性与专一性的特点酶的催化效率可以用转换数来表示.2酶的化学本质与组成除核酶外,酶都是蛋白质.酶可以分为单纯蛋白质与缀合蛋白质.缀合蛋白质除了氨基酸残基外,还含有金属离子、有机小分子等化学成分,这类酶称为全酶.全酶中蛋白质部分称为辅酶.非蛋白质部分称为辅因子.酶的分类:1.氧化还原酶类;2.转移酶类;3.水解酶类;4裂合酶类;5异构酶类;6合成酶类.酶的专一性分类:①结构专一性分为绝对专一性与相对专一性;②立体异构专一性旋光异构专一性和几何异构专一性酶的作用机制:活化分子:反应物一种更高能量的状态.过渡态:活化分子所处的这种需要更多能量的状态.基态:与活化分子相对应的普通反应物分子所处的状态.活化能:处于过渡态的分子比处于基态的分子多出来的Gibbs 自由能.酶通过降低反应活化能使反应速率加快.酶活性部位的结构是酶作用机理的结构基础.酶具有高效催化效率的分子机制:酶分子的活性部位结合底物分子形成酶—底物复合物,在酶的帮助下,底物分子进入一种特定的状态,形成此类过渡态所需的活化能远小于非酶促反应所需的活化能,使反应能够顺利进行,形成产物释放出游离的酶,使其能够参与其余底物的反应.与该分子机理相关的因素:1.邻近效应:邻近效应指酶与底物结合以后,使原来游离的底物集中于酶的活性部位,从而减少底物之间或底物与酶的催化基团之间的距离,使反应更容易进行.2.定向效应:指底物的反应基团之间、酶的催化基团与底物的反应基团之间的正确定位与取向所产生的增进反应速率的效应.3.促进底物过渡态形成的非共价作用:当酶与底物结合后,酶与底物之间的非共价可以使底物分子围绕其敏感键发生形变,从而促进底物过渡态的形成.4.酸碱催化:5.共价催化:酶促反应动力学:酶底物中间复合物学说:即酶首先和底物结合生成中=v 间复合物,中间复合物再生成产物.米氏方程:m K S S v v +=][][max ;K m 物理意义:K m 值是反应速率为最大值的一半时的底物浓度.其单位是mol/l影响酶促反应速率的因素包括:抑制剂、温度、ph 值,激活剂.1,通过改变酶必需基团的化学性质从而引起酶活力的降低或丧失的作用称为抑制作用.酶的抑制剂包括不可逆抑制剂与可逆抑制剂.可逆抑制剂可分为:竞争性抑制剂、非竞争性抑制剂、反竞争性抑制剂.氯离子是唾液淀粉酶的激活剂.酶活性的调节酶活性的调节方式:1.通过改变酶的分布于数量来调节酶的活性.2.通过改变细胞内已有的酶分子的活性来调节酶的活性.酶的别构调控许多酶具有活性部位外,还具有调节部位.酶的调节部位可与某些化合物可逆的非共价结合,使酶的结构发生改变,进而改变酶的活性,这种酶活性的调节方式称为别构调节.对别构酶加热或用化学试剂处理,可以使别构酶解离并失去调节活性,称为脱敏作用.对酶分子具有别构调节作用的化合物称为效应物.效应物对别构酶的调节作用可分为同促效应与异促效应.同促效应中,酶的活性部位与调节部位是相同的,效应物是底物,底物与别构酶的某一活性部位相结合可促使剩余底物与其它剩余活性部位相结合,导致酶促反应速率增加,这称为正协同效应.如果底物与酶的某一活性部位结合导致剩余底物更难与其余剩余活性部位结合,则称为负协同效应.异促效应中,酶的活性部位与调节部位是不同的.效应物是非底物分子.酶原的激活酶原:指的是生活物体内合成的无活性的酶的前体.酶原激活:在特定蛋白水解酶的催化作用下,酶原的结构发生改变,形成酶的活性部位,变成有活性的酶.酶原的激活是一个不可逆的过程.5脂质与生物膜1.1.1动植物油的化学本质是脂酰甘油.1.1三酰甘油的理化性质:1.3磷脂分为甘油磷脂与鞘磷脂.最简单的甘油磷脂是磷脂酸.1.4生物膜主要由蛋白质与脂质.4糖类单糖一般是含有3--6个碳原子的多羟基醛或多羟基酮.最简单的单糖是甘油醛和二羟丙酮.单糖的构型以距离醛基最远端不对称碳原子为准,羟基在左边的为L构型,羟基在右边的为D构型.单糖分子中醛基和其他碳原子上羟基成环反应生成的产物为半缩醛.六元环是吡喃糖,五元环为呋喃糖.六元环更稳定.连接半缩醛羟基的碳称为异头碳.异头物的半缩醛羟基与决定构型的羟基在同侧着为α型,在相反者为β构型.单糖的构型:椅式构象更稳定.糖类衍生物甘露醇在临床上用来降低颅内压和治疗急性肾衰竭.葡糖醛酸是人体一种重要的解毒剂.寡糖寡糖是少数单糖2-10缩合的聚合物,低聚糖是指20个以下单糖缩合的聚合物.麦芽糖成键类型:α1-4糖苷键,多糖多糖是由多个单糖基以糖苷键相连而成的高聚物.多糖没有还原性和变旋性.淀粉天然淀粉一般由直链淀粉与支链淀粉组成.直链淀粉是D—葡萄糖基以α—1,4糖苷键连接的多糖链.直链淀粉分子的空间构象是卷曲成螺旋形的,每一回旋为6个葡萄糖基.显色螺旋构象是碘显色的必要条件,碘分子进入淀粉螺旋圈内,糖游离羟基称为电子供体,碘分子成为电子受体,形成淀粉碘络合物,呈现颜色.其颜色与糖链的长度有关.直链淀粉成蓝色,支链淀粉成紫红色.纤维素自然界中最丰富的有机化合物是纤维素.纤维素是一种线性的由D—吡喃葡糖基以β—1,4糖苷键3.核酸RNA:核糖核酸DNA:脱氧核糖核酸A 腺嘌呤T 胸腺嘧啶G 鸟嘌呤C胞嘧啶U 尿嘧啶核苷:是戊糖和含氮碱基生成的糖苷.核苷酸间的连接键是3,5—磷酸二酯键.碱基序列表示核酸的一级结构,DNA双链的螺旋形空间结构称DNA的二级结构.A与T配对形成2个氢键,G与C配对形成3个氢键.增色效应:核酸水解为核苷酸,紫外吸收值增加.核酸结构的稳定性因素:1 碱基对间的氢键.2 碱基堆积力.3 环境中的正离子核酸变性在核酸变性时,将紫外吸收的增加量达到最大增量的一半时的温度值称溶解温度,即Tm.影响Tm的因素:1.G—C对含量,G—C对含量越高,Tm也越高.2.溶液的离子强度离子强度较低的介质中,Tm较低.3.溶液的Ph4.变性剂复性:变性核酸的互补链在适当的条件下重新缔合成双螺旋的过程成为复性.变性核酸复性时需要缓慢冷却,故又称退火.变性核酸复性后,核酸的紫外吸收降低,这种现象称为减色效应.影响复性的因素:1 复性的温度 2单链片段的浓度 3 单链片段的长度 4 单链片段的复杂度 5 溶液的离子强度分子杂交:在退火条件下,不同来源的DNA互补区形成双链,或DNA单链和RNA单链的互补区形成DNA—RNA杂合双链的过程称为分子杂交.2蛋白质1.蛋白质的分类蛋白质的平均含氮量为16%.2.蛋白质的组成蛋白质的水解产物为氨基酸等电点:。

糖代谢 脂代谢 氨基酸代谢

糖代谢 脂代谢 氨基酸代谢

糖代谢脂代谢氨基酸代谢全文共四篇示例,供读者参考第一篇示例:糖、脂、氨基酸代谢是人体内一系列生物化学反应的过程,这些代谢过程是维持机体正常运作以及生命活动的必要基础。

糖代谢是指人体内的碳水化合物的代谢过程,其中包括葡萄糖的合成、分解及糖类的利用。

脂代谢则是指脂肪在机体内的合成、水解及利用过程。

氨基酸代谢是指人体内氨基酸的合成、分解及利用过程。

糖代谢是人体内产生能量的重要途径之一,其主要过程有糖原的分解和合成过程。

在糖原的分解过程中,糖原被分解成葡萄糖,进而通过糖酵解途径产生能量;而在糖原的合成过程中,糖原则是葡萄糖合成的主要储备形式。

在血糖调节方面,胰岛素和葡萄糖在机体内起到了重要的作用。

当血糖浓度升高时,胰岛素的分泌增强,促使血糖进入细胞内,帮助细胞生成能量或者合成糖原;而当血糖浓度下降时,胰岛素的分泌减少,从而促进肝脏中的糖原分解,使血糖维持在恒定水平。

脂代谢是指人体内脂肪的代谢过程,其中包括脂肪的分解、合成及利用。

脂肪在机体内主要以三酰甘油的形式存在,其分解是通过三酰甘油水解为甘油和脂肪酸,再进一步分解为乙醇和二酰甘油。

脂肪的合成是通过乙醇和二酰甘油合成三酰甘油。

脂肪是机体内的主要能量来源之一,其代谢与其他物质代谢密切相关,葡萄糖被蓄积时,会抑制脂肪的分解,导致脂肪的合成增加;而胰岛素的作用则有助于促进脂肪的合成,并抑制脂肪的分解。

氨基酸代谢是指人体内氨基酸的代谢过程,其中包括氨基酸的合成、分解及利用。

氨基酸是构成蛋白质的基本单位,同时也是代谢过程中必需的营养素。

在氨基酸的合成过程中,氨基酸通过转氨合成的方式合成蛋白质,在这一过程中需要一系列的酶的参与。

氨基酸的分解则是通过氨基转移酶的作用,将氨基酸转化为氨基、酮基和有机酸。

氨基酸的利用则是通过葡萄糖异生途径,将氨基酸转化为葡萄糖或者脂肪。

糖、脂、氨基酸代谢是人体内重要的生物化学过程,这些代谢反应相互配合,共同维持机体内的血糖、脂肪及蛋白质的平衡。

生物化学三大代谢重点总结

生物化学三大代谢重点总结

第八章生物氧化1. 生物氧化:物质在生物体内进行氧化称生物氧化,主要指糖、脂肪、蛋白质等在体内彻底分解时逐步释放能量,最终生成C02和H2O的过程。

2. 生物氧化中的主要氧化方式:加氧、脱氢、失电子3. CO2的生成方式:体内有机酸脱羧4. 呼吸链:代谢物脱下的成对氢原子通过位于线粒体内膜上的多种酶和辅酶所催化的连锁反应逐步传递,最终与氧结合生成水,这一系列酶和辅酶称为呼吸链,又称电子传递链。

组成(1) N ADH 氧化呼吸链:苹果酸-天冬氨酸穿梭NADH —复合物I —CoQ —复合物III —Cyt c —复合物IV f O 产2.5个ATP(2) 琥珀酸氧化呼吸链:3-磷酸甘油穿梭琥珀酸—复合物II —CoQ —复合物III —Cyt c —复合物IV —O 产1.5个ATP含血红素的辅基:血红蛋白、肌红蛋白、细胞色素、过氧化物酶、过氧化氢酶5. 细胞质NADH 的氧化:胞液中NADH必须经一定转运机制进入线粒体,再经呼吸链进行氧化磷酸化。

转运机制(1 ) 3-磷酸甘油穿梭:主要存在于脑和骨骼肌的快肌,产生 1.5个ATP(2 )苹果酸-天冬氨酸穿梭:主要存在于肝、心和肾细胞;产生2.5个ATP6. ATP的合成方式:(1 )氧化磷酸化:是指在呼吸链电子传递过程中偶联ADP磷酸化,生成ATP,又称为偶联磷酸化。

偶联部位:复合体I、III、IV(2 )底物磷酸化:是底物分子内部能量重新分布,通过高能基团转移合成ATP。

磷/氧比:氧化磷酸化过程中每消耗1摩尔氧原子(0.5摩尔氧分子)所消耗磷酸的摩尔数或合成ATP的摩尔数。

7. 磷酸肌酸作为肌肉中能量的一种贮存形式第九章糖代谢寸一、糖的生理功能:(1 )氧化供能(2 )提供合成体内其它物质的原料(3 )作为机体组织细胞的组成成分吸收速率最快的为-半乳糖二、血糖1. 血糖:指血液中的葡萄糖正常空腹血糖浓度:3.9~6.1mmol/L2. 血糖的来源:(1)食物糖消化吸收(2)肝糖原分解(3)糖异生去路:(1 )氧化分解供能(2)合成糖原(3)转化成其它糖类或非糖物质3. 血糖调节:肝脏调节、肾脏调节(肾糖阈)、神经调节、激素调节体内主要升血糖激素:胰高血糖素、糖皮质激素、肾上腺素、生长激素、甲状腺素三、糖代谢1. 无氧酵解(无氧或缺氧;生成乳酸;释放少量能量)关键酶:己糖激酶、6- 磷酸果糖激酶1、丙酮酸激酶反应部位:胞液产能方式:底物磷酸化净生成2ATP⑴ 葡萄糖磷酸化为6- 磷酸葡萄糖-1ATP⑵ 6- 磷酸葡萄糖转变为6- 磷酸果糖⑶ 6- 磷酸果糖转变为1,6- 二磷酸果糖-1ATP⑷ 1,6- 二磷酸果糖裂解⑸ 磷酸丙糖的同分异构化⑹ 3- 磷酸甘油醛氧化为1,3- 二磷酸甘油酸【脱氢反应】⑺ 1,3- 二磷酸甘油酸转变成3- 磷酸甘油酸【底物磷酸化】+1*2ATP⑻ 3- 磷酸甘油酸转变为2- 磷酸甘油酸⑼ 2- 磷酸甘油酸转变为磷酸烯醇式丙酮酸⑽ 磷酸烯醇式丙酮酸转变成丙酮酸,并通过底物水平磷酸化+1*2ATP(11)丙酮酸加氢转变为乳酸生理意义:(1)是机体在缺氧情况下获取能量的有效方式。

生物化学--糖代谢

生物化学--糖代谢
2-磷酸甘油酸
COO-
C
O~ P
H2 O
CH2
烯醇化酶
磷酸烯醇式丙酮酸
(10)磷酸烯醇式丙酮酸旳磷酸转移
COO-
ADP ATP
C
O~ P
CH2
丙酮酸激酶
磷酸烯醇式丙酮酸
COO-
CO
CH
3
丙酮酸
2. 丙酮酸转变为乳酸
COOH NADH+H + NAD +
CO
CH
3
乳酸脱氢酶
丙酮酸
COOH
CHOH
CH
H2O
延胡索酸酶
COO-
HOCH
CH2 COO-
延胡索酸
苹果酸
反应8:苹果酸氧化生成草酰乙酸
乙酰-CoA H2O
草酰乙酸
苹果酸脱氢酶 (氧化)
苹果酸
NADH
柠檬酸合成酶 (缩合)
柠檬酸
顺乌头酸酶(脱水)
H2O
顺乌头酸
H2O
顺乌头酸酶
(水化)
异柠檬酸
H2O
延胡索酸酶
(加水)
延胡索酸
FADH2
NADH
非糖物质
血糖 肝、肌肉 合成糖原
(3.89~6.11mmol/L) 转变为
[血糖]> 8.9mmol/L
非糖物质
转变成其他 糖及衍生物
尿糖
血糖水平旳调整
正常情况,来路去路,维持动态平衡 1.肝脏调整 [血糖]正常水平,肝糖元Glc,[Glc]
糖异生作用加强 [血糖]正常水平,Glc肝糖元,[Glc]
糖异生作用减弱 2.肾脏调整
肾 糖 阈 : 肾 脏 所 能 保 持 旳 最 高 [Glc] 在 160180mg/dl,

生物化学糖代谢

生物化学糖代谢
调节代谢途径中关键酶的活性而影响代谢速度
关键酶
① 己糖激酶 ② 果糖磷酸激酶-1 (最重要) ③ 丙酮酸激酶
AMP ADP 果糖2;6二磷酸
激活 果糖磷酸抑激制酶1
H+ ATP高浓度 柠檬酸 长链脂肪酸
果糖1;6二磷酸
激活
抑制
丙酮酸激酶
乙酰C0A ATP 丙氨酸
抑制 己糖激酶
G6P 长链脂酰CoA
异柠檬酸脱氢酶 α酮戊二酸脱氢酶系
1丙酮酸脱氢酶系的调节
变构调节
乙酰CoA; NADH; ATP 变构抑制
丙酮酸脱氢酶系 变构激活
AMP; ADP; NAD+
乙酰CoA/HSCoA NADH/NAD+
能量充足
抑制
丙酮酸脱氢酶系
有活性
共价修饰调节
丙酮酸脱氢酶
ATP
丙酮酸脱氢 酶磷酸酶
丙酮酸脱氢 酶激酶
HSCoA泛酸 硫辛酸
FADVit B2 NAD+Vit PP
丙酮酸氧化脱羧反应过程

3 三羧酸循环 柠檬酸循环
三 羧 酸 循 环 Tricarboxylic acid Cycle; TAC 指乙酰CoA和草酰乙酸缩合生成含三个 羧基的柠檬酸;反复进行脱氢脱羧;又生成草酰 乙酸的重复循环反应的过程
辅酶 ATP
1
果糖6磷酸→果糖1;6二磷酸
1
2*甘油醛3磷酸→2*甘油酸1;3二磷酸 NAD+ 2*3或2*2
2*甘油酸1;3二磷酸→2*甘油酸3磷酸
2*1
2*烯醇式丙酮酸磷酸→2*丙酮酸
2*1
6或8ATP
第二阶段:
2*丙酮酸 → 2*乙酰CoA
辅酶 ATP
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、糖代谢(一)糖的无氧氧化1.基本概念糖酵解:一分子葡萄糖在胞质中可裂解生成两分子丙酮酸的过程称之为糖酵解,是葡萄糖无氧氧化和有氧氧化的共同起始途径。

糖的无氧氧化:在不能利用氧或氧供应不足时,机体分解葡萄糖生成乳酸的过程称为糖的无氧氧化,也称为乳酸发酵。

2.糖酵解的基本过程①葡萄糖在己糖激酶的催化下消耗1分子ATP生成葡糖-6-磷酸。

②葡糖-6-磷酸异构为果糖-6-磷酸。

③果糖-6-磷酸在磷酸果糖激酶-1的催化下消耗1分子的ATP生成果糖-1,6-二磷酸。

④果糖-1,6-二磷酸在醛缩酶的催化下裂解为1分子磷酸二羟丙酮和1分子3-磷酸甘油醛。

⑤磷酸二羟丙酮异构为3-磷酸甘油醛。

(前面的步骤相当于1分子葡萄糖裂解产生了2分子3-磷酸甘油醛) ⑥3-磷酸甘油醛在3-磷酸甘油醛脱氢酶的催化下与1分子无机磷酸结合,脱下的氢由NAD+携带,生成1,3-二磷酸甘油酸(高能化合物)。

⑦1,3-二磷酸甘油酸在磷酸甘油酸激酶的催化下水解高能磷酸键(底物水平磷酸化),产生ATP,生成3-磷酸甘油酸。

⑧3-磷酸甘油酸变位为2-磷酸甘油酸。

⑨2-磷酸甘油酸脱水生成磷酸烯醇式丙酮酸(高能化合物) 。

⑩磷酸烯醇式丙酮酸在丙酮酸激酶的催化下生成丙酮酸,产生1分子A TP(底物水平磷酸化)。

该过程需要关注的几点:(1)三个限速反应:①③⑩,同时催化这三个反应的酶为关键酶(己糖激酶、磷酸果糖激酶-1、丙酮酸激酶) (2)该过程有两次底物水平磷酸化,包含了两个高能化合物(3)调节糖酵解流量最关键的酶是磷酸果糖激酶-1 (4)能量的产生与消耗思考:1.1分子葡萄糖完全分解产生2分子丙酮酸可以产生多少个ATP?2.糖原分子中葡萄糖酵解时可以净产生多少个ATP?3.丙酮酸在在乳酸脱氢酶的作用下,由NADH+H+提供氢,使丙酮酸还原为乳酸4.糖的无氧氧化的生理意义:①迅速提供能量,这对肌肉收缩很重要②成熟红细胞没有线粒体,只能依赖无氧氧化③神经细胞、白细胞、骨髓细胞等代谢极为活跃,即使不缺氧也常由糖的无氧氧化提供部分能量(二)糖的有氧氧化1.基本概念糖的有氧氧化是指机体利用氧将葡萄糖彻底氧化为CO2和H2O的反应过程。

这个过程是体内糖分解供能的主要方式。

2.糖的有氧氧化的三个阶段(1)同糖酵解(2)丙酮酸进入线粒体,丙酮酸在丙酮酸脱氢酶复合体(由转乙酰酶、二氢硫辛酸胺脱氢酶、丙酮酸脱氢酶组成)的催化下与辅酶A反应氧化脱羧,脱下的氢由NAD+携带,生成乙酰CoA和CO2。

(参与的辅酶有TPP、硫辛酸、FAD、NAD+、CoA) (3)三羧酸循环(柠檬酸循环) ①乙酰CoA与草酰乙酸在柠檬酸合酶的催化下生成柠檬酸,反应所需的能量来自乙酰CoA。

②柠檬酸经酶-顺乌头酸复合体异构为异柠檬酸。

③异柠檬酸在异柠檬酸脱氢酶的催化下氧化脱羧,脱下的氢由NAD+携带,反应生成α-酮戊二酸及CO2。

④α-酮戊二酸在α-酮戊二酸脱氢酶复合体的催化下与辅酶A反应氧化脱羧,脱下的氢由NAD+携带,反应生成琥珀酰CoA及CO2。

⑤琥珀酰CoA在琥珀酰CoA合成酶的催化下水解掉高能硫酯键,与GDP磷酸化偶联,生成琥珀酸、GTP及CoA。

⑥琥珀酸在琥珀酸脱氢酶的催化下生成延胡索酸,脱下的氢由FAD携带。

⑦延胡索酸加水生成苹果酸。

⑧苹果酸在苹果酸脱氢酶的催化下生成草酰乙酸,脱下的氢由NAD+携带。

该过程需要关注的几点:(1)三个限速反应:①③④,同时催化这三个反应的酶为关键酶(柠檬酸合酶、异柠檬酸脱氢酶、α-酮戊二酸脱氢酶复合体)丙酮酸脱氢酶复合体也是关键酶(2)该过程只有一步水平磷酸化,只有一个高能化合物(当然乙酰CoA也是高能化合物) (3)生成三个NADH+H+和一个FADH2 (4)两次氧化脱羧(5)能量的产生与消耗思考:1分子葡萄糖完全分解生成CO2和H2O可以产生多少ATP?(两种情况均思考)3.柠檬酸循环的生理意义:①柠檬酸循环是三大营养物质分解产能的共同通路②柠檬酸循环是糖、脂肪、氨基酸代谢联系的枢纽(三)磷酸戊糖途径1.基本概念磷酸戊糖途径是指从糖酵解的中间产物葡糖-6-磷酸开始形成旁路,通过氧化、基团转移两个阶段生成果糖-6-磷酸和3-磷酸甘油醛,从而返回糖酵解的代谢途径,亦称为磷酸戊糖旁路,其主要的生理意义是生成NADPH和磷酸核糖。

2.磷酸戊糖途径的关键酶:葡糖-6-磷酸脱氢酶反应场所:胞液中3.磷酸戊糖途径的生理意义:①生成的磷酸核糖用于核酸的生物合成②生成的NADPH参与多种物质合成及生物转化③生成的NADPH可以使谷胱甘肽保持还原性,以维持红细胞膜的完整性(四)糖原的合成与分解糖原是葡萄糖的多聚体,是体内糖的储存形式。

糖原的合成是指葡萄糖合成糖原的过程,主要发生在肝脏及骨骼肌中。

反应场所:包浆中1.糖原的合成①糖酵解的中间产物:葡糖-6-磷酸②葡糖-6-磷酸变构为葡糖-1-磷酸③葡糖-1-磷酸与UTP(尿苷三磷酸)在UDPG焦磷酸化酶的催化下反应生成UDGP(尿苷二磷酸葡萄糖)及PPi(焦磷酸),焦磷酸水解为两个无机磷酸,促使反应向生成UDGP的方向移动④在糖原合酶的作用下UDPG的葡萄糖基转移到糖原引物非还原性末端上,形成α-1,4-糖苷键⑤糖链达到12~18个葡萄糖基时,分支酶将一段糖链转移到邻近的糖链上,以α-1,6-糖苷键相连形成分支该过程需要关注的几点:(1)关键酶是糖原合酶(2)糖原的合成必须要糖原引物(3)UDGP可看做是“活性葡萄糖”,是体内葡萄糖的供体,用于合成糖原(所以糖原不是由葡萄糖直接合成的) (4)糖原合成消耗2个A TP:葡萄糖磷酸化,焦磷酸水解2.糖原的分解①从非还原端开始,在糖原磷酸化酶的催化下生成葡糖-1-磷酸②脱支酶转移分支葡萄糖基到主链上,并水解α-1,6-糖苷键,生成葡糖-1-磷酸③葡糖-1-磷酸水解为葡萄糖该过程需要关注的几点:(1)关键酶是糖原磷酸化酶(2)糖原磷酸化酶只能水解α-1,4-糖苷键,不能水解α-1,6-糖苷键(3)糖原的分解不是糖原的合成的逆过程3.糖原合成与分解过程中的关键酶都受到别构调节与共价修饰两种方式的快速调节(四)糖异生1.基本概念由非糖化合物(主要是生糖氨基酸、甘油和乳酸)转化为葡萄糖或糖原的过程称之为糖异生。

主要的器官是肝脏,长期饥饿时肾糖异生的能力大为增加。

2.糖异生不完全是糖酵解的逆反应糖酵解的三个限速反应不可逆,需要其他酶的催化反应来替代:(1)丙酮酸→磷酸烯醇式丙酮酸①丙酮酸在丙酮酸羧化酶(辅酶为生物素)的催化下,消耗1分子A TP,生成草酰乙酸②草酰乙酸在磷酸烯醇式丙酮酸羧激酶的催化下,消耗1分子GTP,生成磷酸烯醇式丙酮酸(2)果糖-1,6-二磷酸在果糖二磷酸酶-1的催化下生成果糖-6-磷酸(3)葡糖-6-磷酸水解为葡萄糖3.糖异生的主要生理意义:①维持血糖恒定②补充或恢复肝糖原储备的重要途径③肾糖异生增加有利于维持酸碱平衡*4.乳酸循环(五)血糖的来源及去路、血糖的调节1.血糖的来源:①食物的消化吸收②肝糖原分解③非糖物质进行糖异生2.血糖的去路:①有氧氧化分解②合成肝糖原及肌糖原储备③转变为其它糖④转变为脂肪及氨基酸3.激素对血糖的调节:①胰岛素是唯一降低血糖的激素②胰高血糖素是升高血糖的主要因素③糖皮质激素可升高血糖④肾上腺素是强有力的升高血糖的激素4.正常血糖范围:3.89mmol/L~6.11mmol/L 低血糖:血糖浓度<2.8mmol/L高血糖:血糖浓度>7.1mmol/L二、脂质代谢(一)基本知识1.由脂肪酸和醇作用生成的酯及其衍生物统称为脂类,也叫脂质。

脂质是脂肪和类脂的总称。

脂肪即甘油三酯,也称三脂酰甘油,类脂包括固醇及其酯、磷脂和糖脂等。

2.甘油三酯是机体重要的供能和储能物质。

首先,甘油三酯氧化分解产能多;第二甘油三酯疏水,储存时不带水分子,占体积小;第三,机体有专门的储存组织——脂肪组织。

甘油二脂还是重要的细胞信号分子。

3.单不饱和脂肪酸是指含有1个双键的脂肪酸。

多不饱和脂肪酸指含有两个或两个以上双键且碳链长度为18~22个碳原子的直链脂肪酸。

4.必需脂肪酸是指机体生命活动必不可少,但机体自身又不能合成,必需由食物供给的脂肪酸,例如亚油酸、α-亚麻酸、花生四烯酸、鱼油五烯酸等。

前列腺素(PG)、血栓素(TX)及白三烯(LT)是由花生四烯酸为原料合成的。

5.脂肪酸是脂肪、胆固醇酯和磷脂的重要组成成分。

它的生物学功能是提供必须脂肪酸和合成不饱和脂肪酸衍生物。

6.磷脂是构成生物膜的重要成分,分为甘油磷脂与鞘磷脂两大类,分别由甘油和鞘氨醇构成。

磷脂酰肌醇是第二信使的前体。

7.胆固醇是细胞膜的基本结构成分,胆固醇可转化为一些具有重要生物学功能的固醇类化合物。

8.EPA的系统名为5,8,11,14,17-二十碳五烯酸DHA的系统名为4,7,13,16,19-二十二碳六烯酸(二)脂质的消化与吸收胆汁酸盐有较强的乳化作用,能降低脂-水相间的界面张力,将脂质乳化为细小微团。

小肠上段是主要的消化场所。

消化的中链、短链脂肪酸构成的甘油三酯,经胆汁酸盐乳化后可直接被肠粘膜细胞摄取,在细胞内脂肪酶催化下,水解成脂肪酸及甘油,通过门静脉进入血液循环。

脂质消化的长链脂肪酸等,在小肠粘膜细胞,重新合成甘油三酯,再在粗面内质网合成乳糜微粒(CM),经淋巴系统进入血液。

(三)甘油三酯代谢一、甘油三酯合成肝脏、脂肪组织及小肠是甘油三酯合成的主要场所,机体分解葡萄糖产生的3-磷酸甘油及乙酰CoA合成脂肪酸,因此即使人不摄入脂肪酸,也可以由糖转化为大量的脂肪酸。

小肠黏膜细胞以利用摄取甘油三酯消化产物经甘油一酯途径重新合成甘油三酯;肝和脂肪细胞利用乳糜微粒经甘油二酯途径合成甘油三酯,外源性脂肪酸的合成都需要将脂肪酸活化为脂肪酰CoA。

内源性脂肪酸的合成部位在细胞的胞质,合成的基本原料是乙酰CoA,还需要ATP、NADPH(来自磷酸戊糖途径产生的)HCO3-及Mn2+等,脂肪酸的合成基本过程是乙酰CoA先在CoA羧化酶(关键酶/限速酶;柠檬酸和异柠檬酸是该酶的别构激活剂)催化下生成丙二酸单酰CoA,乙酰CoA再与丙二酸单酰CoA经缩合、还原、脱水、再还原合成脂肪酸,每次延长2个碳原子。

思考:合成24个碳原子的脂肪酸需要进行多少次合成过程?因为人体缺乏Δ9以上去饱和酶,所以人体必需摄入足够的必须脂肪酸。

(详见P153第三点)二、甘油三酯分解(1)甘油三酯分解首先从脂肪动员开始:首先为甘油三酯水解为甘油二酯及脂肪酸,这一步由甘油三酯脂肪酶催化,它是脂肪动员的关键酶,其活性受多种激素的调节(脂解激素:胰高血糖素、去甲肾上腺素、肾上腺激素;抗脂解激素:胰岛素、前列腺素E2),被称为激素敏感性甘油三酯脂肪酶(HSL)或激素敏感性脂肪酶。

相关文档
最新文档