基于几何特征的人脸识别

合集下载

人脸识别技术大总结

人脸识别技术大总结

人脸识别技术大总结各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢是XX最新发布的《人脸识别技术大总结》的详细范文参考文章,觉得应该跟大家分享,这里给大家转摘到XX。

篇一:人脸识别技术的主要研究方法1、绪论人脸识别是通过分析脸部器官的唯一形状和位置来进行身份鉴别。

人脸识别是一种重要的生物特征识别技术,应用非常广泛。

与其它身份识别方法相比,人脸识别具有直接、友好和方便等特点,因而,人脸识别问题的研究不仅有重要的应用价值,而且在模式识别中具有重要的理论意义,目前人脸识别已成为当前模式识别和人工智能领域的研究热点。

本章将简单介绍几种人脸识别技术的研究方法。

关键词:人脸识别2、人脸识别技术的主要研究方法目前在国内和国外研究人脸识别的方法有很多,常用的方法有:基于几何特征的人脸识别方法、基于代数特征的人脸识别方法、基于连接机制的人脸识别方法以及基于三维数据的人脸识别方法。

人脸识别流程图如图2.1所示:图2.1人脸识别流程图3、基于几何特征的人脸识别方法基于特征的方法是一种自下而上的人脸检测方法,由于人眼可以将人脸在不此研究人员认为有一个潜在的假设:人脸或人脸的部件可能具有在各种条件下都不会改变的特征或属性,如形状、肤色、纹理、边缘信息等。

基于特征的方法的目标就是寻找上述这些不变特征,并利用这些特征来定位入脸。

这类方法在特定的环境下非常有效且检测速度较高,对人脸姿态、表情、旋转都不敏感。

但是由于人脸部件的提取通常都借助于边缘算子,因此,这类方法对图像质量要求较高,对光照和背景等有较高的要求,因为光照、噪音、阴影都极有可能破坏人脸部件的边缘,从而影响算法的有效性。

模板匹配算法首先需要人TN作标准模板(固定模板)或将模板先行参数化(可变模板),思想汇报专题然后在检测人脸时,计算输入图像与模板之间的相关值,这个相关值通常都是独立计算脸部轮廓、眼睛、鼻子和嘴各自的匹配程度后得出的综合描述,最后再根据相关值和预先设定的阈值来确定图像中是否存在人脸。

人脸识别中的表情识别技术

人脸识别中的表情识别技术

人脸识别中的表情识别技术人脸识别技术在近年来得到了广泛的应用和研究,而其中的表情识别技术更是其中一个重要的研究方向。

随着人工智能领域的不断发展,人脸识别中的表情识别技术在各个领域中都有着重要的作用。

本文将介绍人脸识别中的表情识别技术的原理、应用以及目前的发展。

一、表情识别技术的原理表情识别技术是指通过对人脸的表情进行分析和识别,从而获取人的情绪状态和表情信息的一种技术。

这项技术的实现基于计算机视觉和模式识别的理论,通过对人脸图像进行特征提取和模式匹配,来判断人的表情状态。

1. 特征提取在表情识别技术中,常用的特征提取方法主要有几何特征、纹理特征和动态特征等。

几何特征是通过测量人脸的重要几何参数,如眼睛、嘴巴的位置和形状等,来表示人脸表情的变化。

纹理特征则是通过对人脸表面纹理进行分析,提取纹理特征来表示表情的差异。

动态特征是通过对人脸图像序列进行分析,提取人脸在时间上的演化特征,如人脸的运动轨迹、关键帧等。

2. 模式匹配模式匹配是指将提取到的特征与事先训练好的模型进行比对,从而达到识别表情的目的。

常用的模式匹配方法有主成分分析(PCA)、独立成分分析(ICA)、支持向量机(SVM)等。

通过建立模型和训练样本的匹配关系,可以实现对人脸表情的识别。

二、表情识别技术的应用表情识别技术在人脸识别领域中有着广泛的应用,下面将介绍一些主要的应用场景。

1. 情感分析表情识别技术可以帮助我们判断人的情感状态,对于情感分析具有重要的意义。

比如在社交媒体中,通过分析用户在照片或视频中的表情,可以了解用户对某个事件或产品的态度和情感,从而为商家或企业提供有效的市场调研数据。

2. 人机交互表情识别技术可以应用于人机交互领域,通过对用户面部表情的识别,可以实现更加智能和自然的人机交互方式。

比如在游戏中,人脸表情的识别可以作为控制命令的输入方式,实现更加沉浸式的游戏体验。

3. 安防监控表情识别技术可以应用于安防监控领域,通过对行人或人群中的表情状态进行分析,可以判断是否存在可疑人员或异常行为。

人脸识别系统的原理与发展

人脸识别系统的原理与发展

人脸识别系统的原理与发展一、引言人脸识别系统以人脸识别技术为核心,是一项新兴的生物识别技术,是当今国际科技领域攻关的高精尖技术。

它广泛采用区域特征分析算法,融合了计算机图像处理技术与生物统计学原理于一体,利用计算机图像处理技术从视频中提取人像特征点,利用生物统计学的原理进行分析建立数学模型,具有广阔的发展前景。

2012年4月,铁路部门宣布车站安检区域将安装用于身份识别的高科技安检系统人脸识别系统;可以对人脸明暗侦测,自动调整动态曝光补偿,人脸追踪侦测,自动调整影像放大;二、概述人脸识别系统概述广义的人脸识别实际包括构建人脸识别系统的一系列相关技术,包括人脸图像采集、人脸定位、人脸识别预处理、身份确认以及身份查找等;而狭义的人脸识别特指通过人脸进行身份确认或者身份查找的技术或系统。

生物特征识别技术所研究的生物特征包括脸、指纹、手掌纹、虹膜、视网膜、声音(语音)、体形、个人习惯(例如敲击键盘的力度和频率、签字)等,相应的识别技术就有人脸识别、指纹识别、掌纹识别、虹膜识别、视网膜识别、语音识别(用语音识别可以进行身份识别,也可以进行语音内容的识别,只有前者属于生物特征识别技术)、体形识别、键盘敲击识别、签字识别等。

人脸识别系统功能模块人脸捕获与跟踪功能:人脸捕获是指在一幅图像或视频流的一帧中检测出人像并将人像从背景中分离出来,并自动地将其保存。

人像跟踪是指利用人像捕获技术,当指定的人像在摄像头拍摄的范围内移动时自动地对其进行跟踪。

人脸识别比对:人脸识别分核实式和搜索式二种比对模式。

核实式是对指将捕获得到的人像或是指定的人像与数据库中已登记的某一对像作比对核实确定其是否为同一人。

搜索式的比对是指,从数据库中已登记的所有人像中搜索查找是否有指定的人像存在。

人脸的建模与检索:可以将登记入库的人像数据进行建模提取人脸的特征,并将其生成人脸模板(人脸特征文件)保存到数据库中。

在进行人脸搜索时(搜索式),将指定的人像进行建模,再将其与数据库中的所有人的模板相比对识别,最终将根据所比对的相似值列出最相似的人员列表。

人脸识别的原理

人脸识别的原理

人脸识别的原理
人脸识别是一种技术,可以识别人脸的特征,从而实现个人身份鉴别的目的。

其基本
原理主要是通过对被检测者面部特征点进行抽取,然后与样本面部特征模板进行比对来实
现身份识别,也可以通过神经网络学习识别图像上的一些人脸特征。

一般来说,涉及到人脸识别的系统是分为人脸检测与特征提取的,首先需要将真实视
觉的人脸空间信息转换为一系列可以计算和存储的数字值,这就涉及到图像处理和数字图
像处理等技术。

人脸检测的原理是用摄像头或者图片采集设备,通过识别图像中的几何结构特征,如
眼睛、鼻子、嘴巴等等,以及皮肤细节,来分析出图像中是否存在一个可识别的面部.
接着进行特征提取,是通过设计算法从刚刚提取的图像中提取出人脸特征,一般需要
提取的特征包括人脸的位置信息、脸型信息、眼睛、鼻子、嘴巴位置信息、面部微笑等等. 一般来说,脸部特征提取使用的是映射和 Gabor 滤波器,映射提取出特征空间中的特征点,而 Gabor 滤波器则提取出更精确的特征特征。

此外,还可以使用特征检测器检测特
定的特征点。

最后通过将特征抽取出来存储起来,然后进行人脸图像匹配,与多个模板库中的特征
模板进行比较,最终得到一个最匹配的模板,以此便可以实现人脸的身份鉴别。

人脸对比识别技术内容及功能介绍

人脸对比识别技术内容及功能介绍

人脸对比识别技术内容及功能介绍人脸对比识别技术是一种基于生物特征识别技术的高科技产品,它通过采集并比对人脸图像信息进行身份验证。

这种技术主要涉及人脸检测、特征提取和比对等环节,下面将对人脸对比识别技术的功能及内容进行详细介绍。

一、人脸对比识别技术简介人脸对比识别技术利用图像处理技术和模式识别技术,对人脸图像进行采集、分析和比对,以实现身份识别和验证的目的。

这种技术具有非接触性、非侵入性、便捷性和安全性等优点,已被广泛应用于社会各个领域,如安全监控、门禁系统、移动支付等。

二、人脸对比识别技术流程1.人脸检测人脸检测是人脸对比识别技术的首要环节,其任务是从图像中检测并定位出人脸的位置和大小。

人脸检测算法通常采用基于特征的方法或基于深度学习的方法。

其中,基于特征的方法通过提取人脸的几何特征或纹理特征进行检测,而基于深度学习的方法则利用卷积神经网络(CNN)进行人脸检测。

2.特征提取特征提取是人脸对比识别技术的核心环节之一,其任务是从人脸图像中提取出表征个体的特征信息。

传统的特征提取方法主要基于几何特征或纹理特征,而现代的特征提取方法则多采用深度学习的方法。

卷积神经网络(CNN)是一种广泛应用于人脸特征提取的深度学习模型,它可以自动学习人脸特征的表达。

3.特征比对特征比对是人脸对比识别技术的另一个核心环节,其任务是将待比对的人脸特征与已知的人脸特征进行比较,找出相似度最高的匹配者。

特征比对算法通常采用距离比对或嵌入比对的方法。

其中,距离比对方法通过计算待比对特征之间的距离进行相似度评估,而嵌入比对方法则通过将待比对特征嵌入到一个预先训练好的分类器中进行分类。

三、人脸对比识别技术的功能及应用1.身份验证人脸对比识别技术可用于身份验证,通过对个人身份信息进行核实,确认其真实身份。

在安全监控、门禁系统等领域,通过安装人脸识别系统,可实现非接触式的身份验证,提高安全性和便捷性。

2.访问控制人脸对比识别技术可用于访问控制,通过对人员权限进行管理,控制其对重要区域或资源的访问。

人脸识别技术的原理

人脸识别技术的原理

人脸识别技术的原理人脸识别技术是一种通过计算机技术来识别并验证人脸信息的技术。

它利用图像处理技术和模式识别技术来实现。

下面我们来了解一下人脸识别技术的原理。

人脸识别技术的流程主要分为以下几个步骤:1.采集人脸图像:这是人脸识别的第一步,它通过摄像头或者其他设备采集人脸图像,然后将图像传输到计算机中进行处理。

2.人脸定位:在采集到的图像中需要检测和定位人脸的位置和大小,因为在实际采集中人脸的大小和位置都会发生变化,这个步骤是非常重要的。

3.特征提取:特征提取是所有人脸识别算法的核心,它可以对图像中的人脸进行数学建模和描述,创造出一个可以准确区分人脸的数学特征。

这个过程通常包含以下几个方面:灰度化、归一化、滤波、人脸图像标准化等。

4.人脸匹配:在完成特征提取之后,需要进行模式匹配搜索。

在此过程中,系统将摄取到的人脸图片与已存储的特征模板进行匹配,如果匹配成功,则可以实现对用户身份的识别。

5.判定与决策:通过人脸匹配完成用户识别以后,系统还需要根据识别结果判断用户是否存在于系统中,并作出相应决策。

通常我们认为人脸识别技术可以通过基于几何特征的方法、基于模型的方法和基于学习的方法进行。

第一种方法以脸部的尺寸、位置、角度等作为特征进行处理,但它对于环境光线的影响比较强,误识别率较高。

第二种方法将人脸图像分解为一组基本的人脸元素,并建立人脸的模型,对人脸进行识别。

这种方法在建立模型时对于人脸图像的要求比较高,且难度也比较大。

第三种方法则是基于机器学习的方法,它通过对大量的训练数据进行学习来识别人脸。

这种方法的优点是能够自动提取特征,但是需要有大量的训练数据,同时也有一定的学习难度与消耗。

人脸识别技术能够对人脸进行高精度的识别并验证;有着广泛的应用场景,比如身份认证、门禁系统等。

目前,人脸识别技术已经在社会上得到广泛应用,随着技术的不断进步,其应用场景也将更为丰富。

人脸识别技术的发展已经越来越成熟,在未来,我们可以期待更多更强大的应用场景。

人脸识别技术的特征提取方法

人脸识别技术的特征提取方法

人脸识别技术的特征提取方法人脸识别技术是一种通过获取和分析人脸图像中的特征,来进行身份验证或者身份识别的技术。

而人脸识别技术的核心就是人脸特征的提取。

本文将介绍几种常用的人脸识别技术中的特征提取方法。

一、颜色信息的提取颜色信息是人脸图像中最直观的特征之一,通过对人脸图像进行色彩空间转换,即将RGB颜色空间转换为HSV颜色空间,可以提取出特定的颜色信息。

在HSV颜色空间中,H表示色调,S表示饱和度,V 表示亮度。

通过调整阈值,可以提取出人脸图像中的肤色信息,从而进行特征的提取和分析。

二、几何信息的提取几何信息是利用人脸图像中的形状和结构特征,通过计算和测量人脸各个部位之间的相对位置和大小关系来进行特征提取。

常见的几何信息包括眼睛间距、眼睛到鼻子的距离、嘴巴的大小等。

通过测量和计算这些几何信息,可以得到一个人脸的独特特征。

三、纹理信息的提取纹理信息是指人脸图像中由于皮肤质地、皱纹等因素造成的细微变化。

纹理信息的提取需要先将人脸图像进行分割,再对每个小区域进行纹理特征的提取。

常用的方法有局部二值模式(LBP)和高斯微分滤波器(GDF)等。

通过提取纹理信息,可以得到一个人脸图像的纹理特征。

四、特征融合除了单一的特征提取方法,还可以通过将不同的特征进行融合来得到更加准确的特征提取结果。

特征融合可以采用加权求和的方式,将不同特征的重要性进行评估,并根据重要性进行加权处理。

常见的特征融合方法有融合规则、融合加权和融合决策等。

五、深度学习方法近年来,深度学习方法在人脸识别技术中得到了广泛应用。

深度学习方法通过构建深层神经网络,利用多层次的特征提取和表达能力来实现人脸特征的提取。

常见的深度学习方法有卷积神经网络(CNN)和自编码器(Autoencoder)等。

总结:人脸识别技术的特征提取方法包括颜色信息的提取、几何信息的提取、纹理信息的提取、特征融合和深度学习方法。

不同的特征提取方法有不同的应用场景和优劣势,根据具体的需求选择合适的方法进行特征提取,可以提高人脸识别技术的准确度和稳定性。

人脸识别发展史

人脸识别发展史

1 人脸识别研究的发展状况1.1 发展历史早在1888年和1920年Galton就在《Nature》上发表过两篇关于利用人脸进行身份识别的论文。

真正意义上的自动人脸识别的研究开始于二十世纪六十年代中后期 1965年Chen 和Bledsoe的报告是最早的关于自动人脸识别的文献。

1965到1990年之间是人脸识别研究的初级阶段 这一阶段的研究主要集中在基于几何结构特征的人脸识别方法 Geometric feature based 。

该阶段的研究基本没有得到实际的应用。

1991年到1997年间是人脸识别研究非常活跃的重要时期。

出现了著名的特征脸方法Eigenface 该方法由麻省理工学院的Turk和Pentland提出 之后有许多基于该方法的研究。

Brunelli和Poggio在1992年对基于结构特征的方法和基于模板匹配的方法进行了实验对比 并给出了后者优于前者的明确结论。

该时期内 美国国防部资助的FERET FacE Recognition technology Test 项目资助多项人脸识别研究 创建了著名的FERET人脸图像数据库。

该项目极大地促进了人脸识别算法的改进以及算法的实用化。

1998年至今 研究者开始针对非理想条件下的人脸识别进行研究。

光照、姿势等问题成为研究热点。

出现了基于3D模型的人脸建模与识别方法。

在商业化的应用方面 美国国防部在2000年和2002年组织了针对人脸识别商业系统的评测FRVT Face Recognition Vendor Test) 比较领先的系统提供商有Cognitec, Identix和Eyematic。

1.2 主要公共数据库人脸数据库对于人脸识别算法的研究是不可缺少的 而公共人脸图像数据库的建立方便不同研究者之间的交流学习 并有助于不同算法的比较 下面列举常用的人脸图像数据库。

FERET人脸数据库 是FERET项目创建的人脸数据库 该库包含14,051幅多姿态、不同光照条件的灰度人脸图像 是人脸识别领域应用最广泛的人脸数据库之一。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于几何特征的人脸识别 学号: 姓 名: (上海大学 机电工程与自动化学院,200072) 摘 要:人脸识别技术作为多学科领域的、具有挑战性的课题,它覆盖了数字图像处理、模式识别、神经网络、数学等诸多学科的内容,同时也具有十分广泛的应用价值。在人脸识别领域,基于几何特征的人脸识别算法因其计算简单、使用有效等特性,引起了人们的广泛注意,并已成为人脸图像特征提取和识别的主流方法之一。本文定位人脸器官,通过人脸面部拓扑结构几何关系的先验知识,利用基于灰度投影的方法在知识的层次上提取人脸面部主要器官特征,将人脸特征用一组几何特征向量表示,识别归结为特征向量之间的匹配。本文工作包括:

(1)对灰度积分投影理论进行了详细的介绍和分析。这种方法是目前定位人脸轮廓的主要方法。在此基础上对一种新的在竖直方向上定位人脸左右轮廓的灰度差投影法进行了改进。投影法本质上是一种基于统计的方法,在具体应用时又结合了人脸特征分布的先验知识。这种方法不需要对积分投影图做任何平滑处理等操作,因而算法简单,准确率高,速度很快。

(2)提出了一种精确定位眼睛的方法,该算法将眼区灰度总体分布特点与眼部灰度变化特点相结合,将传统的积分投影法与灰度差累加值投影法相结合,通过大量试验选取合适的参数。试验结果表明,该算法对光照变化不敏感,定位准确率高。运用灰度积分投影结合人脸特征的先验知识定位鼻子,这种定位方法得到的准确率也是比较高的。嘴巴的定位则利用投影法求得。

(3)本文根据定位出来的人脸器官选出七个特征点,即四个眼角点、鼻尖点和两个嘴角点。利用它们构造了十个特征向量,并对其进行归一化运算。图像识别的最后一个过程就是分类,本文采取根据模式相似性的最近距离分类器进行分类。用加权比值函数来计算特征相似度,更适用于人脸图像的识别和计算。如何选择出合适的识别门限是个很复杂的问题,还有待于进一步研究。

关键词:人脸识别;灰度投影;几何特征;特征提取

The Research of Face Recognition Algorithm Based on

Geometric Features Student number:15721637 Name:Zhao Pei-pei (Institute of electrical and mechanical engineering and automation, Shanghai University, Shanghai 200072, China)

Abstract:the technology of human face recognition as a multi-disciplinary field and challenging psubject which contains digital image processing,pattern recognition,computer vision,neural network,psychology,physiology,mathematics and a good many subjects.In the meantime,it also has widely used.In the field of face recognition,the method of human face recognition based on geometric features has been paid great attention for its simple calculation and availability.At present,it has become one of the dominant methods as the feature extraction and recognition.TMs article locates human face organs,through apriori knowledge of human face topological structure geometrical relationship,making use of method based on construct to extract the features of human face organs,expressing human face through a set of geometric feature vectors.The recognition putting in summary is matched with feature vector.This paper includes the following parts:

(1)Have a detailed introduction and analysis about the theory of greyscale integrated projection.This method is now the main method of locating human face.We put forward a new method called greyscale differential projection which is based on the previous method and locating the contour of human face vertical directly.Projection method is essentially

based on statistics.It combines the apriori knowledge of human face feature distribution in the application.This method needn’t to do any pretreatment to the image and any smoothing treatment to the integrated projection image.So this algorithm is simple;the accuracy is high; the speed is quick.

(2)Give an introduction about the method of locating eyes precisely.This algorithm combines the character of the eye area greyscale totally distribution and greyscale transformation;combines the methods of traditional integrated projection and differential projection.The experiment led to the fact that this algorithm is not sensitive to the illumination transformation and has a high accuracy.Using greyscale integrated projection combines the apriori knowledge of human face character to locate nose.This location method also has high accuracy.The location of mouth is abtained through projection method.

(3)The choice of characteristic points needs enough information and can’t go so far as to increase calculation quantity.This article chooses seven characteristic points,namely,four canthus points,tip of nose and two corners of mouth points.Construct ten eigenvectors using them and carries on the normalization calculation to them.The last process of image recognition is classification.After adopting some standards to extract feature of human images,we construct category separability decision rule according to these characters and design classifier.This article takes use of minimum distance classification to classify.It iS more suitable for human face recognition and calculation using weighing ratio to calculate similarity.How to choose a suitable recognition threshold is a difficult problem and need further research.This article ascertains it through a good many experiments.

Key Words:Face Recognition;Greyscale Projection;Geometric Characters;Feature Extraction 1. 引言 1.1人脸识别技术:

相关文档
最新文档