三角恒等变换奥数题
专题12 简单的三角恒等变换(解析版)

于是 b + c = 2R (sinB + sinC )
=
43 3
sinB
+
sin
2 3
−
B
=
43 3
3 sinB + 2
3 2
cosB
=
4sin
B
+
6
.
因为 ABC 是锐角三角形且 A = , 3
所以由 C
2
,得
2 3
−
B
2
,因此
B
的取值范围是
6
,
2
.
6/7
( 而由
;(2)
−
2 2
,1
.
【解析】(1)由正弦定理得: sinA = sinBcosC + sinCsinB
因为: sinA = sin ( B + C ) = sinBcosC + cosBsinC
故 cosBsinC = sinCsinB 因为 sinC 0 ,所以 cosB = sinB 因为 0 B ,所以 B =
2
2
∴ A .
6
4
) ∵
a
=
2
,∴
a sinA
2
2,4
.又 b + c = a , sinB + sinC sinA
3/7
( ) ∴ b + c 2 2, 4 . sinB + sinC
( ) 故答案为 2 2, 4
7.(三角恒等变换在实际中的运用)如图,有一壁画,最高点 A 处离地面 6m,最低点 B 处离地面 3.5m.若 从离地高 2m 的 C 处观赏它,则离墙______m 时,视角 最大.
三角恒等变换经典例题

三角恒等变换1. 两角和与差的正弦、余弦、正切公式:(1)βαβαβαsin cos cos sin )sin(+=+ βαβαβαsin co cos sin )sin(s -=- (2)βαβαβαsin sin cos cos )cos(-=+ βαβαβαsin sin cos cos )cos(+=-(3)βαβαβαtan tan 1tan tan )tan(-+=+ ⇒ ()()t a n t a n t a n 1t a n t a nαβαβαβ+=+- (4)βαβαβαtan tan 1tan tan )tan(+-=- ⇒ ()()t a n t a n t a n 1t a n t a nαβαβαβ-=-+ (7) sin cos a b αα+=22sin()a b αϕ++(其中,辅助角ϕ所在象限由点(,)a b 所在的象限决定,2222sin ,cos ,tan baba ab a b ϕϕϕ===++ ,该法也叫合一变形). (8))4tan(tan 1tan 1θπθθ+=-+ )4tan(tan 1tan 1θπθθ-=+-2. 二倍角公式(1)a a a cos sin 22sin = (2)1cos 2sin 21sin cos 2cos 2222-=-=-=a a a a a(3)aaa 2tan 1tan 22tan -=3. 降幂公式:(1)22cos 1cos 2a a +=(2) 22cos 1sin 2a a -=4. 升幂公式(1)2cos 2cos 12αα=+ (2)2sin2cos 12αα=-(3)2)2cos 2(sin sin 1ααα±=± (4)αα22cos sin 1+= (5)2cos2sin 2sin ααα=5. 半角公式(符号的选择由2θ所在的象限确定) (1)2cos 12sinaa -±=, (2)2cos 12cos a a +±= , (3)a a a a a a a sin cos 1cos 1sin cos 1cos 12tan-=+=+-±=6. 万能公式:(1)2tan 12tan2sin 2ααα+=, (2)2tan 12tan 1cos 22ααα+-=,(3).2tan 12tan2tan 2ααα-=7,辅角公式)sin(cos sin 22ϕθθθ++=+b a b a 其中2222s i n ,c o s b a bb a a +=+=ϕϕ,比如:xx y cos 3sin +=)cos )3(13sin )3(11()3(1222222x x ++++=)cos 23sin 21(2x x +=)3sin cos 3cos (sin 2ππx x +=)3sin(2π+=x10. 常见数据:6262sin15cos75,sin75cos1544-+︒=︒=︒=︒=, 3215tan -=︒, 3275tan +=︒,专题四 三角恒等变形各类题命题点1 和差公式的直接应用1.(2015课标1,2) 0000sin 20cos10cos160sin10-=( )3.2A -3.2B 1.2C - 1.2D2.(2017江苏,5)若1tan()46πα-=,则tan α=_____________ . 3.(2016·杭州模拟)已知sin α=35,α∈(π2,π),则cos 2α2sin (α+π4)=________.4.在△ABC 中,若tan A tan B =tan A +tan B +1,则cos C 的值为( ) A .-22 B.22 C.12 D .-125.(2016·全国丙卷)若tan α=34,则cos 2α+2sin 2α等于( )A.6425B.4825 C .1 D.16256.(2016·宁波期末考试)已知θ∈(0,π4),且sin θ-cos θ=-144,则2cos 2θ-1cos (π4+θ)等于( )A.23B.43C.34D.327.(2017浙江高考模拟训练冲刺卷四,4)已知4sin25θ=-,3cos 25θ=,则θ属于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 命题点2 角的变换8.设α、β都是锐角,且cos α=55,sin(α+β)=35,则cos β等于( ) A.2525 B.255 C.2525或255 D.55或5259.已知cos(α-π6)+sin α=453,则sin(α+7π6)的值是________.10.设α为锐角,若cos(α+π6)=45,则sin(2α+π12)的值为________.11.(2016·浙江五校联考)已知3tan α2+tan 2α2=1,sin β=3sin(2α+β),则tan(α+β)等于( )A.43 B .-43 C .-23 D .-3 命题点3 三角函数式的化简12.(2013重庆,9)004cos50tan 40-=( ).2A 23.2B + .3C 221- 13.化简:(1+sin θ+cos θ)(sin θ2-cos θ2)2+2cos θ (0<θ<π);化简4cos 2sin 22+-14.求值:1+cos 20°2sin 20°-sin 10°(1tan 5°-tan 5°).15. 化简:2cos 4x -2cos 2x +122tan ⎝⎛⎭⎫π4-x sin 2⎝⎛⎭⎫π4+x =________.16.(2017·嘉兴第一中学调研)若sin(π+α)=35,α是第三象限角,则sin π+α2-cosπ+α2sin π-α2-cosπ-α2等于A.12 B .-12C .2D .-2 命题点4 给值求值问题17.(2017课标全国3文,4)已知4sin cos 3αα-=,则sin2α=( ) 7.9A - 2.9B - 2.9C 7.9D18.(2016·合肥联考)已知α,β为锐角,cos α=17,sin(α+β)=5314,则cos β=________.19.(2013浙江,6)已知R α∈,10sin 2cos 2αα+=,则tan 2α=( ) 4.3A 3.4B 3.4C - 4.3D - 20.(2014江苏,15)已知(,)2παπ∈,5sin 5α=(1)求sin()4πα+的值;(2)求5cos(2)6πα-的值。
三角恒等变换综合练习(解析版)

答案解析部分一、单选题1.【答案】C【解析】【解答】如图:在Rt△OCB中,设∠COB=α,则OB=2cosα,BC=2sinα,在Rt△OAD中,DAOA=tan45°=1,所以OA=DA=2sinα,∴AB=OB−OA=2cosα−2sinα,设矩形A BCD的面积为S,则S=AB⋅BC=(2cosα−2sinα)⋅2sinα=4(12sin2α−sin2α)=2(sin2α+cos2α)−2=2√2sin(2α+π4)−2,由于0<α<π4,所以当α=π8时,S最大=2√2−2,故答案为:C【分析】如图先用所给的角将矩形的面积表示出来,建立三角函数模型,再根据所建立的模型,利用三角函数的性质求最值。
2.【答案】D【解析】【解答】由f(x)=sinωx+√3cosωx=2sin(ωx+π3),由x=−5π6和x=π6为两条相邻的对称轴,所以周期T2=π6−(−5π6)=π,所以T=2πω=2π,解得ω=1.故答案为:D.【分析】直接由对称轴得半周期为π,再利用周期公式求解即可。
3.【答案】D【解析】【解答】y=sinx−√3cosx=2sin(x−π3),将函数的图像沿x轴向右平移m(m>0)个单位长度,可得y=2sin(x−m−π3),此函数图像关于y轴对称,则−m−π3=kπ+π2(k∈Z),解得m=−kπ−5π6(k∈Z),因为m>0,则当k=−1时,m取得最小值π6,故答案为:D。
【分析】利用辅助角公式化简函数为正弦型函数,再利用图象的平移变换结合图象的对称性,从而推出函数图像关于y轴对称,再利用函数图象的对称性,从而求出m=−kπ−5π6(k∈Z),因为m>0,则当k=−1时,从而求出m的最小值。
4.【答案】D【解析】【解答】解:由辅助角公式得:f(x)=√a2+b2sin(2x+φ),由f(x)≤f(π6)恒成立,得2×π6+φ=2kπ+π2(k∈Z),所以φ=2kπ+π6(k∈Z),取φ=π6,从而f(x)=√a2+b2sin(2x+π6),由f(11π12)=0得①正确,由2kπ−π2≤2x+π6≤2kπ+π2(k∈Z)得kπ−π3≤x≤kπ+π6(k∈Z),所以函数的单调递增区间为[kπ−π3,kπ+π6](k∈Z),②不正确,根据正弦函数的奇偶性易得③显然正确,由2x+π6=kπ+π2(k∈Z),得对称轴为x=kπ2+π6(k∈Z),④正确,故答案为:D.【分析】利用辅助角公式化简函数为正弦型函数,再由f(x)≤f(π6)恒成立,得出φ的值,从而求出正弦型函数的解析式,再利用换元法将正弦型函数转化为正弦函数,再利用正弦函数的图像求出正弦型函数的对称点和对称轴,并判断出正弦型函数的单调性,从而求出对应的单调递增区间,再利用奇函数和偶函数的定义判断出正弦型函数的奇偶性,从而找出说法正确的序号。
三角恒等变换经典例题

三角恒等变换1. 两角和与差的正弦、余弦、正切公式:(1)βαβαβαsin cos cos sin )sin(+=+ βαβαβαsin co cos sin )sin(s -=- (2)βαβαβαsin sin cos cos )cos(-=+ βαβαβαsin sin cos cos )cos(+=-(3)βαβαβαtan tan 1tan tan )tan(-+=+ ⇒ ()()tan tan tan 1tan tan αβαβαβ+=+-(4)βαβαβαtan tan 1tan tan )tan(+-=- ⇒ ()()tan tan tan 1tan tan αβαβαβ-=-+(7) sin cos a b αα+=)αϕ+(其中,辅助角ϕ所在象限由点(,)a b 所在的象限决定,sin tan ba ϕϕϕ=== ,该法也叫合一变形). (8))4tan(tan 1tan 1θπθθ+=-+ )4tan(tan 1tan 1θπθθ-=+-2. 二倍角公式(1)a a a cos sin 22sin = (2)1cos 2sin 21sin cos 2cos 2222-=-=-=a a a a a(3)aaa 2tan 1tan 22tan -=3. 降幂公式:(1)22cos 1cos 2a a +=(2) 22cos 1sin 2a a -=4. 升幂公式(1)2cos 2cos 12αα=+ (2)2sin2cos 12αα=-(3)2)2cos 2(sin sin 1ααα±=± (4)αα22cos sin 1+= (5)2cos2sin 2sin ααα=5. 半角公式(符号的选择由2θ所在的象限确定) (1)2cos 12sinaa -±=, (2)2cos 12cos a a +±= , (3)a a a a a a a sin cos 1cos 1sin cos 1cos 12tan-=+=+-±=6. 万能公式:(1)2tan 12tan2sin 2ααα+=, (2)2tan 12tan 1cos 22ααα+-=,(3).2tan 12tan2tan 2ααα-=7,辅角公式)sin(cos sin 22ϕθθθ++=+b a b a 其中2222sin ,cos b a bb a a +=+=ϕϕ,比如:xx y cos 3sin +=)cos )3(13sin )3(11()3(1222222x x ++++=)cos 23sin 21(2x x +=)3sin cos 3cos (sin 2ππx x +=)3sin(2π+=x10.常见数据:sin15cos75cos15︒=︒=︒=︒= 3215tan -=︒, 3275tan +=︒,专题四 三角恒等变形各类题命题点1 和差公式的直接应用1.(2015课标1,2) 0000sin 20cos10cos160sin10-=( ).AB 1.2C - 1.2D2.(2017江苏,5)若1tan()46πα-=,则tan α=_____________ . 3.(2016·杭州模拟)已知sin α=35,α∈(π2,π),则cos 2α2sin (α+π4)=________.4.在△ABC 中,若tan A tan B =tan A +tan B +1,则cos C 的值为( ) A .-22 B.22 C.12 D .-125.(2016·全国丙卷)若tan α=34,则cos 2α+2sin 2α等于( )A.6425B.4825 C .1 D.16256.(2016·宁波期末考试)已知θ∈(0,π4),且sin θ-cos θ=-144,则2cos 2θ-1cos (π4+θ)等于( )A.23B.43C.34D.327.(2017浙江高考模拟训练冲刺卷四,4)已知4sin25θ=-,3cos 25θ=,则θ属于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 命题点2 角的变换8.设α、β都是锐角,且cos α=55,sin(α+β)=35,则cos β等于( ) A.2525 B.255 C.2525或255 D.55或5259.已知cos(α-π6)+sin α=453,则sin(α+7π6)的值是________.10.设α为锐角,若cos(α+π6)=45,则sin(2α+π12)的值为________.11.(2016·浙江五校联考)已知3tan α2+tan 2α2=1,sin β=3sin(2α+β),则tan(α+β)等于( )A.43 B .-43 C .-23 D .-3 命题点3 三角函数式的化简12.(2013重庆,9)004cos50tan 40-=()BC 1 13.化简:(1+sin θ+cos θ)(sin θ2-cos θ2)2+2cos θ (0<θ<π);化简4cos 2sin 22+-14.求值:1+cos 20°2sin 20°-sin 10°(1tan 5°-tan 5°).15. 化简:2cos 4x -2cos 2x +122tan ⎝⎛⎭⎫π4-x sin 2⎝⎛⎭⎫π4+x =________.16.(2017·嘉兴第一中学调研)若sin(π+α)=35,α是第三象限角,则sin π+α2-cosπ+α2sin π-α2-cosπ-α2等于A.12 B .-12C .2D .-2 命题点4 给值求值问题17.(2017课标全国3文,4)已知4sin cos 3αα-=,则sin2α=( ) 7.9A - 2.9B - 2.9C 7.9D18.(2016·合肥联考)已知α,β为锐角,cos α=17,sin(α+β)=5314,则cos β=________.19.(2013浙江,6)已知R α∈,sin 2cos αα+=则tan 2α=( ) 4.3A 3.4B 3.4C - 4.3D - 20.(2014江苏,15)已知(,)2παπ∈,sin α=(1)求sin()4πα+的值;(2)求5cos(2)6πα-的值。
三角恒等变换

三角恒等变换一、两角和与差的正弦、余弦和正切公式:⑴()cos cos cos sin sin αβαβαβ-=+; ⑵()cos cos cos sin sin αβαβαβ+=-;⑶()sin sin cos cos sin αβαβαβ-=-; ⑷()sin sin cos cos sin αβαβαβ+=+;⑸()tan tan tan 1tan tan αβαβαβ--=+ ⇒ (()()tan tan tan 1tan tan αβαβαβ-=-+);⑹()tan tan tan 1tan tan αβαβαβ++=- ⇒ (()()tan tan tan 1tan tan αβαβαβ+=+-).二、二倍角的正弦、余弦和正切公式:sin22sin cos ααα=.2222cos2cos sin 2cos 112sin ααααα=-=-=-⇒升幂公式2sin 2cos 1,2cos 2cos 122αααα=-=+⇒降幂公式2cos 21cos 2αα+=,21cos 2sin 2αα-=.22tan tan 21tan ααα=- .例题讲解:1、075sin 的值为 ( )A 、32-B 、32+C 、426+ D 、426-2、已知βα, 为锐角,1010sin 55sin ==βα则βα+ 为( )A 、450B 、1350C 、2250D 、450或13503、计算0205.22tan 15.22tan 2-的值为 ( )A 、1B 、22C 、3D 、334、0075sin 15sin ⋅=5、54sin =x ,x 为第二象限角,则=x 2sin 6、已知532cos =α,则αα22sin 2cos -=三、合一变形把两个三角函数的和或差化为“一个三角函数,一个角,一次方”的 B x A y ++=)sin(ϕϖ形式。
()sin cos αααϕA +B =+,其中tan ϕB=A .例题讲解:把下列各式化成()sin y A x b ωϕ=++或()cos y A x b ωϕ=++的形式(1)1cos sin 22y x x =+ (2)cos sin y x x =-(3)sin y x x =+ (4)5cos 12sin y x x =+(5)2sin 22cos y x x =+ (6)2sin cos y x x x =+(7)44cos sin 2y x x x =- (8)()2cos sin cos y x x x =-课后练习:1、000040sin 20cos 20sin 40cos +2、8sin 8cos ππ⋅3、已知, 23παπ<< 53sin -=α求:)3 tan(πα+的值4、已知2 tan =α试求ααααcos sin cos sin +-的值5、若135)sin(,53sin =+=βαα (βα,为第一象限角) 求βcos 的值6、已知21) sin(=+βα,31) sin(=-βα 求βαtan tan的值7、已知βα, 为锐角,且βαtan , tan 是方程04332=+-x x 的两个根, 试求1))tan 1)(tan 1(βα++的值2)βα+ 的度数。
三角恒等变换练习.docx

三角恒等变换练习是方程x 2 - 3x+2=0的两个根,则tan ( a + B )=cos 2 a +2sin2 a =( 3.sin20° coslO° +cos20°A-14•计算 sin43° cosl3° -cos43° sinl3° 的结果等于()B.逅C ・返^D.逅3 22V35.函数f (x) =sinxcosx+ 2 cos2x 的最小正周期和振幅分别是A. n , 1B. Ji , 2C- 2 n , 1D- 2n , 2兀兀兀1 兀6.若 0<a < 2,・2< B <0, cos(4+ a ) = 3,cos ( 4P V32 )=3 ,则 cos ( a + 2 )二()A.-B.c.出D.V633997.sin75° cos30° ・sinl5° sinl50°的值等于()A. 1B.丄C.返D.並2 2 2i -* £ _ f&已知Q = (2」一cos&),b = (l + cos&,—),且d//b,则钝角0等于() 4A. 45°B. 135°C. 150°D. 120°9. 己知 f(tanx) = sin2x,则 f(-l)的值是( )A. 1B. -1 1C. -D. 0210. 设向量 a=(l, cos 0 )与 b = (—l,2cos 8 )垂直,则 cos2 0 等于( )A.血B.丄2 2A. - 3B. 3C. -1D. 1 1 •设 tan a . tan P C. 1 D.16 25 sinlO°D.兀2 120W (0, 2 ) , sin ( a - p ) = 5, cos 0 = 13,则 sin a =13•函数f (x ) =1 - 2sin 2x 的最小正周期为心函数f (g …,则f 醪)K16•己知 6 < a < 3 , cos ( a + 3 ) =m (mHO),a1&设go,-),若sina=-,则屁昨+才)等于20. sin 22" cos 38 * + cos 22“ sin 38 * = 21•已知函数 f (x) =sinxcosx+sin 2x.(i )求f (晋)的值;(11)若只€ [0,牛],求f (X )的最大值及相应的X 值.12•已知「心血(屮)送“n (L4)4I,则cos(a+K4)z兀、1 14•已知洒3迈)弓3,则遇(Q+鈴) 17.已知sin 兀=丄且兀w2,则 sin 2A ;=11・已知a , 2则 tan ( 3 n - a )22.(本题满分15 分)已知a = (-73 sin cox, cos cox),厶=(cos 加,cos 妙),e>0,记函数f(x) = a-b f且于⑴的最小正周期为龙.(1)求e的值;⑵设^(x) = /(%)-|,求函数gS)的值域.23.4(本小题满分12分)己知cos(a + n)=—, a为第三象限角.5(1)求sin a > tan a 的值;]T⑵求sin(a + —) > tan2 a 的值.7124•己知QWl. A【解答】解:V tan a , tan 0是方程x 2 - 3x+2=0的两个根,/• ton a +tan 3 =3, tan a tan B =2,则tan ( a +B ) 丁肓応盂百二匸■二_ 3- 故选:A.2. A3【解答】解:・・・tana 二才,3.2 c • c cos 2 CL+4sinCL cos CI l+4tan° 1+4X64•・cos 「U +2sm2 a 二 --- ? ---------- 5 ------- 二 o二—入 --- 二肓Lsin a + cos Qtan Q+l 92516 1故选:A.3. A【解答】解:sin20° coslO J +cos20° sinlO° =sin (20° +10° ) =sin30° 二寺 乙 故选:A.4. A【解答】解:sin43° cosl3° - cos43° sinl3°=sin (43° - 13° ) =sin30° 1= --2-故选A5. A【解答】解:f (x) =^-sin2x+^—cos2x 二sin (2x+-^-), 2 z 3*.* - lWsin (2x+-—) Wl,・°・振幅为 1, •・・3二2,・・・T 二JT ・故选A试卷答案tan CL +tanP 3P兀厂、•/u +~T —)二cos 二cos (―—+ ci ) cos (— ) +sin(―—+ «2 4 4 24_5V39故选C【点评】本题主要考查了三角函数的恒等变换及化简求值.关键是根据cos (a+寻 ) 二cos,巧妙利用两角和公式进行求解.7. C【解答】解:由三角函数公式化简可得sin75° cos30° - sinl5° sin!50°sin (90° -15° ) cos30° - sinl5° sin (180° -30° ) cosl5° cos30° - sinl5° sin30° =cos (15° +30° ) =cos45°4故选:C-【点评】本题考查两角和与差的正弦函数,涉及诱导公式的应用,属基础题.8. B 9. Bf (ta nx) =sin2x = 2sinxc ()sx_ 2sinxcosxsin fc x+cos*x -2tanx . f 2x . ^__2 San.+ f ・・£3_£+1'・・f ( D_ 2 =_]10. C由 a±b 得,一1 +2cos ,()=cos2()=0.5611. 656.C【解答】解:TOVaV 手,<3 <0,<2L +a <12L, 2L444<2L -42 2•••sin • .cos兀【考点】两角和与差的止弦函数.【分析】利用同角三角函数基本关系式以及两角和与差的正弦函数化简求解即可. 【解答】解:a , 0 e (0, —, sin ( a - B ) cos B乙O J. o可得cos ( a - 3 ) =71-sin2(Cl - p )=|.sin 0 =A/1 - cos L,sin a =sin ( a - p + P ) =si n (a - P ) cos B +cos ( a - 3 )故答案为:f_^612.65【考点】两角和与差的正弦函数:两角和与差的余弦函数.【分析】a 诗二(a+B)・(B・*),进而通过正弦函数的两角和公式得出答案.【解答】解:已知Q, P € (琴,兀),sin(Q + B)二一辛,4 5• ( R 兀、12 r 、 a厂f 3兀仃仃\ R 兀广/兀3兀、sm(卩一丁)莅,Q + P € (丁,2兀),卩一丁€ 牙,〒),・・・ccis(a + P )=4,cos( P -孚)二-爲,5 4 13cos ( )=cos[ (CI + P ) - ( p -¥)]二cos( Q +P )cos( B -M~)+sin(Q + P ) sin( P4 4旦■(一旦) + ( —3)Jl 二一空5•13 5,13 65故答案为:■三Fbb【点评】本题主要考查正弦函数两角和公式的运用.注意熟练掌握公式.13.H【解答】解:f (x) =1 - 2sin2x=cos2x•••函数最小正周期T二故答案为:兀•_114. 3【考点】GO:运用诱导公式化简求值.【分析】根据诱导公式可知cos(Q+等")=sin (牛・a ■罟'),进而整理后,把sin (a 话)的值代入即可求得答案.7TT JT 7 TT 兀1【解答】解:cos( a +_]叫厂)二sin - - Cl - -p—) = - si n (a +y^*) = ~ ~故答案为:-~15. 2【考点】两角和与差的正弦函数;函数的值.【专题】转化思想;综合法;三角函数的求值.【分析】由条件利用两角差的正弦公式化简函数f (x)的解析式,从而求得f (召)的值. 【解答】解:T 函数f (x)二sinx - cosx=-?/2 sin (x -斗),则f(^)=V2 sin (■晋)=-^[2气二■豎,故答案为:一爭 .【点评】本题主要考查两角差的正眩公式,属于基础题.16. - m【考点】两角和与差的正切函数.【专题】转化思想;综合法;三角函数的求值.兀【分析】由条件利用同角三角函数的基本关系求得tan(a+亏)的值,再利用诱导公式求2兀得tan (—- a )的值.7T 9 7T TT TT 7T【解答】解:由"77< a <—,可得a H~W(-L n),又cos ( a +——)二m<0..•.sin (a +弓)- co/ ={] _ 朋,ta n ( a +£)- —ITI故答案为:・寸1_叩2.KI【点评】木题主要考查同角三角函数的基木关系,诱导公式的应用,属于基础题.18.14• • cos a =——,54 3 15_5_? Q19. C略V320. 221. 【解答】解:(I ) Vf (x) =sinxcosx+sin 2x,(II) f (x)二sinxcosx+sifx=£sin2x+丄-°字Atan (筈co+sina ) =tan[n - (a ]二・ tan ( a32兀(sin2x-cos2x)-H^"277:-sin (2x-^-)-H^,…厂「c 兀re兀广厂兀rflxC [0, -y"寸 2x 盲-€[盲"24. sin.= 3533___________又sin(a + 0) = —,cos(a + 0) = -Jl-sin2(Q + 0)= 65•\ sin a - sin[(a + 0) — /?] = sin(a + /?) cos 0 一 COS (Q + 0) sin /?又•・• ae(71,・・・(Q +0)W(兀3兀、< 2J 2)J 2 2 )2(71)\ z/兀 兀?所以,当2x —丁h 亍,即X 专兀时, f (x) 取到最大值为勺字乙71•・• /(兀)=COS (2M +22. (1):.CO = \⑵[-1」]23.(1) V cos ( a + JT )= 4 — cos a =—5.-.cosa =-l5Va为第三象限角’Asina=-^-cos :a=-? tana=i^r =Pz. f .兀兀|兀⑵ sin(a n) =sind cos "" cos a sin —= 44 4 -|x102tandtan2a=I^^2洱J16 24T" °・・小0聖134 Vj =_7Vi 52 5633 =—x 12 3 x—=-13 5。
10三角恒等变换测试题(含解析)
的距离的最小值为
π,若
4
������(������0)
=
6,π
54
≤
������0
≤
π,则
2
cos2������0
=
( )
A. 3+2√3
10
B. 3−2√2
10
C. 3+4√3
10
D. 3−4√3
10
6.
设函数
������(������)
=
cos
(2������
+
π)
4
−
sin
(2������
+
24
C. 存在������0 ∈ (0,3π),使 ������(������0) = −1
D. 存在������ ∈ ������,使得函数 ������ = ������(������ + ������) 在其定义域内为偶函数
13. 给出下列四个命题,其中正确的命题为 ( ) A. 已知 cos������ ⋅ tan������ < 0,那么角 ������ 是第三或第四象限角
4
12. 设函数 ������(������) = 2cos2 (������ + π) + sin (2������ + π),������ ∈ (0,3π),则下列判断错误
8
4
的是 ( )
第 1 页(共 6 页)
A. 函数的一条对称轴为 ������ = π
6
B. 函数在区间 [π , 5π] 内单调递增
6
D.
可由函数
������(������)
的图象向右平移
π 3
三角恒等变换练习题一(可编辑修改word版)
三角恒等变换练习题一一、选择题1.(2014 年太原模拟)已知3sin( +) = ,则cos(- 2) = ( )A. 12 25 2 B. - 12 25 5 C. - 7 25D.7 25 2. 若cos = - 4,且在第二象限内,则cos(2+ 为( )5A. -31 2 50B.31 2 504C. - 17 2 50D.17 2 503.(2013 年高考浙江卷)已知∈ R , sin+ 2 cos= 10,则tan2= ()2A.4 3B.3 4C. - 43D. - 344.已知sin - c os =2,∈(0,) ,则sin 2= ( )A. -1B. -22C.22D .1 5.(2014 年云南模拟)已知sin(x - 4 = 3,则sin 2x 的值为()5A. - 725 B. 25C. 25D. 16 256. 计算sin 43︒cos13︒ - cos 43︒sin13︒ 的结果等于() A.1 2B.3C.2D. 27. 函数 f (x ) = sin x (cos x - sin x ) 的最小正周期是() A.4B.2C. D. 2 8.(2014 年郑州模拟)函数 f (x ) =2+ x ) -≤ x ≤的最大值为()2 sin (4 3 cos 2x () 4 2A. 2B. 3C. 2 +D. 2 - 9.(2010 理)为了得到函数 y = sin(2x - 的图像,只需把函数 y = sin(2x +的图像()) ) 3 63 3 ) )4 42 10. 函数 y = sin x s in(x + + sin 22 的最大值和最小正周期分别为()A .1,) 2 B . 2,2 cos 2x 3C. 2,2D.1+ 23,11. 函数 y = 1sin 2x + 23 cos 2 x -3 的最小正周期等于()2A.B. 2C.4D. 212.若cos(3- x ) - 3cos(x + 2 = 0 ,则tan(x + 4等于()A. - 1 2B. - 2C. 1 2D. 213.(2013 年高考湖北卷)将函数 y = 3 cos x + sin x (x ∈ R ) 的图象向左平移m (m > 0) 个单位长度后,所得到的图象关于 y 轴对称,则m 的最小值是()A.12B.6C.3D. 5614.(2014 年山西大学附中模拟)若 1 2sin( -) = ,则cos( + 2) = ()A. - 79B. - 1 32 sin 2 x -16 3 C.1 3 3D.7 915.若 f (x ) = 2 tan x -2 ,则 f ( ) 的值为( )sin x cos x 12 2 2A. -433B . 8C . 4 D. - 4 16.(2014 年太原模拟)已知∈), s in + c os = - 1 ,则tan(+等于( )A. 7( , 2B. - 7C. 1 7 ) 5 4D. - 1 717.(2014 年郑州模拟)若cos= 3 , s in = - 4,则角的终边所在的直线为( )2 5 2 5A. 7x + 24 y = 0B. 7x - 24 y = 0C. 24x + 7 y = 0D. 24x - 7 y = 018.(2014 年南阳一模)已知锐角的终边上一点 P (sin 40︒,1+ c os 40︒) ,则锐角= ( )33) )3 ) A. 80︒B. 70︒ C. 20︒ D.10︒19.已知sin = 5 , s in = 5 10,且,都是锐角,则+ = ( )10A. 30︒B. 45︒C. 45︒或135︒ D. 135︒12sin 2+ sin 220.已知tan(+ ) = ,且- << 0 ,则 4 2 2cos(- 4 = ()A. -2 5B. - 3 5C. -3 10 D. 2 5 51010521.(2014 年合肥模拟)已知cos( -) + sin = 6 ,则sin(+ 7 的值是( )5 6A. -2 3 5B.2 3 5C. 4 5D. - 4522. 已知sin= - 24,则tan 等于()A. - 325 2B. - 4C. - 3 或- 4D. 3 或 4434 34 323.已知cos - s in =2,∈(-,0) ,则tan = ()A. -1B. -22 C. 2D .124.(2014 年嘉兴一模) 2 cos10︒ - sin 20︒的值是()sin 70︒A.1 2 B. 2C.D .25.(2014 年六盘水模拟)已知cos = 1 , cos(+ ) = - 1,且,∈(0,) ,则cos(- ) 的值等于()A. - 12B.1 23C. - 133 2D. 232726.函数 f (x ) = 6 cos x - 2 sin x 取得最大值时 x 的可能取值是()A. -二、填空题B. - 2C. - 6D. 24 3 2)1.为了得到函数f (x) = 2 cos x( 3 sin x - cos x) +1 的图象,需将函数y = 2 s in 2x 的图象向右平) ) ) 移(> 0) 个单位,则的最小值为.2. 函数 f (x ) = sin x cos x - 3 cos 2 x 的值域为.sin 2 35︒ - 13.化简2 = .cos10︒cos80︒ 4. (2013 年高考江西卷)函数 y = sin 2x + 2 3 sin 2 x 的最小正周期T 为 .5.(2014 年济南模拟)已知sin- 3cos = 0 ,则 sin 2 = .cos 2- sin 26.(2014 年南昌模拟)已知点 P (sin 3 3落在角的终边上,且∈[0,2) ,则tan(+的值为 ., cos ) ) 4 4 37.(2013 年高考四川卷)设sin2= -sin ,∈) ,则tan2的值是 .( ,28.(2014 年成都模拟)已知sin + c os= 2,则sin 2的值为 .3sin 235︒ - 19.化简2 = . cos10︒cos80︒10. (2014 年 东 营 模 拟 ) 已 知sin(+ 4 = .sin 2+ cos 2+1∈(0,) ,且 22 sin 2- sin⋅cos- 3cos 2= 0 ,则11. 函数 f (x ) = sin x cos x - 3 cos 2 x 的值域为 . 12.已知tan(- ) = 2 ,则tan(-的值为 .12 3三、解答题1. 已知函数 f (x ) = 2 cos(2x ++ 2 s in 2 x .4(1) 求函数 f (x ) 的最小正周期;(2)设,∈+= 1 , f (-= 3,求+ 的值.[0, ], f () 2 2 4 2 ) 2 6 2 f ( ) 22. (2013 年高考山东卷)设函数 f (x ) =3 - 23 sin 2 x - s in x c os x (> 0) ,且 y =f (x ) 图象的一个对称中心到最近的对称轴的距离为.4] , + )] (1) 求的值;(2) 求 f (x ) 在区间[,3上的最大值和最小值. 2 3.(2013 年高考安徽卷)已知函数 f (x ) = 4 cos x sin(x +> 0) 的最小正周期为.(1) 求的值;(2) 讨论 f (x ) 在区间 [0, )( 4]上的单调性.24. 已知函数 f (x ) = 2 s inx c os x + 2(1) 求的值;3 cos 2 x - (其中> 0 ),且函数 f (x ) 的周期为.(2) 将函数 y = f (x ) 的图象向右平移个单位长度,再将所得图象各点的横坐标缩小到4原来的 1 倍(纵坐标不变)得到函数 y = g (x ) 的图象,求函数 g (x ) 在[-] 上的单调区间.2 6 245. 已知函数 f (x ) = 2 s in in(x + ) cos(x + ) - s sin os(2x,求函数 f (x ) 的最小正周期 c 3 12 与单调递减区间.12 6 6 6.(2014 年北京东城模拟)已知函数 f (x ) = 2 - ( 3 sin x - cos x )2 .(1) 求 的值和 f (x ) 的最小正周期;f ( ) 4(2) 求函数 f (x ) 在区间[-上的最大值和最小值., ] 6 37. (2014 年北京东城模拟)已知函数 f (x ) = 3 sin x cos x + cos 2 x + a .(1) 求 f (x ) 的最小正周期及单调递减区间;(2) 若 f (x ) 在区间[-上的最大值与最小值的和为 3,求a 的值., ] 6 3 28.(2013 年高考辽宁卷)设向量a = (3 sin x , s in x ), b = (cos x , sin x ), x ∈ [0, . 2(1) 若| a |=| b | ,求 x 的值; (2)设函数 f (x ) = a ⋅ b ,求 f (x ) 的最大值.9.(2013 年高考陕西卷)已知向量a = (cos x ,- 1), b = ( 2(1) 求 f (x ) 的最小正周期; (2)求 f (x ) 在3 sin x , cos 2x ), x ∈ R ,设函数 f (x ) = a ⋅ b .上的最大值和最小值.[0, ] 210.(2014 年合肥模拟)将函数 y = sin x 的图象向右平移个单位,再将所得的图象上各点的3333 3 f (横坐标不变,纵坐标伸长到原来的4倍,这样就得到函数 f (x ) 的图象,若g(x) =f (x) cos x +.(1)将函数g(x) 化成A sin(x +) +B (其中A,> 0,∈[-)的形式;, ]2 3(2)若函数g(x) 在区间[-,]上的最大值为2 ,试求的最小值.12 0011.(2014 年济宁模拟)已知角的顶点在原点,始边与x 轴的正半轴重合,终边经过点P(-3, 3) .(1)求sin 2- tan的值;(2)若函数f (x) =cos(x -) c os -s in(x -) s in,求函数y =- 2x) - 2 f 2(x) 在区间[0,2 ]上的值域.212.已知sin=1+c os,且∈2 (0, ) ,求2cos 2的值.sin(-)413.已知sin+c os=3 5,∈-=3,∈.(0,5), s in( )4 4 5( , )4 2(1)求sin 2和tan 2的值;(2)求cos(+ 2) 的值.14.(2014年合肥模拟)已知函数f (x) =m sin x +2m -1 cos x .(1)若m = 2, f ()=,求cos;(2)若 f (x) 的最小值为- 2 ,求f (x) 在[-上的值域., ]615.(能力提升)(2014 年深圳调研)已知函数 f (x) = x +≤x ≤ 5) ,点A, B 分别是函数y =f (x) 图象上的最高点和最低点.2 sin(6)(03(1)求点A, B 的坐标以及OA ⋅O B 的值;(2)设点A, B 分别在角,的终边上,求tan(- 2) 的值.。
三角恒等变换测试题
三角恒等变换测试题在几何学中,三角恒等变换是指通过改变三角形中的角度或边长,使得三角形的形状和位置发生改变,但是三个角的和仍然保持不变。
三角恒等变换是数学中的重要概念,广泛应用于解决各种三角形相关问题。
下面将为大家介绍一些常见的三角恒等变换测试题。
一、正弦恒等变换题目1. 已知三角形ABC,其中∠B=45°,AB=3,BC=5,求∠A和∠C的正弦值。
解析:根据三角恒等变换的定义,我们可以得知∠A和∠C的和为90°,∠A的对边是BC,∠C的对边是AB。
因此,根据正弦函数的定义,我们可以得到∠A和∠C的正弦值分别为sin(∠A) = AB/AC = 3/5,sin(∠C) = BC/AC = 5/5。
2. 已知三角形ABC,其中∠A=60°,AB=4,AC=8,求∠B和∠C的正弦值。
解析:根据三角恒等变换的定义,我们可以得知∠B和∠C的和为120°,∠B的对边是AC,∠C的对边是AB。
因此,根据正弦函数的定义,我们可以得到∠B和∠C的正弦值分别为sin(∠B) = AC/BC =8/BC,sin(∠C) = AB/BC = 4/BC。
二、余弦恒等变换题目1. 已知三角形ABC,其中∠A=30°,AB=6,BC=10,求∠B和∠C的余弦值。
解析:根据三角恒等变换的定义,我们可以得知∠B和∠C的和为150°,∠B的邻边是AB,∠C的邻边是BC。
因此,根据余弦函数的定义,我们可以得到∠B和∠C的余弦值分别为cos(∠B) = AB/BC =6/10,cos(∠C) = BC/BC = 10/10。
2. 已知三角形ABC,其中∠B=45°,AB=5,BC=5,求∠A和∠C的余弦值。
解析:根据三角恒等变换的定义,我们可以得知∠A和∠C的和为90°,∠A的邻边是BC,∠C的邻边是AB。
因此,根据余弦函数的定义,我们可以得到∠A和∠C的余弦值分别为cos(∠A) = BC/AC = 5/5,cos(∠C) = AB/AC = 5/5。
专题04:三角函数与三角恒等变换(解析版)
专题04:三角函数与三角恒等变换一、单选题1.(2021·山西晋中市·高三二模(文))已知函数()2sin (0)6f x x πωω⎛⎫=+> ⎪⎝⎭的部分图象如图所示,则使()()0f a x f a x +--=成立的a 的最小正值为( )A .6πB .5π C .4π D .3π 【答案】A【分析】利用五点作图法求出2422,11k k ω+=∈Z ,结合21112T ππω=>求出ω,将()()0f a x f a x +--=转化为函数()f x 关于直线x a =对称,根据正弦函数的图象的对称轴得到,26n a n ππ=+∈Z ,则可得到a 的最小正值. 【解答】由图象可知11012f π⎛⎫= ⎪⎝⎭,即11sin 0126ππω⎛⎫⋅+= ⎪⎝⎭, 由五点作图法可知1122,126k k ππωππ⋅+=+∈Z ,解得2422,11k k ω+=∈Z , 又由图象可知21112T ππω=>,所以2411ω<,又0>ω,所以0,2k ω==.所以()2sin 26f x x π⎛⎫=+ ⎪⎝⎭.因为()()0f a x f a x +--=,所以函数()f x 关于直线x a =对称, 即有2,62a n n πππ+=+∈Z ,解得,26n a n ππ=+∈Z , 所以a 的最小正值为6π. 故选:A .【点评】关键点点睛:利用五点作图法以及周期求出ω是本题解题关键.2.(2021·江西高三其他模拟(理))若等差数列{}n a 满足22132a a +=,且11a ≥,求2312a a a a ++的取值范围( ) A .(1,1)- B .[1,1]- C .(,1)(1,)-∞-+∞ D .(,1][1,)-∞-+∞【答案】B【分析】设132cos 2sin a a θθ⎧=⎪⎨=⎪⎩,[,)θππ∈-,根据11a ≥求出θ的范围,利用等差中项的性质得到2a ,再利用同角公式可求得结果.【解答】设132cos 2sin a a θθ⎧=⎪⎨=⎪⎩,[,)θππ∈-,又∵11a ≥,∴2cos 1θ≥,即2cos [,1]2θ∈,∴,44ππθ⎡⎤∈-⎢⎥⎣⎦,∴13222cos sin 222a a a θθ+==+, ∴231222cos sin 2sin 3sin cos 3tan 18223sin 3cos tan 3tan 3222cos cos sin 22a a a a θθθθθθθθθθθθθ+++++====-++++++,又∵,44ππθ⎡⎤∈-⎢⎥⎣⎦,所以tan [1,1]θ∈-,所以83[1,1]tan 3θ-∈-+, ∴2312[1,1]a a a a +∈-+. 故选:B【点评】关键点点睛:利用三角换元化为三角函数求解是解题关键. 3.(2021·江苏高三一模)函数sin |21|xy x π=-的图象大致为( )A .B .C .D .【答案】D【分析】确定函数图象关于直线12x=对称,排除AC,再结合特殊的函数值的正负或函数零点个数排除B,得出正确结论.【解答】函数定义域是1|2x x⎧⎫≠⎨⎬⎩⎭,由于21y x=-的图象关于直线12x=对称,siny x=π的图象也关于直线12x=对称,因此()f x的图象关于直线12x=对称,排除AC,siny x=π有无数个零点,因此()f x也有无数个零点,且当x→+∞时,()0f x→,排除B.故选:D.【点评】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象.4.(2021·黑龙江哈尔滨市·哈尔滨三中高三一模(文))若1sin cos5αα+=,()0,απ∈,则1tan21tan2αα+=-()A.3-B.13-C.13D.3【答案】A【分析】先求出43sin,cos55αα==-,1tan201tan2αα+<-,再求出21tan2()91tan2αα+=-,即得解.【解答】由已知得1sin cos5αα+=,()0,απ∈,联立22sin cos1αα+=,得4333sin ,cos ,,tan 155244282ππαααααππ==->∴<<∴<<∴>.所以1tan 201tan2αα+<-.sin21+1tan cos cos sin 22221tansin cossin22221cos2αααααααααα++==---,所以221tan cos sin1sin 222()()91sin 1tan cos sin 222αααααααα+++===---, 所以1tan 231tan 2αα+=--.故选:A【点评】关键点睛:解答本题的关键是通过已知分析出324παπ<<,得到1tan201tan 2αα+<-. 解答三角函数求值时,如果出现多解,经常要挖掘题目中的隐含范围解答.5.(2021·安徽淮南市·高三一模(文))已知函数()0()cos f x x x =≥,方程()f x kx =恰有两个根,记较大的根为θ,则sin 2θ=( ) A .21θθ+ B .21θθ-+ C .221θθ- D .221θθ-+ 【答案】D【分析】将方程的根转化为两个函数图像的交点问题,结合导数知识求取切线方程,再结合三角计算可得. 【解答】如图所示:函数()0()cos f x x x =≥的图像与()f x kx =恰有两个交点,且最大的根为θ,则函数()f x 在x θ=处的切线为y kx =,显然,2x ππ⎛⎫∈ ⎪⎝⎭,当,2x ππ⎛⎫∈ ⎪⎝⎭时()cos cos f x x x =-=,则()sin f x x '=,切点坐标为(),cos θθ-所以由点斜式得切线方程为()cos sin y x θθθ+=-即sin sin cos y x kx θθθθ=--= 所以sin cos 0θθθ--=得1tan θθ=-, 22222122sin cos 2tan 2sin 22sin cos sin cos 1tan 111θθθθθθθθθθθθθ⎛⎫- ⎪-⎝⎭=====+++⎛⎫-+ ⎪⎝⎭ 故选:D6.(2021·江西高三其他模拟(文))已知函数()sin 232f x x x =-,则下列说法正确的是( )A .()f x 的最大值是13+B .()f x 在0,2π⎛⎫⎪⎝⎭上是递增的C .551212f x f x ππ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭D .()f x 向右平移6π后为奇函数【答案】C【分析】由两角差正弦公式化函数为一个角的一个三角函数形式,然后结合正弦函数性质判断各选项.【解答】由题意13()2sin 222sin 2223f x x x x π⎛⎫⎛⎫=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭, ∴函数最大值为2,A 错;0,2x π⎛⎫∈ ⎪⎝⎭时,22,333x πππ⎛⎫-∈- ⎪⎝⎭,232x ππ-=,即512x π=时,()f x 取得最大值2,()f x在0,2π⎛⎫ ⎪⎝⎭上不可能是递增的,B 错,实际上在50,12π⎛⎫⎪⎝⎭上递增,在5,122ππ⎛⎫ ⎪⎝⎭上递减; 由上面解析知()f x 的图象关于直线512x π=对称,C 正确; ()f x 向右平移6π得2()2sin 2()2sin 2633g x x x πππ⎡⎤⎛⎫=--=- ⎪⎢⎥⎣⎦⎝⎭不是奇函数,D 错. 故选:C .【点评】方法点睛:本题考查两角差的正弦公式,二倍角公式,考查正弦函数的性质.此类问题的解题方法是:利用二倍角公式降幂,利用诱导公式、两角和与差的正弦(余弦)公式展开与合并,最终把函数化为()sin()f x A x m ωϕ=++形式,然后结合正弦函数性质求解.7.(2021·安徽黄山市·高三一模(理))已知2tan 4tan 10θθ-+=,则2cos 4πθ⎛⎫+=⎪⎝⎭( ) A .12B .13C .14 D .15【答案】C【分析】由所给等式利用同角三角函数的关系可求得1cos sin 4θθ⋅=,再利用降幂公式及二倍角公式将2cos 4πθ⎛⎫+ ⎪⎝⎭整理为12sin cos 2θθ-,代入相应值即可得解. 【解答】由2tan 4tan 10θθ-+=可得1tan 4tan θθ+= 所以sin cos 4cos sin θθθθ+=,即22sin cos 4cos sin θθθθ+=⋅,即1cos sin 4θθ⋅= 211cos 2121sin 212sin cos 124cos 422224πθπθθθθ⎛⎫++-⨯⎪--⎛⎫⎝⎭+===== ⎪⎝⎭ 故选:C【点评】关键点睛:本题考查同角三角函数的关系、降幂公式、二倍角公式,解答本题的关键是由条件有1tan 4tan θθ+=,从而可得1cos sin 4θθ⋅=,由21cos 21sin 212sin cos 2cos 4222πθπθθθθ⎛⎫++ ⎪--⎛⎫⎝⎭+=== ⎪⎝⎭可解,属于中档题.8.(2021·湖南长沙市·长郡中学高三二模)已知函数()sin()f x x πϕ=+某个周期的图象如图所示,A ,B 分别是()f x 图象的最高点与最低点,C 是()f x 图象与x 轴的交点,则tan ∠BAC =( )A .12B .47C 255D 76565【答案】B【分析】过A 作AD 垂直于x 轴于点D ,AB 与x 轴交于E ,设C (a ,0),可得32CD =,11,2AD DE ==,3tan 2CD CAD AD ∠==,1tan 2ED EAD AD ∠==,再利用tan tan()BAC CAD EAD ∠=∠-∠计算即可.【解答】过A 作AD 垂直于x 轴于点D ,AB 与x 轴交于E ,由题可得周期为2,设(,0)C a ,则1(,1)2B a +-,3(,1)2A a +,所以32CD =,11,2AD DE ==,3tan 2CD CAD AD ∠==,1tan 2ED EAD AD ∠== 所以tan tan tan tan()1tan tan CAD EADBAC CAD EAD CAD EAD∠-∠∠=∠-∠=+∠⋅∠31422317122-==+⨯.故选:B【点评】本题主要考查两角差的正切公式,涉及到正弦型函数图象等知识,考查学生数学运算能力,是一道中档题.9.(2021·云南曲靖市·高三一模(理))若1cos 36πα⎛⎫+=- ⎪⎝⎭,且263ππα<<,则7sin 12πα⎛⎫+= ⎪⎝⎭( ) A .70212-B .70212C .27012D .70212【答案】B【分析】利用同角三角函数的基本关系,结合题中α的范围求出sin 3πα⎛⎫+ ⎪⎝⎭,由两角和的正弦公式即可求解.【解答】因为263a ππ<<,所以23ππαπ<+<,sin 03πα⎛⎫+> ⎪⎝⎭,所以sin 3πα⎛⎫+= ⎪⎝⎭2135166⎛⎫--= ⎪⎝⎭,∴7sin sin sin cos cos sin12343434πππππππαααα⎛⎫⎛⎫⎛⎫⎛⎫+=++=+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭35212262=-⨯=702-故选:B【点评】本题考查同角三角函数的基本关系和两角和的正弦公式;考查运算求解能力;熟练掌握象限角的三角函数符号和两角和的正弦公式是求解本题的关键;属于中档题、常考题型.10.(2021·山西晋中市·高三二模(理))设()sin 2cos 2f x a x b x =+,其中0,0a b >>,若()6f x f π⎛⎫⎪⎝⎭对任意的x ∈R 恒成立,则下列说法正确的是( ) A .7105f f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭B .对任意的x ∈R 有5()06f x f x π⎛⎫+-=⎪⎝⎭成立 C .()f x 的单调递增区间是2,(k )63k k ππππ⎡⎤++∈⎢⎥⎣⎦Z D .存在经过点(,)a b 的直线与函数()f x 的图象不相交 【答案】B【分析】首先把函数解析式变形为正弦型函数,进一步利用函数的性质:函数的对称性/函数最值/函数的单调性的应用判定各选项正确与否.【解答】22()sin 2cos2)tan b f x a x b x x a b a ϕϕ⎫=+=++=⎪⎭,又1sin cos 6332f a b b πππ⎛⎫=+=+ ⎪⎝⎭, 由题意()6f x f π⎛⎫⎪⎝⎭对任意的x ∈R 恒成立,且0,0a b >>,312a b +对任意的x ∈R 恒成立,即22223144a b a b +++22323a b ab ⇒+恒成立, 由基本不等式可知22323a b ab +,此时0a =>,所以()sin 2cos 22sin 26f x x b x b x π⎛⎫=+=+ ⎪⎝⎭. 对于A 选项,747132sin 2sin 103030f b b πππ⎛⎫== ⎪⎝⎭,17132sin 2sin 53030f b b πππ⎛⎫== ⎪⎝⎭,所以7105f f ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,故A 错误; 对于B 选顼,因为()2sin 26f x b x π⎛⎫=+ ⎪⎝⎭,所以不妨令2,6x k k ππ+=∈Z ,解得,122k x k ππ=-+∈Z , 当1k =时,512x π=,所以5,012π⎛⎫⎪⎝⎭是()f x 的对称中心,故B 正确; 对于C 选项,由222,262k x k k πππππ-++∈Z ,知,36k x k k ππππ-+∈Z ,故C 不正确;对于D 选项,由题知0a =>,要使经过点(,)a b 的直线与函数()f x 的图象不相交,则此直线与横轴平行, 又()f x 的振幅为2b b >,所以直线必与()f x 的图象有交点,故D 不正确. 故选:B.【点评】关键点点睛:该题考查的是有关三角函数的性质的问题,正确解题的关键是利用题中条件求得函数解析式.11.(2021·福建高三其他模拟)提鞋公式也叫李善兰辅助角公式,其正弦型如下:22sin cos sin()a x b xa b x,πϕπ-<<,下列判断错误的是( )A .当0a >,0b >时,辅助角arctan baϕ= B .当0a >,0b <时,辅助角arctan b aϕπ=+ C .当0a <,0b >时,辅助角arctan b a ϕπ=+ D .当0a <,0b <时,辅助角arctan b a ϕπ=- 【答案】B【分析】分别判断出a ,b 的值,对辅助角ϕ的影响. ①0a >,0b >,则辅助角ϕ在第一象限; ②0a >,0b <,则辅助角ϕ在第四象限; ③0a <,0b <,则辅助角ϕ在第三象限; ④0a <,0b >,则辅助角ϕ在第二象限. 【解答】解:因为cos ϕ=sin ϕ=tan baϕ=,(,]ϕππ∈- 对于A ,因为0a >,0b >,则辅助角ϕ在第一象限02πϕ∴<<,0b a>,arctan (0,)2b a π∴∈,故A 选项正确;对于B ,因为0a >,0b <,则辅助角ϕ在第四象限02πϕ∴-<<;0b a <, arctan (,)2b a πππ∴+∈,故B 选项错误; 对于C ,因为0a <,0b >,则辅助角ϕ在第二象限2πϕπ∴<<;0b a <, arctan (,)2b a πππ∴+∈,故C 选项正确; 对于D ,因为0a <,0b <,则辅助角ϕ在第三象限2ππϕ∴-<<-,0b a <, arctan (,)2b a πππ∴-∈--,故D 选项正确; 故选:B .【点评】本题考查了三角函数的性质,考查学生的分析能力,属于中档题.12.(2021·江西上饶市·高三其他模拟(理))已知函数()3cos f x x a x =+,0,3x π⎡⎤∈⎢⎥⎣⎦的最小值为3a ,则实数a 的取值范围是( ) A .[]0,2 B .[]22-, C .(],1-∞ D .(],3-∞【答案】C【分析】由()()min 30f x a f ==可得出不等式()3cos 3f x x a x a =+≥对任意的0,3x π⎡⎤∈⎢⎥⎣⎦恒成立,化简得出tan 12x ≤,分0a ≤、0a >两种情况讨论,结合max tan 12x ⎫≤⎪⎭可求得实数a 的取值范围.【解答】()03f a =且()()min 30f x a f ==,由题意可知,对任意的0,3x π⎡⎤∈⎢⎥⎣⎦,()3cos 3f x x a x a +≥,()31cos x a x ≥-,即222sin cos 112sinsin 2222x x x x ⎡⎤⎛⎫≥--= ⎪⎢⎥⎝⎭⎣⎦,0,3π⎡⎤∈⎢⎥⎣⎦x ,则0,26x π⎡⎤∈⎢⎥⎣⎦,cos 02x ∴>,0tan 2x ≤≤tan 12x ≤.当0a ≤tan012x≤≤成立;当0a >时,函数3tan 2x y a =在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,则max 1y a =≤,此时01a <≤.综上所述,实数a 的取值范围是(],1-∞. 故选:C.【点评】结论点睛:利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解:(1)x D ∀∈,()()min m f x m f x ≤⇔≤; (2)x D ∀∈,()()max m f x m f x ≥⇔≥; (3)x D ∃∈,()()max m f x m f x ≤⇔≤; (4)x D ∃∈,()()min m f x m f x ≥⇔≥. 13.(2021·山西吕梁市·高三一模(文))函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭部分图象如图所示,则3f π⎛⎫= ⎪⎝⎭( )A 3B .12C .3D 3【答案】D【分析】由函数()sin()f x A x ωϕ=+的部分图象知,2A =,2411333T ππ=-,结合2T πω=, 求出12ω=,又根据2122sin 2323f ππϕ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭,求得6π=ϕ,即可求得()f x 解析式,代入计算3f π⎛⎫⎪⎝⎭即可. 【解答】由函数()sin()f x A x ωϕ=+的部分图象知,2A =,11233334T πππ=-=, 解得24T ππω==,∴12ω=,又2122sin 2323f ππϕ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭, 可得122232k ππϕπ⨯+=+,Z k ∈, 解得26k πϕπ=+,Z k ∈,∵||2ϕπ<,∴可得6π=ϕ, ∴1()2sin 26f x x π⎛⎫=+ ⎪⎝⎭,∴12sin 2sin 32363f ππππ⎛⎫⎛⎫=⨯+== ⎪ ⎪⎝⎭⎝⎭故选:D.【点评】思路点睛:利用三角函数的图象求三角函数的解析式,通常先结合图象看振幅、周期,求得A ,ω,再利用特殊点(最高点、最低点、零点)求初相ϕ,即得解析式.14.(2021·安徽淮南市·高三一模(理))在平面直角坐标系xOy 中,α为第四象限角,角α的终边与单位圆O 交于点()00,P x y ,若cos 6πα⎛⎫+= ⎪⎝⎭35,则0x =( )A .310- B C .410D .310【答案】C【分析】根据α为第四象限角,再结合cos 6πα⎛⎫+= ⎪⎝⎭35,确定6πα+的范围,进而确定sin 6πα⎛⎫+ ⎪⎝⎭,然后由0cos cos 66x ππαα⎡⎤⎛⎫==+- ⎪⎢⎥⎝⎭⎣⎦求解.【解答】∵,02πα⎛⎫∈- ⎪⎝⎭,∴,636πππα⎛⎫+∈- ⎪⎝⎭,又3cos 652πα⎛⎫+=< ⎪⎝⎭,所以,063ππα⎛⎫+∈- ⎪⎝⎭,所以4sin 65πα⎛⎫+=- ⎪⎝⎭, ∴0cos cos cos cos sin sin 666666x ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫==+-=+++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.341552=-⨯=故选:C【点评】易错点点睛:本题容易忽视6πα+的范围,而导致sin 6πα⎛⎫+ ⎪⎝⎭出错.二、填空题15.(2021·陕西榆林市·高三二模(文))关于函数()4sin 6f x x ππ⎛⎫=- ⎪⎝⎭有如下四个命题:①()f x 的最小正周期为2; ②()f x 的图象关于点7,06⎛⎫⎪⎝⎭对称; ③若()()f a x f a x -=+,则a 的最小值为23;④()f x 的图象与曲线12506y x x ⎛⎫=<< ⎪⎝⎭共有4个交点. 其中所有真命题的序号是__________. 【答案】①②④【分析】结合正弦函数的性质判断各命题的真假. 【解答】由图可得:22ππ=,()f x 的最小正周期为2,①正确;7()4sin 0666f ππ7⎛⎫=-= ⎪⎝⎭,()f x 的图象关于点7,06⎛⎫⎪⎝⎭对称,②正确; 离y 轴最近的对称轴为13x =-,所以若()()f a x f a x -=+,则a 的最小值为13,③错误;在y 轴右边离y 最近的对称为23x =,2()43f =,而134223=<,1y x =在(0,)+∞上是减函数,因此()f x 的图象在第一象限每个周期内与1y x=的图象都有两个交点,在区间113(,)66上有两个交点,在区间1325(,)66上有两个交点,从而在25(0,)6上有4个交点,④正确;故答案为:①②④.【点评】思路点睛:本题考查正弦型三角函数的性质,解题方法是利用正弦函数性质求得()f x 的最小正周期,对称中心,对称轴,利用周期性确定函数图象交点个数,最终得出结论.16.(2021·辽宁高三一模(理))关于函数()2sin sin 2f x x x =+有如下四个命题: ①()f x 的最小正周期为2π; ②()f x 在[0,2]π内有3个极值点; ③()f x 在[0,2]π内有3个零点; ④()f x 的图象关于直线3x π=对称.其中所有真命题的序号为___________. 【答案】①③【分析】根据函数周期的求法,可判定①正确;利用导数和极值的定义,可判定②不正确;根据函数零点的定义和求法,可判定③正确;根据函数的对称性的判定方法,可判定④不正确.【解答】由函数sin y x =的最小正周期为2π,函数sin 2y x =的最小正周期为π, 所以函数()2sin sin 2f x x x =+的最小正周期为两个函数周期的最小公倍数, 所以函数()f x 的最小正周期为2π,所以①正确;由()22cos 2cos22cos 4cos 22(2cos 1)(cos 1),[0,2]f x x x x x x x x π'=+=+-=-+∈,因为cos [1,1]x ∈-,可得cos 10x +≥,当[0,)3x π∈时,()0f x '>,()f x 单调递增;当5(,)33x ππ∈时,()0f x '<,()f x 单调递减; 当5(,2]3x ππ∈时,()0f x '>,()f x 单调递增;所以当3x π=时,函数()f x 取得极大值,当53x π=时,函数()f x 取得极小值, 即()f x 在[0,2]π内有2个极值点,所以②不正确;令()0f x =,即2sin sin 22sin (1cos )0x x x x +=+=,解得sin 0x =或cos 1x =-, 因为[0,2]x π,所以0,,2x ππ=,即()f x 在[0,2]π内有3个零点,所以③正确;由2()2sin()sin[2()]4sin()cos ()()3333623x f x x x x f x ππππππ-=-+-=--≠+, 所以④不正确. 故答案为:①③【点评】解答三角函数的图象与性质的基本方法:1、根据已知条件化简得出三角函数的解析式为sin()y A wx ϕ=+的形式;2、熟练应用三角函数的图象与性质,结合数形结合法的思想研究函数的性质(如:单调性、奇偶性、对称性、周期性与最值等),进而加深理解函数的极值点、最值点、零点及有界性等概念与性质,但解答中主要角的范围的判定,防止错解.17.(2021·湖南长沙市·长郡中学高三二模)如图,某湖有一半径为100m 的半圆形岸边,现决定在圆心O 处设立一个水文监测中心(大小忽略不计),在其正东方向相距200m 的点A 处安装一套监测设备.为了监测数据更加准确,在半圆弧上的点B 以及湖中的点C 处,再分别安装一套监测设备,且满足AB AC =,90BAC ∠=︒.定义:四边形OACB 及其内部区域为“直接监测覆盖区域”;设AOB θ∠=.则“直接监测覆盖区域”面积的最大值为___________.【答案】()210000525000m【分析】先用θ表示54cos AB θ=-⋅θ表示出25100sin 2cos 2OACB S θθ⎛⎫=--+ ⎪⎝⎭,最后运用两角和差的正余弦公式求最值即可.【解答】在OAB 中,AOB θ∠=,100OB =,200OA =,2222cos AB OB OA OB OA AOB ∴=+-⋅⋅∠,即AB = 211sin 22OACB OAB ABC S S S OA OB AB θ∴=+=⋅⋅⋅+⋅△△,25100sin 2cos 2OACB S θθ⎛⎫∴=--+ ⎪⎝⎭令tan 2ϕ=,则()251002OACB S θϕ⎤=-+⎥⎦∴直接监测覆盖区域”面积的最大值为()225000m .故答案为:()225000m【点评】思路点睛:本题利用余弦定理、三角形面积公式、求sin cos a b θθ+的最值. 18.(2021·江西高三其他模拟(文))若将函数()cos sin cos sin 0,||662f x x x πππϕωωϕωϕ⎛⎫⎛⎫⎛⎫=+++>≤ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭的图象向右平移6πω个单位得到()g x 图象,且()g x 图象过点10,2⎛⎫ ⎪⎝⎭,若关于x 的方程()1g x =-在,6ππ⎡⎤⎢⎥⎣⎦上恰有一个实数解,则ω的取值范围是___________.【答案】410[,)33【分析】化简函数()sin()6f x x πωϕ=++,结合函数图象变换,得到()sin()g x x ωϕ=+,进而得到sin()6()g x x πω=+,根据题意,转化为in()61s x πω+=-在,6ππ⎡⎤⎢⎥⎣⎦上恰有一个实数解,得到不等式1241284102233k k k k ωω-<≤+⎧⎪⎨+≤<+⎪⎩,分类讨论,即可求解.【解答】由题意,函数()cos()sin cos sin()sin()666f x x x x πππϕωωϕωϕ=+++=++,函数()f x 的图像向右平移6πω个单位得到()sin[()]sin()66g x x x ππωϕωϕω=-++=+, 因为()g x 图像过点10,2⎛⎫⎪⎝⎭,可得1(0)sin 2g ϕ==,又因为||2πϕ≤,可得6π=ϕ,所以sin()6()g x x πω=+,又由关于x 的方程()1g x =-在,6ππ⎡⎤⎢⎥⎣⎦上恰有一个实数解,即in()61s x πω+=-在,6ππ⎡⎤⎢⎥⎣⎦上恰有一个实数解,因为6[],x ππ∈,可得6666x ππππωωπω+≤+≤+,则满足37222,266262k k k k Z πππππππωππωπ-<+≤+≤+<+∈, 可得1241284102233k k k k ωω-<≤+⎧⎪⎨+≤<+⎪⎩,若ω不存在时,则满足412823k k +<+或1012423k k -≥+,解得23k <-或3430k ≥;若ω存在时,则234330k -≤<,当0k =时,可得4841033ωω-<≤⎧⎪⎨≤<⎪⎩,解得41033≤<ω,当1k =时,可得820101633ωω<≤⎧⎪⎨≤<⎪⎩,此时ω不存在,综上可得,ω的取值范围是410[,)33. 【点评】解答三角函数的图象与性质的基本方法:1、根据已知条件化简得出三角函数的解析式为sin()y A wx ϕ=+的形式;2、熟练应用三角函数的图象与性质,结合数形结合法的思想研究函数的性质(如:单调性、奇偶性、对称性、周期性与最值等),进而加深理解函数的极值点、最值点、零点及有界性等概念与性质,但解答中主要角的范围的判定,防止错解.19.(2021·陕西咸阳市·高三一模(理))已知函数()sin(cos )cos(cos )f x x x =+,现有以下命题:①()f x 是偶函数; ②()f x 是以2π为周期的周期函数; ③()f x 的图像关于2x π=对称; ④()f x.其中真命题有________. 【答案】①②④【分析】根据三角函数图象性质逐一进行判断:①根据()f x 写出()f x -,并判断与()f x 关系即可;②写出(2)f x π+,判断与()f x 是否相等;③判断()f x π-与()f x 的关系;④设cos ,[1,1]t x t =∈-,所以sin cos )4y t t t π=+=+,根据t 的取值范围确定最值并判断.【解答】①函数()sin(cos )cos(cos )f x x x =+定义域为R ,关于原点对称,()sin[cos()]cos[cos()]sin(cos )cos(cos )()f x x x x x f x -=-+-=+=,所以函数()f x 是偶函数;所以①正确;②(2)sin[cos(2)]cos[cos(2)]sin(cos )cos(cos )()f x x x x x f x πππ+=+++=+=, 所以()f x 是以2π为周期的周期函数;所以②正确;③()sin[cos()]cos[cos()]sin(cos )cos(cos )()f x x x x x f x πππ-=-+-=-+≠, 所以()f x 的图像不关于2x π=对称;所以③错误;④令cos ,[1,1]t x t =∈-,所以sin cos )4y t t t π=+=+,因为[1,1]444t πππ+∈-++,所以42t ππ+=,即4t π=时,max y =()f x;所以 ④正确; 所以真命题为①②④, 故答案为:①②④.【点评】正确理解奇函数和偶函数的定义,必须把握好两个问题:(1)定义域关于原点对称是函数f (x )为奇函数或偶函数的必要非充分条件;(2)f (-x )=-f (x )或f (-x )=f (x )是定义域上的恒等式.奇函数的图象关于原点对称,偶函数的图象关于y 轴对称,反之也成立.利用这一性质可简化一些函数图象的画法,也可以利用它去判断函数的奇偶性.20.(2021·河南高三其他模拟(文))已知点O 是ABC 内一点,3,4,AB AC BAO CAO OBC OCA ==∠=∠=∠=∠,则BC =_______________________.【答案】【分析】设BAC α∠=,ABC β∠=,ACB γ∠=,在ABO 和BCO ,由正弦定理得11sin sin 22OA BO αβα=⎛⎫- ⎪⎝⎭,11sin sin 22CO BOαγα=⎛⎫- ⎪⎝⎭,两式相比得:2111sin sin sin 222αβαγα⎛⎫⎛⎫=-⋅- ⎪ ⎪⎝⎭⎝⎭,化简后可得2BC AB AC =⋅,即可得解.【解答】12BAO CAO CBO ACO BAC ∠=∠=∠=∠=∠,AO OC∴=设BACα∠=,ABCβ∠=,ACBγ∠=在ABO和BCO,由正弦定理得11sinsin22OA BOαβα=⎛⎫-⎪⎝⎭,11sin sin22CO BOαγα=⎛⎫-⎪⎝⎭两式相比得:2111sin sin sin222αβαγα⎛⎫⎛⎫=-⋅-⎪ ⎪⎝⎭⎝⎭即()()111cos2sin sin cos cos22αβαγαβγβγα⎛⎫⎛⎫-=-⋅-=--+-⎪ ⎪⎝⎭⎝⎭()()1cos cos cosβγαβγα∴++-=-+又2βγαπα+-=-,()απβγ=-+()()21cos2cos cos2sin2sin sinαβγβγαβγ∴-=--+⇒∴=利用正弦定理得:2BC AB AC=⋅又3,4AB AC==,212BC∴=,23BC∴=故答案为:23【点评】关键点点睛:本题考查三角形求边长,正确运用正弦定理,三角形内角和及三角恒等变换公式是解题的关键,考查学生的数形结合及运算能力,属于一般题. 21.(2021·山东潍坊市·高三一模)某市为表彰在脱贫攻坚工作中做出突出贡献的先进单位,制作了一批奖杯,奖杯的剖面图形如图所示,其中扇形OAB的半径为10,60,PBA QAB AQ QP PB∠=∠===,若按此方案设计,工艺制造厂发现,当OP最长时,该奖杯比较美观,此时AOB∠=_______________________.【答案】2π【分析】作OM QP⊥交QP于M,交AB于C,且OC AB⊥,设AOCθ∠=,求出AB、OC,设AQ QP BP x===,作⊥QE AB交AB于E,PF AB⊥交AB于F,可得出10sin x θ=,10cos 53sin OM OC CM θθ=+=+,由勾股定理可得()()2222210cos 53sin 5sin OP OM MP θθθ=+=++然后求最值可得答案.【解答】作OM QP ⊥交QP 于M ,交AB 于C ,且OC AB ⊥,设AOC θ∠=, 则20sin θ=AB ,10cos OC θ=,设AQ QP BP x ===,作⊥QE AB 交AB 于E ,PF AB ⊥交AB 于F , 因为60PBA QAB ∠=∠=,所以12AE BF x ==,32CM PF x ==, EF QP x ==,所以2AB x =,所以20sin 2AB x θ==,即10sin x θ=,310cos 10cos 53OM OC CM x θθθ=+==+, 所以()()2222210cos 35sin OP OM MP θθθ=+=++222100cos 75sin 1003cos 25sin 1005032θθθθθθ=+++=+,因为[]sin 21,1θ∈-,所以当sin 21θ=即4πθ=时2OP 最大,也就是OP 最长时2AOB π∠=.故答案为:2π. 【点评】本题考查了用三角函数解决几何问题,关键点是作出辅助线利用勾股定理求出2OP ,考查了学生分析问题、解决问题的能力.三、解答题22.(2021·山东潍坊市·高三一模)在①函数()y f x =的图象关于直线3x π=对称,②函数()y f x =的图象关于点,06P π⎛⎫ ⎪⎝⎭对称,③函数()y f x =的图象经过点2,13Q π⎛⎫- ⎪⎝⎭这三个条件中任选一个,补充在下面问题中并解答.问题:已知函数()sin cos cos sin 0,||2f x x x πωϕωϕωϕ⎛⎫=+>< ⎪⎝⎭最小正周期为π,且 ,判断函数()f x 在,62ππ⎛⎫⎪⎝⎭上是否存在最大值?若存在,求出最大值及此时的x 值;若不存在,说明理由. 注:如果选择多个条件分别解答,按第一个解答计分. 【答案】答案不唯一,具体见解析【分析】先对函数化简得()sin()f x x ωϕ=+,由函数的最小正周期为π,可得2ω=,则()sin(2)f x x ϕ=+,若选①,则有2()32k k ππϕπ⨯+=+∈Z ,从而可求出ϕ的值,进而可求出函数的解析式,再利用换元法可求得最值;若选②,则有2()6k k πϕπ⨯+=∈Z ,从而可求出ϕ的值,然后利用换元法可求得最值;若选③,则有222()32k k ππϕπ⨯+=-∈Z ,从而可求出ϕ的值,再利用换元法可求最值即可 【解答】解:()sin cos cos sin sin()f x x x x ωϕωϕωϕ=+=+, 由已知函数()f x 的周期2T ππω==,求得2ω=,所以()sin(2)f x x ϕ=+, 若选①,则有2()32k k ππϕπ⨯+=+∈Z ,解得()6k k πϕπ=-∈Z ,又因为2πϕ<,所以,0,6k πϕ==-,所以()sin 26f x x π⎛⎫=- ⎪⎝⎭,当,62x ππ⎛⎫∈ ⎪⎝⎭时,52,666t x πππ⎛⎫=-∈ ⎪⎝⎭, 所以当2t π=,即3x π=时,函数()f x 取得最大值,最大值为1.若选②,则有2()6k k πϕπ⨯+=∈Z ,解得()3k k πϕπ=-∈Z ,又因为2πϕ<,所以0,3k πϕ==-,所以()sin 23f x x π⎛⎫=- ⎪⎝⎭,当,62x ππ⎛⎫∈ ⎪⎝⎭时,220,33t x ππ⎛⎫=-∈ ⎪⎝⎭, 所以当2t π=,即512x π=时,函数()f x 取得最大值,最大值为1. 若选③,则有222()32k k ππϕπ⨯+=-∈Z ,解得112()6k k πϕπ=-∈Z , 又因为2πϕ<,所以1,6k πϕ==,所以()sin 26f x x π⎛⎫=+ ⎪⎝⎭,当,62x ππ⎛⎫∈ ⎪⎝⎭时,72,626t x πππ⎛⎫=+∈ ⎪⎝⎭, 显然,函数()f x 在该区间上没有最大值.【点评】关键点点睛:此题考查利用三角函数的性质求函数解析式,考查求三角函数的最值,考查计算能力,解题的关键是根据题意正确的求出函数的解析式,再利用换元法求函数的最值,属于中档题23.(2021·江西上饶市·高三一模(文))已知()22cos sin sin cos 3f x x x x x x π⎛⎫=++ ⎪⎝⎭.(1)求函数()f x 的单调递增区间;(2)若,46⎛⎫∈- ⎪⎝⎭x ππ,求()y f x =的值域.【答案】(1)5,1212k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈;(2)(]1,2-. 【分析】(1)利用三角恒等变换思想化简函数()f x 的解析式为()2sin 23f x x π⎛⎫=+ ⎪⎝⎭,解不等式()222232k x k k Z πππππ-≤+≤+∈,可求得函数()f x 的单调递增区间;(2)由,46⎛⎫∈- ⎪⎝⎭x ππ可求出23x π+的取值范围,利用正弦型函数的基本性质可求得函数()y f x =的值域.【解答】(1)()()12cos sin 1cos 2sin 2322f x x x x x π⎛⎫=+--+ ⎪⎝⎭112cos sin 2sin 222x x x x x ⎛⎫=++ ⎪ ⎪⎝⎭()211sin 22cos 12sin 22222x x x x =+-++sin 222sin 23x x x π⎛⎫=+=+ ⎪⎝⎭,令222232k x k πππππ-≤+≤+,k Z ∈,解得51212k x k ππππ-≤≤+,k Z ∈, 因此,函数()f x 的单调递增区间为5,1212k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈;(2),46x ππ⎛⎫∈- ⎪⎝⎭,22633x πππ-<+<,则1sin 2123x π⎛⎫-<+≤ ⎪⎝⎭,所以,()12f x -<≤,因此,当,46⎛⎫∈- ⎪⎝⎭x ππ时,()y f x =的值域为(]1,2-.【点评】方法点睛:求函数()()sin f x A x =+ωϕ在区间[],a b 上值域的一般步骤: 第一步:三角函数式的化简,一般化成形如()sin y A x k ωϕ=++的形式或()cos y A x k ωϕ=++的形式;第二步:由x 的取值范围确定x ωϕ+的取值范围,再确定()sin x ωϕ+(或()cos x ωϕ+)的取值范围;第三步:求出所求函数的值域(或最值).24.(2021·山西吕梁市·高三一模(文))在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知22cos a b c B -=⋅. (1)求角C ;(2)若2a =,D 是AC 的中点,BD =c . 【答案】(1)π3C =;(2)2c =.【分析】(1)先利用正弦定理将边转化到角的正弦,结合()sin sin sin cos cos sin A B C B C B C =+=+进行化简1cos 2C =,即求得角C ; (2)CBD 中利用余弦定理求得2b =,判断ABC 是等边三角形,即得到边c . 【解答】解:(1)因为22cos a b c B -=⋅, 由正弦定理得:2sin sin 2sin cos A B C B -=⋅,因为()sin sin sin cos cos sin A B C B C B C =+=+,代入上式得,2sin cos 2cos sin sin 2sin cos B C B C B C B +-=, 即2sin cos sin 0B C B -=,即()sin 2cos 10B C -= 因为ABC 中,sin 0B ≠,所以2cos 1C =,即1cos 2C =, 又因为ABC 中,0C π<<,所以π3C =;(2)依题意,CBD 中,12,,2CB CD b BD ===π3C =,利用余弦定理可得,21114322422b b +-=⨯⨯⨯,即2440b b -+=,解得2b =,ABC 中,2b a ==,π3C =,故ABC 是等边三角形,故2c =. 【点评】思路点睛:一般地,解有关三角形的题目时,通常利用正弦定理或余弦定理对边角关系进行转化,要有意识地已知条件判断用哪个定理更合适. 如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理.25.(2021·安徽六安市·高三一模(文))已知函数()2sin 2sin12xf x x =+-. (1)求函数()f x 的单调递增区间;(2)将函数()f x 图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),再把图象向右平移24π个单位长度,得到函数()y g x =的图象,当0,2x π⎡⎤∈⎢⎥⎣⎦时,求函数()g x 的值域.【答案】(1)()32,244k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;(2)⎡⎢⎣.【分析】(1)利用三角恒等变换思想化简函数()f x 的解析式为()4f x x π⎛⎫=- ⎪⎝⎭,然后解不等式()22242k x k k Z πππππ-+≤-≤+∈,即可求得函数()f x 的单调递增区间;(2)利用三角函数图象变换得出()23g x x π⎛⎫=- ⎪⎝⎭,由0,2x π⎡⎤∈⎢⎥⎣⎦求得23x π-的取值范围,然后利用正弦型函数的基本性质可求得函数()g x 在0,2π⎡⎤⎢⎥⎣⎦上的值域.【解答】(1)()sin cos 4f x x x x π⎛⎫=-=- ⎪⎝⎭,由()22242k x k k Z πππππ-+≤-≤+∈,解得()32244k x k k Z ππππ-+≤≤+∈. ∴函数()f x 的单调增区间为()32,244k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;(2)将函数()f x 图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到函数24y x π⎛⎫=- ⎪⎝⎭的图象 ,再把所得函数图象向右平移24π个单位长度,得到函数()222443g x x x πππ⎡⎤⎛⎫⎛⎫=--=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦由0,2x π⎡⎤∈⎢⎥⎣⎦时,可得22,333x πππ⎡⎤-∈-⎢⎥⎣⎦,所以,sin 213x π⎛⎫≤-≤ ⎪⎝⎭,可得函数()g x 在0,2π⎡⎤⎢⎥⎣⎦上的值域为⎡⎢⎣.【点评】方法点睛:求函数()()sin f x A x =+ωϕ在区间[],a b 上值域的一般步骤: 第一步:三角函数式的化简,一般化成形如()sin y A x k ωϕ=++的形式或()cos y A x k ωϕ=++的形式;第二步:由x 的取值范围确定x ωϕ+的取值范围,再确定()sin x ωϕ+(或()cos x ωϕ+)的取值范围;第三步:求出所求函数的值域(或最值).26.(2021·辽宁高三一模(理))已知函数()2cos 3cos 1f x x x x -+.(1)求函数()f x 的单调递减区间;(2)在锐角ABC 中,角,,A B C 所对的边分别,,a b c .若()1,f C c ==D 为AB 的中点,求CD 的最大值. 【答案】(1)递减区间511[,]1212k k k Z ππππ++∈;(2)32.【分析】(1)利用二倍角公式和辅助角公式得到函数()1232x f x π⎛⎫=-- ⎪⎝⎭,再利用正弦函数的性质求解.(2)()1f C =由,得到sin(2)3C π-=,再由ABC 为锐角三角形,求得3C π=,利用余弦定理得到2222cos a CD BDC =+-⋅∠,222(2cos 22b CD ADC =+-⋅⋅∠,两式相加得到22213)24CD a b =+-(,再利用基本不等式求解.【解答】(1)3()2(1cos 2)12f x x x =-++, 1232x π⎛⎫=-- ⎪⎝⎭,由3222,232k x k k Z πππππ+≤-≤+∈, 解得:511,1212k x k k Z ππππ+≤≤+∈, 所以()f x 递减区间511[,],1212k k k Z ππππ++∈.(2)1())132f C C π=--=由,得sin(2)32C π-=,ABC 为锐角三角形,(0,)2C π∈∴,22(,)333C πππ∴-∈-, 233C ππ∴-=,3C π∴=,由余弦定理得:2222cos a CD BDC =+-⋅∠,2222cos b CD ADC =+-⋅∠, 且cos cos BDC ADC ∠=-∠,两式相加得:22213)24CD a b =+-(,由222232cos a b ab C a b ab =+-=+-,2222221()22a b a b a b +≥+-=+,当a b =时,等号成立, 即22a b +的最大值为6, 所以CD 的最大值为32. 【点评】关键点点睛:本题第二问关键是由CD 为中线,由∠+∠=BDC ADC π,在BDC ,ADC 中,分别利用余弦定理,进而得到22213)24CD a b =+-(求解.27.(2021·湖南永州市·高三二模)已知函数2()2cos122x f x x π⎛⎫=-+- ⎪⎝⎭. (1)求函数()f x 的最小正周期;(2)在ABC 中,角A 、B 、C 所对边分别为a 、b 、c ,若()2f A =,2b =,ABC的面积为ABC 外接圆的面积. 【答案】(1)2π;(2)283π. 【分析】(1)先化简()()sin f x A x ωϕ=+再结合最小正周期公式2T ωπ=即可; (2)由()2f A =得3A π=,结合余弦定理和正弦定理可求得圆半径,故面积可求得.【解答】解:(1)2()2cos1cos 22x f x x x x π⎛⎫=+-=+ ⎪⎝⎭2sin 6x π⎛⎫=+ ⎪⎝⎭,所以函数()f x 的最小正周期为2π.(2)因为()22sin 26f A A π⎛⎫=⇒+= ⎪⎝⎭,所以3A π=,由1sin 2ABCSbc A ==12bc =,因为2b =,所以6c =, 由余弦定理得222222cos 28a c b bc A c b bc =+-=+-=,得a =设ABC 外接圆半径为R ,则2sin a R A ==,∴R = 所以ABC 外接圆的面积为2283S R ππ==. 【点评】本题准确应用正余弦定理和面积公式是解题的关键.28.(2021·河北张家口市·高三一模)在ABC 中,cos sin )sin cos B b C b B C -=. (1)求B ;(2)若2c a =,ABC ,求ABC 的周长.【答案】(1)3B π=;(2)2+.【分析】(1cos sin B b A =,根据正弦定理、三角形内角的性质,即可求B ;(2)由三角形面积公式求出a 、c ,再根据余弦定理求b ,即可求ABC 的周长.【解答】(1)由cos sin )sin cos B b C b B C -=,得cos cos sin sin cos B b B C b B C -=,cos sin cos cos sin B b B C b B C =+cos sin()B b B C =+,cos sin B b A =.cos sin sin A B B A =,又sin 0A ≠,sin B B =,即tan B =0B π<<, ∴3B π=.(2)由2,c a ABC =11sin 22223ABCSac B a a ==⨯⨯⨯=,解得3a =,即23c a ==由余弦定理2222cos b a c ac B =+-,可得2221242b =+-=⎝⎭⎝⎭,解得2b =.∴ABC 的周长为2233a b c ++=++=+ 【点评】关键点点睛:(1)利用三角恒等变换及正弦定理,将已知条件化简为一个内角的函数值,根据函数值确定角的大小.(2)综合应用正余弦定理求三角形的边,进而求其周长.29.(2021·广东韶关市·高三一模)在①()cos cos cos 0C A A B +=,②()cos23cos 1B A C -+=,③cos sin 3b C B a +=这三个条件中任选一个,补充在下面问题中.问题:在ABC 中,角A 、B 、C 对应的边分别为a 、b 、c ,若1a c +=,___________,求角B 的值和b 的最小值. 【答案】条件选择见解析;3B π=,b 最小值为12. 【分析】选①,利用三角形的内角和定理、诱导公式以及两角和的余弦公式化简得出tan B =结合()0,B π∈可求得B ,再利用余弦定理结合二次函数的基本性质可求得b 的最小值;选②,利用三角形的内角和定理、诱导公式以及二倍角的余弦公式求出cos B 的值,结合()0,B π∈可求得B ,再利用余弦定理结合二次函数的基本性质可求得b 的最小值; 选③,利用正弦定理边角互化、三角形的内角和定理以及两角和的正弦公式化简可求得tan B =结合()0,B π∈可求得B ,再利用余弦定理结合二次函数的基本性质可求得b 的最小值.【解答】解:若选择①:在ABC 中,有A B C π++=,则由题可得:()()cos cos cos 0A B A A B π-++=⎡⎤⎣⎦,()cos cos cos cos 0A B A B A B -++=,sin sin cos cos cos cos cos 0A B A B A B A B -+-=,sin sin cos A B A B =,又sin 0A ≠,所以sin B B =,则tan B =又()0,B π∈,所以3B π=,因为1a c +=,所以1c a =-,()0,1a ∈. 由余弦定理可得:2222cos b a c ac B =+-22a c ac =+-()()2211a a a a =+---2331a a =-+,()0,1a ∈,又2211324b a ⎛⎫=-+ ⎪⎝⎭, 所以,当12a =时,()2min14b =,即b 的最小值为12;若选择②:在ABC 中,有A B C π++=,则由题可得()222cos 13cos 2cos 3cos 11B B B B π---=+-=,解得1cos 2B =或cos 2B =-(舍去), 又()0,πB ∈,所以3B π=.(剩下同①)若选择③:由正弦定理可将已知条件转化为sin cos sin sin 3B C C B A +=, ()()sin cos s s in cos in sin sin B C C B A B C B C π=+=-+=+⎡⎤⎣⎦,sin sin cos C B C B =,又sin 0C ≠,所以sin B B =,tan B =又()0,B π∈,所以3B π=.(剩下同①)【点评】方法点睛:在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则如下: (1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”; (2)若式子中含有a 、b 、c 的齐次式,优先考虑正弦定理“边化角”; (3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”; (4)代数式变形或者三角恒等变换前置;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角恒等变换专题
例1 求证:对于所有的xR,有
333
243coscoscoscos3334xxxx
。
解:利用3cos34cos3cosxxx推倒。
例2 求11sincos()nnkSkxnkx的值。
解:颠倒顺序首位相加。
例3 求乘积:
1
(1tan1)(1tan2)(1tan89)P
2
(1tan1)(1tan2)(1tan44)P
解:2(cos1sin1)(cos44sin44)cos1cos44P
44
2222
(cos1sin1)(cos44sin44)22222()cos1cos442
例4 求证:
22
(4cos93)(4cos273)tan9
。
解:利用2cos34cos3cosxxx。
例5 求乘积2222sincos()()1sincosaabb
22211tan2(1tan2)k
n
n
k
kxPx
的值。
解:利用2222211tan2cos2(1tan2)cos2kkkkxxxx即可。
例6 令,,abc是正实数,满足
1abbcca
求证:
111
arctanarctanarctanabc
。
解:利用tantantantantantantan()1tantantantantantan性质求解,注意
arctanx
的值域。
例7 令,(0,)2ab,求证:当且仅当ab时,有
22
22
sincos()()1sincosaa
bb
。
解:若成立,有(0,)2c使22sincossin,cossincosaaccbb
例8 令x是实数,[1,1]x,求证对于所有正整数n,有
2211(1)12nn
nxx
。
练习:
1、 求函数()cos2cosfxaxbxc的极值,其中,0ab。
2、 如果,pq是正整数,求函数()coscosfxpxqx的周期
3、 解方程2sinsin20AxBxC,其中,,ABC是实数。
4、 求证:在任何三角形中,有2coscoscos2abcaAbBcCR。
5、 ,,ABC是三角形的三个角,满足sinsinsinsinsinsinABBCCA,
(1sin)(1sin)(1sin)2(1)ABC
,求证ABC是直角三角形。