万有引力定律公式讲解、例题及其应用
万有引力公式,经典例题

万有引力定律及其应用知识网络:一、万有引力定律:(1687年)221rm m GF = 适用于两个质点或均匀球体;r 为两质点或球心间的距离;G 为万有引力恒量(1798年由英国物理学家卡文迪许利用扭秤装置测出)2211/1067.6kg m N G ⋅⨯=-二、万有引力定律的应用 1.解题的相关知识:(1)在高考试题中,应用万有引力定律解题的知识常集中于两点:一是天体运动的向心力来源于天体之间的万有引力,即222r v m r Mm G ==r Tm 224πr m 2ω=;二是地球对物体的万有引力近似等于物体的重力,即G2RmM =mg 从而得出GM =R 2g 。
(2)圆周运动的有关公式:ω=Tπ2,v=ωr 。
讨论:①由222r v m r Mm G =可得:rGM v = r 越大,v 越小。
②由r m rMm G22ω=可得:3r GM =ω r 越大,ω越小。
③由r T m r Mm G 222⎪⎭⎫ ⎝⎛=π可得:GM rT 32π= r 越大,T 越大。
④由向ma r Mm G=2可得:2rGMa =向 r 越大,a 向越小。
点评:需要说明的是,万有引力定律中两个物体的距离,对于相距很远因而可以看作质点的物体就是指两质点的距离;对于未特别说明的天体,都可认为是均匀球体,则指的是两个球心的距离。
人造卫星及天体的运动都近似为匀速圆周运动。
2.常见题型万有引力定律的应用主要涉及几个方面:万有引力定律天体运动地球卫星(1)测天体的质量及密度:(万有引力全部提供向心力)由r T m r Mm G 222⎪⎭⎫⎝⎛=π 得2324GT r M π= 又ρπ⋅=334R M 得3233R GT r πρ= 【例1】中子星是恒星演化过程的一种可能结果,它的密度很大。
现有一中子星,观测到它的自转周期为T =301s 。
问该中子星的最小密度应是多少才能维持该星的稳定,不致因自转而瓦解。
计算时星体可视为均匀球体。
万有引力定律及其应用

万有引力定律及其应用万有引力定律是物理学中最基本的定律之一,描述了物体之间相互作用的力,被广泛应用于天体运动、地球运行、航天探索等领域。
本文将介绍万有引力定律的定义与公式,并探讨其在宇宙学、卫星运行和导航系统中的应用。
一、万有引力定律的定义和公式万有引力定律是由艾萨克·牛顿于1687年提出的,它描述了两个物体之间的引力大小与它们的质量及距离的关系。
牛顿的万有引力定律可以用以下公式表示:F =G * (m1 * m2) / r^2其中,F表示两个物体之间的引力,G是万有引力常数,m1和m2分别是两个物体的质量,r是它们之间的距离。
二、万有引力定律在宇宙学中的应用万有引力定律在宇宙学中起着重要作用。
根据该定律,行星围绕太阳运行,卫星绕地球运行,这是因为太阳和地球对它们产生了引力。
通过牛顿的定律,科学家们能够计算出天体之间的引力,从而预测它们的运动轨迹和相互作用。
世界各个国家的航天探索也依赖于万有引力定律。
比如,计算出行星和卫星的运动轨迹,对航天器进行准确的发射和着陆,都需要准确地应用万有引力定律。
此外,万有引力定律还促进了科学家对宇宙的进一步研究,帮助他们了解天体的形成和宇宙演化的规律。
三、万有引力定律在卫星运行中的应用卫星是应用万有引力定律的典型实例。
通过牛顿定律计算引力,可确定卫星轨道的稳定性和运行所需的速度。
在卫星发射前,科学家需要根据卫星要达到的轨道高度和地球质量计算出所需的发射速度,确保卫星能够稳定地绕地球运行。
此外,卫星之间也需要遵循万有引力定律的规律。
卫星在轨道上的相对位置和轨道调整都受到引力的影响。
科学家利用牛顿定律的公式,预测卫星之间的相对运动,确保卫星不会相互碰撞,从而保证卫星系统的正常运行。
四、万有引力定律在导航系统中的应用导航系统是现代社会不可或缺的一部分,而万有引力定律在导航系统中也发挥着关键作用。
通过利用地球的引力场,导航系统能够计算出接收器的位置和速度。
卫星导航系统如GPS(全球定位系统)就是基于万有引力定律工作的。
【高中物理】万有引力定律及其应用

神舟号飞船的运行轨道离地面的高度为 340km,线速度约7.8km/s,周期约90min。
2.同步卫星
1)“同步”:就是和地球保持相对静止,所以其周期
等于地球自转周期,即T=24h=86400s。
2)高度:同步卫星离地面高度为h= 3.6×107m
P77变式1
五.天体质量和密度的计算
mM G r2
m
4 2
T2
r,
4 2r3
M GT 2
M M 3 r2 V 4 R3 GT 2R3
3
P78变式3
六、处理人造卫星问题的基本思路
基本方法:人造卫星绕地球做匀速圆周运动,轨道圆 心都在地心;万有引力充当向心力;
物理模型:地球是中心天体,卫星是运动天体
A.速度越大
B.角速度越大
C.向心加速度越大; D.周期越长
【例2】(多选)在空中飞行了十多年的“和平号”
航天站已失去动力,由于受大气阻力作用其绕地球转
动半径将逐渐减小,最后在大气层中坠毁,在此过程
中下列说法正确的是 A.航天站的速度将加大
ACD
B.航天站绕地球旋转的周期加大
C.航天站的向心加速度加大
角速度
2
T
g 2R0
g0 8R0
故B选项正确
P78变式5
二、三种宇宙速度: ①第一宇宙速度(环绕速度):v1=7.9km/s, 是人造地球卫星在地面的最小发射速度,是人 造卫星绕地球做匀速圆周运动的最大线速度, 也是近地卫星的线速度。
②第二宇宙速度(脱离速度)v2=11.2km/s, 使卫星挣脱地球引力束缚的最小发射速度。
万有引力定律及其应用

万有引力定律及其应用万有引力定律是物理学中最基本的定律之一,由英国科学家牛顿提出。
它描述了质点间的相互引力作用,并广泛应用于天体物理学、工程学以及其他领域中。
一、万有引力定律的描述万有引力定律指出,两个物体之间的引力与它们的质量成正比,与它们之间的距离平方成反比。
具体而言,设两个质量分别为m1和m2的物体之间的距离为r,它们之间的引力F可以表示为以下公式:F =G * (m1 * m2) / r^2其中G是一个常数,称为万有引力常数。
这个常数的数值约为6.67430 × 10^-11 N·(m/kg)^2。
根据万有引力定律,质点间的引力始终是吸引力,且大小与质量以及距离的关系密切。
二、天体物理学中的应用万有引力定律在天体物理学中有着广泛的应用。
例如,根据这一定律,我们可以计算出行星与恒星之间的引力,从而预测它们的运动轨迹。
此外,万有引力定律还可以解释地球和月球之间的引力,以及引力对行星、卫星等天体的影响。
在天体物理学中,还有一个重要的应用是质量测量。
通过监测天体之间的引力以及它们之间的距离,科学家可以估算出天体的质量。
例如,通过测量地球和人造卫星之间的引力,可以推导出地球的质量。
三、工程学中的应用除了天体物理学,万有引力定律在工程学中也有重要的应用。
例如,在建筑和桥梁设计中,工程师需要考虑结构物与地球之间的引力。
万有引力定律提供了一种计算这种引力的方法,以确保结构物的稳定性和安全性。
此外,万有引力定律还可以应用于导航系统的设计中。
卫星导航系统需要准确测量卫星与地球之间的引力,以确定接收器的位置。
通过使用万有引力定律进行引力计算,可以提高导航系统的准确性和可靠性。
四、其他领域中的应用除了天体物理学和工程学,万有引力定律还可以在其他领域中找到应用。
例如,在生物医学领域,研究人员可以利用万有引力定律来研究细胞之间的相互引力作用,以及人体内部的重力分布情况。
此外,在航天工程中,万有引力定律也被用于计算卫星轨道以及飞船的运行轨迹。
万有引力定律及其在天文学上的应用

宇宙常数问题
宇宙常数是爱因斯坦在相对论中引入的一个 参数,用来描述空间中的恒定能量密度。然 而,观测数据表明,宇宙的膨胀速度并没有 减缓,这与宇宙常数的预测结果不符。
05
万有引力定律的未来展望
寻找暗物质和暗能量
暗物质
科学家们通过研究星系旋转速度和宇宙微波 背景辐射等观测数据,推断出暗物质的存在 。未来,通过更精确的观测设备和更先进的 探测技术,有望揭示暗物质的本质。
科学背景
在牛顿之前,科学家们已经对天体运 动有了一些了解,但还没有找到解释 其运动规律的理论基础。
万有引力定律的内容
01
任何两个物体都相互吸引,其引 力与它们的质量成正比,与它们 之间距离的平方成反比。
02
公式表示为: F=G*[(m1*m2)/(r^2)],其中F表 示两物体之间的引力,G是自然界 的常量,m1和m2是两个物体的质 量,r是它们之间的距离。
微观世界的挑战
量子力学与万有引力定律的矛盾
在微观世界中,量子力学和万有引力定律在描述物质行为时存在不兼容性。
寻找统一理论
物理学家正在努力寻找一个能够统一量子力学和万有引力定律的理论框架,以解决微观 世界中存在的问题。
其他未解之谜
暗物质和暗能量
尽管万有引力定律在许多情况下都适用,但 在解释宇宙中暗物质和暗能量的行为时遇到 了困难。
万有引力定律及其在天文学 上的应用
目录
• 万有引力定律的概述 • 万有引力定律的证明 • 万有引力定律在天文学上的应用 • 万有引力定律的局限性 • 万有引力定律的未来展望
01
万有引力定律的概述
万有引力定律的发现
牛顿的苹果故事
据说,牛顿在树下休息时,看到一个 苹果从树上掉下来,这引发了他对重 力的思考。
《万有引力定律的应用》 讲义

《万有引力定律的应用》讲义一、万有引力定律的基本概念万有引力定律是由牛顿在 17 世纪发现的,它描述了两个物体之间的引力相互作用。
其数学表达式为:$F =G\frac{m_1m_2}{r^2}$,其中$F$ 表示两个物体之间的引力,$G$ 是万有引力常量,约为$667×10^{-11} N·m^2/kg^2$,$m_1$ 和$m_2$ 分别是两个物体的质量,$r$ 是两个物体质心之间的距离。
万有引力定律告诉我们,任何两个物体之间都存在着相互吸引的力,这个力的大小与两个物体的质量成正比,与它们之间距离的平方成反比。
二、万有引力定律在天体物理学中的应用1、计算天体的质量通过观测天体周围物体的运动情况,我们可以利用万有引力定律来计算天体的质量。
例如,对于围绕恒星公转的行星,我们可以通过测量行星的公转周期$T$ 和轨道半径$r$,根据开普勒第三定律:$\frac{r^3}{T^2} = k$(其中$k$ 只与中心天体的质量有关),结合万有引力定律,就可以计算出恒星的质量。
假设某行星绕恒星做匀速圆周运动,其公转周期为$T$,轨道半径为$r$,恒星质量为$M$,行星质量为$m$。
行星受到的引力提供其做圆周运动的向心力,即:$G\frac{Mm}{r^2} = m\frac{4\pi^2}{T^2}r$由此可得恒星质量$M =\frac{4\pi^2r^3}{GT^2}$2、预测天体的运动轨迹万有引力定律可以帮助我们预测天体在宇宙中的运动轨迹。
例如,彗星在靠近太阳时,由于受到太阳的巨大引力作用,其速度会增加;而在远离太阳时,引力减弱,速度逐渐减小。
通过计算彗星与太阳之间的引力,我们可以准确地预测彗星的运动轨迹。
3、研究星系的结构和演化在星系尺度上,万有引力定律同样起着重要作用。
星系中的恒星、星云等天体之间通过万有引力相互作用,形成了星系的结构和演化。
科学家们通过研究星系中天体的运动和分布,利用万有引力定律来了解星系的形成、发展和未来的演化趋势。
新人教版 年 高一物理必修2 第六章 专题:万有引力定律应用-课件
例1.关于万有引力定律和引力常量的发现,下面
说法中哪个是正确的 ( D )
A.万有引力定律是由开普勒发现的,而引 力常量是由伽利略测定的
B.万有引力定律是由开普勒发现的,而引 力常量是由卡文迪许测定的
C.万有引力定律是由牛顿发现的,而引力 常量是由胡克测定的
D.万有引力定律是由牛顿发现的,而引力 常量是由卡文迪许测定的
例2.关于第一宇宙速度,下面说法正确的有( B C ) A. 它是人造卫星绕地球飞行的最小速度 B. 它是发射人造卫星进入近地圆轨道的最小速度 C.它是人造卫星绕地球飞行的最大速度 D. 它是发射人造卫星进入近地圆轨道的最大速度。
(提示:注意发射速度和环绕速度的区别)
练习.已知金星绕太阳公转的周期小于地球绕太阳 公转的周期,它们绕太阳的公转均可看做匀速圆周 运动,则可判定 ( C )
法正确的是 ( B D ) A.卫星的轨道半径越大,它的 运行速度越大 B.卫星的轨道半径越大,它的 运行速度越小 C.卫星的质量一定时,轨道半径越大,它需要的
向心力越大 D.卫星的质量一定时,轨道半径越大,它需要的
向心力越小
例5.一宇宙飞船在离地面h的轨道上做匀速圆周运
动,质量为m的物块用弹簧秤挂起,相对于飞船静
练习.一颗人造地球卫星在离地面高度等于地球半
径的圆形轨道上运行,其运行速度是地球第一宇宙
速度的
2 2
倍.
此处的重力加速度g'= 0.25 g0 .(已知地球表面
处重力加速度为g0)
练习、 从地球上发射的两颗人造地球卫星A和B, 绕地球做匀速圆周运动的半径之比为RA∶RB=4∶1, 求它们的线速度之比和运动周期之比。
n= T1/(T2-T1), ∴ t1 =T1T2/(T2-T1) ,
万有引力定律的应用课件
三、常见题型 3.地球的同步卫星 (通信卫星)
三、常见题型 3.地球的同步卫星 (通信卫星)
(1)定义:相对于地面静止的和地球自转同步的卫星
(2)轨道:与赤道共面同心圆
(3)特点:周期为T=24h(与地球自转周期相同)
(4)位于赤道正上方,离地面高度、线速度、角速度、 周期、加速度是一定的
解析:题中所列关于g的表达式并不是卫星表面的重力加
速度,而是卫星绕行星做匀速圆周运动的向心加速度.正
确的解法是 卫星表面 G m 即g =0.16g0.R 2
g
,行星表面
GM R02
g0
,即 ( R0 )2 m g R M g0
【例10】 (2006天津25) 神奇的黑洞是近代引力理 论所预言的一种特殊天体,探寻黑洞的方案之一是观 测双星系统的运动规律.天文学家观测河外星系大 麦哲伦云时,发现了LMCX-3双星系统,它由可见 星A和不可见的暗星B构成.两星视为质点,不考虑 其它天体的影响,AB围绕两者连线上的O点做匀速 圆周运动,它们之间的距离保持不变,如图所 示.引力常量为G,由观测能够得到可见星A的速率 v和运行周期T. ⑴质可 量见为m星’A的所星受体暗(星视B为的质引点力)FA对可它等的效引为力位,于设OA点和处B 的试⑵见质 求 求 星mA量暗的’分 星(速B别用的 率为mv质1m、、量1运、mm2行m表2与2周,示可期)T; 和质量m1之间的关系式;
万有引力定律的应用
一、基本规律 二、基本思路 三、常见题型 四、走近高考
考纲要求
1.万有引力定律应用.人造地球卫星的运动 (限于圆轨道) Ⅱ
2.宇宙速度 Ⅰ
一、基本规律
高考物理万有引力定律的应用解题技巧讲解及练习题(含答案)含解析
高考物理万有引力定律的应用解题技巧讲解及练习题(含答案)含解析一、高中物理精讲专题测试万有引力定律的应用1.a 、b 两颗卫星均在赤道正上方绕地球做匀速圆周运动,a 为近地卫星,b 卫星离地面高度为3R ,己知地球半径为R ,表面的重力加速度为g ,试求: (1)a 、b 两颗卫星周期分别是多少? (2) a 、b 两颗卫星速度之比是多少?(3)若某吋刻两卫星正好同时通过赤道同--点的正上方,则至少经过多长时间两卫星相距最远? 【答案】(1)2,16(2)速度之比为2【解析】【分析】根据近地卫星重力等于万有引力求得地球质量,然后根据万有引力做向心力求得运动周期;卫星做匀速圆周运动,根据万有引力做向心力求得两颗卫星速度之比;由根据相距最远时相差半个圆周求解;解:(1)卫星做匀速圆周运动,F F =引向, 对地面上的物体由黄金代换式2MmGmg R = a 卫星2224aGMm m R R T π=解得2a T =b 卫星2224·4(4)bGMm m R R T π=解得16b T = (2)卫星做匀速圆周运动,F F =引向,a 卫星22a mv GMm R R=解得a v =b 卫星b 卫星22(4)4Mm v G m R R=解得v b =所以 2abV V =(3)最远的条件22a bT Tπππ-=解得87Rtgπ=2.由三颗星体构成的系统,忽略其他星体对它们的影响,存在着一种运动形式:三颗星体在相互之间的万有引力作用下,分别位于等边三角形的三个顶点上,绕某一共同的圆心O 在三角形所在的平面内做角速度相同的圆周运动(图示为A、B、C三颗星体质量不相同时的一般情况)若A星体的质量为2m,B、C两星体的质量均为m,三角形的边长为a,求:(1)A星体所受合力的大小F A;(2)B星体所受合力的大小F B;(3)C星体的轨道半径R C;(4)三星体做圆周运动的周期T.【答案】(1)2223Gma(227Gm(37(4)3πaTGm=【解析】【分析】【详解】(1)由万有引力定律,A星体所受B、C星体引力大小为24222A BR CAm m mF G G Fr a===,则合力大小为223AmF Ga=(2)同上,B星体所受A、C星体引力大小分别为2222222A BABC BCBm m mF G Gr am m mF G Gr a====则合力大小为22cos 602Bx AB CB m F F F G a =︒+=22sin 603By AB m F F G a=︒=.可得22227B BxBym F F F G a=+=(3)通过分析可知,圆心O 在中垂线AD 的中点,22317424C R a a a ⎛⎫⎛⎫=+= ⎪ ⎪ ⎪⎝⎭⎝⎭ (4)三星体运动周期相同,对C 星体,由22227C B C m F F G m R a T π⎛⎫=== ⎪⎝⎭可得22a T Gmπ=3.牛顿说:“我们必须普遍地承认,一切物体,不论是什么,都被赋予了相互引力的原理”.任何两个物体间存在的相互作用的引力,都可以用万有引力定律122=m m F Gr 万计算,而且任何两个物体之间都存在引力势能,若规定物体处于无穷远处时的势能为零,则二者之间引力势能的大小为12=-p m m E Gr,其中m 1、m 2为两个物体的质量, r 为两个质点间的距离(对于质量分布均匀的球体,指的是两个球心之间的距离),G 为引力常量.设有一个质量分布均匀的星球,质量为M ,半径为R . (1)该星球的第一宇宙速度是多少?(2)为了描述电场的强弱,引入了电场强度的概念,请写出电场强度的定义式.类比电场强度的定义,请在引力场中建立“引力场强度”的概念,并计算该星球表面处的引力场强度是多大?(3)该星球的第二宇宙速度是多少?(4)如图所示是一个均匀带电实心球的剖面图,其总电荷量为+Q (该带电实心球可看作电荷集中在球心处的点电荷),半径为R ,P 为球外一点,与球心间的距离为r ,静电力常量为k .现将一个点电荷-q (该点电荷对实心球周围电场的影响可以忽略)从球面附近移动到p 点,请参考引力势能的概念,求电场力所做的功.【答案】(1)1v =2)2=M E G R '引;(3)2v =4)11()W kQq r R=-【解析】 【分析】 【详解】(1)设靠近该星球表面做匀速圆周运动的卫星的速度大小为1v ,万有引力提供卫星做圆周运动的向心力212v mMG m R R=解得:1v =; (2)电场强度的定义式F E q=设质量为m 的质点距离星球中心的距离为r ,质点受到该星球的万有引力2=MmF Gr 引 质点所在处的引力场强度=F E m引引 得2=M E Gr引 该星球表面处的引力场强度'2=ME GR 引 (3)设该星球表面一物体以初速度2v 向外抛出,恰好能飞到无穷远,根据能量守恒定律22102mM mv G R-=解得:2v =; (4)点电荷-q 在带电实心球表面处的电势能1P qQE k R=- 点电荷-q 在P 点的电势能2P qQE kr=- 点电荷-q 从球面附近移动到P 点,电场力所做的功21()P P W E E =-- 解得:11()W kQq r R=-.4.2019年3月3日,中国探月工程总设计师吴伟仁宣布中国探月工程“三步走”即将收官,我国对月球的探索将进人新的征程。
高考物理复习《万有引力定律》考点归纳PPT课件
跟进练习
1、(万有引力公式的应用)(2020·全国卷Ⅰ·15)火星的质量约为地球质量的110,半径约为地球半 径的12,则同一物体在火星表面与在地球表面受到的引力的比值约为( ) A.0.2 B.0.4 C.2.0 D.2.5 答案 B
解析 万有引力表达式为 F=GMr2m,则同一物体在火星表面与地球表面受到的引力的比值为
例2:假设地球是一半径为R、质量分布均匀的球体.一 矿井深度为d,已知质量分布均匀的球壳对壳内物体的引力 为零,则矿井底部和地面处的重力加速度大小之比为( )
A.1-Rd
C.R-R d2
B.1+Rd
D.R-R d2
答案 A 解析 如图所示,根据题意,地面与矿井底部之间的环形部分对处于矿井底部的物体引力为 零.设地面处的重力加速度为 g,地球质量为 M,地球表面的物体 m 受到的重力近似等于万 有引力,故 mg=GMRm2 ,又 M=ρ43πR3,故 g=ρ43πGR;设矿井底部的重力加速度为 g′,其 半径 r=R-d,则 g′=ρ43πG(R-d),联立解得gg′=1-Rd,A 正确.
高考物理复习《万有引力定律》考点 归纳PPT课件
• 目录
基础总结 解题技巧
例题讲解 跟进练习
基础总结
1.内容 自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与 物体的质量m1和m2的乘积成正比、与它们之间距离r的二次方成反比.
2.表达式
F=G m1m2 r2
,G为引力常量,G=6.67×10-11
N·m2/kg2,由英
国物理学家卡文迪什测定.
3.适用条件 (1)公式适用于质点间的相互作用,当两个物体间的距离远大于物体本身的大小 时,物体可视为质点. (2)质量分布均匀的球体可视为质点,r是两球心间的距离.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
万有引力定律及其应用一、万有引力定律:(1687年)221rm m G F = 适用于两个质点或均匀球体;r 为两质点或球心间的距离;G 为万有引力恒量(1798年由英国物理学家卡文迪许利用扭秤装置测出)2211/1067.6kg m N G ⋅⨯=-二、万有引力定律的应用1.解题的相关知识:(1)在高考试题中,应用万有引力定律解题的知识常集中于两点:一是天体运动的向心力来源于天体之间的万有引力,即222rv m r Mm G ==r T m 224πr m 2ω=;二是地球对物体的万有引力近似等于物体的重力,即G 2RmM =mg 从而得出GM =R 2g 。
(2)圆周运动的有关公式:ω=Tπ2,v=ωr 。
讨论:①由222rv m r Mm G =可得:r GM v = r 越大,v 越小。
②由r m rMm G 22ω=可得:3r GM =ω r 越大,ω越小。
③由r T m r Mm G 222⎪⎭⎫ ⎝⎛=π可得:GM r T 32π= r 越大,T 越大。
④由向ma r Mm G =2可得:2r GM a =向 r 越大,a 向越小。
2.常见题型万有引力定律的应用主要涉及几个方面:万有引力定律天体运动地球卫星(1)测天体的质量及密度:(万有引力全部提供向心力) 由r T m r Mm G 222⎪⎭⎫ ⎝⎛=π 得2324GT r M π= 又ρπ⋅=334R M 得3233RGT r πρ= 【例1】 中子星是恒星演化过程的一种可能结果,它的密度很大。
现有一中子星,观测到它的自转周期为T =301s 。
问该中子星的最小密度应是多少才能维持该星的稳定,不致因自转而瓦解。
计算时星体可视为均匀球体。
(引力常数G =6.67⨯1011-m 3/kg.s 2) (2)行星表面重力加速度、轨道重力加速度问题:(重力近似等于万有引力) 表面重力加速度:2002R GM g mg R Mm G =∴= 轨道重力加速度:()()22h R GMg mg h R GMmh h +=∴=+【例2】一卫星绕某行星做匀速圆周运动,已知行星表面的重力加速度为g 0,行星的质量M 与卫星的质量m 之比M /m=81,行星的半径R 0与卫星的半径R 之比R 0/R =3.6,行星与卫星之间的距离r 与行星的半径R 0之比r /R 0=60。
设卫星表面的重力加速度为g ,则在卫星表面有m g r GMm=2 ……经过计算得出:卫星表面的重力加速度为行星表面的重力加速度的1/3600。
上述结果是否正确?若正确,列式证明;若有错误,求出正确结果。
(3)人造卫星、宇宙速度:人造卫星分类(略):其中重点了解同步卫星宇宙速度:(弄清第一宇宙速度与发卫星发射速度的区别)【例3】我国自行研制的“风云一号”、“风云二号”气象卫星运行的轨道是不同的。
“一号”是极地圆形轨道卫星。
其轨道平面与赤道平面垂直,周期是12h ;“二号”是地球同步卫星。
两颗卫星相比 号离地面较高; 号观察范围较大; 号运行速度较大。
若某天上午8点“风云一号”正好通过某城市的上空,那么下一次它通过该城市上空的时刻将是 。
【例4】可发射一颗人造卫星,使其圆轨道满足下列条件( )A 、与地球表面上某一纬度线(非赤道)是共面的同心圆B 、与地球表面上某一经度线是共面的同心圆C 、与地球表面上的赤道线是共面同心圆,且卫星相对地面是运动的D 、与地球表面上的赤道线是共面同心圆,且卫星相对地面是静止的【例5】侦察卫星在通过地球两极上的圆轨道上运行,它的运行轨道距地面高度为h ,要使卫星在一天的时间内将地面上赤道各处在日照条件的情况下全都拍摄下来,卫星在通过赤道上空时,卫星上的摄像机至少应拍摄地面上赤道圆周的弧长是多少?设地球半径为R ,地面处的重力加速度为g ,地球自转的周期为T 。
【例6】在地球(看作质量均匀分布的球体)上空有许多同步卫星,下面说法中正确的是( )A .它们的质量可能不同B .它们的速度可能不同C .它们的向心加速度可能不同D .它们离地心的距离可能不同【例7】地球同步卫星到地心的距离r 可由22234πc b a r =求出,已知式中a 的单位是m ,b 的单位是s ,c 的单位是m/s 2,则:A .a 是地球半径,b 是地球自转的周期,C 是地球表面处的重力加速度;B .a 是地球半径。
b 是同步卫星绕地心运动的周期,C 是同步卫星的加速度;C .a 是赤道周长,b 是地球自转周期,C 是同步卫星的加速度D .a 是地球半径,b 是同步卫星绕地心运动的周期,C 是地球表面处的重力加速度。
【例8】我国自制新型“长征”运载火箭,将模拟载人航天试验飞船“神舟三号”送入预定轨道,飞船绕地球遨游太空t =7天后又顺利返回地面。
飞船在运动过程中进行了预定的空间科学实验,获得圆满成功。
①设飞船轨道离地高度为h ,地球半径为R ,地面重力加速度为g .则“神舟三号”飞船绕地球正常运转多少圈?(用给定字母表示)②若h =600 km ,R =6400 km ,则圈数为多少?(4)双星问题:【例9】两个星球组成双星,它们在相互之间的万有引力作用下,绕连线上某点做周期相同的匀速圆周运动。
现测得两星中心距离为R ,其运动周期为T ,求两星的总质量。
(5)有关航天问题的分析:【例10】无人飞船“神州二号”曾在离地高度为H =3. 4⨯105m 的圆轨道上运行了47小时。
求在这段时间内它绕行地球多少圈?(地球半径R =6.37⨯106m ,重力加速度g =9.8m/s 2)【例11】2003年10月16日北京时间6时34分,中国首位航天员杨利伟乘坐“神舟”五号飞船在内蒙古中部地区成功着陆,中国首次载人航天飞行任务获得圆满成功。
中国由此成为世界上继俄、美之后第三个有能力将航天员送上太空的国家。
据报道,中国首位航天员杨利伟乘坐的“神舟”五号载人飞船,于北京时间十月十五日九时,在酒泉卫星发射中心用“长征二号F ”型运载火箭发射升空。
此后,飞船按照预定轨道环绕地球十四圈,在太空飞行约二十一小时,若其运动可近似认为是匀速圆周运动,飞船距地面高度约为340千米,已知万有引力常量为G=6.67×10-11牛·米2/千克2,地球半径约为6400千米,且地球可视为均匀球体,则试根据以上条件估算地球的密度。
(结果保留1位有效数学)(6)天体问题为背景的信息给予题【例12】 地球质量为M ,半径为R ,自转角速度为ω。
万有引力恒量为G ,如果规定物体在离地球无穷远处势能为0,则质量为m 的物体离地心距离为r 时,具有的万有引力势能可表示为rMm G E p -=。
国际空间站是迄今世界上最大的航天工程,它是在地球大气层上空绕地球飞行的一个巨大人造天体,可供宇航员在其上居住和科学实验。
设空间站离地面高度为h ,如果杂该空间站上直接发射一颗质量为m 的小卫星,使其能到达地球同步卫星轨道并能在轨道上正常运行,由该卫星在离开空间站时必须具有多大的动能?【例13】 1997年8月26日在日本举行的国际学术大会上,德国Max Planck 学会的一个研究组宣布了他们的研究成果:银河系的中心可能存在大黑洞,他们的根据是用口径为3.5m 的天文望远镜对猎户座中位于银河系中心附近的星体进行近六年的观测所得的数据。
他们发现,距离银河系中约60亿千米的星体正以2000km/s 的速度围绕银河系中心旋转。
根据上面数据,试在经典力学的范围内(见提示2)通过计算确认,如果银河系中心确实存在黑洞的话,其最大半径是多少?(引力常数是G =6.67×10-20km 3·kg -1s -2) 1.利用下列哪组数据,可以计算出地球质量:( )A .已知地球半径和地面重力加速度B .已知卫星绕地球作匀速圆周运动的轨道半径和周期C .已知月球绕地球作匀速圆周运动的周期和月球质量D .已知同步卫星离地面高度和地球自转周期2.“探路者”号宇宙飞船在宇宙深处飞行过程中,发现A 、B 两颗天体各有一颗靠近表面飞行的卫星,并测得两颗卫星的周期相等,以下判断错误的是A .天体A 、B 表面的重力加速度与它们的半径成正比B.两颗卫星的线速度一定相等C.天体A、B的质量可能相等D.天体A、B的密度一定相等3.已知某天体的第一宇宙速度为8 km/s,则高度为该天体半径的宇宙飞船的运行速度为A.22km/s B.4 km/sC.42km/s D.8 km/s4.探测器探测到土星外层上有一个环.为了判断它是土星的一部分还是土星的卫星群,可以测量环中各层的线速度v与该层到土星中心的距离R之间的关系来确定A.若v∝R,则该环是土星的一部分B.若v2∝R,则该环是土星的卫星群C.若v∝1/R,则该环是土星的一部分D.若v2∝1/R,则该环是土星的卫星群5.2002年12月30日凌晨,我国的“神舟”四号飞船在酒泉载人航天发射场发射升空,按预定计划在太空飞行了6天零18个小时,环绕地球108圈后,在内蒙古中部地区准确着陆,圆满完成了空间科学和技术试验任务,为最终实现载人飞行奠定了坚实基础.若地球的质量、半径和引力常量G均已知,根据以上数据可估算出“神舟”四号飞船的A.离地高度B.环绕速度C.发射速度D.所受的向心力6.航天技术的不断发展,为人类探索宇宙创造了条件.1998年1月发射的“月球勘探者号”空间探测器,运用最新科技手段对月球进行近距离勘探,在月球重力分布、磁场分布及元素测定等方面取得最新成果.探测器在一些环形山中央发现了质量密集区,当飞越这些重力异常区域时A.探测器受到的月球对它的万有引力将变大B.探测器运行的轨道半径将变大C.探测器飞行的速率将变大D.探测器飞行的速率将变小1.解析:设想中子星赤道处一小块物质,只有当它受到的万有引力大于或等于它随星体所需的向心力时,中子星才不会瓦解。
设中子星的密度为ρ,质量为M ,半径为R ,自转角速度为ω,位于赤道处的小物块质量为m ,则有 R m R GMm 22ω= T πω2= ρπ334R M = 由以上各式得23GT πρ=,代入数据解得:314/1027.1m kg ⨯=ρ。
2解析:题中所列关于g 的表达式并不是卫星表面的重力加速度,而是卫星绕行星做匀速圆周运动的向心加速度。
正确的解法是 卫星表面2R Gm=g 行星表面20R GM=g 0 即20)(R R M m =0g g 即g =0.16g 0。
3解析:根据周期公式T=GM r 32π知,高度越大,周期越大,则“风云二号” 气象卫星离地面较高;根据运行轨道的特点知,“风云一号” 观察范围较大;根据运行速度公式V=r GM知,高度越小,速度越大,则“风云一号” 运行速度较大,由于“风云一号”卫星的周期是12h ,每天能对同一地区进行两次观测,在这种轨道上运动的卫星通过任意纬度的地方时时间保持不变。