2014中考数学模拟试题五

合集下载

中考数学模拟试题五

中考数学模拟试题五

中考数学模拟试题五一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.随着我国经济快速发展,轿车进入百姓家庭,小明同学在街头观察出下列四种汽车标志,其中既是中心对称图形,又是轴对称图形的是()A.B.C.D.2.|-5|的相反数是()A.5 B.-5 C.-15D.153.已知一个正多边形的一个外角为36°,则这个正多边形的边数是()A.8 B.9 C.10 D.114.实验表明,人体内某种细胞的形状可近似地看作球,它的直径约为0.00000156米,则这个数用科学记数法表示为()A.0.156×10-5B.0.156×105C.1.56×10-6D.1.56×1065.若不等式组恰有两个整数解,则m的取值范围是()A.-1≤m<0 B.-1<m≤0 C.-1≤m≤0 D.-1<m<06.如果一组数据a1,a2,…,a n的方差是2,那么一组新数据2a1,2a2,…,2a n的方差是()A.2 B.4 C.8 D.167.如图,在△ABC中,AB=AC=5,BC=8,⊙O经过B、C两点,且AO=4,则⊙O的半径长是()A.17或65B.4或65C.4或17D.4或17或658.银泰购物中心一月份的营业额为400万元,第一季度营业总额为1600万元,若平均每月增长率为x,则可列方程为()A.400(1+x)2=1600 B.400[1+(1+x)+(1+x)2]=1600C.400+400x+400x2=1600 D.400(1+x+2x)=16009.程大位《直指算法统宗》:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完.试问大、小和尚各多少人?设大和尚有x 人,依题意列方程得( )A .+3(100﹣x )=100B .﹣3(100﹣x )=100C .3x +=100D .3x ﹣=100 10.如图,在矩形ABCD 中,E 是AD 边的中点,BE ⊥AC ,垂足为点F ,连接DF ,分析下列四个结论:①△AEF ∽△CAB ;②CF =2AF ;③DF =DC ;④tan ∠CAD=2.其中正确的结论有( B ) A.4个 B .3个 C .2个 D .1个二、填空题(本大题共6小题,每小题3分,满分18分.)11.分解因式:20-5a 2= .12.如图,在△ABC 中,D 为AC 边上的点,∠DBC=∠A ,BC =6,AC =3,则CD 的长为 _________ .13.已知:平面直角坐标系xOy 中,圆心在x 轴上的⊙M 与y轴交于点D (0,4)、点H ,过H 作⊙O 的切线交x 轴于点A ,若点M (-3,0),则sin ∠HAO 的值为 .14.某几何体的三视图如图所示,则组成该几何体的小正方体的个数是 5 .15.如图,已知正方形ABCD 的边长为2,将正方形ABCD 沿直线EF 折叠,则图中折成的4个阴影三角形的周长之和为 .16.如图,在等边△ABC 中,AB=4,点P 是BC 边上的动点,点P 关于直线AB ,AC 的对称第10题图F E DB CA点分别为M ,N ,则线段MN 长的取值范围是 6≤MN ≤4 .三、解答下列各题(共72分)17、(5分)计算:21()3-20170+|2-23|-tan60°18. (6分)如右图,矩形ABCD ,E 是AB 上一点,且DE =AB ,过C 作CF ⊥DE 于F .(1)猜想:AD 与CF 的大小关系;(2)请证明上面的结论.19.(8分) “端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗,随州市某食品厂为了解市民对去年销售量较好的肉馅粽、豆沙粽、红枣粽、蛋黄馅粽(以下分别用A 、B 、C 、D 表示这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查结果绘制成如下两幅统计图.请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将不完整的条形图补充完整.(3)若居民区有8000人,请估计爱吃D 粽的人数?(4)若有外型完全相同的A 、B 、C 、D粽各一个煮熟后,小王吃了两个,用列表或画树状图的方法,求他第二个吃到的恰好是C 粽的概率?20.(7分)已知:如图,一次函数y=x+b的图象与反比例函数y=kx(k<0)的图象交于A、B两点,A点坐标为(1,m),连接OB,过点B作BC⊥x轴,垂足为点C,且△BOC的面积为32.(1)求k的值;(2)求这个一次函数的解析式.21.(7分)如图,中国海监船在钓鱼岛附近海域沿正西方向航行执行巡航任务,在A处望见钓鱼岛在南偏西45°方向,海监船航行到B处时望见钓鱼岛在南偏45°方向,又航行了15分钟到达C处,望见钓鱼岛在南偏60°方向,若海监船的速度为36海里/小时,求中国海监船在此次航行过程中离钓鱼岛的最近距离为多少海里?(3≈1.732,结果精确到0.1海里).22.(8分) 如图,AB是⊙O的直径,点C在⊙O上,过点C作⊙O的切线CM.(1)求证:∠ACM=∠ABC;(2)延长BC到D,使CD=BC,连接AD与CM交于点E,若⊙O的半径为2,ED=1,求AC的长.23.(9分)实验中学九年级学生小凡、小文和小宇到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作.已知该水果的进价为8元/千克,下面是他们在活动结束后的对话.小凡:如果以9元/千克的价格销售,那么每天可售出350千克.小文:如果每千克的利润为2元,那么每天可售出300千克.小宇:如果以11元/千克的价格销售,那么每天可获取利润750元.物价部门规定:该水果的加价不得超过进价的45﹪.【利润=(销售价-进价)×销售量】(1)请根据他们的对话填写下表:(3分)销售单价x(元/kg)9 10 11销售量y(kg)(2)请你根据表格中的信息判断每天的销售量y(千克)与销售单价x(元)之间存在怎样的函数关系.并求y(千克)与x(元)(x>0)的函数关系式;(3分)(3)设该超市销售这种水果每天获取的利润为W元,求W与x的函数关系式.当销售单价为何值时,每天可获得的利润最大?最大利润是多少元?(3分)24.(10分)如图1,在边长为4的菱形ABCD中,AC为其对角线,∠ABC=60°点M、N是分别是边BC、边CD上的动点,且MB=NC.连接AM、AN、MN.MN交AC于点P.(1)△AMN是什么特殊的三角形?说明理由.(2)求△AMN面积的最小值;(3)求点P到直线CD距离的最大值;25. (12分)如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与点A重合),过点P作PD∥y 轴交直线AC于点D.(1)求抛物线的解析式;(2)求点P在运动的过程中线段PD长度的最大值;(3)在抛物线对称轴上是否存在点M,使|MA-MC|的值最大?若存在,请求出点M的坐标;若不存在,请说明理由.答案:21.22.(1)证明:连接OC.∵AB为⊙O的直径,∴∠ACB=90°.∴∠ABC+∠BAC=90°.∵CM是⊙O的切线,∴OC⊥CM.∴∠ACM+∠ACO=90°.∵CO=AO,∴∠BAC=∠ACO.∴∠ACM=∠ABC.(2)解:∵BC=CD,OB=OA,∴OC∥AD.又∵OC⊥CE,∴CE⊥AD,∵∠ACD=∠ACB=90°,∴∠AEC=∠ACD.∴△ADC∽△ACE.∴.∵⊙O的半径为2,∴AD=4.∴.∴AC=2.24.解:(1)如图1中,∵ABCD是菱形,∠ABC=60°,∴△ABC为等边三角形在△AMB和△ANC中,AB=AC∠B=∠ACN=60°BM=NC∴△AMB≌△ANC∴AM=AN,∠BAM+∠MAC=∠MAC+∠NAC=60°,∴∠MAN=60°,∴△AMN为等边三角形,当AM⊥BC时,△AMN的边长最小,面积最小,=•(2)2=3此时AM=MN=AN=2,S△AMN(2)如图2中,当AM⊥BC时,点P到CD距离最大.作PE⊥CD于E.理由:由(1)可知△AMN是等边三角形,当AM⊥BC时,△AMN的边长最小,此时PA长最小,PC的长最大,点P到直线CD距离的最大,∵BM=MC=2,∠CMP=30°,∠MPC=90°,∴PC=MC=1,在Rt △PCE 中,∵∠CPE=30°,PC=1,∴EC=PC=, ∴PE==.∴点P 到直线CD 距离的最大值为; 25.解:(1)∵抛物线y =x 2+bx +c 过点A (3,0),B (1,0),∴, 解得,∴抛物线的解析式为y =x 2-4x +3.(2)令x =0,则y =3,∴点C (0,3),又∵点A (3,0),∴直线AC 的解析式为y = -x +3,设点P (x ,x 2-4x +3),∵PD ∥y 轴,且点D 在AC 上,∴点D (x ,-x +3),∴PD =(-x +3)-(x 2-4x +3)=-x 2+3x =-(x-)2+, ∵a =-1<0,∴当x =时,线段PD 的长度有最大值,最大值为. (3)存在.由抛物线的对称性可知,对称轴垂直平分AB ,可得:MA =MB ,由三角形的三边关系,|MA -MC |<BC ,可得:当M 、B 、C 三点共线时,|MA -MC |最大,即为BC 的长度,设直线BC 的解析式为y =kx +b (k ≠0),由B 、C 两点的坐标分别为(1,0)、(0,3), 则, ⎩⎨⎧=++=++01039c b c b ⎩⎨⎧==3-4c b 23492349⎩⎨⎧==+30b b k解得,∴直线BC 的解析式为y = -3x +3,∵抛物线y =x 2-4x +3的对称轴为直线x =2,∴当x =2时,y=-3×2+3=-3,∴点M (2,-3),即抛物线对称轴上存在点M (2,-3),使|MA -MC |最大.⎩⎨⎧==3-3b k。

2014中考数学模拟试题(新考点必考题型) (58)

2014中考数学模拟试题(新考点必考题型) (58)

中考数学全真模拟试卷(考试用时:120分钟 满分: 120分)注意事项:1.试卷分为试题卷和答题卡两部分,在本试题卷上作答无效..........。

2.答题前,请认真阅读答题卡...上的注意事项。

3.考试结束后,将本试卷和答题卡.......一并交回。

一、选择题(共12小题,每小题3分,共36分.). 1.2011的倒数是( ). A .12011 B .2011 C .2011- D .12011- 2.在实数2、0、1-、2-中,最小的实数是( ). A .2 B .0 C .1- D .2- 3.下面四个图形中,∠1=∠2一定成立的是( ).4.下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为中心对称图形的是( ).5.下列运算正确的是( ).A. 22232x x x -= B .22(2)2a a -=- C .222()a b a b +=+ D .()2121a a --=-- 6.如图,已知Rt △ABC 中,∠C =90°,BC=3, AC=4, 则sinA 的值为( ).A.34B.43C.35D.457.如图,图1是一个底面为正方形的直棱柱;现将图1切割成图2的几何体,则图2的俯视图是().8.直线1y kx=-一定经过点().A.(1,0) B.(1,k) C.(0,k) D.(0,-1)9.下面调查中,适合采用全面调查的事件是().A.对全国中学生心理健康现状的调查.B.对我市食品合格情况的调查.C.对桂林电视台《桂林板路》收视率的调查.D.对你所在的班级同学的身高情况的调查.10.若点 P(a,a-2)在第四象限,则a的取值范围是().A.-2<a<0 B.0<a<2 C.a>2 D.a<011.在平面直角坐标系中,将抛物线223y x x=++绕着它与y轴的交点旋转180°,所得抛物线的解析式是().A.2(1)2y x=-++ B.2(1)4y x=--+C.2(1)2y x=--+ D.2(1)4y x=-++12.如图,将边长为a的正六边形A1 A2 A3 A4 A5 A6在直线l上由图1的位置按顺时针方向向右作无滑动滚动,当A1第一次滚动到图2位置时,顶点A1所经过的路径的长为().A.4233aπ+B.8433aπ+C. 433aπ+D.4236aπ+二、填空题(共6小题,每小题3分,共18分,请将答案填在答题卡...上). 13.因式分解:22a a += .14.我市在临桂新区正在建设的广西桂林图书馆、桂林博物馆、桂林大剧院及文化广场,建成后总面积达163500平方米,将成为我市“文化立市”和文化产业大发展的新标志,把163500平方米用科学记数法可表示为 平方米.15.当2x =-时,代数式21x x -的值是 .16.如图,等腰梯形ABCD 中,AB ∥DC,BE ∥AD, 梯形ABCD的周长为26,DE=4,则△BEC 的周长为 . 17.双曲线1y 、2y 在第一象限的图像如图,14y x=, 过1y 上的任意一点A ,作x 轴的平行线交2y 于B , 交y 轴于C ,若1AOB S ∆=,则2y 的解析式是 . 18.若111a m=-,2111a a =-,3211a a =-,… ;则2011a 的值为 .(用含m 的代数式表示)三、解答题(本大题共8题,共66分,请将答案写在答题卡...上). 19.(本题满分6分)计算:01(21)22452tan -︒+--+-20.(本题满分6分)解二元一次方程组:35382x y y x =-⎧⎨=-⎩21.(本题满分8分)求证:角平分线上的点到这个角的两边距离相等.已知:求证:证明:22.(本题满分8分)“初中生骑电动车上学”的现象越来越受到社会的关注,某校利用“五一”假期,随机抽查了本校若干名学生和部分家长对“初中生骑电动车上学”现象的看法,统计整理制作了如下的统计图,请回答下列问题:(1)这次抽查的家长总人数为;(2)请补全条形统计图和扇形统计图;(3)从这次接受调查的学生中,随机抽查一个学生恰好抽到持“无所谓”态度的概率是.3.(本题满分8分)某市为争创全国文明卫生城,2008年市政府对市区绿化工程投入的资金是2000万元,2010年投入的资金是2420万元,且从2008年到2010年,两年间每年投入资金的年平均增长率相同.(1)求该市对市区绿化工程投入资金的年平均增长率;(2)若投入资金的年平均增长率不变,那么该市在2012年需投入多少万元?24.(本题满分8分)某校志愿者团队在重阳节购买了一批牛奶到“夕阳红”敬老院慰问孤寡老人,如果给每个老人分5盒,则剩下38盒,如果给每个老人分6盒,则最后一个老人不足5盒,但至少分得一盒.(1)设敬老院有x名老人,则这批牛奶共有多少盒?(用含x的代数式表示).(2)该敬老院至少有多少名老人?最多有多少名老人?25.(本题满分10分)如图,在锐角△ABC中,AC是最短边;以AC中点O为圆心,12 AC长为半径作⊙O ,交BC 于E ,过O 作OD ∥BC 交⊙O 于D ,连结AE 、AD 、DC . (1)求证:D 是 AE 的中点; (2)求证:∠DAO =∠B +∠BAD ; (3)若12CEF OCD S S ∆∆=,且AC=4,求CF 的长.26.(本题满分12分)已知二次函数21342y x x =-+的图象如图.(1)求它的对称轴与x 轴交点D 的坐标;(2)将该抛物线沿它的对称轴向上平移,设平移后的抛物线与x 轴,y 轴的交点分别为A 、B 、C 三点,若∠ACB=90°,求此时抛物线的解析式;(3)设(2)中平移后的抛物线的顶点为M ,以AB 为直径,D 为圆心作⊙D ,试判断直线CM 与⊙D 的位置关系,并说明理由.参考答案① ②35382x y y x=-⎧⎨=-⎩ 一、选择题: 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案ADBCACCDDBBA二、填空题:13.(2)a a + 14.51.63510⨯ 15.43- 16.1817.26y x =18.11m- 三、解答题:19.(本题满分 6分)解:原式=112122--⨯+ ………4分(求出一个值给1分)=12……………………6分20.(本题满分6分)解: 把①代入②得:382(35)y y =-- ……………………1分 2y = ……………………3分把2y =代入①可得:325x =⨯- ……………………4分1x = ……………………5分所以此二元一次方程组的解为12x y =⎧⎨=⎩. ……………………6分21.(本题满分8分)已知:如图,OC 是∠AOB 的平分线,P 是OC 上任意一点,PE ⊥OA ,PF ⊥OB ,垂足分别为E 、F ……………2分 求证:PE=PF ……………3分 证明:∵OC 是∠AOB 的平分线∴∠POE=∠POF ……………4分 ∵PE ⊥OA ,PF ⊥OB∴∠PEO=∠PFO ……………………5分又∵OP=OP ………………6分∴△POE≌△POF ……………………7分∴PE=PF ……………………8分22.(本题满分8分)解:(1)100 ;………………2分(2)条形统计图:70,………………4分扇形统计图:赞成:10﹪,反对:70﹪;………………6分(3)25. ………………8分23.(本题满分8分)解:(1)设该市对市区绿化工程投入资金的年平均增长率为x………………1分根据题意得,22000(1)2420x+=…………3分得110%x=,22.1x=-(舍去)…………5分答:该市对市区绿化工程投入资金的年平均增长率为10﹪. …………6分(2)2012年需投入资金:22420(110%)2928.2⨯+=(万元)…………7分答:2012年需投入资金2928.2万元. …………8分24.(本题满分8分)解:(1)牛奶盒数:(538)x+盒…………1分(2)根据题意得:5386(1)55386(1)1x xx x+--<⎧⎨+--≥⎩…………4分∴不等式组的解集为:39<x≤43 …………6分∵x为整数∴x=40,41,42,43答:该敬老院至少有40名老人,最多有43名老人. …………8分25.(本题满分10分)证明:(1)∵AC是⊙O的直径∴AE⊥BC …………1分∵OD∥BC∴AE ⊥OD …………2分 ∴D 是 AE 的中点 …………3分 (2)方法一:如图,延长OD 交AB 于G ,则OG ∥BC …4分 ∴∠AGD=∠B∵∠ADO=∠BAD+∠AGD …………5分 又∵OA=OD ∴∠DAO=∠ADO∴∠DAO=∠B +∠BAD …………6分 方法二:如图,延长AD 交BC 于H …4分 则∠ADO=∠AHC∵∠AHC=∠B +∠BAD …………5分 ∴∠ADO =∠B +∠BAD 又∵OA=OD∴∠DAO=∠B +∠BAD …………6分 (3) ∵AO=OC ∴12OCD ACD S S ∆∆=∵12CEFOCDS S ∆∆= ∴14CEF ACD S S ∆∆= …………7分 ∵∠ACD=∠FCE ∠ADC=∠FEC=90° ∴△ACD ∽△FCE …………………8分 ∴2()CEF ACD S CF S AC ∆∆= 即: 21()44CF = …………9分 ∴CF=2 …………10分26.(本题满分12分)解: (1)由21342y x x =-+得 32bx a=-= …………1分∴D(3,0)…………2分(2)方法一:如图1, 设平移后的抛物线的解析式为21342y x x k =-++ …………3分则C (0,)k OC=k令0y = 即 213042x x k -++=得 1349x k =++ 2349x k =-+ …………4分 ∴A (349,0)k -+,B (349,0)k ++∴22(493349)1636AB k k k =++-++=+………5分222222(349)(349)AC BC k k k k +=+-+++++22836k k =++……………………6分∵222AC BC AB += 即: 228361636k k k ++=+得 14k = 20k =(舍去) ……………7分∴抛物线的解析式为213442y x x =-++ ……………8分方法二:∵ 21342y x x =-+∴顶点坐标93,4⎛⎫⎪⎝⎭设抛物线向上平移h 个单位则得到()0,C h ,顶点坐标93,4M h ⎛⎫+ ⎪⎝⎭……………………3分 ∴平移后的抛物线: ()219344y x h =--++……………………4分 当0y =时, ()2193044x h --++= 1349x h =-+ 1349x h =++∴ A (349,0)h -+ B (349,0)h ++ ……………………5分 ∵∠ACB=90° ∴△AOC ∽△COB∴2OC =OA ·OB ……………………6分()()2493493h h h =+-++ 解得 14h =,()20h =舍去 …………7分∴平移后的抛物线: ()()22191253434444y x x =--++=--+…………8分(3)方法一:如图2, 由抛物线的解析式213442y x x =-++可得 A(-2 ,0),B(8,0) ,C(4,0) ,M 25(3,)4…………9分 过C 、M 作直线,连结CD ,过M 作MH 垂直y 轴于H则3MH = ∴2225625()416DM == 22222252253(4)416CM MH CH =+=+-= 在Rt △COD 中,CD=22345+==AD∴点C 在⊙D 上 …………………10分 ∵2225625()416DM ==2222225256255()16416CD CM +=+== ……11分 ∴222DM CM CD =+∴△CDM 是直角三角形,∴CD ⊥CM∴直线CM 与⊙D 相切 …………12分方法二:如图3, 由抛物线的解析式可得A(-2 ,0),B(8,0) ,C(4,0) ,M 25(3,)4…………9分 作直线CM,过D 作DE ⊥CM 于E, 过M 作MH 垂直y 轴于H 则3MH =, 254DM = 由勾股定理得154CM =∵DM ∥OC∴∠MCH=∠EMD∴Rt △CMH ∽Rt △DME …………10分 ∴DE MD MH CM= 得 5DE = …………11分 由(2)知10AB =∴⊙D 的半径为5∴直线CM 与⊙D 相切 …………12分。

2014中考综合模拟测试数学试题

2014中考综合模拟测试数学试题

2014中考综合模拟测试数学试题一、选择题(本大题共10小题,每小题3分,满分30分.)1.与-12互为相反数的是() (A)-0.5 (B)12 (C)2 (D)212.平行四边形的对角线()(A)相等 (B)不相等 (C)互相平分 (D)互相垂直 3.函数y =-x -2的图象不经过()(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限 4.若分式244x x --的值为零,则x 的值是() (A)0 (B)±2 (C)4 (D)-4 5.如图1,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果AB=10,CD=8,那么线段OE的长为()(A)6 (B)5 (C)4 (D)3 6.已知三角形的两边长分别为2cm 和7cm ,则下列长度的四条线段中能作为第三边的是()(A)3cm (B)5cm (C)8cm (D)10cm7.在平面直角坐标系下,与点P(2,3)关于x 轴或y 轴成轴对称的点是() (A)(-3,2) (B)(-2,-3) (C)(-3,-2) (D)(-2,3) 8.若a m n =+,b m n =-,则ab 的值为()(A)2m (B)2mn (C)m n + (D)m n - 9.下列命题中错误的是()(A)平行四边形的对边相等 (B)两组对边分别相等的四边形是平行四边形 (C)对角线相等的四边形是矩形 (D)矩形的对角线相等10.将边长为3cm 的正三角形的各边三等分,以这六个分点为顶点构成一个正六边形,再顺次连结这个正六边形的各边中点,又形成一个新正六边形,则这个新正六边形的面积等于() (A)2334cm (B)2938cm (C)2934cm (D)2928cm 二、填空题(本大题共6小题,每小题3分,满分18分)11.方程:2(x -1)+1=0的解为 .12.把直线y =-2x +1向下平移2个单位长度,得到的直线是 . 13.不等式组302(1)33x x x+>⎧⎨-+≥⎩的解集为 .14.在反比例函数23my x-=的图象上有两点A(1x ,1y ),B(2x ,2y ), O D C BA图1 E当1x <0<2x 时,有1y >2y ,则m 的取值范围是 .15.多边形的内角和与它的一个外角的和为770°,则这个多边形的边数是 . 16.如图2,在梯形ABCD中,AD∥BC,∠B=90°,∠C=45°,AD=2,BC=8,E为AB的中点,EF∥DC交BC于点F.则EF的长= .三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分9分)分解因式:244x y xy y -+18.(本小题满分9分)已知,如图3,点B、E、F、C在同一条直线上,∠A=∠D,BE=CF,∠B=∠C.求证:AF=DE.19.(本小题满分11分)某校为了了解九年级男生1000米长跑的成绩,从中随机抽取了50名男生进行测试,根据测试评分标准,将他们的得分进行统计后分为A、B、C、D四个等级,并绘制成下面的频数分布表(表一)和扇形统计图(图①)。

2014年中考数学模拟试题

2014年中考数学模拟试题

绝密☆启用前试卷类型:A二○一四年枣庄市2014级初中学业考试数 学 模 拟 试 题注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题,36分;第Ⅱ卷为非选择题,84分;全卷共6页,满分120分.考试时间为120分钟.2.答卷前,考生务必将自己的姓名、准考证号、考试科目和试卷类型涂写在答题卡上,并把答题纸密封线内的项目填写清楚.3.第Ⅰ卷每小题选出答案后,必须用2B 铅笔把答题卡上对应题目的答案标号(ABCD)涂黑.如需改动,先用橡皮擦干净,再改涂其它答案.4. 第Ⅱ卷必须用黑色(或蓝色)笔填写在答题纸...的指定位置,否则不计分. 第Ⅰ卷 (选择题 共36分)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一 个均计零分. 1.下列计算错误的是A .-(-2)=2 B=.22x +32x =52x D .235()a a = 2.如果a<b<0,下列不等式中错误..的是 A. ab >0 B. a+b<0 C.ba<1 D. a-b<0 3.已知⎩⎨⎧-==11y x 是方程32=-ay x 的一个解, 那么a 的值是(A) 1 (B) 3 (C) -3 (D) -1 4. 下列交通标志是轴对称图形的是A. B. C. D.5.如果三角形的两边分别为3和5,那么连接这个三角形三边中点,所得的三角形的周长可能是A .4B .4.5C .5D .5.56.如图,将三角尺的直角顶点放在直尺的一边上,130250∠=∠=°,°, 则3∠的度数等于A .50°B .30°C .20°D .15°1 23第6题第12题7 A .点PB .点QC .点MD .点N8.如图,四个边长为1的小正方形拼成一个大正方形,A 、B 、O 是小正方形顶点,⊙O 的半径为1,P 是⊙O 上的点,且位于右上方的小正方形内, 则∠APB 等于A .30° B.45° C .60° D .90°9.如图,已知直角三角形ABC 中,斜边AB 的长为m ,40B ∠=,则直角边BC 的长是A .sin 40mB .cos 40mC .tan 40mD .tan 40m10.如图所示,把一长方形纸片沿MN 折叠后,点D ,C 分别落在D ′,C ′的位置.若∠AMD ′=36°,则∠MNF ′等于(A )144° (B )126° (C )108° (D )72°11.如果关于x 的一元二次方程x 2+px +q =0的两根分别为x 1=2,x 2=1,那么p ,q 的值分别是(A )-3,2 (B )3,-2 (C )2,-3 (D )2,3 12.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,则下列结论:0ac >①;②方程20ax bx c ++=的两根之和大于0;y ③随x 的增大而增大;④0a b c -+<,其中正确的个数是 A .4个 B .3个C .2个D .1个第Ⅱ卷 (非选择题 共84分)二、填空题:本大题共6小题,满分24分.只要求填写最后结果,每小题填对得4分.13.有4张背面相同的扑克牌,正面数字分别为2,3,4,5.若将这4张扑克牌背面向上洗匀后,从中任意抽取一张,放回后洗匀,再从中任意抽取一张,这两张扑克牌正面的数字之和是3的倍数的概率是 .14.化简:22x y x y x y ---=________. 15.用一个半径为6,圆心角为120°的扇形围成一个圆锥的侧面,则圆锥的高为 .16.要使式子a有意义,则a 的取值范围为________________. (第9题)CM第10题第8题第7题17.不等式组:⎪⎩⎪⎨⎧<--≤-1213)34(2125x x x 的整数解是 .18.如图,△ABC 中,∠C=900,点D 在AC 上,已知∠BDC=450,BD =210,AB =20,则∠A = .三、解答题:本大题共7小题,满分60分.解答时,要写出必要的文字说明、证明过程或演算步骤. 19.(本题满分6分)如图9,在8×8的正方形网格中,△ABC 的顶点和线段EF 的端点都在边长为1的小正方形的顶点上. (1)填空:∠ABC =___________,BC =___________;(2)请你在图中找出一点D ,再连接DE 、DF ,使以D 、E 、F 为顶点的三角形与△ABC 全等,并加以证明.20.(本题满分8分)根据我市统计局发布的2012年国民经济和社会发展统计公报中相关数据,我市2012年社会消费品销售总额按城乡划分绘制统计图①,2011年与2012年社 会消费品销售总额按行业划分绘制条形统计图②,请根据图中信息解答下列问题:(1)图①中“乡村消费品销售额”的圆心角是 度,乡村消费品销售额为 亿元; (2)2011年到2012年间,批发业、零售业、餐饮住宿业中销售额增长的百分数最大的行业是 . (3)预计2014年我市社会消费品销售总额达到504亿元,求我市2012~2014年社会消费品销售总额的年平均增长率.2011年2012年第18题第19题21.(本题满分10分)在△ABC中,∠BAC=45°,AD⊥BC于D,将△ABD沿AB所在的直线折叠,使点D落在点E处;将△ACD 沿AC所在的直线折叠,使点D落在点F处,分别延长EB、FC使其交于点M.(1)判断四边形AEMF的形状,并给予证明.(2)若BD=1,CD=2,试求四边形AEMF的面积.22.(本题满分8分)一艘轮船向正东方向航行,在A处测得灯塔P在A的北偏东60°方向,航行40海里到达B处,此时测得灯塔P在B的北偏东15°方向上.(1)求灯塔P到轮船航线的距离PD是多少海里?(结果保留根号)(2)当轮船从B处继续向东航行时,一艘快艇从灯塔P处同时前往D处,尽管快艇速度是轮船速度的2倍,但快艇还是比轮船晚15分针到达D处,求轮船每小时航行多少海里?(结果保留到个位,参考数据:1.73 ).AB CD第21题第22题23.(本题满分9分)如图所示.P 是⊙O 外一点.P A 是⊙O 的切线.A 是切点.B 是⊙O 上一点.且P A =PB ,连接AO 、BO 、AB ,并延长BO 与切线P A 相交于点Q . (1)求证:PB 是⊙O 的切线; (2)求证: AQ ·PQ = OQ ·BQ ; (3)设∠AOQ =α.若cos α=45.OQ = 15.求AB 的长24.(本题满分9分)如图,在平面直角坐标系中,O 是坐标原点,点A 的坐标为(-4,0),点B 的坐标为(0,b )(b >0). P 是直线AB 上的一个动点,作PC ⊥x 轴,垂足为C .记点P 关于y 轴的对称点为P '(点P '不在y 轴上),连结PP ',P 'A ,P'C .设点P 的横坐标为a . (1)当b =3时, ①求直线AB 的解析式; ②若点P'的坐标是(-1,m ),求m 的值;(2)若点P 在第一象限,记直线AB 与P'C 的交点为D . 当P'D :DC =1:3时,求a 的值;_ P _ B 第23题25.(本题满分10分)在平面直角坐标系中,已知抛物线经过A(4,0),B(0,一4),C(2,0)三点.(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.求S关于m的函数关系式,并求出S的最大值;(3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能使以点P、Q、B、0为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.绝密☆启用前二○一四年枣庄市2011级初中学业模拟考试数学参考答案及评分意见评卷说明:1.选择题和填空题中的每小题,只有满分和零分两个评分档,不给中间分.2.解答题每小题的解答中所对应的分数,是指考生正确解答到该步所应得的累计分数.本答案中每小题只给出一种解法,考生的其他解法,请参照评分意见进行评分.3.如果考生在解答的中间过程出现计算..错误,但并没有改变试题的实质和难度,其后续部分酌情给分,但最多不超过正确解答分数的一半,若出现较严重的逻辑错误,后续部分不给分.一、选择题:(本大题共12小题,每小题3分,共36分)二、填空题:(本大题共6小题,每小题4分,共24分)13.165 ; 14.x+y ; 15.24 ; 16.a ≥ -2且a ≠0; 17.-1、0 ; 18.30°三、解答题:(本大题共7小题,共60分) 19. (本题满分6分)(1)135ABC ∠=°,BC = ····················································· 2分(2)(说明:D 的位置有四处,分别是图中的1234D D D D 、、、.此处画出D 在1D 处的位置及证明,D 在其余位置的画法及证明参照此法给分)解:EFD △的位置如图所示. ··················································· 3分证明:FD BC == ··························································· 4分9045135EFD ABC ∠=∠==°+ ···················································································· 5分 2EF AB ==EFD ABC ∴△≌△ ·············································································································· 6分20.(本题满分8分)(1)72,70 (2)批发业(3)设2011~2013年社会消费品销售总额的年平均增长率为x , 据题意得:()50413502=+x()44.112=+x2.01=x 2.22-=x (舍去) 答:2011~2013年平均增长率20% 21. (本题满分10分) 解:(1)∵AD ⊥BC△AEB 是由△ADB 折叠所得 ∴∠1=∠3,∠E=∠ADB=090,BE=BD, AE=AD又∵△AFC 是由△ADC 折叠所得∴∠2=∠4,∠F=∠ADC=090,FC=CD ,AF=AD ∴AE=AF---------------------------------------------2分 又∵∠1+∠2=045,4321MFEDCBA∴∠3+∠4=045∴∠EAF=090--------------------------------------3分∴四边形AEMF 是正方形。

2014中考数学模拟试题及答案

2014中考数学模拟试题及答案

2014中考数学模拟试题及答案1.本试卷共8页,共五道大题,25道小题,满分120分。

考试时间120分钟。

2.答题纸共8页,在规定位置准确填写学校名称、班级和姓名。

3.试题答案一律书写在答题纸上,在试卷上作答无效。

4.考试结束,请将答题纸交回,试卷和草稿纸可带走。

一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的.1.的绝对值是A. B. C. D.2. 2014年2月14日从北京航天飞行控制中心获悉,嫦娥二号卫星再次刷新我国深空探测最远距离记录,达到7 000万公里,这是我国航天器迄今为止飞行距离最远的一次“太空长征” .将7 000万用科学记数法表示应为A. B. C. D.3.下列立体图形中,左视图是圆的是4. 小月的讲义夹里放了大小相同的试卷共12页,其中语文5页、数学4页、英语3页,她随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率是A. B. C. D.5. 如右图所示,AB∥CD,点E在CB的延长线上.若∠ABE=70°,则∠ECD的度数为A.20°B.70°C .100° D.110°6. 下列正多边形中,内角和等于外角和的是A.正三边形B.正四边形C.正五边形D.正六边形7. 小贝家买了一辆小轿车,小贝记录了连续七天中每天行驶的路程:第1天第2天第3天第4天第5天第6天第7天路程(千米) 43 29 27 52 43 72 33则小贝家轿车这七天行驶路程的众数和中位数分别是A.33, 52B.43,52C.43,43D.52,438.如图,点在线段上,=8,=2,为线段上一动点,点绕点旋转后与点绕点旋转后重合于点 .设= ,的面积为 . 则下列图象中,能表示与的函数关系的图象大致是A. B. C. D.二、填空题(本题共16分,每小题4分)9.若二次根式有意义,则的取值范围是.10. 分解因式:.11.为了测量校园水平地面上一棵树的高度,数学兴趣小组利用一组标杆、皮尺,设计了如图所示的测量方案.已知测量同学眼睛、标杆顶端、树的顶端在同一直线上,此同学眼睛距地面1.6 ,标杆长为3.3 ,且,,则树高.12.如图,在平面直角坐标系中,已知点的坐标为(1,0),将线段绕点按顺时针方向旋转,再将其长度伸长为的2倍,得到线段;又将线段绕点按顺时针方向旋转,再将其长度伸长为的2倍,得到线段,…,这样依次得到线段,,…,.则点的坐标为;当( 为自然数)时,点的坐标为.三、解答题(本题共30分,每小题5分)13.计算:.14.如图,, ,直线经过点,于点,于点.求证: .15. 解分式方程:.16. 已知,求的值.17.在“母亲节”到来之际,某校九年级团支部组织全体团员到敬老院慰问.为筹集慰问金,团员们利用课余期间去卖鲜花.已知团员们从花店按每支1.5元的价格买进鲜花共支,并按每支5元的价格全部卖出,若从花店购买鲜花的同时,还用去50元购买包装材料.(1)求所筹集的慰问金(元)与(支)之间的函数表达式;(2)若要筹集不少于650元的慰问金,则至少要卖出鲜花多少支?18.如图,在平面直角坐标系中,点为坐标原点,直线分别交轴、轴于、两点,,且、的长分别是一元二次方程的两根.(1)求直线的函数表达式;(2)点是轴上的点,点是第一象限内的点.若以、、、为顶点的四边形是菱形,请直接写出点的坐标.四、解答题(本题共20分,每小题5分)19. 如图,在四边形中,,,,连接,的平分线交于点,且.(1)求的长;(2)若,求四边形的周长.20. 2014年春季,北京持续多天的雾霾天气让环保和健康问题成为人们关注的焦点.为了美丽的北京和师生的身心健康,某校开展以“倡导绿色出行,关爱师生健康”为主题的教育活动.为了了解本校师生的出行方式,在本校范围内随机抽查了部分师生,将收集的数据绘制成下列不完整的两种统计图.请根据统计图提供的信息,解答下列问题:(1)m = ;(2)已知随机抽查的教师人数为学生人数的一半,请根据上述信息补全条形统计图,并标明相应数据;(3)若全校师生共1800人,请你通过计算估计,全校师生乘私家车出行的有多少人?21. 如图,点是以为直径的圆上一点,直线与过点的切线相交于点,点是的中点,直线交直线于点 .(1)求证:是⊙O的切线;(2)若,,求⊙O的半径.22. 阅读下面材料:如果一个三角形和一个平行四边形满足条件:三角形的一边与平行四边形的一边重合,三角形这边所对的顶点在平行四边形这边的对边上,则称这样的平行四边形为三角形的“友好平行四边形”.如图1 所示,平行四边形即为的“友好平行四边形”.请解决下列问题:(1)仿照以上叙述,说明什么是一个三角形的“友好矩形”;(2)若是钝角三角形,则显然只有一个“友好矩形”,若是直角三角形,其“友好矩形”有个;(3)若是锐角三角形,且,如图2,请画出的所有“友好矩形”;指出其中周长最小的“友好矩形”并说明理由.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23. 已知关于的一元二次方程有两个不相等的实数根.(1)求的取值范围;(2)当取最小的整数时,求抛物线的顶点坐标以及它与轴的交点坐标;(3)将(2)中求得的抛物线在轴下方的部分沿轴翻折到轴上方,图象的其余部分不变,得到一个新图象.请你画出这个新图象,并求出新图象与直线有三个不同公共点时的值.24.如图1,已知是等腰直角三角形,,点是的中点.作正方形,使点、分别在和上,连接,.(1)试猜想线段和的数量关系是;(2)将正方形绕点逆时针方向旋转,①判断(1)中的结论是否仍然成立?请利用图2证明你的结论;②若,当取最大值时,求的值.25. 定义:如果一个与的函数图象经过平移后能与某反比例函数的图象重合,那么称这个函数是与的“反比例平移函数”.例如: 的图象向左平移2个单位,再向下平移1个单位得到的图象,则是与的“反比例平移函数”.(1)若矩形的两边分别是2 、3 ,当这两边分别增加( )、( )后,得到的新矩形的面积为8 ,求与的函数表达式,并判断这个函数是否为“反比例平移函数”.(2)如图,在平面直角坐标系中,点为原点,矩形的顶点、的坐标分别为(9,0)、(0,3) .点是的中点,连接、交于点,“反比例平移函数” 的图象经过、两点.则这个“反比例平移函数”的表达式为;这个“反比例平移函数”的图象经过适当的变换与某一个反比例函数的图象重合,请写出这个反比例函数的表达式.(3)在(2)的条件下,已知过线段中点的一条直线交这个“反比例平移函数”图象于、两点( 在的右侧),若、、、为顶点组成的四边形面积为16,请求出点的坐标.数学试卷答案及评分参考2014年4月一、选择题(本题共32分,每小题4分)题号 1 2 3 4 5 6 7 8答案 A B D C D B C B二、填空题(本题共16分,每小题4分)题号 9 10 11 12答案 (0,-4),注:第12题第一空2分,第二空2分,写对一个给1分.(不写的取值范围不扣分)三、解答题(本题共30分,每小题5分)13.解:..……………………4分……………………5分14.证明:∵,∴,……………………1分∴,∵,∴,∴.……………………2分在和中,∴≌.…………………4分∴.…………………5分15. 解:…………………2分…………………3分…………………4分经检验,是原分式方程的根. …………………5分16.解:原式= …………………2分== . …………………3分∵,∴ .∴原式= ,…………………4分= . …………………5分17.解:(1) . …………………2分(2)当时,即,…………………3分解得 . …………………4分答:若要筹集不少于650元的慰问金,至少要售出鲜花200支. …………………5分18.解:(1)∵,∴,∴, .∴点的坐标为(3,0),点的坐标为(0,4) .……………2分∵设直线的函数表达式为∴∴∴直线的函数表达式为 . ……………3分(2)点的坐标是(3,5)或(3, ).……………5分四、解答题(本题共20分,每小题5分)19.解:(1)延长交于点 .∵平分,∴ .∵,∴,∴,………1分∴ .∵,∴ . ……………2分∵,∴四边形是平行四边形,∴.………3分(2)过作的垂线,垂足为 .∵,,在中,,∴ . ………………4分∴四边形的周长………………5分20.解:(1)20%;………………1分(2)补全条形统计图如下图:………………3分(3)(人)(人)=480(人)………………5分答: 全校师生乘私家车出行的有480人.21.(1)证明:连接、,∵是直径,∴ . ………………1分∴ . m∵是的中点,∴,∴ . ………………2分∵是⊙的半径,(2)解:∵是的中点,、是⊙O的切线,∴, .∴,………………4分∴ .设⊙O的半径为 .∵∽,∴,∴ . ………………5分∴⊙O的半径为 .22. 解:(1)三角形的一边与矩形的一边重合,三角形这边所对的顶点在矩形这边的对边上. ………………1分(2)2;………………2分(3)画图:周长最小的“友好矩形”是矩形 . ………………4分理由:易知这三个矩形的面积都等于的面积的一半,所以这三个矩形的面积相等,令其为,设矩形,矩形,矩形的周长分别为、、,的边长,,,( ),则,,,∴,而,,∴,即 .同理可证 . ……………5分五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.解:(1)由题意,得,∴.∴的取值范围为.…………2分(2)∵,且取最小的整数,∴.∴,则抛物线的顶点坐标为…………………3分∵的图象与轴相交,∴,∴,∴或,∴抛物线与轴相交于,.…………4分(3)翻折后所得新图象如图所示. …………5分平移直线知: 直线位于和时,它与新图象有三个不同的公共点.①当直线位于时,此时过点,∴,即.………………6分②当直线位于时,此时与函数的图象有一个公共点,∴方程,即有两个相等实根,∴,即.………………7分当时,满足,由①②知或.(2)①成立.以下给出证明:如图,连接,∵在Rt 中,为斜边中点,∴,,∴.…………………3分∵四边形为正方形,∴,且,∴,∴.……4分在和中,∴≌,∴.……………………5分②由①可得,当取得最大值时,取得最大值.当旋转角为时,,最大值为 . ………6分如图,此时.……………………7分25.解:(1),∴………………1分向右平移2个单位,再向上平移3个单位得到.∴是“反比例平移函数”.……2分(2)“反比例平移函数”的表达式为 . ……………3分变换后的反比例函数表达式为 . ……………4分(3)如图,当点在点左侧时,设线段的中点为,由反比例函数中心对称性,四边形为平行四边形.∵四边形的面积为16,∴=4,……………5分∵(9,3),(6,2).是的“反比例平移函数”,∴= =4,(3,1)过作轴的垂线,与、轴分别交于、点..设,∴即………………6分∴∴(1,3) ,∴点的坐标为(7,5). ………………7分当点在点右侧时,同理可得点的坐标为(15,). ………8分(注:本卷中许多试题解法不唯一,请老师们根据评分标准酌情给分)。

2014中考数学模拟试题(新考点必考题型) (98)

2014中考数学模拟试题(新考点必考题型) (98)

A中考数学全真模拟试题(全卷三个大题,共23个小题;考试时间120分钟,满分100分)一、选择题(本大题共8个小题,每小题只有一个正确选项,每小题3分,满分24分)1.下列各式中,运算正确的是( )A .326a a a ⋅= B .336()x x = C .5510x x x += D .5233()()ab ab a b -÷-=- 2. 分式21+-x x 的值为0时,x 的值是( ) A 0 B 1 B -1 D -2 3.如图所示的一组几何体的俯视图是( )4.一元二次方程x 2+x-2=0的两根之积是( ) A.-1 B.-2 C.1 D.2 5. 满足大于的整数有( ) A. 4个B. 5个C. 6个D. 7个6. 已知⊙O 1和⊙O 2的半径分别是2cm 和4cm ,两圆的圆心距为5cm,则两圆的位置关系是( ) A.外切 B.外离 C.相交 D.内切 7、已知3是关于x 的方程2x -a=1的解,则a 的值是( ) A.-5 B.5 C.7 D.28.货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x 千米/小时,依题意列方程正确的是( )A.203525-=x x B.x x 352025=- C.203525+=x x D.xx 352025=+ 二. 填空题(本大题共6个小题,每题3分,满分为18分)9.4的平方根是 。

10.分解因式:2a 2-4a +2= ______________ .11.北京奥林匹克运动国家体育场“鸟巢”钢结构的材料,首次使用了我国科技人员自主研制的强度为460000000帕的钢材,该数据用科学记数法表示为 帕12.计算203(3)---= .13.如图,点A 、B 、C 在⊙O 上,AB ∥CD ,∠B =22°,则∠A =________°. 14.按如下规律摆放三角形:则第(4)堆三角形的个数为_____________;第(n)堆三角形的个数为_____________.三、解答题(本大题共9个小题,共58分)15.(6分)解不等式组3412125x xx x +>⎧⎪--⎨≤⎪⎩ 并把解集在数轴上表示出来,16.(5分)解方程:2211x x x+=-- 17.(本小题6分)如图,E 、F 是四边形ABCD 的对角线AC 上两点,AE=CF ,DF=BE ,D F ∥BE求证:(1)△AFD ≌△CEB (2)四边形是平行四边形。

2014年中考数学模拟试题(五)

2014年中考数学模拟试题(五)2014.02本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至4页,第Ⅱ卷5至12页,满分120分.考试时间120分钟.第Ⅰ卷(选择题 共42分)注意事项:1. 答第Ⅰ卷前,考生务必将自己的姓名、准考生号、考试科目用铅笔涂写在答题卡上.2. 每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试卷上. 3. 考试结束,将本试卷和答题卡一并收回.一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给的4个选项中,只有一项是符合题目要求的. 1. -2的绝对值等于【 】 A . 2 B .-2 C .21D .±2 2.下列等式一定成立的是【 】A . a 2+a 3=a 5B .(a +b )2=a 2+b 2C .(2ab 2)3=6a 3b 6D .(x -a )(x -b )=x 2-(a +b )x +ab3.如图,有一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是【 】A .30°B .25°C .20°D .15°4.已知两圆半径r 1、r 2分别是方程x 2—7x+10=0的两根,两圆的圆心距为7,则两圆的位置关系是【 】.A .相交B .内切C .外切D .外离5.化简11122-÷-x x 的结果是 【 】 A.12-x B.122-x C.12+x D.()12+x6.如图,正方形ABCD 内接于⊙O ,⊙O 的直径为2分米,若在这个圆面上随意抛一粒豆子,则豆子落在正方形ABCD 内的概率是【 】 A .π2B .2π C .π21D .π27.小明用图中所示的扇形纸片作一个圆锥的侧面,已知扇形的半径为5cm ,弧长是6πcm ,那么这个的圆锥的高是【 】A . 4cmB .6cmC . 8cmD . 2cm8.用配方法解关于x 的一元二次方程x 2-2x -3=0,配方后的方程可以是【 】 A .(x -1)2=4 B .(x +1)2=4 C .(x -1)2=16 D .(x +1)2=169.不等式组1124,2231.22x x x x ⎧+>-⎪⎪⎨⎪-⎪⎩≤的解集在数轴上表示正确的是( )10.如图是一个包装纸盒的三视图(单位:cm),则制作一个纸盒所需纸板的面积是( )A .75(12 B .75(1+12 C .75(22 D .75(2+12211.如图,将矩形纸片ABCD 沿EF 折叠,使点B 与CD 的中点重合,若AB=2,BC=3,则△FCB′与△B′DG 的面积之比为()A .9:4B .3:2C .4:3D .16:9 12.如图,正比例函数y 1=k 1x 和反比例函数y 2=的图象交于A (﹣1,2)、B (1,﹣2)两点,若y 1<y 2,则x 的取值范围是的个数是( )A .x <﹣1或x >1B .x <﹣1或0<x <1C .﹣1<x <0或0<x <1D .﹣1<x <0或x >1第10题图13.在平面直角坐标系xOy 中,已知点A (2,1)和点B (3,0),则sin ∠AOB 的值等于( ) A .55B .52 C .32D .1214.如图所示,P 是菱形ABCD 的对角线AC 上一动点,过P 垂直于AC 的直线交菱形ABCD 的边于M 、N 两点,设AC=2,BD=1,AP=x ,则△AMN 的面积为y ,则y 关于x 的函数图象的大致形状是( )A 、B 、C 、D 、第14题图第12题图2014年中考数学模拟试题第II 卷 非选择题(共78分) 2014.02二、细心填一填,相信你填的对!(本大题共5小题,每小题3分,共15分)把答案填在题中横线上.15. 据媒体报道,我国因环境污染造成的巨大经济损失,每年高达680 000 000元,这个数用科学记数法表示正确的是_______元. 16.分式方程2231x x x x=+-的解是________. 17.计算的结果是_______.18.已知长方形ABCD ,AB=3cm ,AD=4cm ,过对角线BD 的中点O 做BD 的垂直平分线EF ,分别交AD 、BC 于点E 、F ,则AE 的长为________.19.如图,是由形状相同的正六边形和正三角形镶嵌而成的一组有规律的图案,则第n个图案中阴影小三角形的个数是 .三、开动脑筋,你一定能做对!(本大题共3小题,共20分)20.(本小题满分7分) “端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A 、B 、C 、D 表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).第18题图请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.21. (本小题满分6分)小明的妈妈在菜市场买回3斤萝卜、2斤排骨,准备做萝卜排骨汤.妈妈:“今天买这两样菜共花了45元,上月买同重量的这两样菜只要36元”;爸爸:“报纸上说了萝卜的单价上涨50%,排骨单价上涨20%”;小明:“爸爸、妈妈,我想知道今天买的萝卜和排骨的单价分别是多少?”请你通过列方程(组)求解这天萝卜、排骨的单价(单位:元/斤).22. (本小题满分7分)如图所示,四边形ABCD是正方形,点E是边BC的中点且∠AEF=90°,EF交正方形外角平分线CF于点F,取边AB的中点G,连接EG.(1)求证:EG=CF;(2)将△ECF绕点E逆时针旋转90°,请在图中直接画出旋转后的图形,并指出旋转后CF与EG的位置关系.四、认真思考,你一定能成功!(本大题共2小题,共19分)23. (本小题满分9分)如图,等腰三角形ABC中,AC=BC=6,AB=8.以BC为直径作⊙O交AB于点D,交AC于点G,DF⊥AC,垂足为F,交CB的延长线于点E.(1)求证:直线EF是⊙O的切线;(2)求sin∠E的值.24. (本小题满分10分)周末,小明骑自行车从家里出发到野外郊游.从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地.小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象.已知妈妈驾车的速度是小明骑车速度的3倍.(1)求小明骑车的速度和在甲地游玩的时间;(2)小明从家出发多少小时后被妈妈追上?此时离家多远?(3)若妈妈比小明早10分钟到达乙地,求从家到乙地的路程.)五、相信自己,加油啊!(本大题共2小题,共24分)25.(本小题满分11分)在矩形ABCD中,点P在AD上,AB=2,AP=1.将直角尺的顶点放在P处,直角尺的两边分别交AB,BC于点E,F,连接EF(如图①).(1)当点E与点B重合时,点F恰好与点C重合(如图②),求PC的长;(2)探究:将直尺从图②中的位置开始,绕点P顺时针旋转,当点E和点A重合时停止.在这个过程中,请你观察、猜想,并解答:①tan∠PEF的值是否发生变化?请说明理由;②直接写出从开始到停止,线段EF的中点经过的路线长.26. (本小题满分13分)如图(1)所示,抛物线22y x x k =-+与x 轴交于A 、B 两点,与y 轴交于点C (0,3-).[图(2)、图(3)为解答备用图](1)k = ,点A 的坐标为 ,点B 的坐标为 ; (2)设抛物线22y x x k =-+的顶点为M ,求四边形ABMC 的面积;(3)在x 轴下方的抛物线上是否存在一点D ,使四边形ABDC 的面积最大?若存在,请求出点D 的坐标;若不存在,请说明理由; (4)在抛物线22y x x k =-+上求点Q ,使△BCQ 是以BC 为直角边的直角三角形.2013年图(1) 图(2) 图(3)中考数学模拟试题(一) 参考答案及评分标准一、选择题:A DB C C A AAA C DD AC二、填空题:15. 86.810 ; 16. x =2; 17. 3; 18. 78; 19. 4n ﹣2(或2+4(n ﹣1)) 三、开动脑筋,你一定能做对! 20. 解:(1)60÷10%=600(人).答:本次参加抽样调查的居民有600人。

2014年中考模拟考试数学试题

2014年初中学业毕业考试数学科试卷一、选择题(本大题共10小题,每小题3分,共30分)A .B .C .D .6.如图,已知∠1 = 70º,如果CD ∥BE ,那么∠B 的度数为( ) A .70º B .100ºC .110ºD .120º7. 不等式组的整数解有( ) 个.A (4,3)B (3,4)C (-3,-4)D (-4,3) 10. 如图,用直尺和圆规作出∠AOB 的角平分线OC 的依据是( )A.SSSB.SASC.ASAD.AAS 二、填空题(本大题共6小题,每小题4分,共24分) 11. 分解因式:4-a 2=12. 若(a ﹣1)2+|b ﹣2|=0,则以a 、b 为边长的等腰三角形的周长为 . 13. 若一个多边形内角和等于1260°,则该多边形边数是 .14.如图,边长为1的小正方形网格中,⊙O 的圆心在格点上,则∠AED 的余弦值是 .第6题图B CEDA 1(第14题图 第16题图15. 一个圆锥的高是4cm ,底面半径是3cm ,那么这个圆锥的侧面积为 ____________ cm 2 16. 观察上边图形,它们是按一定规律构造的,依照此规律,第n 个图形中共有 个三角形.三、解答题(本大题有3小题,每小题6分,共18分)17.计算: 02012sin301π-⎛⎫-+-+-- ⎪⎝⎭18. 先化简,再求值:(错误!未找到引用源。

+1)÷错误!未找到引用源。

,其中x=2.19. 普宁市美佳乐商场新进一种商品,第一个月将此商品的进价提高20%作为销售价,共获利600元.第二个月商场搞促销活动,将商品的进价提高15%作为销售价,第二个月的销售量比第一个月增加了40件,并且商场第二个月比第一个月多获利150元.问此商品的进价是多少元?四、解答题(本大题有3小题,每小题7分,共21分)20. 如图①,已知△ABC 是等腰直角三角形,∠BAC =90°,点D 是BC 的中点.作正方形DEFG ,使点A ,C 分别在DG 、DE 上,连接AE 、BG .(1)试猜想线段BG 和AE 的数量关系,请直接写出你得到的结论; (2)将正方形DEFG 绕点D 逆时针方向旋转一定角度后,如图②,(1)中的结论是否仍然成立?如果成立,请予以证明;如果不成立,请说明理由;21. 某校把一块沿河的三角形废地(如图)开辟为生物园,现学校准备从点C 处向河岸AB 修一条小路CD 将生物园分割成面积相等的两部分.(1)请你用尺和圆规在图中作出小路CD (不写作法,保留作图痕迹) (2)若∠CAB=600,AC=8,求C 处到河岸的最短距离.22.勤建学校综合实践活动艺体课程组为了解学生最喜欢的球类运动,对足球、乒乓球、篮球、排球四个项目进行了调查,并将调查的结果绘制成如下的两幅统计图(说明:每位同学只选一种自己最喜欢的球类),请你根据图中提供的信息解答下列问题: (1)求这次接受调查的学生人数,并补全条形统计图; (2)求扇形统计图中喜欢排球的圆心角度数;(3)若调查到爱好“乒乓球”的5名学生中有3名男生,2名女生,现从这5名学生中任意抽取2名学生,请用列表法或画树状图的方法,求出刚好抽到一男一女的概率.五、解答题(本大题有3小题,每小题9分,共27分) 23.在进行二次根式化简时,我们有时会碰上如1323235+,,一样的式子,其实我们还可以将其进一步化简:()()二,一36333232335333535=⨯⨯==⨯⨯=,()()()()()()三1313132131313213222-=--=-+-⨯=+,132+还可以用以下方法化简:()()()1313131313131313222+-+=+-=+-=+=13- (四)以上这种化简的方法叫做分母有理化。

2014中考数学模拟试题(新考点必考题型) (69)

中考数学全真模拟试卷一、仔细选一选(本题有10个小题,每小题3分,共30分)1.北京时间xxx 年3月11日,日本发生了9.0级大地震,地震发生后, 中国红十字会一直与日本红十字会保持沟通,密切关注灾情发展。

截至目前,中国红十字会已经累计向日本红十字会提供600万元人民币的人道援助。

这里的数据“600万元”用科学计数法表示为( )(第1题) A . 4610⨯元 B . 5610⨯元 C .6610⨯元 D .7610⨯元 2.若a =,b =a b 、两数的关系是( )A 、a b =B 、5ab =C 、a b 、互为相反数D 、a b 、互为倒数3. 公务员行政能力测试中有一类图形规律题,可以运用我们初中数学中的图形变换再结合变化规律来解决,下面一题问号格内的图形应该是( )(第3题)4. 某市2008年4月的一周中每天最低气温如下:13,11,7,12,13,13,12,则在这一周中,最低气温的众数和中位数分别是( )A. 13和11B. 12和13C. 11和12D. 13和125.若有甲、乙两支水平相当的NBA 球队需进行总决赛,一共需要打7场,前4场2比2,最后三场比赛,规定三局两胜者为胜方,如果在第一次比赛中甲获胜,这时乙最终取胜的可能性有多大?( )A .21B .31C .41 D . 156. 如图,△ABC 内接于⊙O ,∠C=45°,AB=2,则⊙O 的半径为( )A .1B .22C .2D .2(第6题)(第7题)7. 如图,小亮同学在晚上由路灯A 走向路灯B ,当他走到点P 时,发现他的身影顶部正好接触路灯B 的底部,这时他离路灯A 25米,离路灯B 5米,如果小亮的身高为1.6米,那么路灯高度为 ( )A .6.4米B . 8米C .9.6米D . 11.2米8. 如图,圆内接四边形ABCD 是由四个全等的等腰梯形组成,AD 是⊙O 的直径,则∠BEC 的度数为( )A .15°B .30°C .45°D .60°(第9题)9.如图,直线l 和双曲线ky x=(0k >)交于A 、B 两点,P 是线段AB 上的点(不与A 、B 重合),过点A 、B 、P 分别向x 轴作垂线,垂足分别为C 、D 、E ,连接OA 、OB 、OP ,设△AOC 的面积为1S 、△BOD 的面积为2S 、△POE 的面积为3S ,则 ( )A .123S S S <<B .123S S S >>C . 123S S S =>D . 123S S S =<10.如图,点C 、D 是以线段AB 为公共弦的两条圆弧的中点,AB =4,点E 、F 分别是线段CD ,AB 上的动点,设AF =x ,AE 2-FE 2=y ,则能表示y 与x 的函数关系的图象是( )二. 认真填一填(本题有6个小题,每小题4分,共24分) 11.分解因式:x x 43-=12.已知函数y 1=2x-5,y 2= -2x +15,如果y 1<y 2 ,则x 的取值范围是13.如图,相离的两个圆⊙O 1和⊙O 2在直线l 的同侧。

2014年山东日照市中考数学模拟题试题及答案

A B
C
D
1 2 (第3题图)
2014中考数学模拟题及答案
第一套
(总分120分 考试时间120分钟)
注意事项:
1. 本试题分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷3页为选择题,36分;第Ⅱ卷8页为非选择题,84分;全卷共11页.
2. 答第Ⅰ卷前,考生务必将自己的姓名、考号、考试科目涂写在答题卡上,考试结束,试题和答题卡一并收回.
3. 第Ⅰ卷每题选出答案后,都必须用2B 铅笔把答题卡上对应题目的答案标号【ABCD 】涂黑.如需改动,先用橡皮擦干净,再改涂其它答案.
4. 考试时,不允许使用科学计算器.
第Ⅰ卷(选择题 共36分) 一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.
1.2-的绝对值是
(A )2.(B )2-. (C )
12. (D )12
-. 2.拒绝“餐桌浪费”,刻不容缓.据统计全国每年浪费食物总量约50 000 000
000千克,这个数据用科学计数法表示为
(A)110.510⨯千克. (B)95010⨯千克. (C)9510⨯千克. (D) 10510⨯千克. 3.如图,已知AB ∥CD ,∠2=135°,则∠1的度数是
(A) 35°. (B) 45°. (C) 55°. (D) 65°.
4、下图能说明∠1>∠2的是( )
1
2
)
A. 2
1
)
D.
1
2
) )
B.
1
2 )
) C.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学模拟试题五一、选择题(每小题3分,共24分)1.sin30°的值为 ( ) A .21B .23C .33D .222. △ABC 中,∠A=50°,∠B=60°,则∠C= ( ) A .50° B .60° C.70° D.80°3.如图,直线l 1、l 2、l 3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有 ( ) A .一处. B .两处 C .三处. D .四处. 4.点P (-2,1)关于x 轴对称的点的坐标是 ( )A .(-2,-1)B .(2,-1)C .(1,-2)D .(2,1)5. 若x =3是方程x 2-3mx +6m =0的一个根,则m 的值为 ( )A .1B . 2C .3D .4 6.现有A 、B 两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A 立方体朝上的数字为x 、小明 掷B 立方体朝上的数字为y 来确定点P (x y ,),那么它们各掷一次所确定的点P 落在已知抛物线24y x x =-+上的概率为 ( )A.118 B.112C.19D.167.右图是由几个小立方块搭成的几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,那么这个几何体的主视图是 ( )A .B .C .D .8.某超级市场失窃,大量的商品在夜间被罪犯用汽车运走。

三个嫌疑犯被警察局传讯,警察局已经掌握了以下事实:(1)罪犯不在A 、B 、C 三人之外;(2)C 作案时总得有A 作从犯;(3)B 不会开车。

在此案中能肯定的作案对象是 ( )A .嫌疑犯AB .嫌疑犯BC .嫌疑犯CD .嫌疑犯A 和C2 13二、填空题(每小题3分,共24分)9.据中新社报道:2010年我国粮食产量将达到540000000000千克,用科学记数法表示这个粮食产量为______千克.10.用一个半径为6㎝的半圆围成一个圆锥的侧面,则这个圆锥的侧面积为 ㎝2.(结果保留π)11.△ABC 中,AB =6,AC =4,∠A =45°,则△ABC 的面积为 . 12.若一次函数的图象经过反比例函数4y x=-图象上的两点(1,m )和(n ,2),则这个一次函数的解析式是 .13. 某品牌的牛奶由于质量问题,在市场上受到严重冲击,该乳业公司为了挽回市场,加大了产品质量的管理力度,并采取了“买二赠一”的促销手段,一袋鲜奶售价1.4元,一箱牛奶18袋,如果要买一箱牛奶,应该付款 元.14.通过平移把点A(2,-3)移到点A ’(4,-2),按同样的平移方式,点B(3,1)移到点B′, 则点B′的坐标是 ________ 15.如图,在甲、乙两地之间修一条笔直的公路, 从甲地测得公路的走向是北偏东48°。

甲、乙两地间 同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西 度。

16.如图,M 为双曲线y =x1上的一点,过点M作x轴、y轴的垂线,分别交直线y=-x+m 于D 、C 两点,若直线y=-x+m 与y轴交于点A,与x轴相交于点B .则AD ·BC 的值为 .三、(第17小题6分,第18、19小题各8分,第20小题10分,共32分) 17.求值:计算:()1213(2cos301)(5)1-︒-+----18.先化简,再请你用喜爱的数代入求值xx x x x x x x x 42)44122(322-+÷+----+北 北甲 乙19.已知⊙O的直径AB、CD互相垂直,弦AE交CD于F,若⊙O的半径为R求证:AE·AF=2 R220.据统计某外贸公司2007年、2008年的进出口贸易总额分别为3300万元和3760万元, 其中2008年的进口和出口贸易额分别比2007年增长20%和10%.(1)试确定2007年该公司的进口和出口贸易额分别是多少万元;(2)2009年该公司的目标是:进出口贸易总额不低于4200万元, 其中出口贸易额所占比重不低于60%, 预计2009年的进口贸易额比2008年增长10%, 则为完成上述目标,2009年的出口贸易额比2008年至少应增加多少万元?四、(每小题10分,共20分)21.如图,河中水中停泊着一艘小艇,王平在河岸边的A处测得∠DAC=α,李月在河岸边的的B处测得∠DCA=β,如果A、C之间的距离为m,求小艇D到河岸AC的距离.22.某书报亭开设两种租书方式:一种是零星租书,每册收费1元;另一种是会员卡租书,办卡费每月12元,租书费每册0.4元.小军经常来该店租书,若每月租书数量为x册.(1)写出零星租书方式应付金额y1(元)与租书数量x(册)之间的函数关系式;(2)写出会员卡租书方式应付金额y2(元 )与租书数量x(册)之间的函数关系式;(3)小军选取哪种租书方式更合算?五、(本题12分)23.如图所示,矩形ABCD中,点E在CB的延长线上,使CE=AC,连结AE,点F是AE的中点,连结BF、DF,求证:BF⊥DF六、(本题12分)24.某校为了了解九年级学生的体能情况,抽调了一部分学生进行一分钟跳绳测试,将测试成绩整理后作出如下统计图.甲同学计算出前两组的频率和是0.12,乙同学计算出跳绳次数不少于100次的同学占96%,丙同学计算出从左至右第二、三、四组的频数比为4:17:15.结合统计图回答下列问题:(1)这次共抽调了多少人?(2)若跳绳次数不少于130次为优秀,则这次测试成绩的优秀率是多少?(3)如果这次测试成绩的中位数是120次,那么这次测试中,成绩为120次的学生至少有多少人?七、(本题12分)25.在△ABC中,AC=BC,∠ACB=90°,D、E是直线AB上两点.∠DCE=45°(1)当CE⊥AB时,点D与点A重合,显然DE2=AD2+BE2(不必证明)(2)如图,当点D不与点A重合时,求证:DE2=AD2+BE2(3)当点D在BA的延长线上时,(2)中的结论是否成立?画出图形,说明理由.八(本题14分)26.如图,已知抛物线y=x2-ax+a2-4a-4与x轴相交于点A和点B,与y轴相交于点D(0,8),直线DC平行于x轴,交抛物线于另一点C,动点P以每秒2个单位长度的速度从C点出发,沿C→D运动,同时,点Q以每秒1个单位长度的速度从点A出发,沿A→B运动,连接PQ、CB,设点P运动的时间为t秒.(1)求a的值;(2)当四边形ODPQ为矩形时,求这个矩形的面积;(3)当四边形PQBC的面积等于14时,求t的值.(4)当t为何值时,△PBQ是等腰三角形?(直接写出答案)数学试题参考答案及评分标准一、选择题(每小题3分,共24分)1.A;2.C ; 3.D ;4.A ;5.C ; 6.; 7.A ; 8.A 二、填空题(每小题3分,共24分)9.5.4×1011;10.18π; 11.62; 12.y=-2x-2; 13.16.8; 14.(5,2) ;15.48°; 16.2三、(第17小题6分,第18、19小题各8分,第20小题10分,共32分)17.解:原式224445x x x x =+++-- ···················· 3分 221x =-. ································ 4分 当2x =时, 原式22(2)1=⨯-3= ··································· 6分18. 解:原式=2)2)(2(])2(1)2(2[2+-+⨯----+x x x x x x x x x ………………3分=x+2-22--x xx ………………5分=24--x x ………………6分 当x=6时,原式=21………………8分19.证明:连接BE …………………1分∵AB 为⊙O 的直径 ∴∠AEB =90°…………………2分 ∵AB ⊥CD ∴∠AOF =90° ∴∠AOF =∠AEB =90°又∠A =∠A ∴△AOF ∽△AEB …………………5分AEAOAB AF =∴AE ·AF =AO ·AB ∵AO =R AB =2R AE ·AF =2R 2………………8分20.解:设2007年进口贸易额为x 万元、出口贸易额为y 万元 则:⎩⎨⎧=+++=+3760%)101(%)201(33000y x y x ⎩⎨⎧==20001300y x∴ 2007年进口贸易额为1300万元、出口贸易额为2000万元(2)设2009年的出口贸易额比2008年至少增加z 万元 由2008年的进口贸易额是:1300(1+20%)=1560万元 2008年的出口贸易额是:2000(1+10%)=2200万元则:⎪⎩⎪⎨⎧≥++++≥+++%60)2200(%)101(156022004200)2200(%)101(1560z zz 解得⎩⎨⎧≥≥374284z z 所以z ≥374 ,即2009年的出口贸易额比2008年至少增加374万元.……………10分 四.(每小题10分,共20分)21.解:过点D 作DB ⊥AC 于点B,设DB =x………1分 在Rt △ADB 中,tan ∠DAB =ABBD∴AB ==∠DAB BD tan αtan x………4分 在Rt △CDB 中,tan ∠DCB =BCBD∴BC =βtan tan xDCB BD =∠∵AB +BC =AC =m ∴αtan x +βtan x =m………8分 解得:x=βαβαtan tan tan tan +m答:小艇D 到河岸AB 的距离为βαβαtan tan tan tan +m ………10分22.解:(1)y1=x..........2分 (2)y2=12+0.4x..........4分(3)当y1=y2时,x=12+0.4x,解得:x=20 当y1>y2时,x>12+0.4x,解得x>20 当y1<y2时,x<12+0.4x,解得x<20综上所述,当小军每月借书少于20册时,采用零星方式租书合算;当每月租书20册时,两种方式费用一样;当每月租书多于20册时,采用会员的方式更合算...........10分23.证明:延长BF ,交DA 的延长线于点M ,连接BD ……………2分 ∵四边形ABCD 是矩形∴MD ∥BC ∴∠AMF =∠EBF ∠E =∠MAF 又FA =FE ∴△AFM ≌△EFB ……………5分 AM =BE FB =FM矩形ABCD 中,AC =BD ,AD =BC ∴BC +BE =AD +AM 即CE =MD ∵CE =AC ∴DB =DM∵FB =FM ∴BF ⊥DF ……………12分24.(1)第一组的频率为1-0.96=0.04…………………………………………2分 第二组的频率为0.12-0.04=O.08…………………………………………3分 120.08=150(人),这次共抽调了150人……………………………………6分(2)第一组人数为150×0.04=6(人),第三、四组人数分别为51人,45人………8分 这次测试的优秀率为150-6-12-51-45150×100%=24%………………………………10分(3)成绩为120次的学生至少有7人…………………………………………12分 七、25.解:(2)证明:过点A 作AF ⊥AB ,使AF =AB ,连接DF ∵△ABC 是等腰直角三角形 ∴AC =AB ∠CAB =∠B =45°,∴∠FAC =45°∴△CAF ≌△CBE …………………………………………3分 ∴CF =CE ∠ACF =∠BCE ∵∠ACB =90°,∠DCE =45° ∴∠ACD +∠BCE =45°∴∠ACD +∠ACF =45°即∠DCF =45° ∴∠DCF =∠DCE 又CD =CD ∴△CDF ≌△CDE ∴DF =DE∵AD 2+AF 2=DF 2∴AD 2+BE 2=DE 2……………7分(3)结论仍然成立 如图证法同(2)……………………………12分 八、(本题14分)26.(1)∵抛物线y=x2-ax+a2-4a-4经过点(0,8) ∴a2-4a-4=8解得:a1=6,a2=-2(不合题意,舍去) ∴a的值为6…………………………………………4分 (2)由(1)可得抛物线的解析式为y=x2-6x+8 当y=0时,x2-6x+8=0解得:x1=2,x2=4 ∴A 点坐标为(2,0),B 点坐标为(4,0)当y=8时, x=0或x=6∴D 点的坐标为(0,8),C 点坐标为(6,8) DP =6-2t ,OQ =2+t当四边形OQPD 为矩形时,DP =OQ2+t =6-2t ,t =34,OQ =2+34=310S =8×310=380即矩形OQPD 的面积为380…………………………………………8分(3)四边形PQBC 的面积为8)(21⨯+PC BQ ,当此四边形的面积为14时,21(2-t +2t )×8=14解得t =23(秒) 当t =23时,四边形PQBC 的面积为14…………………………………………12分(4)t =56时,PBQ 是等腰三角形.…………………………………………14分11。

相关文档
最新文档