初中数学中考数学模拟试题套 人教版
人教版九年级数学中考模拟试卷及答案解析

人教版九年级数学中考模拟试卷考 生须知 1.本试卷共8页,共三道大题,28道小题.满分100分,考试时间120分钟.2.在试卷和答题卡上准确填写学校名称、姓名和准考证号. 3.试卷答案一律填涂或书写在答题卡上,在试卷上作答无效.在答题卡上, 选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答.4.考试结束,将本试卷和答题卡一并交回. 一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有..一个. 1.在北京筹办2022年冬奥会期间,原首钢西十筒仓一片130000平方米的区域被改建为北京冬奥组委办公区.将130000用科学记数法表示应为 (A )41310⨯(B )51.310⨯(C )60.1310⨯(D )71.310⨯2.如图是某几何体的三视图,该几何体是 (A )三棱柱 (B )三棱锥 (C )长方体 (D )正方体3.实数a ,b ,c 在数轴上对应点的位置如图所示,则正确的结论是(A )2a >-(B )1b > (C )0a c +>(D )0abc >4.下列图案中,是中心对称图形的为(A ) (B ) (C ) (D )bca–1–2–3–412345.如图,直线AB ∥CD ,直线EF 分别与AB ,CD 交于点E ,F ,EG 平分∠BEF ,交CD 于点G , 若1∠=70︒,则2∠的度数是 (A )60︒ (B )55︒ (C )50︒(D )45︒6.为了保障艺术节表演的整体效果,某校在操场中标记了几个关键位置,如图是利用 平面直角坐标系画出的关键位置分布图,若这个坐标系分别以正东、正北方向为x 轴、y 轴的正方向,表示点A 的坐标为()1,1-,表示点B 的坐标为()32,,则表示其他位置的点的坐标正确的是7.下面的统计图反映了我国五年来农村贫困人口的相关情况,其中“贫困发生率”是 指贫困人口占目标调查人口的百分比.(以上数据来自国家统计局)根据统计图提供的信息,下列推断不合理...的是 (A )与2017年相比,2018年年末全国农村贫困人口减少了1386万人 (B )2015 ~2018年年末,与上一年相比,全国农村贫困发生率逐年下降 (C )2015~2018年年末,与上一年相比,全国农村贫困人口的减少量均超过1000万(D )2015~2018年年末,与上一年相比,全国农村贫困发生率均下降1.4个百分点BACDEGF 212014 ~ 2018年年末全国农村贫困人口统计图2014 ~ 2018年年末全国农村贫困发生率统计图8.如图,在平面直角坐标系xOy 中,△AOB 可以看作是 由△OCD 经过两次图形的变化(平移、轴对称、旋转) 得到的,这个变化过程不可能...是 (A )先平移,再轴对称 (B )先轴对称,再旋转 (C )先旋转,再平移 (D )先轴对称,再平移二、填空题(本题共16分,每小题2分) 9.写出一个大于2且小于3的无理数:.10.右图所示的网格是正方形网格,点P 到射线OA 的距离为m ,点P 到射线OB 的距离为n ,则m n . (填“>”,“=”或“<”)11.一个不透明盒子中装有3个红球、5个黄球和2个白球,这些球除了颜色外无其他差别.从中随机摸出一个球,恰好是红球的概率为. 12.若正多边形的一个内角是135︒,则该正多边形的边数为. 13.如图,在△ABC 中,D ,E 分别是AB ,AC 上的点,DE ∥BC .若6AE =,3EC =,8DE =, 则BC =.14.如果230m m --=,那么代数式211m m m m +⎛⎫-÷ ⎪⎝⎭的值是.15.我国古代数学著作《算法统宗》中记载了“绳索量竿”问题,其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.求绳索和竿的长度.设绳索长x 尺,竿长y 尺,可列方程组为.16.如图,AB 是⊙O 的一条弦,P 是⊙O 上一动点 (不与点A ,B 重合),C ,D 分别是AB ,BP 的中点. 若AB = 4,∠APB = 45°,则CD 长的最大值为.EDCBA三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)解答应写出文字说明、演算步骤或证明过程. 17.下面是小立设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:如图1,直线l 及直线l 外一点A . 求作:直线AD ,使得AD ∥l .作法:如图2,①在直线l 上任取一点B ,连接AB ; ②以点B 为圆心,AB 长为半径画弧, 交直线l 于点C ;③分别以点A ,C 为圆心,AB 长为半径 画弧,两弧交于点D (不与点B 重合); ④作直线AD .所以直线AD 就是所求作的直线. 根据小立设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹) (2)完成下面的证明.(说明:括号里填推理的依据)证明:连接CD .∵AD=CD=BC=AB ,∴四边形ABCD 是().∴AD ∥l ().18.计算:()02cos3023π︒++-.19.解不等式组:()13352x x x x ⎧-<-⎪⎨+⎪⎩,≥. 20.关于x 的一元二次方程()2320x m x m -+++=. (1)求证:方程总有两个实数根;(2)若方程的两个实数根都是正整数,求m 的最小值.lA图1图2l21.如图,在△ABC 中,90ACB ∠=︒,D 为AB 边上一点,连接CD ,E 为CD 中点,连接BE 并延长至点F ,使得EF =EB ,连接DF 交AC 于点G ,连接CF . (1)求证:四边形DBCF 是平行四边形; (2)若30A ∠=︒,4BC =,6CF =,求CD 的长.22.如图,AB 是⊙O 的直径,过⊙O 上一点C 作⊙O 的切线CD ,过点B 作BE ⊥CD于点E ,延长EB 交⊙O 于点F ,连接AC ,AF . (1)求证:12CE AF =; (2)连接BC ,若⊙O 的半径为5,tan 2CAF ∠=,求BC 的长.23.如图,在平面直角坐标系xOy 中,函数()0ky x x=<的图象经过点()16A -,, 直线2y mx =-与x 轴交于点()10B -,. (1)求k ,m 的值;(2)过第二象限的点P ()2n n -,作平行于x 轴的直线,交直线2y mx =-于点C ,交 函数()0ky x x=<的图象于点D . ①当1=-n 时,判断线段PD 与PC 的数量关系,并说明理由; ②若2PD PC ≥,结合函数的图象,直接写出n 的取值范围.CFDG EBA24.如图,Q 是AB 上一定点,P 是弦AB 上一动点,C 为AP 中点,连接CQ ,过点P 作PD ∥CQ 交AB 于点D ,连接AD ,CD .已知8AB cm ,设A ,P 两点间的距离为x cm ,C ,D 两点间的距离为y cm . (当点P 与点小荣根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究.下面是小荣的探究过程,请补充完整:(1x x(2)建立平面直角坐标系,描出以补全后的表中各组对应值为坐标的点,画出该函数的图象;(3)结合函数图象,解决问题:当DA DP ⊥时,AP 的长度约为cm .25.为了调查学生对垃圾分类及投放知识的了解情况,从甲、乙两校各随机抽取40名学生进行了相关知识测试,获得了他们的成绩(百分制),并对数据(成绩)进行了 整理、描述和分析.下面给出了部分信息.a .甲、乙两校40名学生成绩的频数分布统计表如下:成绩80分及以上为优秀,70~79分为良好,60~69分为合格,60分以 下为不合格)b .甲校成绩在70≤x <80这一组的是: 70707071727373737475767778c 根据以上信息,回答下列问题: (1)写出表中n 的值;(2)在此次测试中,某学生的成绩是74分,在他所属学校排在前20名,由表中数据可知该学生是校的学生(填“甲”或“乙”),理由是; (3)假设乙校800名学生都参加此次测试,估计成绩优秀的学生人数.26.在平面直角坐标系xOy 中,直线1y kx =+(0)k ≠经过点(2,3)A ,与y 轴交于点B ,与抛物线2y ax bx a =++的对称轴交于点(,2)C m . (1)求m 的值;(2)求抛物线的顶点坐标;(3)11(,)N x y 是线段AB 上一动点,过点N 作垂直于y 轴的直线与抛物线交于点22(,)P x y ,33(,)Q x y (点P 在点Q 的左侧).若213x x x <<恒成立,结合函数的图象,求a 的取值范围.27.如图,在等边△ABC 中,D 为边AC 的延长线上一点()CD AC <,平移线段BC ,使点C 移动到点D ,得到线段ED ,M 为ED 的中点,过点M 作ED 的垂线,交BC 于点F ,交AC 于点G . (1)依题意补全图形; (2)求证:AG = CD ;(3)连接DF 并延长交AB 于点H ,用等式表示线段AH 与CG 的数量关系,并证明.28.在平面直角坐标系xOy 中,正方形ABCD 的顶点分别为(0,1)A ,(1,0)B -,(0,1)C -,(1,0)D .对于图形M ,给出如下定义:P 为图形M 上任意一点,Q 为正方形ABCD边上任意一点,如果P ,Q 两点间的距离有最大值,那么称这个最大值为图形M 的 “正方距”,记作d (M ). (1)已知点(0,4)E ,①直接写出()d E 点的值;②直线4y kx =+(0)k ≠与x 轴交于点F ,当()d EF 线段取最小值时,求k 的取 值范围;(2)⊙T 的圆心为(,3)T t ,半径为1.若()6d T <,直接写出t 的取值范围.DB参考答案一、选择题(本题共16分,每小题2分)二、填空题(本题共16分,每小题2分) 9.答案不唯一,10.>11.31012.813.12 14.315.552x y x y =+⎧⎪⎨=-⎪⎩16.三、解答题(本题共68分,第17-22题,每小题5分,第23 - 26题,每小题6分,第27,28题,每小题7分)解答应写出文字说明、演算步骤或证明过程. 17.解:(1)补全的图形如图所示:(2)菱形;四条边都相等的四边形是菱形; 菱形的对边平行. 18.解:原式=213+ 2+=.………………2分………………5分………………4分 ………………4分 ………………5分19.解:解不等式13(3)x x -<-,得4x >. 解不等式52x x +≥,得5x ≥. ∴原不等式组的解集为5x ≥.20.(1)证明:依题意,得()()2342m m ∆=⎡-+⎤-+⎣⎦ 26948m m m =++--()21m =+.∵()210m +≥, ∴0∆≥.∴方程总有两个实数根.(2)解:解方程,得1212x x m ==+,, ∵方程的两个实数根都是正整数,∴21m +≥. ∴1m -≥.∴m 的最小值为1-.21.(1)证明:∵点E 为CD 中点, ∴CE =DE .∵EF =BE ,∴四边形DBCF 是平行四边形.(2)解:∵四边形DBCF 是平行四边形,∴CF ∥AB ,DF ∥BC .∴30FCG A ∠=∠=︒,90CGF CGD ACB ∠=∠=∠=︒.在Rt △FCG 中,CF =6,∴132FG CF ==,CG = ∵4DF BC ==, ∴1DG =. 在Rt △DCG 中, 由勾股定理,得CD =………………………………2分………………………………3分 ………………………………4分………………………………5分………………………………2分 ………………………………4分 ………………………………5分………………………………2分………………………………3分………………………………4分………………………………5分CFDG EBA22.(1)证明:连接CO 并延长交AF 于点G . ∵CD 是⊙O 的切线, ∴90ECO ∠=︒.∵AB 是⊙O 的直径, ∴90AFB ∠=︒. ∵BE CD ⊥, ∴90CEF ∠=︒.∴四边形CEFG 是矩形.∴GF CE =,90CGF ∠=︒. ∴CG AF ⊥.∴12GF AF =. ∴12CE AF =.(2)解:∵CG AF ⊥, ∴CF CA =.∴CBA CAF ∠=∠.∴tan tan 2CBA CAF ∠=∠=.∵AB 是⊙O 的直径,∴90ACB ∠=︒.在Rt △CBA 中,设BC x =,2AC x =,则=52AB =⨯.∴BC x ==23.解:(1)∵函数()0ky x x=<的图象G 经过点A (-1,6), ∴6k =-.…………… 1分∵直线2y mx =-与x 轴交于点B (-1,0),∴2m =-. ……………………… 2分(2)①判断:PD =2PC .理由如下:……… 3分当1n =-时,点P 的坐标为(-1,2),∴点C 的坐标为(-2,2),点D 的坐标为(-3,2).∴PC =1,PD =2.∴PD =2PC .…………… 4分②10n -<≤或3n -≤.…………… 6分………………………………3分………………………………4分………………………………5分………………………………2分24.解:(1)(2)(3)3.3125.解:(1)(2乙校样本数据的中位数76分,所以该学生在甲校排在前20名,在乙校排 在后20名,而这名学生在所属学校排在前20名,说明这名学生是甲校的学生.(3)在样本中,乙校成绩优秀的学生人数为14+2=16.假设乙校800名学生都参加此次测试,估计成绩优秀的学生人数为1680032040⨯=.26.解:(1)∵1(0)y kx k =+≠经过点A 23(,),∴1k =.∵直线1y x =+与抛物线2y ax bx a =++的对称轴交于点C ()m,2,∴1m =.(2)∵抛物线2y ax bx a =++的对称轴为1x =,∴12ba-=,即2b a =-. ∴22y ax ax a =-+2(1)a x =-.∴抛物线的顶点坐标为()1,0.……………………………4分 ……………………………6分………………………………4分……………………………1分……………………………2分(3) 当0a >时,如图,若抛物线过点B 01(,),则1a =.结合函数图象可得01a <<. 当0a <时,不符合题意.综上所述,a 的取值范围是01a <<.27.(1)补全的图形如图1所示.…………… 1分 (2)证明:△ABC 是等边三角形, ∴AB BC CA ==.60ABC BCA CAB ∠=∠=∠=︒.由平移可知ED ∥BC ,ED =BC .………… 2分60ADE ACB ∴∠=∠=︒.90GMD ∠=︒,2DG DM DE ∴==.…………… 3分 DE BCAC ==, DG AC ∴=.AG CD ∴=.…………… 4分(3)线段AH 与CG 的数量关系:AH = CG .…………… 5分证明:如图2,连接BE ,EF .,ED BC =ED ∥BC ,BEDC ∴四边形是平行四边形.BE CD CBE ADE ABC ∴=∠=∠=∠,. GM ED 垂直平分,EF DF ∴=.DEF EDF ∴∠=∠. ED ∥BC ,BFE DEF BFH EDF ∴∠=∠∠=∠,. BFE BFH ∴∠=∠. BF BF =,BEF BHF ∴△≌△.…………… 6分 BE BH CD AG ∴===. AB AC =,AH CG ∴=.…………… 7分 ………………………………6分 图1图228.解:(1)①5.②如图,(5d E =点.()d EF ∴线段的最小值是5.∴符合题意的点F 满足()5d F 点≤.当()=5d F 点时,125BF DF ==.∴点1F 的坐标为()4,0,点2F 的坐标为()4,0-. ∴1k =-或1k =.结合函数图象可得1k ≤-或1k ≥.(2)33t -<<.………………………………5分………………………………7分。
人教版九年级中考数学模拟考试试题(含答案)

九年级中考数学模拟考试试题满分150分时间:120分钟一、单选题。
(每小题4分,共40分)1.﹣2023的相反数是()A.﹣2023B.2023C.12023 D.﹣120232.如图是由一个5个相同的正方体组成的立体图形,则这个几何体左视图是()3.截至目前,某地区的旅游收入达到43 000 000,数字“43 000 000”用科学记数法表示为()A.43×106B.4.3×107C.0.43×108D.430×1054.如图,CA⊥BE于点A,AD∥BC,若∠C=42°,则∠1的度数为()A.46°B.47°C.48°D.42°(第4题图)(第6题图)(第9题图)5.下列图形中,既是轴对称图形又是中心对称图形的是()6.如图,A,B两点在数轴上的位置如图所示,则下列式子一定成立的是()A.ab<2aB.1-7a<1-7bC.|a|>|b|D.﹣b<ab、7.从甲,乙,丙,丁四名同学随机选择两名同学去参加数学比赛,则恰好抽到甲,丙两位同学的概率是()A.16 B.14C.18D.128.若x+y=﹣2,则代数式(y 2x -x )÷x -y x的值为( )A.2B.﹣2C.12 D.﹣129.如图,在△ABC 中,∠ACB=90°,∠BA15°,分别以A ,B 为圆心,大于12AB 的长为半径画弧,两弧交于M ,N 两点,作直线MN 交AC 于点D ,若AD=2,则△ABC 的面积为( ) A.2 B.2+√32C.2+√3D.410.二次函数y=ax 2+bx ,经过点P (m ,2)当y ≤﹣1时,x 的取值范围为m -1≤x ≤﹣a -m ,则下列四个值中可能为m 的是( ) A.﹣2 B.﹣3C.﹣4D.﹣5二.填空题。
(每小题4分,共24分) 11.分解因式:9m 2-36n 2= .12.若一元二次方程x 2-3x+a=0有两个相等的实数根,则a 的值为 .13.菱形ABCD 的两条对角线的长分别是6厘米和10厘米,则菱形ABCD 的周长是 厘米. 14.如图,一块飞镖游戏板由四个全等的直角三角形和一个正方形构成,若a=1,b=2,游戏板随机投掷一枚飞镖(飞镖每次都落在游戏板上),击中阴影部分的概率是 .(第14题图) (第15题图) (第16题图)15.一列慢车从A 地往B 地,一列快车从B 地到A 地,两车同时出发,各自抵达目的地后停止,如图所示,折线表示两车之间的距离y (km )与慢车行驶时间t (h )之间的关系,当快车到达A 地时,慢车与B 地的距离为 Km .(填序号)16.如图,矩形ABCD 中,AB=4,BC=6,点E 是BC 中点,连接AE ,将△ABE 沿AE 折叠,点B 落在点F 处,则tan ∠DAF 的值为 .三.解答题。
人教版九年级数学中考模拟试卷及参考答案

第7题图第10题图人教版九年级数学中考模拟试卷一、选择题(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的.)一、选择题 (本题共10小题,每小题3分,满分30分) 1.3- 的相反数为 ( )A . 3-B . 3C . 31-D . 31 2.下列图形中是中心对称图形的是( )A .B .C .D .3.把不等式组10630x x +>⎧⎨-≥⎩的解集表示在数轴上正确的是( )A .B .C .D .4.在△ABC 中,点D 、E 分别是边AB 、AC 的中点,DE =6,则BC =( ) A .3 B .6C .9D .125.在一次立定跳远的测试中,小娟等6位同学立定跳远的成绩分别为: 1.8、2、2.2、1.7、2、1.9,那么关于这组数据的说法正确的是( ) A .平均数是2 B .中位数是2 C .众数是2 D .方差是2 6.若一个正多边形的一个外角是30°,则这个正多边形的边数是( )A .12B .11C .10D .9 7.如图,AB DE ∥,62E ∠=,则B C ∠+∠等于( ) A .138B .118C .38D .628.对于二次函数2241y x x =--+,下列说法正确的是A .当 0x <,y 随x 的增大而增大B .当 1x =- 时,y 有最大值 3C .图象的顶点坐标为 ()1,3D .图象与轴有一个交点9.已知圆锥的母线长是4cm ,侧面积是12πcm 2,则这个圆锥底面圆的半径是( ) A .3cm B . 4cm C .5cm D .6cm10.将抛物线241y x x 向左平移至顶点落在y 轴上,如图所示,则两条抛物线、直线3y 和x 轴围成的图形的面积S (图中阴影部分)是( ) A .5 B .6C .7D .8第16题图二、填空题 (共6小题,每小题3分,满分18分) 11.分解因式:224a ab -= . 12.计算:20199(1)2sin 30=+-- .13.已知命题:“如果两个角是直角,那么它们相等”,该命题的....是 命题(填“真”或“假”).14.已知一次函数图象经过第一、二、四象限,请写出一个..符合条件的一次函数解析式 .15. 已知点1122(,)(,)A x y B x y 、在二次函数2(1)1y x =-+的图象上,若121x x >>,则12____y y 。
新人教版初三年级数学中考模拟测验卷及答案

初三数学模拟测试卷说明:本卷共有六大题,25小题,全卷满分120分。
考试时间120分钟1.下列4个数中,大于-6的数是( ) (A )-5 (B )-6 (C )-7 (D )-82.已知a<b<0,则点A(a-b,b)在( )(A )第一象限(B )第二象限(C )第三象限 (D )第四象限3.长城总长为67000100米,用科学记数法表示为( ) (A )6.7×108 (B )6.7×107(C )6.7×106(D )6.7×1054.下列图形中,能够说明∠1 > ∠2的是( )(A ) (B ) (C ) (D ) 5.将如图所示放置的一个直角三角形ABC ,(∠C=90°),绕斜边AB 旋转一周,所得到的几何体的正视图是下面四个图中的( )(A ) (B )(C )(D )6.在右边的表格中,每一行、列及对角线上的三个整数的和 都相等,则X 的值为( )(A )-3 (B )0(C )2(D )37.如图 ———— 在一个房间的门口装有两个开关,以控制里面的电灯,现在门口随机拉一下开关,房间里面的灯能够亮的可能性为( )(A )12(B )13(C )14(D )238.有一个商店,某件商品按进价加20%作为定价,可是总 是卖不出去,后来老板按定价减价20%以96元出售,很快 就卖掉了,则这次生意的盈亏情况是 ( ) (A )赚6元 (B )亏4元 (C )亏24元(D )不亏不赚 9.如图,在⊙O 中,弦AB=3.6cm ,圆周角∠ACB=30°,则⊙O 的直径等于 ( (A )3.6cm (B )1.8cm (C )5.4cm (D )7.2cm10.为了筹备班级初中毕业联欢会,班长对全班同学爱吃哪几种水果作了民意调查,那么最终买什么水果,下面的调查数据中最值得关注的是( ) (A )平均数 (B )加权平均数 (C )中位数 (D )众数二、填空题(本大题共6小题,每小题3分,共18 11.a 的相反数等于2007,则a=______ 12.抛物线y=ax 2+bx+c 如图所示,则它关于y 轴对称的抛物线的解析式是________13.如图。
2022-2023学年全国初中中考专题数学新人教版中考模拟(含解析)

2022-2023学年全国中考专题数学中考模拟考试总分:115 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )1. 下列图形中,是中心对称图形的有( )A.个B.个C.个D.个2. 下列计算正确的是 A.=B.=C. D.3. 据统计自开展精准扶贫工作五年以来,湖南省减贫人,贫困发生率由下降到,个贫困村出列,个贫困县摘帽.将用科学记数法表示为( )A.B.C.D.1234()−5−2−3−8−80551000013.43%3.86%26951455100000.551×1075.51×1065.51×107551×1044. 下列几何体中,从正面看和从上面看到的图形都为长方形的是( ) A. B. C. D.5. 如图,正六边形内接于,的半径为,则的长为( )A.B.C.D.6. 把不等式组的解集表示在数轴上,下列选项正确的是( )A.B.C.ABCDEF ⊙O ⊙O 1AB ^π6π3π2π{−x ≤1x +1>0D.7. 如图,直线,若,,则的度数为( )A.B.C.D.8. 如图,在中, , , 是的外接圆,是直径,交于点,连接,若,则的长为( )A.B.C.D.9. 已知:.求作:一点,使点到三个顶点的距离相等.小明的作法是:作的平分线;作边的垂直平分线;直线与射线交于.点即为所求的点(作图痕迹如图).小丽的作法是:作的平分线;作的平分线;射线与射线交于点.点即为所求的点(作图痕迹如图).对于两人的作法,下列说法正确的是( )AD //BC ∠1=42∘∠BAC =78∘∠250∘60∘68∘84∘△ABC AB =BC tan C =12⊙O △ABC AD ⊙O BD AC E CD CE =3AD 853–√45–√10△ABC O O △ABC (1)∠ABC BF (2)BC GH (3)GH BF O O 1(1)∠ABC BF (2)∠ACB CM (3)CM BF O O 2A.小明对,小丽不对B.小丽对,小明不对C.两人都对D.两人都不对10. 已知函数(其中)的图象如图所示,则一次函数与反比例函数的图象可能是( )A.B.C.D.卷II (非选择题)y =−(x −m)(x −n)m <ny =mx +n y =m +n x二、 填空题 (本题共计 5 小题 ,每题 5 分 ,共计25分 )11. 若某个一元二次方程的两个实数根分别为、,则这个方程可以是________.12. 若一个正比例函数的图象与一个反比例函数图象的一个交点坐标是 ,则另一个交点的坐标是________.13. 数据,,,,的方差是________.14. 某校组织开展了“吸烟有害健康”的知识竞赛,共有道题,答对一题得分,答错(或不答)一题扣分;小军参加本次竞赛得分要超过分,他至少要答对的题数为________道.15. 边长为的正方形,在边上取一动点,连接,作,交边于点,若的长为,则的长为________.三、 解答题 (本题共计 8 小题 ,每题 5 分 ,共计40分 ) 16.计算: ;先化简,再求值: ,其中.17. 如图,在四边形中,、分别平分和 ,与交于点,探究与之间的数量关系.−21(2,3)1−21,−1−12201051004ABCD BC E AE EF ⊥AE CD F CF 34CE (1)−+2cos (−1)2–√0()12−160∘(2)÷(−x −2)2x −6x −25x −2x =−1ABCD AM CM ∠DAB ∠DCB AM CM M ∠AMC ∠B,∠D18. 开展“光盘行动”,拒绝“舌尖上的浪费”,已成为一种时尚.某学校食堂为了激励同学们做到光盘不浪费,提出如果学生每餐做到光盘不浪费,那么餐后奖励香蕉或橘子一份.近日,学校食堂花了元和元分别采购了香蕉和橘子,采购的香蕉比橘子多千克,香蕉每千克的价格比橘子每千克的价格低,求橘子每千克的价格.19. 如图,一次函数与反比例函数的图象交于点和,与轴交于点.求一次函数和反比例函数的解析式;在轴上取一点,当的面积为时,求点的坐标;将直线向下平移个单位后得到直线,当函数值时,求的取值范围. 20. 如图,为了测量某校教学楼的高度,先在地面上用测角仪自处测得教学楼顶部的仰角是,然后在水平地面上向教学楼前进了,此时自处测得教学楼顶部的仰角是.已知测角仪的高度是,请你计算出该教学楼的高度.(结果精确到)(参考数据:)21. 随着通讯技术的迅猛发展,人与人之间的沟通方式更多样、便捷.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选择一种),在全校随机调查了部分学生,将统计结果绘制成了如下两幅不完整的统计图,其中扇形统计图中,表示“钉钉”和“”的扇形圆心角相等,请结合图中所给信息解答下列问题:(1)这次统计共抽查了________名学生;在扇形统计图中,表示“钉钉”的扇形圆心角的度数为2800250015030%=kx +b (k ≠0)y 1=(m ≠0)y 2m x A (1,2)B (−2,a)y M (1)(2)y N △AMN 3N (3)y 12y 3>>y 1y 2y 3a CD A 30∘40m B 45∘1.2m 1m ≈1.732,≈1.4143–√2–√QQ________;(2)将条形统计图补充完整;(3)该校共有名学生,请估计该校最喜欢用“微信”进行沟通的学生有多少名?(4)某天甲、乙两名同学都想从“微信”、“钉钉”、“”、“电话”四种沟通方式中选择一种方式与对方联系,请用列表或树状图的方法求出甲、乙两名同学恰好选择同一种沟通方式的概率.22. 如图,将平行四边形的边延长到点,使,连接,交于点,,连接,.求证:四边形是矩形.23. 如图,抛物线的图象过点.求抛物线的解析式:根据轴对称的性质知道在抛物线的对称轴上存在一点,使得的周长最小,此时,在直线上方的抛物线上是否存在点(不与点重合),使得?若存在,请直接写出点的坐标;若不存在,请说明理由.2000QQ ABCD DC E CE =DC AE BC F ∠AFC =2∠D AC BE ABEC y =a −bx +3x 2A(−1,0),B(3,0)(1)(2)P △PAC PA M C =S △PAM S △PAC M参考答案与试题解析2022-2023学年全国中考专题数学中考模拟一、 选择题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )1.【答案】C【考点】中心对称图形【解析】此题暂无解析【解答】此题暂无解答2.【答案】C【考点】合并同类项同底数幂的乘法幂的乘方与积的乘方【解析】根据有理数的运算法则逐项计算即可求解.【解答】解:.,故不正确;.,故不正确;.,故正确;.,故不正确;故选.3.【答案】A −5−2=−7B −8−8=−16C −=−1642D =823CB【考点】科学记数法--表示较大的数【解析】科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值时,是非负数;当原数的绝对值时,是负数.【解答】解:.故选.4.【答案】B【考点】简单几何体的三视图【解析】分别找出从物体正面看所得到的图形即可.【解答】解:、主视图是三角形,故此选项不合题意;、主视图是长方形,俯视图是长方形,故此选项符合题意;、主视图是长方形,俯视图是圆,故此选项不合题意;、主视图是梯形,俯视图是长方形,故此选项不合题意;故选.5.【答案】B【考点】正多边形和圆弧长的计算【解析】连接,,求出圆心角的度数,再利用弧长公式解答即可.a ×10n 1≤|a |<10n n a n ≥1n <1n 5510000=5.51×106B A B C D B OA OB ∠AOB【解答】连接,,∵多边形为正六边形,∴=,∴的长,6.【答案】A【考点】在数轴上表示不等式的解集解一元一次不等式组【解析】先求出各个不等式的解集,再把解集表示在数轴上即可.【解答】解:解得:则在数轴上表示为:故选.7.【答案】B【考点】平行线的性质【解析】根据平行线的性质,可以得到=,再根据题目中=,=,即可得到的度数.【解答】解:∵直线,∴,OA OB ABCDEF ∠AOB ×=360∘1660∘AB ^==60π×1180π3{−x ≤−1,x +1>0,{x ≥1,x >−1,A ∠1+∠2+∠BAC 180∘∠140∘∠BAC 80∘∠2AD //BC ∠DAC =∠1∠1+∠2+∠BAC =180∘∴,∵,,∴.故选.8.【答案】D【考点】勾股定理锐角三角函数的定义圆周角定理【解析】1【解答】解:∵ ,∴,∴,∴,∵,∴,在中,,,∴,设,,∴,在中,,故选.9.【答案】D【考点】作角的平分线作图—尺规作图的定义∠1+∠2+∠BAC =180∘∠1=42∘∠BAC =78∘∠2=60∘B AB =BC ∠BAC =∠BCA ∠BDC =∠ACB tan ∠BDC ==CE CD 12CE =3CD =6Rt △ECD DE =35–√tan ∠CAB ==BE AB 12AB =2BE BE =x tan ∠ADB ===AB BD 122xx +35–√x =5–√Rt △ABD AD =10D线段垂直平分线的性质角平分线的性质【解析】分别判断小明和小丽作法表示的几何意义,即可判断.【解答】解:点到三个顶点的距离相等,即是的外心,即为各边垂直平分线的交点.小明:的平分线,上的点到两边距离相等;边的垂直平分线,上的点到点距离相等,故与的交点,无法确定与点距离的关系,故小明作法错误;小丽:角平分线的交点为的内心,即到各边距离相等,也无法确定到各顶点距离的关系,故小丽作法也错误.故选.10.【答案】C【考点】二次函数的图象一次函数的图象反比例函数的图象【解析】根据二次函数图象判断出,,然后求出,再根据一次函数与反比例函数图象的性质判断即可.【解答】解:由图可知,,,∴,∴一次函数经过第一、二、四象限,且与轴相交于点,反比例函数的图象位于第二、四象限;故选:.二、 填空题 (本题共计 5 小题 ,每题 5 分 ,共计25分 )11.【答案】=(答案不唯一)【考点】O △ABC O △ABC O ∠ABC BF BF BC GH GH B,C BF GH O A △ABC D m <−1n =1m +n <0m <−1n =1m +n <0y =mx +n y (0,1)y =m +n xC +x −2x 20根与系数的关系【解析】此题是一道开放型的题目,答案不唯一,只要写出一个符合的方程即可.【解答】=,=,所以这个一元二次方程可以是=,12.【答案】【考点】反比例函数的应用【解析】此题暂无解析【解答】此题暂无解答13.【答案】【考点】方差【解析】此题暂无解析【解答】解:这组数据的平均数为:,∴方差.故答案为:.14.【答案】−2+1−1−2×1−2+x −2x 202×(1−2+1−1−1+2)=016=×[(1−0+(−2−0+(1−0+(−1−0+(−1−0+(2−0]=2s 216)2)2)2)2)2)2214【考点】一元一次不等式的实际应用【解析】先设小军答对了道题,根据二等奖在分或分以上,列出不等式,求出的取值范围,再根据只能取正整数,即可得出答案.【解答】解:设小军答对了道题,依题意得:解得:,∵是正整数,∴最小为.故答案为:.15.【答案】或【考点】正方形的性质相似三角形的判定与性质【解析】由正方形的性质结合三角形内角和定理可得出,结合可得出,由C , ’可证出,再利用相似三角形的性质可求出的长.【解答】解:四边形为正方形,.,.,,,,,即, 或.故答案为:或.三、 解答题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )y 100100y y y 10y −5(20−y)≥100y ≥403y y 141413∠BAE +∠AEB =90∘∠AEB +∠CEF =90∘∠BAE =∠CEF ∠B =∠∠BAE =∠CEF △ABE ∼△ECF CE ∵ABCD ∴∠B =∠C =90∘∵EF ⊥AE ∴∠AEF =90∘∵∠BAE +∠AEB =90∘∴∠AEB +∠CEF =90∘∴∠BAE =∠CEF ∴△ABE ∼△ECF ∴=CE BA CF BE =CE 4344−CE ∴CE =1CE =31316.【答案】解: ;,当时,原式.【考点】特殊角的三角函数值零指数幂、负整数指数幂分式的化简求值【解析】利用零指数幂,负指数幂和特殊角的三角函数求值即可;利用分式的运算求解即可.【解答】解: ;(1)−+2cos (−1)2–√0()12−160∘=1−2+2×12=−1+1=0(2)÷(−x −2)2x −6x −25x −2=÷2(x −3)x −25−(x −2)(x +2)x −2=÷2(x −3)x −29−x 2x −2=⋅2(x −3)x −2x −2−(x +3)(x −3)=−2x +3x =−1=−=−12−1+3(1)(2)(1)−+2cos (−1)2–√0()12−160∘=1−2+2×12=−1+1=0(2)÷(−x −2)2x −6x −25x −2=÷2(x −3)x −25−(x −2)(x +2)x −2=÷2(x −3)x −29−x 2x −2=⋅2(x −3)x −2x −2−(x +3)(x −3)−2,当时,原式.17.【答案】证明:如图,连接并延长.∵ 是 的外角,∴,∵是的外角,∴,∵,∴,∵、分别平分,∴,∴,∴ .【考点】三角形中位线定理【解析】此题暂无解析【解答】证明:如图,连接并延长.∵ 是 的外角,∴,∵是的外角,∴,∵,∴,∵、分别平分,∴,=−2x +3x =−1=−=−12−1+3DM ∠3△AMD ∠3=∠1+∠ADM ∠4△CMD ∠4=∠2+∠CDM ∠AMC =∠3+∠4∠AMC =∠1+∠ADM +∠CDM +∠2=∠1+∠2+∠ADC AM CM ∠DAB,∠DCB ∠1=∠BAD.12∠2=∠BCD 12∠AMC =∠BAD +∠BCB +∠ABC =(−∠B −∠ADC)+ADC 121212360∘=(−∠B −∠ADC)12360∘2∠AMC +∠B =∠ADC =360∘DM ∠3△AMD ∠3=∠1+∠ADM ∠4△CMD ∠4=∠2+∠CDM ∠AMC =∠3+∠4∠AMC =∠1+∠ADM +∠CDM +∠2=∠1+∠2+∠ADC AM CM ∠DAB,∠DCB ∠1=∠BAD.12∠2=∠BCD 12AMC =∠BAD +∠BCB +∠ABC =(−∠B −∠ADC)+ADC111∴,∴ .18.【答案】解:设橘子每千克的价格为元,则香蕉每千克的价格为元.根据题意,得.解得.经检验, 是原分式方程的解,且符合题意.答:橘子每千克的价格为元.【考点】分式方程的应用【解析】此题暂无解析【解答】解:设橘子每千克的价格为元,则香蕉每千克的价格为元.根据题意,得.解得.经检验, 是原分式方程的解,且符合题意.答:橘子每千克的价格为元.19.【答案】解:∵过点,∴,即反比例函数:,当时,,即,过和,代入得 ,解得,∴一次函数解析式为;当时,代入中得,,即,∵,∴,∴或;如图,设与的图像交于,两点,∵向下平移两个单位得且∴,22∠AMC =∠BAD +∠BCB +∠ABC =(−∠B −∠ADC)+ADC 121212360∘=(−∠B −∠ADC)12360∘2∠AMC +∠B =∠ADC =360∘x 70%x −=150280070%2500x x =10x =1010x 70%x −=150280070%2500x x =10x =1010(1)=y 2m x A(1,2)m =1×2=2=y 22x x =−2a =−1B (−2,−1)=kx +b y 1A(1,2)B (−2,−1){k +b =2−2k +b =−1,{k =1b =1=x +1y 1(2)x =0y =x +1y =1M (0,1)=⋅MN ⋅||=3,=1S △AMN 12x A x A MN =6N (0,7)(0,−5)(3)y 2y 3C D y 1y 3=x +1y 1=x −1y 3 =2联立得.解得或∴,,在、两点之间或、两点之间时,,∴或.【考点】反比例函数与一次函数的综合待定系数法求反比例函数解析式【解析】此题暂无解析【解答】解:∵过点,∴,即反比例函数:,当时,,即,过和,代入得 ,解得,∴一次函数解析式为;当时,代入中得,,即,∵,∴,∴或;如图,设与的图像交于,两点,向下平移两个单位得且∴,联立得.解得或∴,,在、两点之间或、两点之间时,,∴或. y =2x y =2x {x =−1y =−2{x =2y =1C (−1,−2)D (2,1)A D B C >>y 1y 2y 3−2<x <−11<x <2(1)=y 2m x A(1,2)m =1×2=2=y 22x x =−2a =−1B (−2,−1)=kx +b y 1A(1,2)B (−2,−1){k +b =2−2k +b =−1,{k =1b =1=x +1y 1(2)x =0y =x +1y =1M (0,1)=⋅MN ⋅||=3,=1S △AMN 12x A x A MN =6N (0,7)(0,−5)(3)y 2y 3C D y 1y 3=x +1y 1=x −1y 3 y =2x y =2x {x =−1y =−2{x =2y =1C (−1,−2)D (2,1)A D B C >>y 1y 2y 3−2<x <−11<x <220.【答案】解:设,根据题意得,,∵,∴,.在直角中,,解得,,即,∴.即教学楼的高度约为.【考点】解直角三角形的应用-仰角俯角问题【解析】设,根据锐角三角函数的定义列出关于的方程,解出即可.【解答】解:设,根据题意得,,∵,∴,.在直角中,,解得,,即,∴.即教学楼的高度约为.21.【答案】,∵抽查的名学生中,喜欢用“短信”沟通的人数为:=(人),CE =xm AB =40m ∠CBE =45∘BE =CE =xm ∴AE =AB +BE =(40+x)m △ACD tan ===30∘CE AE x 40+x 3–√3x =(20+20)m 3–√CE =(20+20)m 3–√CD =CE +DE =20+20+1.2≈20×1.732+20+1.2≈56m3–√56m CE =xm x CE =xm AB =40m ∠CBE =45∘BE =CE =xm ∴AE =AB +BE =(40+x)m △ACD tan ===30∘CE AE x 40+x 3–√3x =(20+20)m 3–√CE =(20+20)m 3–√CD =CE +DE =20+20+1.2≈20×1.732+20+1.2≈56m3–√56m 10054∘100100×5%5∴喜欢用“微信”进行沟通的学生有:=(人),将条形统计图补充完整如图:=(名),即该校共有名学生,估计该校最喜欢用“微信”进行沟通的学生有名;画出树状图,如图所示:所有情况共有种情况,其中甲、乙两名同学恰好选择同一种沟通方式的共有种情况,故甲、乙两名同学恰好选中同一种沟通方式的概率为:=.【考点】条形统计图用样本估计总体列表法与树状图法扇形统计图【解析】(1)根据喜欢电话沟通的人数与百分比即可求出共抽查人数,求出喜欢用“钉钉”沟通的人数即可求出表示“钉钉”的扇形圆心角度数;(2)计算出喜欢用短信与微信的人数即可补全统计图;(3)用样本中喜欢用微信进行沟通的百分比来估计名学生中喜欢用微信进行沟通的人数即可求出答案;(4)列出树状图分别求出所有情况以及甲、乙两名同学恰好选中同一种沟通方式的情况后,利用概率公式即可求出甲、乙两名同学恰好选中同一种沟通方式的概率.【解答】喜欢用电话沟通的人数为,所占百分比为,∴此次共抽查了:=(人),100−20−5−15−15−5402000×800200080016425002020%20÷20%100QQ∵表示“钉钉”和“”的扇形圆心角相等,∴喜欢用“钉钉”和“”沟通的人数相等,∴喜欢用“钉钉”沟通的人数为人,∴表示“钉钉”的扇形圆心角的度数为=;故答案为:;;∵抽查的名学生中,喜欢用“短信”沟通的人数为:=(人),∴喜欢用“微信”进行沟通的学生有:=(人),将条形统计图补充完整如图:=(名),即该校共有名学生,估计该校最喜欢用“微信”进行沟通的学生有名;画出树状图,如图所示:所有情况共有种情况,其中甲、乙两名同学恰好选择同一种沟通方式的共有种情况,故甲、乙两名同学恰好选中同一种沟通方式的概率为:=.22.【答案】证明:∵四边形是平行四边形,∴,.∵,∴,,∴四边形是平行四边形,∴,.∵四边形是平行四边形,∴.又∵,∴.∵,∴,∴,∴,QQ QQ 15×360∘54∘10054∘100100×5%5100−20−5−15−15−5402000×8002000800164ABCD AB //CD AB =CD CE =DC AB =EC AB //EC ABEC FA =FE FB =FC ABCD ∠ABC =∠D ∠AFC =2∠D ∠AFC =2∠ABC ∠AFC =∠ABC +∠BAF ∠ABC =∠BAF FA =FB FA =FE =FB =FC∴,∴四边形是矩形.【考点】矩形的判定平行四边形的性质【解析】(2)由(1)得的结论先证得四边形是平行四边形,通过角的关系得出,,得证.【解答】证明:∵四边形是平行四边形,∴,.∵,∴,,∴四边形是平行四边形,∴,.∵四边形是平行四边形,∴.又∵,∴.∵,∴,∴,∴,∴,∴四边形是矩形.23.【答案】解:()把点 分别代入,得解得,∴抛物线的解析式为 .存在满足条件的带你,使得,如图:∵,∴当以为底时,两三角形等高,∴点和点到直线的距离相等,∵在轴上方,AE =BC ABEC ABEC FA =FE =FB =FC AE =BC ABCD AB //CD AB =CD CE =DC AB =EC AB //EC ABEC FA =FE FB =FC ABCD ∠ABC =∠D ∠AFC =2∠D ∠AFC =2∠ABC ∠AFC =∠ABC +∠BAF ∠ABC =∠BAF FA =FB FA =FE =FB =FC AE =BC ABEC 1A (−1,0),B (3,0)y =a +bx +3x 2{0=a −b +3,0=9a +3b +3{a =−1b =2.y =−+2x +3x 2(2)M =S △PAM S △PAC =S △PAM S △PAC PA C M PA M x∴,∵,,设直线的解析式为,∴,解得,∴直线的解析式为,∴直线的解析式为,联立得,解得(即点),,∴点的坐标为.【考点】待定系数法求一次函数解析式二次函数综合题待定系数法求二次函数解析式二次函数图象上点的坐标特征【解析】此题暂无解析【解答】解:()把点 分别代入,得解得,∴抛物线的解析式为 .存在满足条件的带你,使得,如图:∵,∴当以为底时,两三角形等高,∴点和点到直线的距离相等,∵在轴上方,∴,∵,,设直线的解析式为,∴,解得,∴直线的解析式为,CM//CA A(−1,0)P(1,2)AP y =px +d {−p +d =0p +d =2{p =1d =1AP y =x +1CM y =x +3{y =x +3y =−+2x +3x 2{=0x 1=3y 1C {=1x 2=4y 2M (1,4)1A (−1,0),B (3,0)y =a +bx +3x 2{0=a −b +3,0=9a +3b +3{a =−1b =2.y =−+2x +3x 2(2)M =S △PAM S △PAC =S △PAM S △PAC PA C M PA M x CM//CA A(−1,0)P(1,2)AP y =px +d {−p +d =0p +d =2{p =1d =1AP y =x +1∴直线的解析式为,联立得,解得(即点),,∴点的坐标为.CM y =x +3{y =x +3y =−+2x +3x 2{=0x 1=3y 1C {=1x 2=4y 2M (1,4)。
最新人教版中考数学仿真模拟考试卷含答案

最新人教版中考数学仿真模拟考试卷含答案一、单选题1.2的相反数是()A.2B.C.﹣2D.﹣2.下列运算正确的是()A.a6÷a2=a3B.3a2b﹣a2b=2C.(﹣2a3)2=4a6D.(a+b)2=a2+b23.设直线是函数(,,是实数,且)图象的对称轴,则正确的结论是().A.若,则B.若,则C.若,则D.若,则4.如图,把一块含有45°角的直角三角板的两个顶点分别放在直尺的一组对边上,如果∠2=25°,那么∠1的度数是()A.30°B.25°C.20°D.15°5.数据70、71、72、73的标准差是()A.B.2C.D.6.已知两个不同的一元二次方程的判别式互为相反数,下列判断正确的是()A.两个方程一定都有解B.两个方程一定没有解C.两个方程一定有公共解D.两个方程至少一个方程有解.7.将一个直角三角形三边扩大3倍,得到的三角形一定是( )A.直角三角形B.锐角三角形C.钝角三角形D.以上三种情况都有可能8.下图是由7个相同的小正方体搭成的几何体,这个几何体的俯视图是()A.B.C.D.9.如图,将四根长度相等的细木条首尾相连,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当AB=2,∠B=60时,AC的长是()A.B.C.D.10.为了迎接杭州G20峰会,某校开展了设计“YJG20”图标的活动,下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.二、填空题11.已知直线:和直线:,其中k为不小于2的自然数.当、3、4,,2018时,设直线、与x轴围成的三角形的面积分别为,,,,,则__________.12.如图,AD是△ABC的中线,△ADC=60°,BC=6,把△ABC沿直线AD折叠,点C落在C′处,连接BC′,那么BC′的长为.13.在一个不透明的盒子中装有个除颜色外完全相同的球,这个球只有3个红球,若每次将球充分搅匀后,任意摸出一个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在左右,则的值大约为___.14.分解因式:2x2-12xy+18y2=__________.15.不等式组的解集是_________.16.数据70700用科学计数法可表示为___________________.用四舍五入法,50.2462≈__________(精确到0.01).三、解答题17.已知抛物线,L:y=ax2+bx﹣3与x轴交于A(﹣1,0)、B两点,与y轴交于点C,且抛物线L的对称轴为直线x=1.(1)抛物线的表达式;(2)若抛物线L′与抛物线L关于直线x=m对称,抛物线L′与x轴交于点A′,B′两点(点A′在点B′左侧),要使S△ABC =2S△A′BC,求所有满足条件的抛物线L′的表达式.18.张老师为了解学生课前预习的情况,对部分学生进行了跟踪调查,并将调查结果分为四类,A:很好;B:较好;C:一般;D:较差.制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)张老师一共调查了名同学?(2)C类女生有名,D类男生有名;(3)为了共同进步,张老师想从被调查的A类和D类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表法或画树状图的方法求出所选两位同学恰好都是男同学的概率.19.无锡火车货运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物往徐州,这列货车可挂A、B两种不同规格的货厢50节,已知用一节A型货厢的运费是0.5万元,用一节B 型货厢的运费是0.8万元.(1)设运输这批货物的总运费为y (万元),用A型货箱的节数为x (节),试写出y与x之间的函数关系式;(2)已知甲种货物35吨和乙种货物15吨,可装满一节A型货厢,甲种货物25吨和乙种货物35。
初中数学 人教版练习题 2024年陕西省中考数学模拟试卷(黑卷)

2024年陕西省中考数学模拟试卷(黑卷)一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)A .-28B .28C .-D .1.(3分)-28的相反数是( )128128A .40°B .45°C .50°D .55°2.(3分)如图,AB ∥DE ,BC ∥EF ,AB 与EF 交于点G .若∠DEF =130°,则∠B 的度数为( )A .10x 2y 6B .-10x 2y 6C .10x 3y 5D .-10x 3y53.(3分)计算:5x 2y 2•(-2xy 3)=( )A .B .C .D .4.(3分)在同一平面直角坐标系中,函数y =-3x +b 和y =bx -3(b 为常数,且b ≠0)的图象( )A .仅甲、乙正确B .仅乙、丙正确C .仅甲、丙正确D .甲、乙、丙均正确5.(3分)如图,在四边形ABCD 中,对角线AC 、BD 相交于点O ,甲、乙、丙三位同学判定其为平行四边形的说法如下:甲:若OA =OC ,OB =OD ,则四边形ABCD 是平行四边形;乙:若∠1=∠2,∠3=∠4,则四边形ABCD 是平行四边形;丙:若AB =CD ,AB ∥CD ,则四边形ABCD 是平行四边形.关于甲、乙、丙三位同学的说法,下列正确的是( )二、填空题(共5小题,每小题3分,计15分)A .B .2C .2D .46.(3分)如图,AD 是Rt △ABC 斜边上的中线,点E 为边AD 上的中点,连接BE ,且AB =BD ,若BC =8,则BE的长为( )M 3M 3A .45°B .30°C .25°D .15°7.(3分)如图,AB 是⊙O 的直径,点C ,D 在⊙O 上,过点C 作⊙O 的切线,交DA 的延长线于点E .连接AC ,CD ,若∠ADC =45°,则∠ACE 的度数为( )A .0<m <1B .0<m <2C .m >1D .m >28.(3分)已知抛物线y =ax 2-2x +ax -2(a <0)经过点A (2,y 1),B (m ,y 2),且A ,B 均在y 轴右侧.若y 1<y 2,则m 的范围为( )9.(3分)分解因式:x 2y -2xy +y = .10.(3分)如图,正六边形ABCDEF 的边长为6,M ,N 分别为AB ,DE 边的中点,连接MN 并延长交CD 的延长线于点P ,则NP 的长为 .11.(3分)如图①,小明同学用四个全等的直角三角形拼接了一个“赵爽弦图”,经过裁剪得到如图②所示的风车图案(阴影部分).若图中大正方形的面积为25,小正方形的面积为1,则风车图案的周长为 .12.(3分)如图,在平面直角坐标系中,菱形AOBC 的顶点O 是坐标原点,顶点B 在反比例函数y =的图象上,顶点C 在例函数y =的图象上,若∠CAO =60°,则k 的值为 .4M 3xk x三、解答题(共13小题,计81分.解答应写出过程)13.(3分)如图,在边长为2的正方形ABCD 中,点E 为BC 边上一点,且∠BAE =15°,点F 为直线AE 上一点,连接B F ,DF ,若DF -BF =2,则点F 到点A 的距离为 .14.(5分)计算:(-+|3-|-.15)0M 6√2415.(5分)解不等式组:.{3(x -2)<2x -4-2x ≥-616.(5分)解方程+1=.3-9x 2x x -317.(5分)如图,在△ABC 中,点D 为AC 边上一点(AD >CD ),CD =6,请用尺规作图法,在AB 边上求作一点E ,使得AE =3.(保留作图痕迹,不写作法)18.(5分)如图,在△ABC 中,点D 是BC 边上一点,延长DB 至点E ,使得BE =CD ,AB =FD ,∠ABC =∠FDE .求证:∠A =∠F .19.(5分)猜灯谜又称打灯谜,是从古代就开始流传的元宵节特色活动.有位父亲在元宵节给儿子茂茂出了4个灯谜,分别灯谜①,灯谜②,灯谜③,灯谜④,其中有2道是猜成语,2道是猜汉字.将这四个灯谜写好装在四个一模一样的灯笼中.(1)若茂茂从中随机选取一道灯谜,则茂茂选取的灯谜是猜成语的概率是 ;(2)若茂茂从中随机选取两道灯谜,求茂茂选取的两道灯谜均是猜汉字的概率.20.(5分)如图,△ABC 顶点坐标分别为A (1,4),B (-2,1),C (3,2).将△ABC 关于x 轴对称△A ′B ′C ′.(1)请你画出△A ′B ′C ′,并写出点A ′,B ′,C ′的坐标;(2)连接B′C,C′C,求△CB′C′的面积.21.(6分)宝塔山是革命圣地延安的重要标志.在一次课外活动中,小泽和小方想利用一些测量所学的几何知识测量宝塔山上宝塔的塔高AB,由于观测点与宝塔底部间的距离不易测量,经过研究需要进行两次测量.如图所示,首先,在阳光下,小方在某一时刻测得站立在E处的小泽的影长E F=1.8m,在同一时刻宝塔顶端A的影子落在地面上的点C处,此时测得CE=1.5m,小泽在E处竖起一根标杆,测得标杆的高EG=1.5m,此时,宝塔的顶端A、标杆的顶端G及点F在同一条直线上.已知AB⊥BF,DE⊥BF,点B,C,E,F在同一水平线上,小泽的身高ED=1.6m,求宝塔的塔高AB.22.(7分)食糖是关系国计民生的重要农产品.立足国内生产,实现自给,是我国蔗糖产业发展的基本国策.某地的甘蔗出苗率y(单位:%)与播种后20天累计降雨量x(单位:毫米)的关系如图所示:(1)求y与x之间的函数表达式;(2)当甘蔗种子种植后20天累计降雨量达到180毫米时,甘蔗的出苗率是多少?23.(7分)我省某地文旅局为了更好地促进本地旅游业的发展,将A,B两家景点的相关资料放在网络平台上进行宣传,邀请曾在这两家景点均游览过的游客参与调研,从自然景观、人文历史、设施服务三个方面对这两家景点进行“满意度”评分(满分100分).现从这两家景点“满意度”评分中各随机抽取10个评分数据,并对所得数据进行整理、分析、描述:Ⅰ.A,B两家景点“满意度”评分折线统计图:Ⅱ.A,B两家景点“满意度”评分的平均数、中位数、众数如表:平均数中位数众数A景点a9595B景点95b97根据以上信息,解答下列问题:(1)表中a的值是,b的值是;(2)据统计,某季度在B景点游览的人数为30000,请估计该季度B景点评分在95分以上的人数;(3)新考法结论开放性根据“满意度”的评分情况,该文旅局打算将A ,B 两家景点中的一家置顶推荐,你认为该文旅局会将这景点中的哪家置顶推荐?请说明理由(至少从一个方面说明).24.(8分)如图,AB 是⊙O 的直径,C 为⊙O 上一点,连接CA 并延长至点D ,使得AD =AB ,连接BD 交⊙O 于点E ,连接AE ,CE ,BC .(1)求证:∠DAE =∠BCE ;(2)若BE =10,tan ∠BEC =,求AD 的长.24725.(8分)如图,抛物线:y =+bx -4与x 轴交于A ,B 两点(点A 在点B 左侧),与y 轴交于点C ,且OB =OC .(1)求抛物线L 1的函数表达式;(2)若抛物线L 2与抛物线L 1关于原点对称,抛物线L 2与y 轴交于点C ′,抛物线L 2上是否存在点D (不与点C ′重合),使S △ABD :S △AOC ′=5:1?若存在,求出点D 的坐标;若不存在,请说明理由.L 1x 226.(10分)(1)如图①,过点A 作一条直线将△ABC 的面积平分,交BC 于点D ,若BC =4,则CD =;(2)如图②,在矩形ABCD 中,AB =4,AD =8,E 为AB 的中点,F ,G 为AD 上两个动点(点F 在G 的左侧),且FG =2,求EF +的最小值;(3)如图③,四边形ABCD 为景观示意图,E ,F 在对角线AC 上,连接BE ,BF ,DE ,DF ,现规划在中间四边形BEDF 种植花卉余地区种植草坪,要种植的面积为草坪面积的一半,已知AB =60m ,BC =60m ,∠ABC =∠ACD =90°,CD =20m ,在B DF 边上装一组灯光彩带,已知彩带每米50元,求安装彩带的费用最小值以及CF 的长度.M 3M 3。
人教版中考数学模拟考试试题卷(含答案)

人教版中考数学模拟考试试题卷数学一、选择题(本大题共10小题,共30.0分)1.−110的倒数是()A. −10B. 10C. −110D. 1102.四个长宽分别为a,b的小长方形(白色的)按如图所示的方式放置,形成了一个长、宽分别为m、n的大长方形,则下列各式不能表示图中阴影部分的面积是()A. mn−4abB. mn−2ab−amC. an+2bn−4abD. a2−2ab−am+mn3.下列运算,正确的是()A. 2x+3y=5xyB. (x−3)2=x2−9C. (xy2)2=x2y4D. x6÷x3=x24.若√−ab=√a·√−b成立,则()A. a≥0,b≥0B. a≥0,b≤0C. ab≥0D. ab≤05.对于命题“若a2=b2”,则“a=b”下面四组关于a,b的值中,能说明这个命题是假命题的是()A. a=3,b=3B. a=−3,b=−3C. a=3,b=−3D. a=−3,b=−26.为了了解某校七年级学生的体能情况,随机调查了其中100名学生,测试学生在1分钟内跳绳的次数,并绘制成如图所示的频数分布直方图.请根据图形计算,跳绳次数(x)在120≤x<200范围内人数占抽查学生总人数的百分比为()1A. 43%B. 50%C. 57%D. 73% 7. AD 是△ABC 的中线,E 是AD 上一点,AE =14AD ,BE 的延长线交AC 于F ,则AF AC 的值为( ) A. 14B. 15C. 16D. 178. 已知{3x +2y =k x −y =4k +3,如果x 与y 互为相反数,那么( ) A. k =0 B. k =−34 C. k =−32 D. k =34 9. 如图,正三角形ABC 的边长为3,将△ABC 绕它的外心O 逆时针旋转60°得到△A′B′C′,则它们重叠部分的面积是( )A. 2√3B. 34√3C. 32√3D. √310. 已知抛物线y =ax 2−2ax −2开口向下,(−2,y 1)、(3,y 2)、(0,y 3)为抛物线上的三个点,则( ) A. y 3>y 2>y 1 B. y 1>y 2>y 3 C. y 2>y 1>y 3 D. y 1>y 3>y 2二、填空题(本大题共5小题,共20.0分)11. 如图,数轴上A ,B 两点表示的数是互为相反数,且点A 与点B 之间的距离为4个单位长度,则点A 表示的数是______.12. 在某次训练中,甲、乙两名射击运动员各射击10发子弹的成绩统计图如图所示,对于本次训练,成绩比较稳定的是______运动员.313. 在△ABC 中,∠A =80°,当∠B =________________时,△ABC 是等腰三角形.14. 如图,在Rt △ABC 中,∠C =90°,AC =6,BC =8,P 为AB边上不与A ,B 重合的一动点,过点P 分别作PE ⊥AC 于点E ,PF ⊥BC 于点F ,则线段EF 的最小值是______.15. 已知关于x 、y 的方程组{x +2y =1−a x −y =2a −5,则代数式22x ⋅4y =______. 三、解答题(本大题共10小题,共100.0分)16. (8分)如图,现有5张写着不同数字的卡片,请按要求完成下列问题:17. (1)若从中取出2张卡片,使这2张卡片上数字的乘积最大,则乘积的最大值是______.18. (2)若从中取出2张卡片,使这2张卡片上数字相除的商最小,则商的最小值是______.19. (3)若从中取出4张卡片,请运用所学的计算方法,写出两个不同的运算式,使四个数字的计算结果为24.20. (10分)在“家电下乡”活动期间,凡购买指定家用电器的农村居民均可得到该商品售价13%的财政补贴.村民小李购买了一台A 型洗衣机,小王购买了一台B型洗衣机,两人一共得到财政补贴351元,又知B型洗衣机售价比A型洗衣机售价多500元.试求:21.(1)A型洗衣机和B型洗衣机的售价各是多少元?(2)小李和小王购买洗衣机除财政补贴外实际各付款多少元?22.(10分)已知A(m,0),B(0,n),满足:(n−4)2+√m+n=0.(1)求m和n的值;(2)如图,点D是A点左侧的x轴上一点,连接BD,以BD为直角边作等腰直角△BDE,连接AB、EA,EA交BD于点G.①若OA=AD,求点E的坐标;②求证:∠AED=∠ABD.23.(10分)2020年5月5日,为我国载人空间站工程研制的长征五号运载火箭在海南文昌首飞成功.运較火箭从地面O处发射,当火箭到达点A时,地面D处的雷达站测得AD=4000米,仰角为30°.3秒后,火箭直线上升到达点B处,此时地面C处的雷达站测得B处的仰角为45°.已知C,D两处相距460米,求火箭从A到B 处的平均速度(结果精确到1米/秒,参考数据:√3≈1.732,√2≈1.414).24.(10分)某公司生产A型活动板房成本是每个425元.图①表示A型活动板房的一面墙,它由长方形和抛物线构成,长方形的长AD=4m,宽AB=3m,抛物线的最高点E到BC的距离为4m.25.(1)按如图①所示的直角坐标系,抛物线可以用y=kx2+m(k≠0)表示.求该抛物线的函数表达式;26.(2)现将A型活动板房改造为B型活动板房.如图②,在抛物线与AD之间的区域内加装一扇长方形窗户FGMN,点G,M在AD上,点N,F在抛物线上,窗户的成本为50元/m2.已知GM=2m,求每个B型活动板房的成本是多少?(每个B型活动板房的成本=每个A型活动板房的成本+一扇窗户FGMN的成本)27.(3)根据市场调查,以单价650元销售(2)中的B型活动板房,每月能售出100个,而单价每降低10元,每月能多售出20个.公司每月最多能生产160个B型5活动板房.不考虑其他因素,公司将销售单价n(元)定为多少时,每月销售B型活动板房所获利润w(元)最大?最大利润是多少?28.(8分)如图,点A和点B在数轴上对应的数分别为a和b,且(a+2)2+|b−8|=0(1)线段AB的长为______.x+1的解,在线段AB上是 (2)点C在数轴上所对应的为x,且x是方程x−1=67CD?若存在,请求出点D在数轴上所对应的数,若不存否存在点D.使AD+BD=56在:请说明理由:______.29.(3)在(2)的条件下,线段AD和BC分别以6个单位长度/秒和5个单位长度/秒的速度同时向右运动,运动时间为t秒,点M为线段AD的中点,点N为线段BC的中点,若MN=5,求t的值.30.(10分)如图,等边△ABC的边长为15cm,现有两点M,N分别从点A,点B同时出发,沿三角形的边顺时针运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B点时,M,N同时停止运动(1)点M、N运动几秒后,M,N两点重合?(2)点M、N运动几秒后,△AMN为等边三角形?(3)当点M,N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M,N运动的时间.的图象交于A(2,3),31.(10分)如图,一次函数y=kx+b与反比例函数y =mxB(−3,n)两点.32.7(1)求一次函数与反比例函数的表达式;(2)根据所给条件,请直接写出不等式kx+b>m的解集;x(3)过点B作BC⊥x轴,垂足为C,求△ABC的面积.33.(12分)如图,方格纸中每个小正方形的边长都是1个单位长度,在方格纸中建立如图所示的平面直角坐标系,△ABC的顶点都在格点上.(1)将△ABC向右平移6个单位长度得到△A1B1C1,请画出△A1B1C1;(2)画出△A1B1C1关于点O的中心对称图形△A2B2C2;(3)若将△ABC绕某一点旋转可得到△A2B2C2,请直接写出旋转中心的坐标.34.(12分)某水果店11月份购进甲、乙两种水果共花费1700元,其中甲种水果8元/千克,乙种水果18元/千克.12月份,这两种水果的进价上调为:甲种水果10元/千克,乙种水果20元/千克.(1)若该店12月份购进这两种水果的数量与11月份都相同,将多支付货款300元,求该店11月份购进甲、乙两种水果分别是多少千克?(2)若12月份将这两种水果进货总量减少到120千克,设购进甲种水果a千克,需要支付的货款为w元,求w与a的函数关系式;(3)在(2)的条件下,若甲种水果不超过90千克,则12月份该店需要支付这两种水果的货款最少应是多少元?9答案1.A2.A3.C4.B5.C6.C7.D8.C9.C 10.A 11.−212.甲13.80°或50°或20°14.4.815.1416.(1)21 ;(2) −7 ;(3)−7,−3,1,2;−3,1,2,5. 17.解:(1)设A 型洗衣机的售价为x 元,B 型洗衣机的售价为y 元. 根据题意可列方程组:,解得:{x =1100y =1600 答:A 型洗衣机的售价为1100元,B 型洗衣机的售价为1600元.(2)小李实际付款为:1100×(1−13%)=957(元);小王实际付款为:1600×(1−13%)=1392(元).答:小李和小王购买洗衣机各实际付款957元和1392元. 18.(1)解:∵(n −4)2+√m +n =0,∴n −4=0,m +n =0,解得m =−4,n =4,∴m =−4,n =4;(2)①证明:∵m =−4,n =4,∴A(−4,0),B(0,4),∴OA =OB =4,∵OA =AD ,∴OD =8,如图,过点E 作EH ⊥x 轴于点H.则∠EDH +∠DEH =90°.∵∠EDB=90°,∴∠EDH+∠BDO=90°,∴∠BDO=∠DEH.在△EHD和△DOB中,{DEH=∠BDO∠DHE=∠BOD=90°DE=BD,∴△EHD≌△DOB(AAS).∴EH=OD=8,DH=OB=4,∴OH=OD+DH=8+4=12,∴E(−12,8);②证明:如图,∵△EHD≌△DOB,∴∠DEH=∠BDO,∵DH=OB=OA=4,EH=OD.而AH=DH+AD=OA+AD=OD.∴EH=AH.∴△EHA为等腰直角三角形,∴∠AEH=45°=∠BAO,又∵∠BAO=∠BDA+∠ABD,∠AEH=∠AED+∠DEH,∴∠AED=∠ABD.19.解:设火箭从A到B处的平均速度为x米/秒,根据题意可知:AB=3x,在Rt△ADO中,∠ADO=30°,AD=4000,∴AO=2000,∴DO=2000√3,∵CD=460,∴OC=OD−CD=2000√3−460,在Rt△BOC中,∠BCO=45°,∴BO=OC,11∵OB=OA+AB=2000+3x,∴2000+3x=2000√3−460,解得x≈335(米/秒).答:火箭从A到B处的平均速度为335米/秒.20.解:(1)∵长方形的长AD=4m,宽AB=3m,抛物线的最高点E到BC的距离为4m.∴OH=AB=3,∴EO=EH−OH=4−3=1,∴E(0,1),D(2,0),∴该抛物线的函数表达式y=kx2+1,把点D(2,0)代入,得k=−14,∴该抛物线的函数表达式为:y=−14x2+1;(2)∵GM=2,∴OM=OG=1,∴当x=1时,y=34,∴N(1,34),∴MN=34,∴S矩形MNFG =MN⋅GM=34×2=32,∴每个B型活动板房的成本是:425+32×50=500(元).答:每个B型活动板房的成本是500元;(3)根据题意,得w=(n−500)[100+20(650−n)10] =−2(n−600)2+20000,∵每月最多能生产160个B型活动板房,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年中考模拟数学试题(十)(考试时间120分钟满分150分) 第I 卷(选择题部分 共30分)一、选择题(每小题3分,共30分.每小题只有一个正确选项,请把正确选项的字母代号填在下面的表格内).1.下列各运算中,正确的是( )A . 3a+2a=5a 2B .(﹣3a 3)2=9a 6C . a 4÷a 2=a 3D .(a+2)2=a 2+4 2.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )A .B .C .D .3.如图是巴西世界杯吉祥物,某校在五个班级中对认识 它的人数进行了调查,结果为(单位:人): 30,31,27,26,31.这组数据的中位数是( ) A.27; B.29; C.31; D.30.4. 如图,P 为平行四边形ABCD 边AD 上一点,E 、F 分别为PB 、PC的 中点,△PEF 、△PDC 、△PAB 的面积分别为S 、S 1、S 2,若S =2, 则S 1+S 2=( )A.4B.6C.8D.不能确定5.已知⊙O 1和⊙O 2的半径分别为1和4,如果两圆的位置关系为相交, 那么圆心距O 1O 2的取值范围在数轴上表示正确的是( )6.如图,在直角坐标系中,点A 的坐标是(2,3),则tan α的 值是( )0 0 3 53 51414ABCDFE P DCBAA.32 B.23C.13132D.131337.在不透明的盒子中装有3个红球,2个白球,它们除颜色外均相同,则从盒中子任意摸出一个球是白球的概率是( )A .B .C .D .8.如图,在直径AB =12的⊙O 中,弦CD⊥AB 于M ,且M 是半径 OB 的中点,则弦CD 的长是( )A .3B .33C .6D . 639.如图,△ABC 的外角∠CBD 和∠BCE 的平分线相交于点F ,则 下列结论正确的是( )A.点F 在BC 边的垂直平分线上 B .点F 在∠BAC 的平分线上 C .△BCF 是等腰三角形 D .△BCF 是直角三角形 10.如图,已知正三角形ABC 的边长为1,E ,F ,G 分别是 AB ,BC ,CA 上的点,且AE=BF=CG ,设△EFG 的面积为y , AE 的长为x ,则y 关于x 的函数的图象大致是( )第II 卷(非选择题 共120分) 二、填空题(共24分)11.我国自主研制的“神威·太湖之光”以每秒125 000 000 000 000 000次的浮点运算速度在最新公布的全球超级计算机500强榜单中夺魁.将数125 000 000 000 000 000用科学记数法表示为 .12.下列事件中:①掷一枚硬币,正面朝上;②若a 是实数,则|a|≥0;③两直线平行,A .B .C .D .· ABCDOM 8题同位角相等;④从车间刚生产的产品中任意抽取一个是次品.其中属于必然事件的有 ________ (填序号).13.某商店为尽快清空往季商品,采取如下销售方案:将原来商品每件m 元,加价50%, 再做降价40%.经过调整后的实际价格为___________元(结果用含m 的代数式表示)14.如图所示,已知菱形OABC ,点C 在x 轴上,直线y=x 经过点A ,菱形OABC 的边长是2,若反比例函数xky的图象经过点B ,则k 的值为 . 15.如图,在周长为20cm 的平行四边形ABCD 中,AB≠AD,AC ,BD 相交于点O ,OE ⊥BD 交AD 于E ,则△ABE 的周长为 cm .16.如图,扇形OAB 是圆锥的侧面展开图,若小正方形方格的边长为1cm , 则这个圆锥的底面半径为 _________ .17.如图,⊙O 的半径为5cm ,弦AB 的长为8cm ,则圆心O 到弦AB 的距离为_______cm . 18.已知:顺次连接矩形各边的中点,得到一个菱形,如图①;再顺次连接 菱形各边的中点,得到一个新的矩形,如图②;然后顺次连接新的矩形 各边的中点,得到一个新的菱形,如图③;如此反复操作下去,则第4个 图形中直角三角形的个数有________________个;第2014个图形中直角 三角形的个数有_________________个.(15题)OA B Cxyy =x 16题17题三、解答题(共96分) 19. (10分)22214()2442a a a a a a a a ----÷++++,其中a 满足2230a a +-=.20. (10分)某校九年级(1)班所有学生参加2014年初中毕业生升学体育测试,并且现场打分。
根据测试评分标准,将他们的成绩进行统计后分为A 、B 、C 、D 四等,并绘制成如图所示的条形统计图和扇形统计图(未完成),请结合图中所给信息解答下列问题:⑴ 九年级(1)班参加体育测试的学生有________ _人; ⑵ 将条形统计图补充完整;⑶ 在扇形统计图中,等级B 部分所占的百分比是__ __,等级C 对应的 圆心角的度数__ °;⑷ 若该校九年级学生共有850人参加体育测试,估计达到A 级和B 级的学生共有______.10%D AC30%B21.(10分)一商场有A、B、C三种型号的甲品牌电脑和D、E两种型号的乙品牌电脑,某中学准备从甲、乙两种品牌的电脑中各选购一种型号的电脑安装到各班教室.(1)写出所有选购方案(利用树状图或列表法表示);(2)若(1)中各种选购方案被选中的可能性相同,那么A型号被选中的概率是多少?(3)已知该中学用18万元人民币购买甲、乙两种品牌电脑刚好32台(价格如下表所示,单位:万元),其中甲品牌电脑选为A型号,求该中学购买到A型号电脑多少台?品牌甲乙型号 A B C D E单价0.6 0.4 0.25 0.5 0.2(万元)22. (12分)如图,某飞机于空中探测某座山的高度,在点A处飞机的飞行高度是AF=3700米,从飞机上观测山顶目标C的俯角是45°,飞机继续以相同的高度飞行300米到B处,此时观测目标C的俯角是50°,求这座山的高度CD.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.20).23. (12分)如图,⊙O是△ACD的外接圆,AB是直径,过点D作直线DE∥AB,过点B作直线BE∥AD,两直线交于点E ,如果∠ACD 45°,⊙O 的半径是4cm. (1)请判断DE 与⊙O 的位置关系,并说明理由; (2)求图中阴影部分的面积(结果用π表示).24.(14分)某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间 会全部住满.当每个房间每天的房价每增加10元时,就会有一个房间空闲.宾馆需对 游客居住的每个房间每天支出20元的各种费用.根据规定,每个房间每天的房价不得 高于340元.设每个房间的房价每天增加x 元(x 为10的整数倍).(1)设一天订住的房间数为y ,直接写出y 与x 的函数关系式及自变量x 的取值范围; (2)设宾馆一天的利润为w 元,求w 与x 的函数关系式;(3)一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?OCB25.(14分)阅读材料如图①,△ABC 与△DEF 都是等腰直角三角形,ACB=∠EDF=90°,且点D 在AB 边上,AB 、EF 的中点均为O ,连结BF 、CD 、CO ,显然点C 、F 、O 在同一条直线上,可以证明△BOF ≌△COD ,则BF=CD .解决问题:(1)将图①中的Rt △DEF 绕点O 旋转得到图②,猜想此时线段BF 与CD 的数量关系, 并证明你的结论;(2)如图③,若△ABC 与△DEF 都是等边三角形,AB 、EF 的中点均为O ,上述(1)中的 结论仍然成立吗?如果成立,请说明理由;如不成立,请求出BF 与CD 之间的数量关系; (3)如图④,若△ABC 与△DEF 都是等腰三角形,AB 、EF 的中点均为0,且顶角 ∠ACB=∠EDF=α,请直接写出CDBF的值(用含α的式子表示出来)26.(14分)如图,抛物线y=41x 2﹣23x ﹣4与x 轴交与A ,B 两点(点B 在点A 的右侧), 与y 轴交于点C ,连接BC ,以BC 为一边,点O 为对称中心作菱形BDEC ,点P 是x 轴 上的一个动点,设点P 的坐标为(m ,0),过点P 作x 轴的垂线l 交抛物线于点Q . (1)求点A ,B ,C 的坐标.(2)当点P 在线段OB 上运动时,直线l 分别交BD ,BC 于点M ,N .试探究m 为何值时, 四边形CQMD 是平行四边形,此时,请判断四边形CQBM 的形状,并说明理由. (3)当点P 在线段EB 上运动时,是否存在点Q ,使△BDQ 为直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.(十)一、BADCA BCBBA二、11. 171025.1⨯ 12.②③ 13.0.9m 14. 21+ 15.10 16.2217.6 18. 8, 4028 三、19.解:原式=1(2)a a +=333=20.(1)50(2)略(3)40%,72 (4)59521. 解:(1) 所有选购方案为: A 、D ;A 、E ;B 、D ; B 、E ;C 、D ;C 、E ,共六种. (2)P (选A )=26=13(3)设购A 型号电脑x 台,D 型号电脑y则320.60.518x y x y +=⎧⎨+=⎩,解得2012x y =⎧⎨=⎩若购A 型号电脑a 台,E 型号电脑b 台则320.60.218a b a b +=⎧⎨+=⎩,解得293a b =⎧⎨=⎩答:可购买A 型号电脑20台或29台.22.解:设EC=x ,在Rt △BCE 中,tan ∠EBC=BE EC ,则BE= 65x , 在Rt △ACE 中,tan ∠EAC=AE EC ,则AE=x ,∵AB+BE=AE ,∴300+65x=x 解得:x=1800,故可的山高CD=DE-EC=3700-1800=1900(米). 答:这座山的高度是1900米.23.(1)结论:DE 与⊙O 相切,理由略;(提示:连接OD.)(2)图中阴影部分的面积为244π-.24.解:(1)由题意得:y=50-10x,且(0≤x ≤160,且x 为10的正整数倍) (2)W=(180-20+x )(50-10x ),即W=-101x 2+34x+8000(3)w=-101x 2+34x+8000=-101(x-170)2+10890 抛物线的对称轴是:x=170,抛物线的开口向下,当x <170时,w 随x 的增大而增大,但0≤x ≤160,2tan α=OC OB ⎪⎩⎪⎨⎧=∠=∠=ODOF CODBOF OC OB 33==OD OF OC OB 33=CDBF 因而当x=160时,即房价是340元时,利润最大,此时一天订住的房间数是:50-(160÷10)=34间,最大利润是:34×(340-20)=10880元.答:一天订住34个房间时,宾馆每天利润最大,最大利润为10880元. 25.解:(1)猜想:BF=CD .理由如下:如答图②所示,连接OC 、OD . ∵△ABC 为等腰直角三角形,点O 为斜边AB 的中点, ∴OB=OC ,∠BOC=90°.∵△DEF 为等腰直角三角形,点O 为斜边EF 的中点, ∴OF=OD ,∠DOF=90°.∵∠BOF=∠BOC+∠COF=90°+∠COF ,∠COD=∠DOF+∠COF=90°+∠COF ,∴∠BOF=∠COD . ∵在△BOF 与△COD 中, ∴△BOF ≌△COD (SAS ),∴BF=CD .(2)答:(1)中的结论不成立. 如答图③所示,连接OC 、OD .∵△ABC 为等边三角形,点O 为边AB 的中点,∴∠BOC=90°, .∵△DEF 为等边三角形,点O 为边EF 的中点, ∴∠DOF=90°, ∵∠BOF=∠BOC+∠COF=90°+∠COF ,∠COD=∠DOF+∠COF=90°+∠COF , ∴∠BOF=∠COD . 在△BOF 与△COD 中,∵,∠BOF=∠COD ,∴△BOF ∽△COD ,∴(3)如答图④所示,连接OC 、OD .∵△ABC 为等腰三角形,点O 为边AB 的中点, ∴∠BOC=90°,3330tan == OC OB 3330tan == ODOF2tan α=OD OF 2tan α==OD OF OC OB 2tan α==OD OF OC OB 2tan α=CD BF ∵△DEF 为等边三角形,点O 为边EF 的中点, ∴,∠DOF=90°. ∴∵∠BOF=∠BOC+∠COF=90°+∠COF ,∠COD=∠DOF+∠COF=90°+∠COF ,∴∠BOF=∠COD . 在△BO F 与△COD 中,∵ ,∠BOF=∠COD , ∴△BOF ∽△COD ,∴ .26. 解:(1)当y=0时,213x x 4042--=,解得,12x 2x 8=-=,,∵点B 在点A 的右侧,∴点A ,B 的坐标分别为:(-2,0),(8,0).当x=0时,y 4=-,∴点C 的坐标为(0,-4).(2)由菱形的对称性可知,点D 的坐标为(0,4). 设直线BD 的解析式为y kx b =+,则b 48k b 0=⎧⎨+=⎩,解得, 1k 2b 4⎧=-⎪⎨⎪=⎩. ∴直线BD 的解析式为1y x 42=-+.∵l ⊥x 轴,∴点M ,Q 的坐标分别是(m ,1m 42-+),(m ,213m m 442--)如图,当MQ=DC 时,四边形CQMD 是平行四边形. ∴()2113m 4m m 444242⎛⎫⎛⎫-+---=-- ⎪ ⎪⎝⎭⎝⎭,化简得:2m 4m 0-=. 解得,m 1=0(舍去),m 2=4.当m=4时,四边形CQMD 是平行四边形,此时,四边形CQBM 也是平行四边形.理由如下:∵m=4, ∴点P 是OB 中点.∵l ⊥x 轴, ∴l ∥y 轴.∴△BPM ∽△BOD. ∴21==BD BM BO BP . ∴BM=DM. ∵四边形CQMD 是平行四边形,∴DM CQ.∴BM CQ.∴四边形CQBM 为平行四边形.(3)抛物线上存在两个这样的点Q ,分别是Q 1(-2,0),Q 2(6,-4).可分DQ ⊥BD ,BQ ⊥BD 两种情况讨论可求点Q 的坐标:由B (8,0),D (0,4),Q (m ,213m m 442--)应用勾股定理求出三边长,再由勾股定理分DQ ⊥BD ,BQ ⊥BD 两种情况列式求出m 即可.。