2011年中考数学全真模拟试题14
2011年中考模拟试卷数学试卷及答案(优质)

2011年中考数学模拟试卷 试题卷一. 仔细选一选 (本题有10个小题, 每小题3分, 共30分)下面每小题给出的四个选项中, 只有一个是正确的, 请在答题卷中把正确选项的字母涂黑.注意可以用多种不同的方法来选取正确答案.1.我国在2009到2011三年中,各级政府投入医疗卫生领域资金达8500亿元人民币.将“8500亿元”用科学记数法表示为( ) A .9105.8⨯元B .10105.8⨯元C .11105.8⨯元D .12105.8⨯元2.下列运算正确的是()A .()b a b a +=+--B .a a a =-2333 C .01=+-aa D .323211=⎪⎭⎫⎝⎛÷- 3.有2名男生和2名女生,王老师要随机地、两两一对地排座位,一男一女排在一起的概率是( )A. 14B. 23C. 12D. 13 4.如图,一束光线与水平面成60°的角度照射地面,现在地面AB 上支放一个平面镜CD ,使这束光线经过平面镜反射后成水平光线,则平面镜CD 与地面AB 所成角∠DCB 的度数等于 ( ) A .30° B .45° C .50° D .60°5.抛物线y=-x 2+2x -2经过平移得到y=-x 2,平移方法是( )﹒A .向右平移1个单位,再向下平移1个单位B .向右平移1个单位,再向上平移1个单位C .向左平移1个单位,再向下平移1个单位D .向左平移1个单位,再向上平移1个单位6.如图下列四个几何体,它们各自的三视图(主视图、左视图、俯视图)中,有两个相同而另一个不同的几何体是(A. ①② B .②③C .②④ D . ③④ 7.如图,把⊙O 1向右平移8个单位长度得⊙O 2,两圆相交于A.B ,且O 1A⊥O 2A ,则图中阴影部分的面积是( )A.4π-8B. 8π-16C.16π-16D. 16π-32①正方体②圆柱③圆锥④球第4题第7题8.已知函数y=―t 3 ―2010|t|,则在平面直角坐标系中关于该函数图像的位置判断正确的是( )A .必在t 轴的上方B .必定与坐标轴相交C .必在y 轴的左侧D .整个图像都在第四象限9.如图,△ABC 的三边分别为a 、b 、c ,O 是△ABC 的外心,OD ⊥BC ,OE ⊥AC ,OF ⊥AB ,则OD ∶OE ∶OF = ( )A . a ∶b ∶cB . a 1∶b 1∶c 1C . cosA ∶cosB ∶cosCD . sinA ∶sinB ∶sinC 10.现在把一张正方形纸片按如图方式剪去一个半径为40 2 厘米的14 圆面后得到如图纸片,且该纸片所能剪出的最大圆形纸片刚好能与前面所剪的扇形纸片围成一圆锥表面,则该正方形纸片的边长约为( )厘米﹒(不计损耗、重叠,结果精确到1厘米,2 ≈1.41, 3 ≈1.73) A . 64 B . 67 C . 70 D . 73二. 认真填一填 (本题有6个小题, 每小题4分, 共24分)要注意认真看清题目的条件和要填写的内容, 尽量完整地填写答案. 11. 函数21-=x y 的自变量x 取值范围是 .12.右图为护城河改造前后河床的横断面示意图,将河床原竖直迎水面BC 改建为坡度1:0.5的迎水坡AB ,已知AB=4 5 米, 则河床面的宽减少了 米.(即求AC 的长)13.已知矩形OABC 的面积为3100,它的对角线OB 与双曲线x k y =相交于点D ,且OB ∶OD =5∶3,则k =__________.14.已知关于x 的函数y =(m -1)x 2+2x +m 图像与坐标轴有且只 有2个交点,则m =A B C O E F D 第9题ACB.5 = i 1:第12题第10题15.如图,直线y kx b =+经过(21)A ,,(12)B --,两点,则不等式122x kx b >+>-的解集为 .16.如图,图①是一块边长为1,周长记为P 1的正三角形纸板,2正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪掉正三角形纸板边长的21)后,得图③,④,…,记第n (n ≥3) 块纸板的周长为P n ,则P n -P n-1= .三. 全面答一(本题有8个小题, 共66分)解答应写出文字说明, 证明过程或推演步骤. 如果觉得有的题目有点困难, 那么把自己能写出的解答写出一部分也可以.17.(本题满分6分)先化简,再求值:aa a a --÷--224)111(,其中a 是整数,且33<<-a 18.(本题满分6分)如图,在平面直角坐标系中,点A ,B ,C ,P 的坐标分别为(0,2),(3,2),(2,3),(1,1). (1)请在图中画出△A′B′C′,使得△A′B′C′与△ABC关于点P 成中心对称;(2)若一个二次函数的图像经过(1)中△A′B′C′的三个 顶点,求此二次函数的关系式;19. (本题满分6分) 如图,AB 为⊙O 的弦,C 为劣弧AB 的中点,(1)若⊙O 的半径为5,8AB =,求tan BAC ∠; (2)若DAC BAC ∠=∠,且点D 在⊙O 的外部,判断AD 与⊙O 的位置关系,并说明理由.20.(本题满分8分)某市为了解市民对已闭幕的某一博览会的总体印象,利用最新引进的“计18题19题…① ② ③ ④第16题算机辅助电话访问系统”(简称CATI 系统),采取电脑随机抽样的方式,对本市年龄在16~65岁之间的居民,进行了400个电话抽样调查.并根据每个年龄段的抽查人数和该年龄段对博览会总体印象感到满意的人数绘制了下面的图(1)和图(2)(部分)(1)被抽查的居民中,人数最多的年龄段是 岁;(2)已知被抽查的400人中有83%的人对博览会总体印象感到满意,请你求出31~40岁年龄段的满意人数,并补全图(2);(3)比较31~40岁和41~50岁这两个年龄段对博览会总体印象满意率的高低(四舍五入到1%).注:某年龄段的满意率=该年龄段满意人数÷该年龄段被抽查人数⨯100%.21.(本题满分8分)如图,AB//CD,∠ACD=72°﹒⑴用直尺和圆规作∠C 的平分线CE ,交AB 于E ,并在CD 上取一点F ,使AC =AF ,再连接AF ,交CE 于K ; (要求保留作图痕迹,不必写出作法)⑵依据现有条件,直接写出图中所有相似的三角形﹒ (图中不再增加字母和线段,不要求证明)﹒22.(本题满分10分)一列火车由A 市途经B 、C 两市到达D市.如图,其中A 、B 、C 三市在同一直线上,D 市在A 市的北偏东45°方向,在B 市的正北方向,在C 市的北偏西60°方向,C 市在A 市的北偏东75°方向.已知B 、D 两市相距100km .问该火车从A 市到D 市共行驶了多少路程?(保留根号)23.(本题满分10分)某公司投资新建了一商场,共有商铺30间.据预测,当每间的年租金定为10万元时,可全部租出.每间的年租金每增加5 000元,少租A B C D第21题 第22题出商铺1间.(假设年租金的增加额均为5000元的整数倍)该公司要为租出的商铺每间每年交各种费用1万元,未租出的商铺每间每年交各种费用5 000元.(1)当每间商铺的年租金定为13万元时,能租出多少间?(2)当每间商铺的年租金定为多少万元时,该公司的年收益(收益=租金-各种费用)为275万元? (3)275万元是否为最大年收益?若是,说明理由;若不是,请求出当每间的年租金定为多少万元时,达到最大年收益,最大是多少?24.(本题满分12分)如图,在菱形ABCD 中,AB=2cm ,∠BAD=60°,E 为CD 边中点,点P 从点A 开始沿AC方向以每秒的速度运动,同时,点Q 从点D 出发沿DB 方向以每秒1cm 的速度运动,当点P 到达点C 时,P ,Q 同时停止运动,设运动的时间为x 秒. (1)当点P 在线段AO 上运动时.①请用含x 的代数式表示OP 的长度; ②若记四边形PBEQ 的面积为y ,求y 关于x 的函数关系式(不要求写出自变量的取值范围); (2)显然,当x=0时,四边形PBEQ 即梯形ABED ,请问,当P 在线段AC 的其他位置时,以P ,B ,E ,Q 为顶点的四边形能否成为梯形?若能,求出所有满足条件的x 的值;若不能,请说明理由.2011年中考数学模拟试卷 参考答案C第24题一.仔细选一选(本题有10个小题,每小题3分,共30分.)二.认真填一填 (本题有6个小题, 每小题4分, 共24分.)11 x >2 12. 4 13. 12 ,14.15.16.三.全面答一答 (本题有8个小题, 共66分.) 17. (本题6分) 解:原式=2)2)(2()1(12+=+--⋅--a aa a a a a a ……… 3分 当a=-1时, …………….2分 原式= -1 …………….1分18. (本题6分) 解:(1)图略 ………… ………………………………3分(2)()()1212y x x =-+ ………… ……………………………3分19. (本题6分) (1)解: ∵AB 为⊙O 的弦,C 为劣弧AB 的中点,8AB = ∴OC AB ⊥于E ∴ 142AE AB == ……1分 又 ∵5AO = ∴3OE ==∴ 2CE OC OE =-= ……1分 在Rt △AEC 中,21tan 42EC BAC AE ∠=== ……1分 (2)AD 与⊙O 相切. ……1分 理由如下:∵OA OC = ∴C OAC ∠=∠∵由(1)知OC AB ⊥ ∴ ∠C+∠BAC =90°. ……1分 又∵BAC DAC ∠=∠ ∴90OAC DAC ∠+∠=︒ ……1分 ∴AD 与⊙O 相切.E20. (本题8分) (1) 被抽查的居民中,人数最多的年龄段是21~30岁…………2分(2)总体印象感到满意的人数共有83400332100⨯=(人)31~40岁年龄段总体印象感到满意的人数是332(5412653249)66-++++=(人) …………………………………2分图略…………………………………1分(3) 31~40岁年龄段被抽人数是2040080100⨯=(人)总体印象的满意率是66100%82.5%83%80⨯=≈………………………1分41~50岁被抽到的人数是1540060100⨯=人,满意人数是53人,总体印象的满意率是5388.3%88%60=≈………………………1分∴41~50岁年龄段比31~40岁年龄段对博览会总体印象的满意率高…………1分21. (本题8分)解:⑴CE作法正确得2分,F点作法正确得1分,K点标注正确得1分;⑵△CKF∽△ACF∽△EAK;△CAK∽△CEA(注:共4对相似三角形,每正确1对可各得1分)22. (本题10分)解:过点B分别作B E⊥CD于E,B F⊥AD于F.由题,∠BDE=60°,∠BCE=45°,∠BDF=45°,∠BAF=30°.………………2分∴DE=50,…………………………………1分BE=1分CE=1分∴BC=1分∵BF=1分∴AB=…………………………………1分∴50394AB BC CD km++==.……………1分EF∴该火车从A 市到D市共行驶了(50394AB BC CD km ++==)km .………1分 23.(本题10分)解:(1)∵ 30 000÷5 000=6, ∴ 能租出24间. ……………2分 (2)设每间商铺的年租金增加x 万元,则 (30-5.0x )×(10+x )-(30-5.0x )×1-5.0x×0.5=275, ………2分 2 x 2-11x +5=0, ∴ x =5或0.5,∴ 每间商铺的年租金定为10.5万元或15万元. ……………2分 (3)275万元不是最大年收益 ……………1分 当每间商铺的年租金定为12.5万元或13万元. ……………2分 达到最大年收益,最大是285万元 ……………1分 24.(本题12分) . 解:(1)①由题意得∠BAO=30°,AC ⊥BD ∵AB=2 ∴OB=OD=1,∴……………2分②过点E 作EH ⊥BD ,则EH 为△COD 的中位线∴12EH OC ==∵DQ=x ∴BQ=2-x∴)323)(2(21x x S BPQ --⨯=∆ …………………………1分 23)2(21⨯-⨯=∆x S BEQ …………………………1分 ∴233431132+-=+=∆∆x x S S y BEQ BPQ …………………………2分 (2)能成为梯形,分三种情况:当PQ ∥BE 时,∠PQO=∠DBE=30°∴tan 30o OP OQ==即13x =- ∴x=25C注意事项 :1.请先填写班级、姓名、学号及试场号、座位号2.请保持答卷卷面清洁,不要折叠、破损。
2011年九年级数学模拟试卷及答案

2011年数学模拟试卷命题人:阿城八中 齐洪昌一、选择题(每小题3分,共30分) 1.4的算术平方根是( ) A .2± B .2 C. D2.下列计算正确的是( ) A=B1= C=D.=3.下面四个几何体中,左视图是四边形的几何体共有( )A .1个 B .2个 C .3个 D .4个 4.在一次“爱心互助”捐款活动中,某班第一小组7名同学捐款的金额(单位:元)分别为:6,3,6,5,5,6,9.这组数据的中位数和众数分别是( )A .5,5. B.6,5. C.6,6. D.5,6. 5.不等式﹣2x<4的解集是( )’A.x>﹣2B.x<﹣2C. x>2D. x<2 6.盒子里有3支红色笔芯,2支黑色笔芯,每支笔芯除颜色外均相同.从中任意拿出一支笔芯,则拿出黑色笔芯的概率是( ) A .23B .15C .25D . 357.从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图所示的零件,则这个零件的表面积是( ) A .20 B .22 C .24 D .26??20b +=,点M (a ,b )在反比例函数ky x=的图圆柱 圆锥 球 正方A .2y x=????B .1y x=-????C .1y x=????D .xy 2-=??????如图,在24(A )8 (B )9.5 (C )10 (D )11.510. 一容器装有一个进水管和一个出水管,单位时间进、出的水量都是一定的.已知容器的容积为600升,若单开进水管10分可把空容器注满;若同时打开进、出水管,20分可把容器的水放完.现已知容器内有水200升,先打开进水管5分后,再打开出水管,进、出水管同时开放,直至把容器中的水放完,则能正确反映这一过程中容器的水量Q (升)随时间t (分)变化的图像是( )二、填空题(每小题3分,共30分)11.为了响应中央号召,今年我市加大财政支农力度,全市农 业支出累计达到234 760 000元,其中234 760 000元用科学记数法可表示为 (保留三位有效数字). 12.使1x -有意义的x 的取值范围是 .13.分解因式:a2b-2ab2+b3=____________________.14.如图,已知//AE BD ,∠1=130o ,∠2=30o ,则∠15.如图,∠MAB=30°,P 为AB 上的点,且AP=6,圆P 与 AM 相切,则圆P 的半径为 .A ′GDBCA第16题图第14题图APBM第15题图θ52x x x222+-4412++-x x x ??÷24+-x x 其中x????tan??°·cos??°如图,已知ABC △的三个顶点的坐标分别为(23)A -,、(60)B -,、(10)C -,. ( )在方格纸中,将△ABC 向上平移??个 单位长度再向右平移??个单位得到△A B C ,请画出△A B C ;(2)将ABC △绕坐标原点O 逆时针旋转90°,得到△A2B2C2,请画出△A2B2C2, 直接写出点B2的坐标;23. 已知:如图,△ABC ,AB=AC ,以BC 为直径作⊙O ,交AB 、AC 于点D 、E ,BE 与CD 相交于点F . 求证:BF=CF24. 如图,用篱笆围成的矩形花圃ABCD 中间有两道平行于AB 的隔栏EF 和GH ,两道隔栏各留有1米宽的O xy A C BFED BC A 图案1图案2图案3图案4……第18题图 DA CB小门,BC 边留有2米宽的大门,设AB=x 米,AD=y 米,且x <y.(1)若所用的篱笆总长为32米,求y 与x 的函数关系式,并直接写出自变量x 的取值范围.(2)在(1)的条件下,设矩形ABCD 的面积为S 平方米,求S 与x 的函数关系式,并求出怎样围才能使短形场地的面积为36平方米?25.某校对学生进行微机技能培训,为了解培训的效果,培训结束后随机抽取了部分学生进行技能测试,测试结果分成“不合格”、“合格”、“良好”、“优秀”四个等级,并绘制了如图所示的统计图,请根据统计图提供的信息,回答下列问题:(1)培训结束后共抽取了 名参训人员进行技能测试; (2)从参加测试的人员中随机抽取一人进行技能展示,其测试结果为“优秀”的概率为 .(3)这次培训共有400名学生参加培训,获得“优秀”的总人数大约有多少?26. 某电脑公司经销甲、乙两种型号电脑,已知甲型电脑比乙型电脑每台进价多500元,用7万元购进甲型电脑的数量与用6万元购进乙型电脑的数量相同. (1) 求甲、乙两种型号电脑每台的进价各是多少? (2)该电脑公司购进甲、乙两种型号电脑共50台,所需资金不超过16万元,把购进的50台电脑加价20%全部售出,所获利润不低于3.17万元,通过计算求该电脑公司购进甲、乙两种型号电脑共有几种方案?请你设计出来.人数(人)不合合良优等16 14 12 18 627.如图,在平面直角坐标系中,矩形OABC,C(10,0),A(0,8),动点D从点A出发沿射线AB以每秒1个单位的速度运动,运动时间为t(秒),连接CD,过点D作DC的垂线交y轴于点E,(1)当t=8时,求直线DE的解析式;(2)连接EB,△ABE的面积为s,求s与t之间的函数关系式,并写出自变量t的取值范围;(3)连接OD,t为何值时,△ODC是等腰三角形?并求此时tan∠ODE的值.28.在Rt△ABC中,∠BAC=90°,AB=AC,△BCD是直角三角形,∠BDC=90°,连接AD.(1)当点D与点A在线段BC上两侧时(如图1),求证:BD+DC=2AD(2)当点D与点A在线段BC上同侧时(如图2;如图3),探究线段BD、DC、AD之间的数量关系分别为,图2:;图3:;(3).在(2)的条件下,射线BD与直线AC相交于点M,把射线CD沿直线AC翻折所得射线交射线BD于点N,若AM︰MC=1︰6,且AD=22,求MN的长度.图2C图32011年数学模拟试卷答案1-10 BABCA CCDAB 11、81035.2⨯ 12、1≥x ?? ??、2)(b a b -?? ??、°?? ??、???????? ??、23 ??、 ?? ??、 ????3??、 ????????????、717或原式?? )2(2+-x x x 2)2(1+-x x ??×24+-x x ??2)2(4+-x x x ×42-+x x =)2(1+x x =xx 212+当x=6×33×21=3时 原式3332-=323-122.解:(1)如图 (2)如图B2(0,6-); 23、证明: ∵AB=AC ∴∠ABC=∠ACB 又∵BC 为⊙O 直径 ∴∠BDC=∠BEC=90° ∴△BDC ≌△CEB ∴BD=EC 又∵∠BFD=∠EFC ∴△DBF ≌△ECF ∴∠DBE=∠ECDOxyA C B∵∠ABC=∠ACB∴∠ABC-∠DBE=∠ACB-∠DCE ∴∠EBC=∠DCB ∴BF=CF 24、(1)4x-2+2y-2=32y=-2x+18x 1<x <6(2)∵S=xy=x(-2x+18) ∴S=-2x2+18 由-2x2+18x=36得x1=3或x2=6(舍) 当x=3时,y=12因此当AB=3米,AD=12米时,矩形场地面积为36米2 25、(1)40 (2)41 (3)人)(10041400=⨯26、解:(1)设乙两种型号电脑每台进价x 元,则甲两种型号电脑每台进价(x+500)元 根据题意得xx 6000050070000=+ 解得x=3000检验:当x=3000时,x(x+500)≠0,所以x=3000是原分式方程的解 3000+500=3500答:甲、乙两种型号电脑每台的进价分别是3500元、3000元. (2)设购进甲种型号电脑y 台,则购进乙种型号电脑(50-y )台根据题意得⎩⎨⎧≥-⨯+⨯≤-+31700)50%(2030000%203500160000)50(30003500y y y y 解得17≤y ≤20因为y 是整数,所以y 取17、18、19、20,共4种方案 方案一:购进甲种型号电脑17台,则购进乙种型号电脑33台; 方案二:购进甲种型号电脑18台,则购进乙种型号电脑32台; 方案三:购进甲种型号电脑19台,则购进乙种型号电脑31台; 方案四:购进甲种型号电脑20台,则购进乙种型号电脑30台. 27. 解.(1)t=8时,AD=8BC=OA=8 ∴AD=BC ∵∠1+∠2=90° ∠2+∠3=90° ∴∠1=∠3 ∵∠EAD=∠DBC ∴△AED ≌△BDC ∴AE=DB∵DB=AB-AD=10-8=2 ∴AE=2 OE=OA-AE=8-2=6∴E (0,6) D (8,8) 设直线ED 的解析式为y=kx+b⎩⎨⎧==+688b b k 解得⎪⎩⎪⎨⎧==641b k 所以641+=x y (2)点D 在线段AB 上时如图∵∠1+∠2=90° ∠2+∠3=90° ∴∠1=∠3 ∵∠EAD=∠DBC ∴△AED ∽△BDC∴BC ADDBAE =∴810t t AE =- ∴AE=)10(81t t -S=t t t t AE AB 42585)10(811021212+-=-⋅⨯=⋅ )100(<<t点D 在线段AB 延长线上时如图△AED ∽△BDC∴BC ADDB AE =∴810t t AE =- ∴AE=)10(81-t tS=t t t t AE AB 42585)10(811021212-=-⋅⨯=⋅ )10(>t (3)此题分三种情况 ①DO=DC 时如图 ∵AC=BC∠OAB=∠ABC=90°∴△AOD≌△BCD ∴AD=DBt=10-t t=5此时tan∠ODE=8039②OD=OC时∵OC=10∴OD=10AD=622=-OAOD∴t=6此时tan∠ODE=21③CO=CD时,有两种情况如图第一种情况点D在线段AB上CD=CO=10BD=622=-CBCD10-t=6 t=4此时tan∠ODE=21第二种情况点D在线段AB的延长线上CD=CO=10BD=622=-CBCDt-10=6 t=16此时tan∠ODE=228、解(1)延长DB到Q,使QB=DC∵∠BAC+∠ABD+∠BDC+∠DCA=360°∴∠ABD+∠DCA=180°∵ABD+∠ABQ=180°∴∠ABQ=∠DCA∵AB=AC∴△ABQ ≌△ACD∴AQ=AD ∠BAQ=∠CAD∵∠BAD+∠D AC=90°∴∠BAD+∠BAQ=90°∴△QAD 是等腰直角三角形∴222DQ AD AQ =+ ∴AD DQ 2=∵BQ+BD=AD DQ 2=∴DC+BD=AD 2(2)DC-BD=AD 2; BD- DC=AD 2 (3)第一种情况如图,在BD 取一点Q ,使QB=DC ∵∠DCA+∠DMC=90°∠ABM+∠AMB=90°∵∠DMC=∠AMB∴∠ABM=∠DCA∵AB=AC∴△ABQ ≌△ACD∴AQ=AD ∠BAQ=∠CAD Q CC∵∠BAQ+∠QAC=90° ∴∠QAC+∠CAD=90°∴△QAD 是等腰直角三角形 ∴AD DQ 2==4过点A 作AK ⊥BD 于点K ∴AK=21DQ=2 AK ∥DC ∴△AKM ∽△CDM ∴61==MC AM DC AK ∴DC=6DC=12∴BQ=DC=12∴BD=BQ+DQ=12+4=16 BC=2012162222=+=+DC BD ∴AB=AC=22BC=102 AM=721071=AC ∴BM=71004920020022=+=+AM AB ∵∠ABM=∠DCA∵∠DCA=∠ACN∴∠ABM=∠ACN∵∠ABC ∠ACB∴∠NBC=∠NCB∴NB=NC过点N 作NH ⊥BC 于点HC∴BH=21BC=10 ∵∠NHC=∠BDC=90° ∠NBH=∠CBD∴△BNH ∽△BCD ∴BDBH BC BN = 161020=BN BN=225 ∴MN=BM-BN=7200-225=14225 第二种情况如图 求得MN=513。
2011年广东深圳中考数学全真模拟试题

2011年深圳中考数学全真模拟试题一、选择题(本题共14小题.每小题3分,共42分)在每小题所给的四个选项中,只有一项是符合题目要求的.1.一3的绝对值是(A)3 (C)±3 (B) 3 (D)±132.2004年聊城市的国民生产总值为1012亿元,用科学记数法表示正确的是(A)1012×108元 (B)1.012×1110元 (C)1.0×1110元. (D)1.012×1210元.3.下列各式计算正确的是(A)527()a a =.(B)22122x x-= (C)236326a a a = (D)826a a a ÷=。
4.一个不透明的袋中装有除颜色外均相同的5个红球和3个黄球,从中随机摸出一个,摸到黄球的概率是(A) 18 (B) 13 (C) 38 (D) 355.如图,将两根钢条'AA 、'BB 的中点O 连在一起,使'AA 、'BB 可以绕着点0自由转动,就做成了一个测量工件,则''A B 的长等于内槽宽AB ,那么判定△AOB ≅△''A OB 的理由是(A)边角边 (B)角边角 (C)边边边 (D)角角边6.已知两圆相交,其圆心距为6,大圆半径为8,则小圆半径r 的取值范围是 (A)r>2 (13)2<r<14 (C)l<r<8 (13)2<r<8 7.化简24()22a a a a a a---+的结果是 (A)一4 (B)4 (C)2a (13) 2a +48.如图,顺次连结圆内接矩形各边的中点,得到菱形ABCD ,若BD =10,DF =4,则菱形ABCD 的边长为 (A)42.(B)52(C)6.(D)9.9.小华同学自制了一个简易的幻灯机,其工作情况如图所示,幻灯片与屏幕平行,光源到幻灯片的距离是30cm 幻灯片到屏幕的距离是1.5m ,幻灯片上小树的高度是10cm ,则屏幕上小树的高度是(A)50cm . (B)500cm . (C)60 cm . (D)600cm .10.多边形的内角中,锐角的个数最多有 (A)1个. (B)2个. (C)3个. (D)4个.11.如图,已知点A 的坐标为(1,0),点B 在直线y x=-上运动,当线段第5题图AD EFOB第九题图AB最短时,点B的坐标为(A)(0,0). (B)11(,)22-.(c) 22(,)22- (D) 11(,)22-. 12.等腰三角形一腰上的高与另一腰的夹角为30。
安徽省2011年中考数学模拟试题及答案

AB C DP R图(2)A BCD图(1)2011年安徽省中考数学模拟试卷注意事项:本卷共八大题,计23小题,满分150分,考试时间120分钟 一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A 、B 、C 、D 的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内。
每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分。
1.下列计算中,正确的是( )A .523a a a =+ B .325⋅=a a a C .923)(a a = D .32-=a a a2.4月20日《情系玉树 大爱无疆──抗震救灾大型募捐活动》在中央电视台现场直播,截至当晚11时30分特别节目结束,共募集善款21.75亿元。
将21.75亿元用科学记数法表示(保留两位有效数字)为 ( )A .21×108元B .22×108元C .2.2×109元D .2.1×109元 3.图(1) 是四边形纸片ABCD ,其中∠B =120︒, ∠D =50︒。
若将其右下角向内折出一 PCR ,恰使CP//AB ,RC//AD ,如图(2)所示,则∠C 为( ) A .80︒ B .85︒ C .95︒ D .110︒4. 在下面的四个几何体中,它们各自的左视图与主视图不全等的是( )5. 如果1x -有意义,那么字母x 的取值范围是( )A .x ≥1B .x >1C .x ≤1D .x <1 6. 下列调查方式合适的是( )A .了解炮弹的杀伤力,采用普查的方式B .了解全国中学生的视力状况,采用普查的方式C .了解一批罐头产品的质量,采用抽样调查的方式D .对载人航天器“神舟七号”零部件的检查,采用抽样调查的方式 7. 已知半径分别为4cm 和7cm 的两圆相交,则它们的圆心距可能是( )A .B .C .D .A .1cmB .3cmC .10cmD .15cm 8.函数xky -=1与x y 2=的图象没有交点,则k 的取值范围为( ) A .0<k B .1<k C .0>k D .1>k9.如图,在平面直角坐标系中,⊙M 与y 轴相切于原点O ,平行于x 轴的直线交⊙M 于P ,Q 两点,点P 在点Q 的右方,若点P 的坐标是(-1,2),则点Q 的坐标是( ) A .(-4,2) B .(-4.5,2) C .(-5,2) D .(-5.5,2)10.如图,有三条绳子穿过一片木板,姐妹两人分别站在木板的左、右两边,各选该边的一条绳子。
2011年中考模拟试卷数学卷

2011年中考模拟试卷数学卷考生须知:1. 本试卷满分120分, 考试时间100分钟.2. 答题前, 在答题纸上写姓名和准考证号.一. 仔细选一选 (本题有10个小题, 每小题3分, 共30分)下面每小题给出的四个选项中, 只有一个是正确的. 注意可以用多种不同的方法来选取正确答案. 1. -3的倒数是( ) (A) -31 (B) 31(C) -3 (D) 3 2. 2011年3月5日上午9时,第十一届全国人民代表大会第四次会议在人民大会堂开幕,国务院总理温家宝在年度计划报告中指出,今年中央财政用于“三农”的投入拟安排9884.5亿元.将9884.5用科学记数法表示应为( )(A) 98.845⨯102(B) 0.98845⨯104(C) 9.8845⨯104(D) 9.8845⨯103。
3. 下列运算正确的是( )(A)6332x x x =+ (B)428x x x =÷ (C)mnn m x x x =⋅ (D)2045)(x x =-4. 函数y =x 的取值范围是( )(A) x ≤1. (B)x ≥-1. (C) x ≥1. (D)x ≤-1.5. 2010年11月13日,中国奥运冠军朱启南在亚运会男子10米气步枪决赛中,凭借最后3枪的出色发挥,以总成绩702.2环夺得冠军。
他在决赛中打出的10枪成绩(单位:环)是:10.4,9.6,10.4,10.1,10.2,10.7,10.2,10.5,10.7,10.4.则这组数据的中位数是( ) (A ) 10.7 (B ) 10.4 (C ) 10.3 (D ) 10.26. 小明用一个半径为5cm ,面积为15π2cm 的扇形纸片,制作成一个圆锥的侧面(接缝处不重叠),那么这个圆锥的底面半径为( )(A )3cm (B ) 4cm (C ) 5cm (D ) 15cm 7. 将直线y=2x ─4向右平移3个单位后,所得直线的表达式是(A) y=2x ─1 (B) y=2x ─7 (C) y=2x ─10 (D) y=2x+28. 在直角坐标系中,⊙O 的圆心在原点,半径为3,⊙A 的圆心A 的坐标为)1,3(-,半径为1,那么⊙O 与⊙A 的位置关系是( )A .内含B .内切C .相交D . 外切9.不透命的盒子里面装有五个分别标有数字1,2,3,4,5的乒乓球,这些球除数字之外,其他完全相同,一位学生随机地一次摸出两个球,两个球上的数字之和是偶数的概率是( )(A)2513 (B) 52 (C) 2516 (D) 107 10若},,,max{21n s s s 表示实数n s s s ,,,21 中的最大值.设),,(321a a a A =,⎪⎪⎪⎭⎫⎝⎛=321b b b B ,记}.,,max{332211b a b a b a B A =⊗设,1(-=x A )1,1+x ,⎪⎪⎪⎭⎫ ⎝⎛--=|1|21x x B ,若1-=⊗x B A ,则x 的取值范围为( )(A) 131≤≤-x (B) 211+≤≤x (C) 121≤≤-x (D) 311+≤≤x 二. 认真填一填 (本题有6个小题, 每小题4分, 共24分)要注意认真看清题目的条件和要填写的内容, 尽量完整地填写答案. 11. 分解因式:m 3-2m = 。
2011年中考数学模拟试题及答案

1 1 1数学模拟试题本试卷分第I 卷(选择题)和第U 卷(非选择题)两部分。
满分120分,考试用 时120分钟。
第I 卷(选择题共42分)注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答 题卡上。
2. 每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动, 用橡皮擦干净后,再选涂其它答案,不能答在试卷上。
3. 考试结束,将本试卷和答题卡一并收回。
一、选择题(本大题共14小题,每小题3分,满分42分)在每小题所给的四个 选项中,只有 一项是符合题目要求的。
1. 9的算术平方根是 A . 3 B . -3C . - 3D . - 92 •今年初,惊闻海地发生地震,中国政府和人民在第一时间作出支援海地的决定:1月13日,中国红十字会向海地先期捐款 204959美元,用科学记数法表示并保留三个有效数字应为(B )3、下列运算正确的是()A . 3X 2-:X =2X B . (x 2)3=x 54. 对于数据:85,83,85,81,86.下列说法中正确的是(B )A .这组数据的中位数是 84B .这组数据的方差是 3.25A . 2.050 10B 52.05 10 C630.205 10 D . 205 103412X -X X 2 2 2D . 2x 3x =5xC •这组数据的平均数是 85D.这组数据的众数是865. 一个几何体的三视图如右图所示,这个几何体是( D )5.小明要给刚结识的朋友小林打电话,他只记住了电话号码的前5位的顺序,后3位是3,6,8三个数字的某一种排列顺序, 但具体顺序忘记了,那么小明第一次就拨通电话的概率是第5题图A. D.12111C9. 如图,三个天平的托盘中形状相同的物体质量相等.图⑴、图⑵所示的两个天平处于平衡状态,要使第三个天平也保持平衡,则需在它的右盘中放置(C ).A.3个球B.4个球C.5个球D.6个球亠 oAAAz -xcferriz X EDAZV \onAy 、 /II) (2)⑶10. 一次函数y =kx ■ k -2一定过定点( ) A.(-1,-2)B.(72)C.(1,2)D.(1,-2)13.在平面直角坐标系中,对于平面内任一点P a, b 若规定以下两种变换:① f(a,b)=(T ,七).如 f(1,2) =(-1,-2)6.已知,如图,AB 是O O 的直径,点 D,C 在O O 上,联结 ADBD DC AC,如果/ BAD=25,那么/ C 的度数是( )A. 75B. 65C. 60D. 507.如图折叠直角三角形纸片的直角,使点 C 落的点E 处.已知AB=8.3 , / B =30° ,则DE 的长A. 6B.4C. 4.3D. 2,3D在斜边AB 上 是(B )&已知一个圆锥的底面积是全面积的A. 60 oB. 90 oC.1201 ,那么这个圆锥的侧面展开图的圆心角是( 3o D.180 o11.如图,反比例函数 y = k 与O O 的一个交点为(2,1),则图中阴影部分的面积是( x3 A.-4B.二5 C.-二412.已知二次函数y =ax 2+bx+c 的图象如图所示,那么下列判断中不正确的是2B. b -4ac > 0C.2a+b> 0D.4a-2b+c<0O)A. abc > 0 (第12题图)18..小明最近的十次数学考试成绩(满分 150分)如下表所示14题图第u 卷(非选择题共78分)注意事项:1. 用钢笔或圆珠笔直接答在试卷上。
2011年中考模拟试卷数学卷及答案

2011年中考模拟试卷数学卷及答案
请同学们注意:
1、本试卷分试题卷和答题卷两部分,满分为120分,考试时间为100分钟;
2、所有答案都必须写在答题卷标定的位置上,务必题号对应。
一.仔细选一选(本题有10个小题,每小题3分,共30分)
1.下列运算正确的是( )
A. B. C. D.
2.在函数中,自变量x的取值范围是( )
A. B. C. le; D. ge;
3.我国在2009到2011三年中,各级政府投入医疗卫生领域资金达8500亿元人民币.将”8500亿元”用科学记数法表示为( )
A. 元
B. 元
C. 元
D. 元
4.某住宅小区六月份1日至6日每天用水量变化情况如折线图所示,那么这6天的平均用水量是( )
A.30吨
B. 31 吨
C.32吨
D.33吨
5. 如图,已知⊙O的两条弦AC,BD相交于点E,
ang;A=75o,ang;C=45o,
那么sinang;AEB的值为( )
A. B. C. D.
2011年中考模拟试卷数学卷及答案完整版下载。
2011年中考数学模拟考试参考答案

2011年中考数学模拟考试参考答案一、选择题:DCAB DCDB二、填空题:9、略 10、1 11、a 2)1(+a 12、-313、21 14、110° 15、3 16、11+n +)1(1+n n 三、解答题:17、1x =0,2x =31 18、10边形19、-220、-25﹤x ≤3,数轴表示略 21、BE ∥DF ,BE =DF ,证明略22、(1)50人 (2)10人,补齐图形略 (3)160人23、在Rt ABC ∆中,∵10=BC ,︒=∠45CAB ,∴AB=45tan 10=10(米) ……3分 在Rt DBC ∆中,∵︒=∠30CDB ∴30tan 10=DB =310米 ……6分 则DA=DB-AB=10310-≈10×1.73210-= 7.32米. ……8分 ∵3 + DA 10>,所以离原坡角10米的建筑物应拆除. ……9分 答:离原坡角10米的建筑物应拆除. ……10分24、⑴解:∵B 点坐标为(0.2),∴OB =2,∵矩形CDEF 面积为8,∴CF=4.∴C 点坐标为(一2,2).F 点坐标为(2,2)。
设抛物线的解析式为2y ax bx c =++,因过三点A(0,1),C(-2.2),F(2,2)得1242242a b c a b c ⎧⎪=-+⎨⎪=++⎩解这个方程组,得1,0,14a b c === ∴此抛物线的解析式为 2114y x =+ ………… (3分) (2)解:①过点B 作BN BS ⊥,垂足为N .∵P 点在抛物线y=214x 十l 上.可设P 点坐标为21(,1)4a a +. ∴PS =2114a +,OB =NS =2,BN =a ∴PN=PS —NS=2114a - ………………………… (4分)在Rt △PNB 中.PB 2=222222211(1)(1)44PN BN a a a +=-+=+∴PB =PS =2114a +………………………… (5分) ②根据①同理可知BQ =QR ∴12∠=∠,又∵ 13∠=∠,∴23∠=∠,同理∠SBP =5∠………………………… (6分)∴2523180∠+∠=︒ ∴5390∠+∠=︒∴90SBR ∠=︒∴ △SBR 为直角三角形.………………………… (7分) ③ 若以P 、S 、M 为顶点的三角形与以Q 、M 、R 为顶点的三角形相似,∵90PSM MRQ ∠=∠=︒,∴有∆PSM ∽∆MRQ 和∆PSM ∽△QRM 两种情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010年中考数学全真模拟试题(十四) 班级 姓名 得分一、 填空题(每空2分,共40分)1、21-的相反数是 ;-2的倒数是 ;16的算术平方根是 ;-8的立方根是 。
2、不等式组⎩⎨⎧-+2804<>x x 的解集是 。
3、函数y=11-x 自变量x 的取值范围是 。
4、直线y=3x-2一定过(0,-2)和( ,0)两点。
5、样本5,4,3,2,1的方差是 ;标准差是 ;中位数是 。
6、等腰三角形的一个角为︒30,则底角为 。
7、梯形的高为4厘米,中位线长为5厘米,则梯形的面积为 平方厘米。
8、如图PA 切⊙O 于点A ,∠PAB=︒30,∠AOB= ,∠ACB= 。
9、 如图PA 切⊙O 于A 割线PBC 过圆心,交⊙O 于B 、C ,若PA=6;PB=3,则PC= ;⊙O 的半径为 。
10题图9题图ACDB8题图A 11题图B10、如图∆ABC 中,∠C=︒90,点D 在BC 上,BD=6,AD=BC ,cos ∠ADC=53,则DC 的长为 。
11、如图同心圆,大⊙O 的弦AB 切小⊙O 于P ,且AB=6,则阴影部分既圆环的面积为 。
12、已知Rt∆ABC的两直角边AC、BC分别是一元二次方程0x2=-+的两根,6x5则此Rt∆的外接圆的面积为。
二、选择题(每题4分,共20分)13、如果方程0+x2=+有两个同号的实数根,m的取值范围是()x2mA、m<1B、0<m≤1C、0≤m<1D、m>014、徐工集团某机械制造厂制造某种产品,原来每件产品的成本是100元,由于提高生产技术,所以连续两次降低成本,两次降低后的成本是81元。
则平均每次降低成本的百分率是()A.8.5% B. 9% C. 9.5% D. 10%15、二次函数c=的图像如图所示,则关于此二次函数的下列四个结论+bxy2+axb<0中,正确的结论有()①a<0 ②a>0 ③acb2>0 ④4-aA.1个B.2个C.3个D.4个16题图16、如图:点P是弦AB上一点,连OP,过点P作PC⊥OP,PC交⊙O,若AP=4,PB=2,则PC的长是()A. 2B. 2C. 22 D. 317、为了美化城市,建设中的某休闲中心准备用边长相等的正方形和正八边形两种地砖镶嵌地面,在每一个顶点周围,正方形、正八边形地砖的块数分别是()A. 1、2B. 2、1C. 2、3D. 3、2三、(本题每题5分,共20分)18、计算1303)2(2514-÷-+⎪⎭⎫⎝⎛+- 19、计算22)145(sin 230tan 3121-︒+︒--20、计算)+()-(+-ab ba ]ab a b b a a [2÷ 21、解方程11-x 1-1-x 22= 四、解答题(每题7分,共28分)22、已知关于x 的一元二次方程0)32(22=+-+m x m x 的两个不相等的实数根α、β满足111=+βα,求m 的值。
23、如图,∆ABC 中,∠ABC =∠BAC =︒45,点P 在AB 上,AD ⊥CP ,BE ⊥CP ,垂足分别为D 、E ,已知DC =2,求BE 的长。
P DE BCA24、在一块长16m ,宽12m 的矩形荒地上,要建造一个花园,要求花园所占面积为荒地面积的一半.下面分别是小明和小颖的设计方案.(1)你认为小明的结果对吗?请说明理由. (2)请你帮助小颖求出图中的x(精确到0.1m)(3)你还有其他的设计方案吗?请在图3中画出你所设计的草图,并加以说明.我(小颖)的设计方案如图2.其中花我(小明)的设计方案如图1.其中花园25、如图,l、2l分别表示一种白炽灯和一种节能灯的费用y(费用=灯的售价+1电费,单位:元)与照明时间x(小时)的函数图象,假设两种灯的使用寿命都是2000小时,照明效果一样。
(1)根据图象分别求出l、2l的函数关系式;1(2)当照明时间为多少时,两种灯的费用相等?(3)小亮房间计划照明2500小时,他买了一个白炽灯和一个节能灯,请你帮他设计最省钱的用灯方法(直接给出答案,不必写出解答过程)。
五、解答题(10分)26、已知:如图,AB是⊙O的一条弦,点C为的中点,CD是⊙O的直径,过C点的直线l交AB所在直线于点E,交⊙O于点F。
(1)判定图中CEB∠的数量关系,并写出结论;∠与FDC(2)将直线l绕C点旋转(与CD不重合),在旋转过程中,E点、F点的位置也随之变化,请你在下面两个备用图中分别画出在不同位置时,使(1)的结论仍然成立的图形,标上相应字母,选其中一个图形给予证明。
六、解答题(共32分,27、28各10分,29题12分)27、阅读下列材料并填空。
平面上有n 个点(n ≥2)且任意三个点不在同一条直线上,过这些点作直线,一共能作出多少条不同的直线?(1)分析:当仅有两个点时,可连成1条直线;当有3个点时,可连成3条直线;当有4个点时,可连成6条直线;当有5个点时,可连成10条直线…… (2)归纳:考察点的个数和可连成直线的条数n S 发现:如下表点的个数可作出直线条数2 1=212S 2⨯=3 3=223S 3⨯=4 6=234S 4⨯=5 10=245S 5⨯=…… ……n21)-n(n S n =(3)推理:平面上有n 个点,两点确定一条直线。
取第一个点A 有n 种取法,取第二个点B 有(n -1)种取法,所以一共可连成n(n-1)条直线,但AB 与BA 是同一条直线,故应除以2;即21)-n(n S n =(4)结论:21)-n(n S n=试探究以下几个问题:平面上有n 个点(n ≥3),任意三个点不在同一条直线上,过任意三个点作三角形,一共能作出多少不同的三角形? (1)分析:当仅有3个点时,可作出个三角形;当仅有4个点时,可作出个三角形;当仅有5个点时,可作出个三角形;……(2)归纳:考察点的个数n和可作出的三角形的个数S,发现:(填下表)n(3)推理:(4)结论:28、如图:把一个等腰直角三角形ABC沿斜边上的高线CD(裁剪线)剪一刀,从这个三角形中剪下一部分,与剩下部分能拼成一个平行四边形ABCD(见示意图a)注意:以下探究过程中有画图要求的,工具不限,不必写画法和证明。
探究一:(1)想一想:判断四边形ABCD是平行四边形的依据是。
(2)做一做:按上述的裁剪方法,请你拼一个与图a位置或形状不同的平行四边形,并在图b中画出示意图。
探究二:在等腰直角三角形ABC中,请你找出其它的裁剪线,把分割成的两部分拼出不同类型的特殊四边形。
(1)试一试:你能拼得所有不同类型的特殊四边形有,它们的裁剪线分别是。
(2)画一画:请在图c中画出一个你拼得的特殊四边形示意图。
C BADC BAADC BA(a) (b) (c)29、已知半径为R的⊙O'经过半径为r的⊙O的圆心,⊙O与⊙O'交于E、F两点.(1)如图(1),连结00'交⊙O于点C,并延长交⊙O'于点D,过点C作⊙O的切线交⊙O'于A、B两点,求OA·O B的值;(2)若点C为⊙O上一动点,①当点C运动到⊙O'时,如图(2),过点C作⊙O 的切线交⊙O',于A、B两点,则OA·O B的值与(1)中的结论相比较有无变化?请说明理由.②当点C运动到⊙O'外时,过点C作⊙O的切线,若能交⊙O'于A、B两点,如图(3),则OA·O B的值与(1)中的结论相比较有无变化?请说明理由.中考数学模拟试题参考答案一、填空题:1、21,-21,4,-2; 2、-4<x<10; 3、x>1; 4、32;5、 2,1.41,3;6、30º或75º;7、20;8、60º,30º;9、 12,4.5;10、9; 11、9π; 12、π413。
二、选择题:13、B; 14、D; 15、C; 16、22; 17、A。
三、 解答题:18、-23; 19、2; 20、b; 21、1x ,2-x 21==(增根) 四、 解答题:22、m=-3,舍去m=1; 23、BE=2; 24、(1)小明的结果不对设小路宽xm ,则得方程(16-2x)(12-2x)=16×12/2解得:x1=2.x2=12 而荒地的宽为12m ,若小路宽为12m ,不符合实际情况,故x2=12m 不合题意 (2)由题意得:4×πx2/4=16×12/2 x2=96/π x ≈5.5m答:小颖的设计方案中扇形的半径约为5.5m . (3)25、(1)直线L1 yl=O.03x+2(0≤x ≤2000)设直线L2的解析式为y2=0.012x+20(0≤x ≤2000) (2)当yl=y2时,两种灯的费用相等 0.03X+2=0.012X+20 解得:x=1000∴ 当照明时间为1000小时时,两种灯的费用相等 (3)节能灯使用2000小时,白炽灯使用500小时 26、(1)∠CEB=∠FDC(2)每画-个图正确得1分(注:3个图中只需画两个图)证明:。
如图②∵ CD是⊙O的直径,点C是AB的中点,∴ CD⊥AB,∴∠CEB+∠ECD=90°∵ CD是⊙O的直径,.∴∠CFD=90°∴∠FDC+∠ECD=90°∴∠CEB=∠FDC 27、1,4,10,……点的个数可连成三角形个数3 1=6123S3⨯⨯=4 4=6234S4⨯⨯=5 10=6345S5⨯⨯=…………n6)2-)(n1-n(nSn=推理:平面上有n个点,过不在同一条直线上的三个点可以确定一个三角形,取第一个点A有n种方法,取第二个点有B有(n-1)种取法,取第三个点C 有(n-2)种取法,所以一共可以作n(n-1)(n-2)个三角形,但∆ABC、∆ACB、∆BAC、∆BCA、∆CAB、∆CBA是同一个三角形,故应除以6,即6)2-)(n1-n(nSn=。
结论:6)2-)(n1-n(nSn=28、略。
29、(1)连结DB,则∠DBO=90°∵AB切⊙O于点C∵.AB⊥OD,又OD是⊙O’直径,即OA=OB 得OA2=OC·OD=r·2R=2R r.即OA·OB=2rR(也可证明△OBD∽△OCA)(2)无变化连结00',并延长交⊙O'于D点,连结DB、OC.证明△OCA∽△OBD,得OA·OB=OC·OD=r·2R=2Rr(3)无变化连结00’,并延长交⊙O’于B点,连结DB、OC证出△OCA∽△OBD,得OA·OB=OC·O D.:r·2R=2Rr。