碳纤维增强环氧树脂基复合材料研究进展

合集下载

环氧树脂碳纤维复合材料的成型工艺与应用

环氧树脂碳纤维复合材料的成型工艺与应用

碳纤维缠绕复合材料成型工艺
碳纤维缠绕复合材料的制备过程主要包括纤维铺放、树脂浸润和热处理等环 节。下面分别介绍这些步骤及其对材料性能的影响。
1、纤维铺放:此步骤是碳纤维缠绕复合材料制备的关键环节之一。纤维的 排列方向、密度和厚度等因素都会影响最终产品的性能。铺放过程中需采用专门 的设备和工艺,确保纤维分布的准确性和稳定性。
引言:碳纤维增强环氧树脂复合材料是一种具有优异性能的材料,因其具有 高强度、高韧性、耐腐蚀、轻质等优点而被广泛应用于航空、航天、汽车、体育 器材等领域。随着科技的发展,对于这种复合材料的研究和应用也越来越广泛。 液体成型是一种常见的复合材料制造工艺,具有成本低、效率高等优点,因此, 研究碳纤维增强环氧树脂复合材料的液体成型工艺及其性能具有重要意义。
在航天领域,碳纤维树脂基复合材料被广泛应用于火箭箭体、卫星平台等关 键部位。其轻质、高强度、耐腐蚀等优点使得它在航天领域具有广泛的应用前景。
在汽车领域,碳纤维树脂基复合材料被广泛应用于汽车车身、底盘等部位。 其高强度、耐腐蚀和轻质等优点可以提高汽车的性能和舒适性,同时也可以提高 汽车的安全性。
四、结论
环氧树脂碳纤维复合材料的成型工艺主要包括以下步骤: 1、纤维浸润:将碳纤维或其它纤维浸入环氧树脂中,使其充分浸润。
2、固化:在一定的温度和压力下,环氧树脂发生固化反应,形成固态复合 材料。
3、后处理:对固化后的复合材料进行切割、打磨、钻孔等后处理,以满足 不同应用场景的需求。
3、后处理:对固化后的复合材 料进行切割、打磨、钻孔等后处 理
三、碳纤维树脂基复合材料的应 用研究进展
碳纤维树脂基复合材料在航空、航天、汽车等领域得到了广泛应用。近年来, 随着技术的不断发展,其在这些领域的应用研究也取得了显著的进展。

碳纤维增强热塑性树脂基复合材料的研究现状

碳纤维增强热塑性树脂基复合材料的研究现状
Re i arxCo o i snM t mp st i e
YI Xing y ZHU LI Ho g z e 2 N a . u , Bo , U n . h ng

ZHENG a g- n 2 Lin yo g ,
ZHANG u —e Ch n li
( .c o l f ae asS in ea dE gn e n , h d n iest, J a 2 0 6 C ia . t - otg 1S h o tr l ce c n n ier g S a o gUnv ri i n oM i i n y n 50 1 hn ;2Ul aV l e r a
K y WO d : ab n f e ; t emo lsi o o i aeas rs ac e r S c ro b r h r pa t c mp st m tr l; e e h i c e r
以热 塑性 树 脂 为基 体 , 以纤 维 为 增 强体 而 制
成 的 复合 材 料—— 纤维 增 强热 塑 性 树 脂基 复 合 材 料 ( RTP)是 近 年 来 发 展 迅 速 的一 类 纤 维 增 强 F
5 0 0 C ia 1 6 0 hn)
A sr c: h o scs a o f ab nf e ifre emo lsc(A P S P , P , P S P E P b t t T e met t t no ro b r e oedt r pat P , E , C P S P E K, E K, I a d i i i u c i rn h i a dS n c mp s e r y teia ydsu sdi ep p rme w i , edf rn e f ligpo es n Oo ) o oi sweesnh t l i se t a e, a hl t i ee cs dn rcs t cl c nh n eh f o mo

碳纤维增强复合材料的微观结构与力学性能关系研究

碳纤维增强复合材料的微观结构与力学性能关系研究

碳纤维增强复合材料的微观结构与力学性能关系研究摘要:我们旨在深入探讨碳纤维增强复合材料的微观结构与力学性能之间的关系。

通过采用先进的显微结构分析技术和力学测试手段,我们系统地研究了不同微观结构下碳纤维复合材料的力学响应。

结果表明,碳纤维的分布、取向以及复合基体的性质等微观结构参数对力学性能有着显著影响。

本研究为优化碳纤维增强复合材料的设计和制备提供了深刻的理论指导。

关键词:碳纤维复合材料,微观结构,力学性能,显微分析,设计优化引言:随着碳纤维增强复合材料在航空航天、汽车工业等领域的广泛应用,对其性能优化的需求日益迫切。

而微观结构是决定材料性能的重要因素之一。

在设计阶段,我们需要充分理解碳纤维复合材料微观结构与力学性能之间的关系,以便更有效地调控和提升材料性能。

在深入研究碳纤维复合材料的微观结构与力学性能之间的关系后,我们期望能够为制备高性能的碳纤维复合材料提供科学依据,推动其在各个工程领域的广泛应用。

一、碳纤维的微观分布特征碳纤维在增强复合材料中的微观分布特征直接关系到材料的力学性能和整体性能。

首先,我们将深入研究碳纤维在复合材料中的三维分布情况。

通过采用先进的显微结构分析技术,如扫描电子显微镜(SEM)和透射电子显微镜(TEM),我们能够获取材料截面的高分辨图像,揭示碳纤维的分布密度、排列方式以及与基体的相互作用。

进一步地,我们将探讨碳纤维在复合材料中的层间分布。

层间分布是影响材料弯曲和剪切性能的重要因素。

通过在微观尺度上观察碳纤维在各层之间的位置关系,我们能够了解纤维在复合材料中的层间连接方式,从而为优化设计提供理论依据。

除了静态的微观分布特征,我们还将关注在不同加载条件下碳纤维的微观变形行为。

通过模拟不同应力和应变状态下的碳纤维微观变形,我们能够洞察纤维的拉伸、屈曲、扭转等变形模式,为理解复合材料的宏观性能提供微观机理的解释。

在整个讨论中,我们将引入相关的专业术语,如纤维体积分数、取向分布、截面形态等,以确保对碳纤维微观分布特征的描述准确而全面。

《碳纤维树脂基复合材料RTM制备及其抗高温性能》

《碳纤维树脂基复合材料RTM制备及其抗高温性能》

《碳纤维树脂基复合材料RTM制备及其抗高温性能》一、引言随着科技的发展和工业的进步,碳纤维树脂基复合材料因其卓越的力学性能和轻量化特点,在航空、航天、汽车等众多领域得到了广泛应用。

RTM(树脂传递模塑)技术作为碳纤维复合材料的主要制备工艺之一,其优势在于生产效率高、成本低且能够制造出复杂形状的制品。

本文将详细介绍碳纤维树脂基复合材料的RTM制备工艺,并对其抗高温性能进行深入研究。

二、碳纤维树脂基复合材料的RTM制备1. 材料选择碳纤维树脂基复合材料的制备主要涉及碳纤维、树脂基体以及必要的添加剂。

碳纤维具有高强度、高模量等特点,是复合材料的主要增强材料;树脂基体则起到粘结碳纤维的作用,常见的有环氧树脂、聚酰亚胺等。

2. 工艺流程RTM制备工艺主要包括模具设计、碳纤维预浸料制备、注射工艺及后处理等步骤。

首先,根据产品需求设计模具;然后,将碳纤维与树脂基体混合制备成预浸料;接着,将预浸料放入模具中,通过注射装置将树脂注入模具,使树脂在模具内充分渗透并固化;最后,进行脱模、修整等后处理工序。

3. 工艺参数RTM制备工艺的参数包括注射压力、注射速度、固化温度和时间等。

这些参数对复合材料的性能具有重要影响,需要根据实际情况进行优化。

三、抗高温性能研究1. 抗高温性能指标碳纤维树脂基复合材料的抗高温性能主要表现在其耐热性、高温强度、高温蠕变等方面。

通过对比不同制备工艺下复合材料的抗高温性能,可以评估RTM制备工艺的优越性。

2. 实验方法为了研究碳纤维树脂基复合材料的抗高温性能,可以采用热重分析、热机械分析等方法。

通过在不同温度下对复合材料进行加热和加载,观察其性能变化,从而评估其抗高温性能。

3. 结果与讨论通过实验,我们可以得到碳纤维树脂基复合材料在不同温度下的性能数据。

分析这些数据,可以得出RTM制备工艺对复合材料抗高温性能的影响。

同时,还可以对比其他制备工艺下的复合材料性能,进一步评估RTM工艺的优越性。

碳纤维/TDE85环氧树脂复合材料界面性能的研究

碳纤维/TDE85环氧树脂复合材料界面性能的研究

CCF300,M 285.【I】58.44 286.10 29.33 287.4 5.47 288.7 5.87 290.6 1.89 41.56
(2)接 触 角试样 制 备 将 纤维 放在 烘箱 中烘 干 以除 去表 面 的水分 和 其 他 杂质 ,随 后剪 成 50mm 长 的小 段 ,任 意抽 取 4根 单 丝 垂直 等 间距 的 固定 在 事 先 做 好 的 纸 质 夹具 上 ,切 除多余 部 分 ,使 其露 出夹 具部 分 的长度 尽 量相 等 ,大 约 为 8ram。 (3)微滴 脱 粘试样 制 备 将碳纤维固定在硬纸板制作 的夹具上 ,使用钢 针在纤 维 上轻 轻地 点上 配 好 的 TDE85复 配胶 液 ,然 后将 碳 纤 维 移 到 烘 箱 中 ,按 6O℃ 、80 ̄C、130 ̄C依 次 恒 温 2h、2h、4h,然后 自然 冷 却 到 室温 的 固化 制度 固 化树脂 ;取 出固化好 的碳 纤维 样 品 ,为 保 持纤 维 处 于 紧绷伸 直 状态 ,以保 证 在 界 面 强度 测试 过 程 中数 据 的准 确性 ,先用 双 面胶 把纤维 固定 在纸 板 上 ,然后 用 502胶水再 次 固定 纤维 。 1.3 分析 测试 采用 PHI5700型光 电子 能谱 仪分 析碳 纤维 表 面 的化 学成 分 ,包 括 元 素 和 官 能 团 分 析 ;使 用 DCT21 测量 仪 测 试 碳 纤 维 与 环 氧 树 脂 的 接 触 角 ;利 用 HM410界面评 价 装 置 ,采 用 微 滴 脱 粘 的 实 验 方 法 , 测试 碳纤 维 与 TDE85环 氧 树 脂 单 纤 维 复 合 材 料 的 界 面剪切 强 度 。
了表征 ,XPS结果表 明 ,与树脂复合后 ,碳纤维表 面官能 团的含 量、结构及化学环境都发 生了明显 的变化 ,界 面产生 了较强 的物 理和化 学作 用。利用 DCT21测量仪测试碳纤维与环氧树脂 TDE85的接 触角,分析 了纤维与树 脂的润 湿性 ,实验 结果显 示纤维 与树脂 的润 湿性 良好 。在此基础上 ,通过微滴脱粘方法测量纤维与树脂 的界 面剪切强度 ,以表征其界 面粘结性 能。微 滴脱 粘 的 实验 结果 显 示 ,T800/TDE85体 系的 IFSS值 高 达 79.7MPa,比 T300/TDE85、CCF30/TDE850体 系分 别 高 21% 、24% 。

FT0004-碳纤维增强抗氧化复合材料研究进展

FT0004-碳纤维增强抗氧化复合材料研究进展

FT0004 碳纤维增强抗氧化复合材料研究进展2014-05-13 李炜先进复合材料创新枢纽在当今国际空间技术迅猛发展的背景下,人类在空间探索的身影越走越远,火星、木星等未知星球也离我们越来越近。

因此,各国对研发新型空间飞行器都给予了极大的关,’随着近年来材料%电子%制造业等相关科学技术的进步,尤其是先进防热系统(ThermalProtection Systerm, TPS)的发展使得更高性能的飞行器设计得以实现,并且向低成本化,高性能化,多功能化$智能化和集成化的方向发展。

以满足高速、长时间、复杂多变环境下飞行器的性能稳定性,中发挥着重要作用,其性能稳定性是飞行器可靠性的决定因素之一。

碳纤维增强复合材料以其优异的高温力学和热物理性能一直以来是飞行器高温部件及热结构组件的理想材料。

本文简要介绍了国内外碳纤维增强抗氧化复合材料的发展现状,并以陶瓷基和碳&碳复合材料为重点,介绍了国内外该领域的技术发展情况,探讨了其发展趋势。

1. 碳纤维增强抗氧化复合材料碳素纤维增强体的抗氧化复合材料因其低密度高强度,特别是高温下的性能稳定性及耐烧蚀性,一直被认为是先进热防护系统设计研制的关键材料。

在新型动力系统和再入式飞行器,空间探测飞行器,临近空间飞行器%重复使用运载器等飞行器中具有不可低估的作用,。

其性能与可靠性是相关动力系统和飞行器先进性与可靠性的决定因素之一。

在热防护系统中$防热复合材料发挥隔热、维形、承载乃至透波、抗毁伤、信号特征抑制等功能。

涉及特殊环境下材料的多种热响应以及多组元多尺度结构的高温演化。

因此,今天的碳纤维增强防热复合材料呈现出多元的组成方式,研究也具有显著的多学科多技术交叉特点。

1.1碳纤维与其它几种高性能纤维(玻璃纤维、氧化铝纤维、碳化硅纤维、硼纤维、凯芙拉纤维)相比碳纤维具有更高的比强度和比模量。

因此,碳纤维复合材料在航空航天领域得到了广泛的应用。

在航空领域有很多我们所熟知的碳纤维增强环氧树脂或酚醛树脂、聚酰亚胺树脂等复合材料,具有高强度、高模量、低密度等优点!能用作航天飞机舱门、机械臂、人造卫星的结构材料、天线支架、太阳能电池板、火箭和导弹的壳体、仪器舵等。

碳纤维如何增强复合材料的力学性能

碳纤维如何增强复合材料的力学性能

碳纤维如何增强复合材料的⼒学性能2019-08-20摘要:碳纤维增强热塑性树脂基复合材料的应⽤范围进⼀步扩⼤,不难看出,这种材料因其较好的综合性能远远超越了单⼀组合的材料模式。

本⽂试图对碳纤维增强热塑性树脂基复合材料的⼒学性能进⾏深⼊的研究。

本⽂使⽤了简单概述,也采⽤了重点分析的研究策略,梳理了对研究对象的概述和主要的性能特点。

关键词:碳纤维;复合材料;⼒学性能本⽂以碳纤维增强热塑性树脂基复合材料为研究对象,对相关的概念和内容进⾏了梳理和总结。

其中概括了碳纤维的性质性能,对复合材料的概念进⾏了阐述,最后对碳纤维增强热塑性树脂基复合材料的⼒学性能作了详尽的分析说明。

1.关于碳纤维增强热塑性树脂基复合材料的概述⑴复合材料的概念:⾯对传统、单⼀组分的材料已经难以满⾜现在应⽤需要的现实状况,开发研制新材料,是解决这个问题的根本途径。

运⽤对材料改性的⽅法,来改善材料的性能是可取的。

⽽材料改性的⽅法中,复合是最为常见的⼀种。

国际标准化组织对于复合材料的概念有明确的界定:复合材料是指由两种或两种以上不同化学性质和物理性质的物质组成的混合固体材料。

它的突出之处在于此复合材料的特定性能优于任⼀单独组分的性能。

⑵复合材料的分类简介:复合材料的有⼏种分类,这⾥不作⼀⼀介绍。

只介绍两种与本论⽂相关的类别划分。

如果以基体材料分类,复合材料有⾦属基复合材料;陶瓷基复合材料;碳基复合材料;⾼分⼦基复合材料。

本⽂讨论的是最后⼀种⾼分⼦基复合材料,它是以有机化合物包括热塑性树脂、热固性树脂、橡胶为基体制备的复合材料。

第⼆,如果按增强纤维的类别划分,就存在有机纤维复合材料、⽆机纤维复合材料、其他纤维复合材料。

其中本⽂讨论的对象属于⽆机纤维复合材料这⼀类别,因为碳纤维就是⽆机纤维复合材料的其中⼀种。

特别值得注意的是,当两种或两种以上的纤维同时增强⼀个基体,制备成的复合材料叫做混杂纤维复合材料。

实质上是两种或两种以上的单⼀纤维材料的互相复合,就成了复合材料的“复合材料”。

碳纤维增强环氧树脂

碳纤维增强环氧树脂
材料种类 碳纤维/环氧树脂 芳香族聚酰胺纤维 (Kevlar)/环氧树 脂 1.4 1400 76000 硼纤维/环氧树脂
性能 相对密度 拉伸强度/MPa 拉伸弹性模量 /MPa 1.6 1500 12000
2.0 1750 120000
抗冲击性能优良,一般手枪在12-15m射程内不能击 穿1cm厚的碳纤维增强塑料板。 具有低的热膨胀系数,耐热性能好。可以在12000℃ 高温下维持10s不变形。 碳纤维增强体与基体的黏结性较差,且具有各向异性, 一般采用碳纤维氧化或晶须化增强黏结性。 价格昂贵,由于其加工工艺复杂、原材料价格昂贵。 因器的结构材料。主要原因是其质轻比强 度高、具有良好的减振性、耐高温性。 1、美国AV-8B改型“鹞”式飞机,机身采用了26% 的碳纤维塑料,整机减轻了9%的重量,使之有效载 荷相对原AV-8B增加了一倍。 2、我国武直-9式直升飞机采用了60%左右的复合材 料,其中大部分为碳纤维增强塑料。 3、空客A380大量的使用了复合材料,其25%的重 量由复合材料构成,其中22%为碳纤维增强塑料。由 于CFRP的明显减重以及在使用中不会因疲劳和腐蚀 受损。降低了油耗和排放,每名乘客每百公里耗油少 于到三升。
碳纤维增强环氧树脂
CFRP——高强度、高模量纤维增强塑料
结构组成
碳纤维:以聚苯烯腈、人造丝或木质素为原丝,将有 机纤维跟树脂结合在一起经高温分解并碳化后得到的 纤维状增强体。 聚合物基体:碳纤维增强塑料的基体是环氧树脂

性能

相对密度小、强度高、模量高,其强度、刚度、均较 良好。相对密度为1.6,比强度为钢材的3-4倍。

机械工业 1、利用碳纤维增强塑料的没耐磨性好的特点,制造 磨床上的磨头和各种机器的轴承等耐磨零件的材料。 2、利用碳纤维是非磁性材料的性能,取代金属制造 要求极高并易毁坏的发电机端部线圈的护环。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

碳纤维增强环氧树脂基复合材料研究进展 摘要:介绍了碳纤维增强环氧树脂基复合材料的复合结构及体系特性,复合体系的机械性能和复合工艺,复合界面结构的一些表征方法及增强的机理,纤维素表面处理的一些常用方法,以及EP/CF复合材料的一些应用。

关键词:表面处理、增强机理、界面表征、复合工艺、应用 前言: 环氧树脂(EP)/碳纤维(CF)复合材料是CF增强复合材料的一个重要分支。近年来,随着人们对EP/CF复合材料认识的不断深入,其优异的性能不断凸现,促使其用量不断上升。20世纪70年代以前,EP/CF复合材料被视为昂贵的材料,价格约为玻璃纤维(GF)增强复合材料的10倍,只用于军工、宇航等尖端技术行业。20世纪80年代以后,CF工业和EP工业迅速发展,EP/CF复合技术不断进步,加入到EP中的CF比例不断上升,目前CF的体积分数已可达60%以上,使EP/CF复合材料的质量提高而价格下降,拓宽了其应用领域,进一步促进了EP/CF复合材料的发展。

1. 碳纤维的表面处理 碳纤维复合材料的层间剪切强度一般较差,这是因为碳纤维与树脂之问的粘接力较差所致。为了改善碳纤维复合材料的界面粘接性能.必须对碳纤维表面进行处理。表面处理可起到以下3种作用。第一,防止弱界面层(Weak boundary layer) 的生成。作为WBL有:①所吸附的杂质、脱模剂等;②界面层老化时形成的氧化层、水合物层等;③与基体的不充分浸润而所束缚的空气层等。第二,产生适合于粘接的表面形态,使增强材料表面生成凹凸,通过抛锚效应而提高界面粘接性能,但凹凸过多粘接也不好,所以应作适当调整。第三,改善树脂和增强材料的亲合力。例如,增强材料和树脂的极性差异很大时,在增强材料表面涂上极性中等的覆盖剂;还可以在表面上进行化学处理,导入一些官能团而提高界面粘接性能等。目前常用的表面处理方法有以下几种: l.1气相氧化法 气相氧化法是将碳纤维暴露在气相氧化剂(如空气、O3等)中,在加温、加催化剂等特殊条件使其表面氧化生成一些活性基团(如羟基和羧基)。经气相氧化法处理的碳纤维所制成的CFRP,弯曲强度、弯曲模量、界面剪切强度(IFSS)和层间剪切强度(IISS)等力学性能均可得到有效提高,但材料的冲击强度降低较大。此法按氧化剂的不同,通常分为空气氧化法和臭氧氧化法。 采用空气氧化时,氧化温度对处理效果有显著影响。王玉果等对碳纤维在400℃空气氧化处理1h和450℃空气氧化处理1 h后制成的三维编织碳纤维/环氧复合材料进行研究,发现其力学性能除冲击强度外均随处理温度的升高而增加,CFRP的整体力学性能得到了明显的改善。 臭氧氧化法由于具有时间短、设备工艺简单、氧化缓和等特点,也得到了广泛的应用。贺福等用臭氧氧化处理PAN基碳纤维,发现复合材料的界面粘结紧密,断裂形貌由多剪转变为抗剪。冀克俭等采用臭氧氧化法对碳纤维进行了表面处理,发现碳纤维表面羟基或醚基官能团的含量提高,其与环氧树脂制成复合材料后的ILSS提高35%。近年来,利用惰性气体氧化法进行表面处理,也得到了研究人员的关注。西北工业大学的卢锦花等,将碳纤维在氩气保护、2200℃的高温下处理2 h,发现C/C复合材料的弯曲强度提高75%,断口扫描表明断裂以脆性断裂为主,纤维与基体的结合强度较高。 1.2 液相氧化法 液相氧化法是采用液相介质对碳纤维表面进行氧化的方法。常用的液相介质有浓硝酸、混合酸和强氧化剂等。最常见的液相氧化剂是浓硝酸,浓度一般在60%一70%。浓度过高则纤维在氧化过程中被强酸腐蚀,强度损失较大,导致CFRP的ILSS提高不显著。万怡灶等用65%的浓硝酸在煮沸下处理PAN基碳纤维,制得的C/PLA复合材料的宏观力学性能均有一定提高。液相氧化法相比气相氧化法较为温和,一般不使纤维产生过多的起坑和裂解。但是其处理时间较长,与碳纤维生产线匹配难,多用于间歇表面处理。 1.3 阳极氧化法 阳极氧化法,又称电化学氧化表面处理,是把碳纤维作为电解池的阳极、石墨作为阴极,在电解水的过程中利用阳极生成的“氧”,氧化碳纤维表面的碳及其含氧官能团,将其先氧化成羟基,之后逐步氧化成酮基、羧基和CO2的过程。要求水的纯度高,如果水中有杂质,其负离子电极位低于氢氧根负离子的电极位,则阳极得不到氧气;还要求正离子电极位低于氢正离子电极位,以保证阴极只有放氢反应;此外电极必须是惰性的,不参加电化反应。刘鸿鹏等以石墨板为阴极、PAN基碳纤维为阳极,通过改变电解条件进行连续阳极氧化处理。该法使碳纤维表面含氧官能团的摩尔分数达8.54%,表面吸附水的摩尔分数增加了5.34%,极大地提高了碳纤维的表面浸润性能。阳极氧化法对碳纤维的处理效果不仅与电解质的种类密切相关,并且增加电流密度与延长氧化时间是等效的。 1.4 等离子体氧化法 等离子体是具有足够数量而电荷数近似相等的正负带电粒子的物质聚集态。用等离子体氧化法对纤维表面进行改性处理,通常是指利用非聚合性气体对材料表面进行物理和化学作用的过程。非聚合性气体可以是活性气体(如O2、NH3、SO2、CO等),也可以是惰性气体(如He、N2、Ar等)。常用的是等离子体氧,它具有高能高氧化性。当它撞击碳纤维表面时,能将晶角、晶边等缺陷或双键结构氧化成含氧活性基团(如羧基,羰基和羟基等)。黄玉东等将碳纤维经等离子体空气处理后制成碳纤维,酚醛复合材料,当处理时间为20 min时,IISS和单纤维与基体树脂间界面微脱粘力分别提高了52.8%和56.5%,其最终制品的界面结合性能提高40%以上。熊杰等用冷等离子体氧处理碳纤维,其CFRP-水泥砂浆最大断裂荷载和韧性指数提高的幅度都十分显著。 1.5 表面涂层改性法 表面涂层改性法的原理,是将某种聚合物涂覆在碳纤维表面,改变复合材料界面层的结构与性能,使界面极性等相适应以提高界面粘结强度,同时提供一个可消除界面内应力的可塑界面层。涂层的种类很多。曾金芳等采用活性涂层、刚性涂层和柔性涂层,分别对HTA—P30碳纤维进行表面处理,研究了不同涂层对HTA—P30/AE4环氧NOL环复合材料剪切强度的影响。试验结果表明:活性涂层可显著改善复合材料的剪切性能,而且涂层浓度对性能的影响非常敏感,当浓度为1%一2%时,剪切强度可以提高20%。 2. CF及其EP复合材料的基本特点 2.1 CF的特点和基本成分 CF主要是由碳元素组成,其含碳量一般在90%以上。CF具有耐高温、耐摩擦、导电、导热及耐腐蚀等特性,与一般碳素材料不同的是,其各向异性显著,柔软,可加工成各种织物,沿纤维轴向表现出很高的强度。制备CF的主要原材料有人造丝(粘胶纤维)、聚丙烯腈(PAN)纤维和沥青等。通常制备高强度、高模量CF多选用PAN为原料。制备CF需经过拉丝、牵伸、稳定、炭化、石墨化5个阶段。 2.2 EP基体的作用 EP具有优良的加工性能和力学性能,其固化收缩率低,粘结性能优异。复合材料中EP的主要作用是把CF粘在一起,分配CF问的载荷,保护CF不受环境影响。 2.3 EP/CF复合材料的特性 EP/CF复合材料的特性主要取决于CF、EP及EP与CF之间的粘结特性。EP/CF复合材料具有优异的性能,与钢相比,EP/CF复合材料的比强度为钢的4.8~7.2倍,比模量为钢的3.1~4.2倍,疲劳强度约为钢的2.5倍、铝的3.3倍,而且高温性能好,工作温度达400℃时其强度与模量基本保持不变。此外还具有密度和线膨胀系数小、耐腐蚀、抗蠕变、整体性好、抗分层、抗冲击等,在现有结构材料中,其比强度、比模量综合指标最高。在加工成型过程中EP/CF复合材料具有易大面积整体成型、成型稳定等独特的优点。 3.EP/CF复合材料的增强机理 常规的CF表面平滑、活性官能团少、表面能低,呈现表面化学惰性,与EP基体浸润性较差,复合材料界面黏合力较弱。因此,需要对CF表面改性处理,提高其与基体树脂的黏结性,进而提高复合材料的性能。目前,CF表面改性方法很多,如气相氧化法、阳极氧化法、电聚合表面涂层法、液相氧化法及等离子氧化法等。采用扫描电子显微镜(SEM)分析经过处理的CF表面发现,其表面石墨层面边缘较大面积氧化,边缘活性点数量增加,致使凹凸不平的表面更有利于与EP基体的键合,使复合材料的剪切性能提高。同时,其表面能增加,显著改善了CF与基体间的润湿性,接触角减小,表面呈现亲液性。另外,经过处理后,其表面出现了大量的羟基、羧基、醌类等官能团,提高了CF表面的极性、增强体与EP基体之间的润湿性和它们的黏结程度。 4. EP/CF复合材料的复合成型工艺 4.1 手糊成型 手糊成型是依次在模具型腔表面涂布或铺迭脱模剂、胶衣、粘度适中的EP(胶衣凝胶后涂覆)和CF,手持辊子或刷子使EP浸渍CF,并驱除气泡,压实基层。铺层操作反复多次,直到达到制品的设计厚度。该工艺的主要优点是可室温成型,设备投资少,模具折旧费低;可制造大型制品。主要缺点是属于劳动密集型生产,制品质量由工人技术熟练程度决定;手糊用树脂分子量低,通常可能较分子量高的树脂有害于人的健康和安全。 4.2 树脂传递成型 将CF置于上下模之间,合模并将模具夹紧,在压力条件下注射EP,EP固化后打开模具,取下制品。必须保证EP在凝胶前充满型腔,压力促使EP快速传递到模具内并浸渍CF。该工艺为低压成型工艺,EP注塑压力为0.4~0.5MPa,当制造高CF含量(体积分数超过50%)的制品时压力甚至可达0.7MPa。有时可预先将CF在一个模具内预成型(带粘结剂),再在第二个模具内注射成型 J。为了提高EP浸渍cF的能力,可选择真空辅助注射。当EP一旦将CF浸透,要将EP注入口封闭,以使树脂固化。注射与固化可在室温或加热条件下进行。模具可以用复合材料与钢材料制作。若采用加热工艺,宜用钢模。该法的主要优点是复合材料中CF含量可较高,未被EP浸润的

相关文档
最新文档