吸收法净化气体污染物实验
废气净化处理技术方案

废气净化处理技术方案一、概述随着社会经济的发展,人们的环保意识越来越强,各级环保部门对污染排放的限制也越来越严格。
如何取得经济效益与环境的和谐统一是人类面临的新问题。
而在现阶段解决污染源的有效措施之一就是对污染源进行治理,使其对周边生态环境的污染影响降到最低,其排放总量及排放浓度达到(或优于)国家和地方相应的法律法规及规范的要求。
该实验室做实验的过程中会产生含有苯类物质及粉尘的废气,废气的主要污染成分为苯、甲苯、二甲苯等,该种废气不仅有异味,而且有一定的毒性,如果不加以处理而直接排放将会对周围环境造成污染。
工业上常把苯、甲苯、二甲苯统称为三苯,在这三种物质当中以苯的毒性最大。
二、设计依据与原则(一)、设计依据1、厂方出具的废气治理工程设计施工委托书;2、厂方提供的该厂项目立项书;3、环境影响报告表;4、厂方提供的有关该型号的技术参数;5、《大气污染物排放标准》(DB44/27----2001);6、环境工程设计手册《环境废气控制卷》。
7、废气源设备的相关技术资料;8、相关的废气治理设计规范;9、以往同类工程资料与经验;(二)、设计原则1、采用先进可靠的废气治理工艺与方法;2、精确计算和精心设计,既保证处理效果又保证机房通风良好;3、布局合理、美观,工程经济、实用。
三、治理要求(一)设计处理能力根据建设方提供的数据,该公司生产车间废气排放量235m3/min。
经换算,我公司设计废气净化系统处理能为14100m3/H。
(二)经净化后气体排放浓度低于中华人民共和国《大气污染物综合排放标准》(GB16297—1996)和广东省地方标准《大气污染物排放标准》(GB44/27—2001)中“现有污染源大气污染物排放限值”规定的二级排放浓度,排放浓度达到:苯:0mg/m3<12mg/m3甲苯:35mg/m3<40mg/m3二甲苯:60mg/m3<70mg/m3(三)经治理后粉尘排放浓度达到广东省地方标准《大气污染物排放标准》(DB44/27----2001)中粉尘最高容许排放浓度(第一时间段)标准:颗粒物:110mg/m3<120mg/m3四、有害溶剂污染物基本性质一般情况下,混炼押出工艺过程中的有机废气多为苯、甲苯、二甲苯等挥发性的有机溶剂,这些物质均为无色液体,有芳香味,具有不溶于水、易挥发、易燃等特点。
固定污染源废气气态汞的测定活性炭吸附热裂解原子吸收法

201□-□□-□□发布201□-□□-□□实施
目次
前言
为贯彻《中华人民共和国环境保护法》和《中华人民共和国大气污染防治法》,保护环境,保障人体健康,规范固定污染源废气中气态汞的测定方法,制定本标准。
本标准规定了测定固定污染源废气气态汞的活性炭吸附/热裂解原子吸收法。
本标准为首次发布。
gbt16157固定污染源排气中颗粒物测定与气态污染物采样方法hit373固定污染源监测质量保证与质量控制技术规范试行方法原理通过专业采样装置从固定污染源以低流量恒速抽取定量体积废气使废气中气态汞有效富集在吸附管中经过碘或其它卤素及其化合物处理的活性炭材料上
附件8
中华人民共和国国家环境保护标准
HJ□□□-201□
4干扰及消除
采样过程中,颗粒物可能导致采样管堵塞而影响采样工作正常进行,采样点应该设置在烟气净化装置后端,颗粒物含量较少的点位。或者采取防尘罩,以较小流量,较长时间的抽取,以获得足够量的待测污染物。SO2、NOx会抑制活性炭对汞的捕获,可采用在吸附管前端增加一节碳酸盐类化合物以去除酸性气体。
5试剂和材料
HJ/T 373固定污染源监测质量保证与质量控制技术规范(试行)
3方法原理
通过专业采样装置,从固定污染源以低流量、恒速抽取定量体积废气,使废气中气态汞有效富集在吸附管中经过碘或其它卤素及其化合物处理的活性炭材料上。采用直接热裂解原子吸收法或者其它分析方法测定吸附管中活性炭材料中汞的含量和采样体积,计算出气态汞浓度。
11质量保证和质量控制
11.1
11.2
对于汞浓度>1µg/m3时,相对偏差(RD)≤10%;对于汞浓度≤1µg/m3时,相对偏差(RD)≤20%。相对偏差按式(2)计算:
列举so2吸收法废气治理技术

列举so2吸收法废气治理技术
so2(二氧化硫)是一种有毒有害气体,是油烟、工业煤燃烧、燃煤发电等产生
的废气排放中,最主要的一种污染物。
为了保护环境和人们的健康,需要采用有效的so2吸收法废气治理技术。
so2吸收法废气治理技术主要是采用吸收剂将so2从废气中吸收,然后经过一
系列的处理技术,达到排放国家制定的标准。
so2吸收法废气治理技术主要包括:
1)脱硫反应器:脱硫反应器是一种利用脱硫剂将so2脱离废气中的有效方法。
常见的脱硫剂有火山灰、石膏、活性碳等。
反应副产生的水溶液可收集,并活用作新的脱硫剂。
2)吸收塔:吸收塔是一种利用吸收剂吸收so2的有效方法,常用的吸收剂有
碱溶液、碳酸钠溶液、氧化铝粉和活性炭。
靠喷雾、层流等方法使吸收剂与排出的废气进行接触,从而达到完全的吸收功能。
3)脱硫活性炭吸收塔:将生产所得的活性炭固体粒悬浮在流体中,利用活性
炭对so2的吸附作用,将so2从废气中吸收,从而减少排污量。
上述技术实施后,可对各种发电、煤矿厂Job放的废气污染物so2进行有效的处理和排放,实现良好的治理,保护环境和人民的健康。
工业废气—固定污染源排气中一氧化碳的测定—非色散红外吸

FHZHJDQ0193 工业废气固定污染源排气中一氧化碳的测定非色散红外吸收法F-HZ-HJ-DQ-0193工业废气—固定污染源排气中一氧化碳的测定—非色散红外吸收法1 范围本方法适用于固定污染源有组织排放的一氧化碳测定。
本方法检出限为20mg/m3,定量测定的浓度范围为60~15×104mg/m3。
2 原理一氧化(CO)对4.67µm,4.72µm二波长处的红外辐射具有选择性吸收,在一定波长范围内,吸收值与一氧化碳的浓度呈线性关系(遵循朗伯-比耳定律),根据吸收值确定样品中一氧化碳的浓度。
3 试剂除非另有说明,分析时均使用符合国家标准的分析纯试剂。
3.1 CO标准气体:其浓度应达到仪器满量程的90%~100%,用来校正仪器。
3.2 变色硅胶3.3 玻璃棉。
4 仪器4.1 非色散红外气体分析仪抗干扰:对CO2和H2O分别具有2000:1和1000:1或更好的抗干扰;精确度:+3%(满刻度);量程:0~50000mg/m3。
4.2 采样仪器采样管:用不锈钢、硬质玻璃或聚四氟乙烯材质的管料,其头部塞有适当量的玻璃棉(3.3)。
抽气泵:密封隔膜泵或具有同等效果的其他泵。
采气袋:铝箔复合薄膜气袋。
连接管:硅橡胶管,口径与其连接部件相配。
弹簧夹。
除湿装置:一般情况下采用气体吸收瓶中填装玻璃棉,依靠烟气冷却凝结水份除湿;若烟气温度高,含湿量大,需采用冷凝器除湿。
5 采样5.1 采样位置和采样点采样位置:采样位置应优先选择在垂直管段。
应避开烟道弯头和断面急剧变化的部位。
采样位置应设置在距弯头、阀门、变径管下游方向不小于6倍直径和距上述部件上游方向不小于3倍直径处。
对矩形烟道,其当量直径D=2AB/(A+B),式中A、B为边长。
对于气态污染物,由于混合比较均匀,其采样位置可不受上述规定限制,但应避开涡流区。
如果同时测定排气流量,采样位置仍按上述规定选取。
采样位置应避开对测试人员操作有危险的场所。
溶液吸收法

原料气先与吸收塔底来的富液混合,经冷却后进行气液分离,分出 的气体再进入吸收塔底部。分离出的液体经过4级闪蒸:第1级为高压闪 蒸,以回收被其吸收的甲烷;第2级为中压闪蒸,用以在较高压力下释 放出CO2;第3级及第4级分别为常压及真空闪蒸。在这些闪蒸中有两级 并不是必须的,但却可以明显提高该法的经济性。 当吸收压力为6.8MPa、真空闪蒸压力为34kPa(绝)时,净化气中CO2 含量为1%,可以满足大多数天然气净化要求。如闪蒸压力较高,净化 气中CO2含量也高。需注意的是物理吸收剂可溶解重烃,故对于含重烃 较多的天然气,应采取措施防止溶剂吸收重烃。 据报道,此法可用来处理含有65%CO2和5%H2S的原料气,它可回收 原料气中90%的CO2,并可用于强化采油,销售气也符合管输要求。
Hale Waihona Puke 气体吸收是用液体吸收剂吸收气体的单元操作。
(1) 吸收基本原理:是利用气体混合物中各组分在某一液体吸收剂 中溶解度的不同,从而将其中溶解度最大的组分分离出来。
(2)特点:吸收是一种组分从气相传入夜相的单向扩散传质过程。
(3)方法包括: 1.喷淋吸收液体是分散相,气体是连续相; 2.鼓泡吸收气体是分散相,液体是连续相; 3.膜式吸收液体是分散相,气体是连续相。
一、化学吸收法
用溶液、溶剂或清水吸收工业废气中的有害气体,使其与废气分离的 方法叫吸收法。 溶液、溶剂、清水称为吸收剂。吸收剂不同可以吸收不同的有害气体。 吸收法使用的吸收设备叫吸收器、净化器或洗涤器。许多湿式除尘设 备,都可以用于净化有害气体。当作吸收设备时,分别称为喷淋洗涤器、 泡沫洗涤器、文氏管洗涤器等。吸收法的工艺流程和湿法除尘工艺近似, 只是湿法除尘工艺用清水,而吸收法净化有害气体要用溶剂或溶液。
二、化学吸收法的优缺点
吸附法脱除烟气中二氧化硫的实验研究

吸附法脱除烟气中二氧化硫的实验研究杨嘉谟;苏青青;高凤;刘华洋【摘要】采用改性的活性炭、沸石、累托石和粉煤灰作为固体吸附剂,研究了吸附法脱除模拟烟气中低浓度二氧化硫的可行性,比较了几种固体吸附剂的脱硫效果.研究结果认为4种固体吸附剂在吸附模拟烟气中SO2的吸附能力顺序为:活性炭>粉煤灰>累托石>沸石,其中最佳吸附效果的是活性炭,其最大脱硫率可达98.71%,平均脱硫率也可达到66.58%.探索了改性活性炭脱除烟气中低浓度二氧化硫的影响因素,实验表明:空速对活性炭脱硫效果的影响较大.随着空速的增加,停留时间变短,在同样累计通气时刻,脱硫率下降;低温吸附时,随吸附温度升高,吸附量降低;但在高温出现化学反应吸附时,吸附温度高则反应速度快,脱硫效果好;此外,硝酸浸泡时间越长,活性炭吸附脱硫效果越好.【期刊名称】《武汉工程大学学报》【年(卷),期】2008(030)002【总页数】4页(P54-57)【关键词】吸附法;烟气;脱硫率【作者】杨嘉谟;苏青青;高凤;刘华洋【作者单位】武汉工程大学环境与城市建设学院,湖北,武汉,430074;湖北三峡大学机械与材料工程学院,湖北,宜昌,443003;武汉工程大学环境与城市建设学院,湖北,武汉,430074;武汉工程大学环境与城市建设学院,湖北,武汉,430074【正文语种】中文【中图分类】X701.30 引言由于排放烟气中的二氧化硫是造成空气质量恶化、酸雨日益危害严重的主要原因,因此二氧化硫是我国规定的总量控制的大气污染物之一[1].控制燃煤二氧化硫排放的方法主要有三种[2],即燃烧前脱硫、燃烧中脱硫和燃烧后脱硫(亦称烟气脱硫).烟气脱硫(Flue Gas Desulfurization,FGD)是目前应用最为广泛、效率最高的脱硫技术,主要有石灰-石灰石湿法脱硫、吸附法脱硫、选择性催化氧化法脱硫等.吸附法烟气脱硫属于干法脱硫的一种,它是利用吸附剂吸附烟气中的SO2达到净化烟气的目的,并将吸附的SO2变为各种产品加以利用.吸附法脱硫具有二次污染少且吸附剂能反复利用,工艺过程简单的优点.近年来,以活性炭(焦)、煤制脱硫剂、活性炭纤维、沸石、氧化铝等为脱硫剂的烟气脱硫研究较多[3].本研究采用改性固体吸附剂进行模拟烟气中低浓度二氧化硫脱除的实验研究,探索了活性炭、沸石、累托石和粉煤灰改性后脱除烟气中低浓度二氧化硫的可行性,比较了几种固体吸附剂的脱硫效果.1 实验部分1.1 实验药剂主要实验药剂有:硫代硫酸钠(Na2S2O3),AR,焦碱集团化学试剂厂;氨基磺酸铵(NH4SO3NH2),AR,天津市福晨化学试剂厂;可溶性淀粉(C6H10O5),AR,浙江湖州市菱湖食品化工厂;碘化钾(KI),AR,天津市凯通化学试剂有限公司;氯化钠(NaCl),AR,天津市科密欧化学化学试剂厂;盐酸(HCl),AR,武汉市亚泰化工试剂有限公司;硫酸(H2SO4),AR,武汉市亚泰化工试剂有限公司;硫酸铵[(NH4)2SO4],AR,天津市德恩化学试剂有限公司;碘(I2),AR,天津市科密欧化学试剂开发中心.1.2 吸附剂改性本实验在预先研究中发现未经改性的各类吸附剂的吸附性能较差,因此选择了几种改性方法对吸附剂进行改性,预备工作研究表明改性后吸附剂吸附性能均有明显提高.1.2.1 改性活性炭的制备[4] 取一定量的洗净并烘干的活性炭,分别在室温和沸腾的温度下用硝酸浸泡.浸泡时间为4 h.浸泡之后用水洗净,烘干、待用.1.2.2 改性沸石的制备[5] 采用碱液浸泡对沸石进行改性.将一定量的沸石放入烧杯中,用1 mol/L的NaOH溶液浸泡24 h,洗净烘干待用.1.2.3 改性累托石的制备[6] 将钛酸丁酯(C16H36TiO4)在搅拌条件下溶于定量的无水乙醇及二乙醇胺溶液中,搅拌一定时间,得溶液A;按一定的化学计量将蒸馏水和过渡金属盐、无水乙醇配制成溶液B.然后在搅拌的条件下将B溶液倒入溶液A 中,搅拌一定时间制得柱撑剂凝胶C.称取一定量的累托石置于蒸馏水中,并搅拌一定时间制成累托石悬浮液.在一定温度下,将柱撑剂凝胶C加入到不断搅拌的累托石悬浮液中,使其充分反应后,静置24 h,过滤后成型.自然凉干后,于一定温度下焙烧得Ti/Fe层柱成型累托石.1.2.4 改性粉煤灰吸附剂的制备[7] 试验用粉煤灰来自于武汉工程大学学校锅炉房蒸汽锅炉所排出的干渣,利用锅炉排出的煤渣作脱硫剂基本核粒,于110℃下烘4 h后粉碎,过筛后采用石灰裹覆在粉煤灰颗粒表面,制成多孔的钙质粉煤灰脱硫剂.石灰/粉煤灰(质量比)=1/5.1.3 实验步骤将一定体积的吸附剂装入吸附柱中.液态SO2钢瓶减压转化成的SO2气体用毛细管流量计计量后进入气体混和罐.打开空气压缩机的出气阀输入一定量的空气与SO2在气体混和罐内充分混合,经过转子流量计计量.当实验气体的浓度和流量调整好后,同时调节油浴锅温度使其达到吸附温度.温度恒定后,将一定SO2浓度的实验气体通过吸附床层,并按下秒表计时,同时把吸收管的尾气导入含有甲基橙指示剂的50 mL水溶液中.按一定时间间隔采样测定SO2进气浓度以保持进气浓度恒定,同时采样测定床层出口浓度,并记录.当吸附一段时间后,二氧化硫会穿透吸附床层进入装有甲基橙指示剂的尾气吸收瓶中,这时尾气吸收瓶中的黄色会变成红色,尾气通过吸收瓶后排放.到达一定时间后停止试验并按下秒表.采用碘量法测定进出口气体中的SO2含量[8].2 结果与讨论2.1 几种改性吸附剂的穿透曲线比较参考有关文献[9],结合烟气出口大致温度范围,采用吸附温度为120℃.吸附床层进口气体中SO2浓度(指体积分数,下同)统一为2 000(×10-6).改性后的活性炭、沸石、累托石以及粉煤灰吸附脱硫时的床层出口浓度与时间的关系见图1.可以看出,累托石和沸石虽然经过改性,但吸附能力仍然较差.两者大约吸附20 min左右即出现床层出口二氧化硫浓度迅速上升,说明床层已经被穿透;而改性粉煤灰和活性炭则呈现较好的吸附特性,尤其是改性活性炭大约吸附40 min才会出现穿透现象,比累托石和沸石的穿透时间几乎大1倍.图1 吸附脱硫时各吸附剂的床层出口浓度与时间的关系Fig.1 Relationship between SO2 concentration of exit gas of adsorption bed and adsorption time by different solid adsorbents2.2 几种吸附剂脱硫率比较脱硫效率(η)用公式(1)计算:η=(1-C0/C)×100%(1)式(1)中:C0表示标准状态下吸收塔入口处气体中的SO2的浓度,10-6;C表示标准状态下吸收塔出口处气体中的SO2的浓度, 10-6.平均脱硫率为吸附时间内的平均值,几种改性固体吸附剂的脱硫率见表1.表1 几种改性吸附剂的脱硫率Table 1 Desulfurization rate of modified solid adsorbents吸附温度/℃最大脱硫率/%平均脱硫率/%活性炭12098.7166.58累托石12072.3435.65粉煤灰12090.6150.36沸石12069.1232.49 从表1可以看出,几种吸附剂改性后的吸附脱硫能力顺序为:活性炭>粉煤灰>累托石>沸石,活性炭和粉煤灰的平均吸附脱硫率均可达到50%以上.其中活性炭对烟气中SO2的吸附效果最佳,最大脱硫率可达98.71%,平均脱硫率达到66.58%.图1和表1的实验结果说明:最佳吸附效果的是活性炭,其次是粉煤灰,而沸石和累托石基本不能用作烟气低浓度SO2的吸附.图2为吸附前后活性炭活性表面微孔特征.图2 吸附前(右图)和吸附后(左图)活性炭表面微孔特征Fig. 2 Character of active carbon holes for not gas adsorption (right side) and gas adsorption(left side)2.3 活性炭吸附SO2影响因素经过硝酸浸泡处理改性的活性炭表面含氮官能团增加,含氮官能团是吸附SO2的重要活性中心之一,其吸附SO2可能的机理如下[4]:(2)(3)2NO+O2→2NO2(4)(5)(6)“*”表示该化合物已被吸附在活性中心上.由(3)、(4)式可知,作为氧化剂的NO2被还原为NO,而NO和空气中的O2相互作用又生成NO2.NO起输送氧的作用.从本质上看,[N]*是SO2被空气中的O2所氧化的催化剂,在N活性中心上SO2经氧化生成SO3或经HNO3氧化后的活性炭在高温下进行热处理,使得活性炭表面酸性含氧官能团大量分解,形成了新的碱性部位(如不饱和碳碳键),所得的活性炭对SO2的吸附转化能力有进一步的提高.2.3.1 空速的影响试验条件:活性炭床层厚度10 cm,吸附温度120℃,SO2浓度2 000(×10-6),空速分别为0.05 s-1、0.025 s-1、0.01 s-1.所测出口气体中SO2浓度见表2.表2 活性炭吸附时不同空速下床层出口气体中SO2浓度Table 2 SO2 concentration of exit gas of active carbon bed at different spacevelocity×10-6空速/s-10min10min20min30min40min50min60min70min0.05085.6302.6568.8863.8986.5999.5999.80.025048.688.9366.8586.8685.775 6.8888.50.01020.556.8106.8302.6578.8658.8688.6由表2可知,空速对活性炭脱硫效果的影响较大.随着空塔气速的增加,在同样累计通气时刻,脱硫率总体呈下降的趋势.经分析认为:在气流速度较小时,吸附剂的外表面存在一个流层的边界层,随着流速增大,边界层的厚度逐渐变薄,外扩散阻力减小,外扩散传质系数随流速增大而增大,这一点对吸附有利;但同时随着空速增加,含 SO2气体在床层的停留时间较短,使得气流中的SO2还没能与吸附剂充分接触就通过了床层,试验结果表明吸附时此因素的影响更为显著.2.3.2 吸附温度的影响试验条件:吸附剂床层厚度10 cm,入口SO2浓度为2 000(×10-6),空速0.01 s-1,吸附温度分别为110℃、70℃、50℃、30℃.不同吸附温度下的床层出口气体中SO2浓度见表3.表3 活性炭吸附时不同温度下床层出口气体中SO2浓度Table 3 SO2 concentration of exit gas by active carbon bed at differenttemperature×10-6温度/℃0min10min20min30min40min50min60min70min110020.556.8106.8 302.6578.8658.8688.670097.9212.2317.5428.8867.31096.21 197.350088.2188.8277.9421.9752.7994.81096.630080.1160.0267.1401.7720.8862.4994.6从表3可以看出,采用改性后的活性炭吸附烟气中的SO2,随着吸附温度升高在同样时间内床层出口浓度增大,说明低温下主要为物理吸附,温度升高对吸附不利,易导致脱附;但当温度升到110℃时,在同样吸附时间内温度升高床层出口浓度反而下降,说明由于活性炭进行了硝酸浸泡改性,高温下SO2气体在活性炭微孔内发生了化学反应吸附,吸附量提高,床层出口浓度下降,吸附效果得到改善.温度影响的结论为低温吸附时,随吸附温度升高,吸附量降低,但在高温出现化学反应吸附时,吸附温度高反应速度快,脱硫效果较好.2.3.3 HNO3浸泡时间的影响试验条件:活性炭床层厚度10cm,吸附温度120℃,SO2浓度2 000(×10-6),空速为0.01 s-1.HNO3浸泡时间对活性炭吸附性能的影响见表4.表4 硝酸浸泡活性炭不同时间的床层出口气体中SO2浓度Table 4 SO2 concentration of exit gas of active carbon bed with different soaking timeby HNO3×10-6浸泡时间0min20min40min60min80min100min120min140min160min1h083.12398.6779.81112.31246.51372.51490.91496.62h076.05346.5751.71012.71189.21370.61486.71495.64h056.8302.665/.8912.810 06.51167.81384.31394.6从表4可以清楚看出,采用硝酸浸泡与未采用硝酸浸泡活性炭在吸附性能上有着显著区别,已浸泡硝酸的活性炭对烟气中低浓度SO2的吸附能力明显强于未浸泡硝酸的活性炭,而且随着硝酸浸泡时间的延长,吸附剂的吸附性能变好,但实际生产中应考虑操作成本问题.3 结语a. 通过对活性炭、沸石、累托石以及粉煤灰改性后脱除烟气中低浓度二氧化硫的实验研究,可以看出这4种固体吸附剂在吸附模拟烟气中SO2的吸附能力顺序为:活性炭>粉煤灰>累托石>沸石,其中最佳吸附效果的是活性炭,其最大脱硫率可达98.71%,平均脱硫率也可达到66.58%.而沸石和累托石基本不能用做烟气低浓度SO2的固体吸附剂.b. 对硝酸浸泡改性的活性炭吸附脱除烟气中低浓度二氧化硫影响因素分析可知空速对活性炭脱硫效果的影响较大.随着空速的增加,停留时间变短,在同样累计通气时刻,脱硫率下降.实验结果认为,改性活性炭吸附温度影响是:低温吸附时,随吸附温度升高,吸附量降低;但在高温出现化学反应吸附时,吸附温度越高则反应速度越快,脱硫效果越好.通过对活性炭硝酸浸泡时间影响因素实验分析,浸泡时间越长,吸附脱硫效果越好.参考文献:[1]杨新兴. 我国SO2的减排构想与经济分析[J]. 环境科学研究,1998,11(6):13-15.[2]雷仲存,王宇. 工业脱硫技术[M]. 北京:化学工业出版社,2001,124-162.[3]王芙蓉,关建郁. 吸附法烟气脱硫[J]. 环境污染治理技术及设备,2003,4(3):72-76.[4]Stohr B, Boehm H P, Schlogl R.Enhancement of the catalytic activated carbons in oxidation reactions by thermal treatment with ammonia or hydrogen cyanide and observation of a superoxide species as a possible intermediate[J].Carbon,1991,29(6): 707-711.[5]王云波,张海燕,谭万春,等.沸石吸附法处理高氟饮用水的试验研究[J]. 长沙交通学院学报,2004,20(3):53-57.[6]陆琦,汤中道,雷新荣,等.钛基柱撑累托石矿物材料的研究[J]. 矿物学报,2001,(3): 27-33.[7]刘精今,杨麟. 利用炉渣进行烟气脱硫的原理和实践[J].中国资源综合利用,2003,15(2):21-22.[8]林肇信,郝吉明,马广大. 大气污染控制工程实验[M]. 北京:高等教育出版社,1990.66-71.[9]熊云威.钙质煤渣脱硫剂与烟气脱硫试验研究[J].重庆环境科学,2000,22(3):29-31.。
甲烷对非分散红外吸收法测定固定污染源废气中二氧化硫的干扰

2 380 μmol / mol,扩 展 不 确 定 度 优 于 ± 2% ) , 高 浓
刘通浩等:甲烷对非分散红外吸收法测定固定污染源废气中二氧化硫的干扰
甲烷的吸收峰在 波 长 为 7. 2 ~ 8. 3 μm 之 间,与 二
氧化硫的吸收峰在波长为 7. 2 ~ 7. 6 μm 之 间 存 在
明显的重叠。 目前 非 分 散 红 外 吸 收 法 测 定 二 氧
化 硫 时 ,通 常 选 取 波 长 为 7. 3 μm 的 红 外 光 进 行
测 试 ,在 这 个 波 长 下 ,甲 烷 也 会 对 红 外 光 有 显 著
干 扰 ,不 同 设 备 厂 商 在 仪 器 中 均 引 进 了 干 扰 修
正 计 算 方 法 ,对 测 定 结 果 进 行 修 正 , 但 由 于 各 家
仪器设备 修 正 模 型 不 同,修 正 后 的 结 果 存 在 较
大 差 异 ,影 响 了 复 杂 污 染 源 烟 气 环 境 下 监 测 结
第 36 卷 第 6 期
2020 年 12 月
中 国 环 境 监 测
Environmental Monitoring in China
Vol. 36 No. 6
Dec. 2020
甲烷对 非 分 散 红 外 吸 收 法 测 定 固 定 污 染 源 废 气 中 二 氧 化
硫的干扰
刘通浩 1 ,张守斌 1 ,敬 红 1 ,王军霞 1 ,李恒庆 2 ,谷树茂 2 ,付 斌 3
机 构 、科 研 院 所 及 企 事 业 单 位 广 泛 应 用 于 日 常
污染源 监 测。 但 是,烟 气 的 含 湿 量、负 压、 干 扰
气体等都会对定电位电 解 法 测 定 二 氧 化 硫 产 生
实验室废水废气处理方法

实验室废水废气处理方法一、废气处理措施1、废气种类废气中包含无机废气和有机废气,以下列举了废气的一些种类,不同的实验室还会有某些特定种类的废气.1无机废气主要包括:氮氧化物、硫酸雾、氯化氢等无机废气.2有机废气主要包括芳香类:苯、甲醛、茚三酮、乙酸乙酯、甲酰胺、乙醇、三氯甲烷、环己烷等2、处理方案常用的有活性炭吸附、光催化净化和填料喷淋塔,或者多种组合的方式进行处理.一般有机废气采用活性炭吸附法和光催化净化法,无机物采用填料喷淋塔进行处理.1活性炭吸附原理1、活性炭是一种主要由含碳材料制成的外观呈黑色,内部空隙结构发达、比表面积大、吸附能力强的一类微晶质碳素材料.活性炭材料中有大量肉眼看不见的微孔,1克活性炭材料中微孔,将其展开后表面积可高达800-1500平方米,特殊的更高.也就是说,在一个米粒大小的活性炭颗粒中,微孔的内表面积可能相当于一个客厅面积的大小.正是这些高度发达,如人体毛细血管般的空隙结构,使活性炭拥有了优良的吸附性能.2、分子之间相互吸附的作用力即“范德华力”.虽然分子运动速度受温度和材质等原因的影响,但它在微环境下始终是不停运动的.由于分子之间拥有相互吸引的作用力,当一个分子被活性炭内孔捕捉进入到活性炭内空隙中后,由于分子之间相互吸引的原因,会导致更多的分子不断被吸引,直到填满活性炭内部空隙为止.3、活性炭脱附方法 .当活性炭内部空隙被有机废气即被吸附物质填满而达到饱和时,污染物便开始被释放出来,这种现象称为穿透.达到饱和的活性炭吸附床需要进行再生,一般采用加热的气体对吸附床进行脱附,一方面使吸附床再生重新具有活性,一方面是污染物被解脱出来进行回收或分解处理.这种脱附方法称为升温脱附.物质的吸附量是随温度的升高而减小的,将吸附剂的温度升高,可以使已被吸附的组分脱附下来,这种方法也称为变温脱附,整个过程中的温度是周期变化的.2光触媒催化滤网在聚氨酯蜂窝网孔基材上沉积纳米二氧化钛光催化材料,纳米二氧化钛光触媒经紫外光照射理想紫外光波长253nm-365nm 左右,激发价带上的电子eˉ跃迁到导带,在价带上产生相应的空穴h+,生成具有极强氧化作用的氢氧自由基、超氧离子自由基、超氧羟基自由基,将甲醛、苯、甲苯、二甲苯、氨、TVOC 等有毒有害污染物,臭气异味、细菌等污染物氧化分解成无害的CO2 和H2O.产品具有良好的空气净化效果和广谱的消毒杀菌性能,能有效净化室内空气,控制细菌、病毒的交叉感染达到空气净化和消毒杀菌的目的.光触媒滤网采用的纳米二氧化钛光触媒在作用过程中,本身不发生变化和损耗只提供一个反应场所,具有作用时间长久,空气净化和消毒杀菌效率高,安全、无毒等优点,不产生二次污染,是国际公认的绿色环保无污染的产品.3酸雾喷淋净化塔是需处理的废气由玻璃钢离心风机压入净化塔进气段后,垂直向上与喷淋段自上而下的吸收液起中和反应,使废气浓度降低,然后继续向上进入填料段,废气在填料内交叉洗涤,再与吸收液起中和反应,使废气浓度进一步降低后进入脱水层段,脱去液滴,将净化后的气排出.酸雾喷淋净化塔是无机气体净化的常用处理工艺,工艺技术相当成熟,且稳定可靠.其工作时吸收液通过填料塔顶部的喷淋装置被均匀的喷洒在填料层顶部,并沿着填料层自上而下呈膜状流动,而废气则自塔下部进入,穿过填料层从塔顶排出.在此过程中,废气被迫多次改变方向、速度与吸收液不断碰撞、接触,使废气与吸收液在填料层中有充分接触反应时间,令废气中有害成分能够被吸收液充分吸收净化.净化后的气体经塔内除雾后可达标排放.3、排放标准根据所在地区的类别,满足大气污染物综合排放标准GB16297-1996的排放要求.二、废气处理措施1、废水种类1强酸:如盐酸、硫酸、磷酸等2强碱:如氢氧化钠等3有机溶剂:如苯、甲醛等2、处理方案常用的废水处理方案包括:酸碱中和、斜管沉淀、多介质过滤、活性炭吸附、紫外、臭氧或氯片杀菌消毒、生物降解,或者多种组合的方式进行处理.1酸碱中和废水经收集管网汇入收集调节池,经曝气管鼓风搅拌后水质均匀,提升泵将调节池废水经格栅去除毛发等杂物后流入碱沉反应池,通过pH自动仪监测来水pH情况后自动加碱,使得废水中重金属离子首先形成沉淀除去.而后通过自动加酸使得中和池中废水pH处于8~9,通过提升泵将中和后废水泵入带有絮凝和混凝两个反应段的组合气浮设备,主要是混凝去除实验室产生的组织碎屑、脂质等和水中的有机污染物、阴离子表面活性剂LAS等.混凝机理:1双电层压缩机理当向溶液中投入加电解质,使溶液中离子浓度增高,则扩散层的厚度将减小.当两个胶粒互相接近时,由于扩散层厚度减小,ζ电位降低,因此它们互相排斥的力就减小了,胶粒得以迅速凝聚.2吸附电中和作用机理:吸附电中和作用指胶粒表面对带异号电荷的部分有强烈的吸附作用,由于这种吸附作用中和了它的部分电荷,减少了静电斥力,因而容易与其他颗粒接近而互相吸附.3吸附架桥作用原理:吸附架桥作用主要是指高分子物质与胶粒相互吸附,但胶粒与胶粒本身并不直接接触,而使胶粒凝聚为大的絮凝体.2斜管沉淀基本原理是“浅层沉淀”,又称“浅池理论”,设斜管沉淀池池长为L,池中水平流速为V,颗粒沉速为u0,在理想状态下,L/H=V/ u0.可见L与V值不变时,池身越浅,可被去除的悬浮物颗粒越小.若用水平隔板,将H分成3层,每层层深为H/3,在u0与v不变的条件下,只需L/3,就可以将u0的颗粒去除.也即总容积可减少到原来的1/3.如果池长不变,由于池深为H/3,则水平流速可正加的3v,仍能将沉速为u0的颗粒除去,也即处理能力提高倍.同时将沉淀池分成n层就可以把处理能力提高n倍.3多介质过滤过滤器材质为FRP,内部级配无烟煤和石英砂滤料,主要过滤废水中大颗粒和絮状杂质,滤层高度一般为≥1000mm,配置一台自动阀,按运行-反洗-正洗-运行模式运作.4紫外、臭氧或氯片杀菌消毒废水按一定的速度从紫外杀菌器反应腔或流过或臭氧发生器的产生臭氧,水中的微生物受到高强度的UV照射,微生物DNA、RNA内部结构遭到破坏,从而在不使用任何化学药物的情况下,达到大肠杆菌排放标准,或者采用定期投加氯片的消毒方式.5活性炭吸附废水汇入活性炭生物滤池,尚未被去除的细小悬浮物、微量金属及极少量的有机物等,一部分通过具有巨大孔隙结构和比表面积的活性炭的吸咐、截留等物理、化学作用等去除.6生物降解利用厌氧、好氧及兼性菌进行生物降解.专性好氧的不动细菌在厌氧条件下处于压抑状态,以菌体内的多聚磷酸盐为能源,把有机物吸收到细胞内转化成聚β羟丁酸贮存起来,同时将体内多聚磷酸盐分解为可溶性磷酸盐排出体外,经过厌氧压抑释放的不动细菌,在好氧状态下具有很强的吸磷能力,将污水中的磷酸盐吸收转化为多聚磷酸盐贮存体内.在厌氧条件下释放的磷越多,则在好氧条件下吸收的越多,利用排剩余污泥达到去除污水中的磷的目的,厌氧池内配液下搅拌系统,以防沉淀.好氧微生物去除碳源需氧量即BoD和硝化细菌将NH3-N转化NOX所需的高氧环境和污染物质与生物相充分反应的接触环境.3、排放标准废水的排放必须满足污水综合排放标准GB8978-1996和CJ 343-2010 污水排入城市下水道水质标准,根据所在地区废水站的等级确定废水排放标准.三、固体废物处理措施1、使用防刺穿、防泄漏、密封的容器收集2、避免装载过满3、把利器放入专用容器内4、废弃物离开实验室前要对其外表进行消毒5、分类做上标记,分清能回收与不可回收的6、贴封条,安全的运送到高压灭菌处,并保持到高压灭菌结束7、无法高压灭菌或回收的,由专门的人收集后集中焚烧处理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《环工综合实验(2)》(吸收法净化气体污染物实验)
实验报告
专业环境工程
班级卓越环工1201
姓名陈睿
指导教师李响
成绩
东华大学环境科学与工程学院实验中心
二0一五年五月
实验题目吸收法净化气体污染物实验实验类别综合
实验室实验时间2015年 5 月7 日13 时~ 16 时
实验环境温度: 湿度: 同组人数9 本实验报告由我独立完成,绝无抄袭!承诺人签名
一、实验目的
1.了解吸收法净化气态污染物的原理。
2.计算实际的吸收效率。
二、实验仪器及设备
1.气体吸收装置,分析天平
2.氢氧化钠溶液,盐酸溶液,碳酸钠,邻苯二甲酸氢钾,甲基橙指示剂,酚酞指示剂
1-喷淋管 2-填料吸收塔 3-碱液储槽 4-尾气吸收瓶
5-酸性气体瓶 6-加热装置 7-铁架台
三、实验原理
气体吸收是气体混合物中一种或多种组分溶解于选定的液体吸收剂中,或者与吸收剂中的组分发生选择性化学反应,从而将其从气流中分离出来的操作过程。
从大气污染控制的角度看,用吸收法净化气态污染物,不仅是减少甚至消除气态污染物向大气中排放的重要途径,而且还能将污染物转化为有用的产品。
吸收可分为物理吸收和化学吸收。
在物理吸收中,气体组分在吸收剂中只是单纯的物理溶解过程;而在化学吸收中,吸收质在液相中与反应组分发生化学反应,从而降低液相中纯吸收质的含量,增加了吸收过程的推动力,提高了吸收速率。
物理吸收中,吸收速率决定于吸收质在气膜和液膜中的扩散速率。
化学吸收中,吸收速率除与扩散速率有关外,还与化学反应的速率有关。
化学吸收过程既应服从被吸收组分的气液平衡关系即相平衡关系,也应服从化学平衡关系。
对于物理吸收及气液相反应原理,应用最广泛且较成熟的是“双膜理论”。
采用一般的物理吸收是不能满足实际处理中处理气体流量大、吸收组分浓度低、吸收效率高和吸收速率快等要求,所以一般多采用化学吸收过程。
在实际生产中,对于吸收设备的最基本要求是:气液之间有较大的接触面积和一定的接触时间,且气液之间扰动强烈,吸收阻力小,吸收效率高;结构简单,操作稳定。
最常用的是填料塔,其次是板式塔,另外还有喷洒塔和文丘里吸收器。
本实验中采用的吸收装置是填料塔,填料采用的是鲍尔环。
气体化学吸收操作中的几个要点
1.吸收剂的选择是决定分离效果的关键因素之一
选择原则:(1) 溶解度要大
(2)良好的选择性
(3) 蒸汽压要低
(4) 较低的粘度且不易起泡
(5) 再生性能好
(6) 化学及热稳定性好
(7) 毒、腐蚀性小,不易燃
(8) 资源充足,廉价易得
2.吸收塔结构与填料
填料塔结构图如右。
填料的作用及要求:增加气液扰动;改善表面润湿性能;减小压降;增大比表面积常用材质有陶瓷、金属、塑料、玻璃、石墨等。
实验分析:
经过上述实验数据处理可以得知,化学吸收效率远高于物理吸收效率,符合实际情况,故此次实验成功。
七、思考题
1、填料塔吸收影响传质系数的因素有哪些?
答:①吸收方式:物理性吸收比化学性吸收要低。
②与进口气体浓度、气体流量、吸收液种类及浓度和喷淋密度对传质系数的影响较大。
随着进口气体浓度的增大,传质系数逐渐减小;随着进口气体流量、吸收液浓度及吸收液喷淋密度的增大,传质系数逐渐增大。
③与填料和被吸收物质的接触时间、接触面积有关。
2、工业生产中如何处理含二氧化硫废气?可以用填料塔吸收二氧化硫尾气吗?
答:(1)高浓度SO2:冶炼厂、硫酸厂和造纸厂等工业,SO2浓度通常2%~40%,工业上一般采用多层催化床层。
(2)低浓度SO2烟气脱硫:燃烧设施直接排放的SO2浓度通常为10-4~10-3数量级。
由于SO2浓度低,烟气流量大,烟气脱硫通常比较昂贵。
工业上一般采用:①根据脱硫产物处置方式:抛弃法和再生法;②根据脱硫产物状态:湿法和干法。
(3)主要烟气脱硫工艺:
①石灰石/石灰法洗涤:目前应用最广泛的脱硫技术。
石英石和石灰法烟气脱硫反应机理
石英石/石灰法烟气脱硫示意流程图
②改进的石灰石/石灰湿法烟气脱硫:加入己二酸的石灰石法;添加硫酸镁;双碱流程。
③喷雾干燥法烟气脱硫:一种湿-干法脱硫工艺,市场份额仅次于湿钙法。
脱硫过程:SO2被雾化的Ca(OH)2浆液或Na2CO3溶液吸收;温度较高的烟气干燥液滴形成干固体废物;干废物由袋式或电除尘器捕集。
喷雾干燥法烟气脱硫工艺流程
④其他湿法脱硫工艺:氧化镁法;海水脱硫法;氨法。
⑤干法脱硫技术:干法喷钙脱硫;循环流化床烟气脱硫。
(4)可以用填料塔吸收二氧化硫,但是需要选择合理的吸收剂。
有大量SO2气体需被吸收时,如选用NaOH做吸收剂则不符合经济性原则;在废气中同时含有CO2等气体时,如选用NaOH,则生成的Na2CO3会妨碍填料塔的吸收。
3、某厂主要生产铝百叶窗帘,其中铝片生产工艺如下:
其中,清洗并烘干后的铝卷通过自动滚涂过程上色,上色剂采用采用油漆粉和稀释剂配制而成,稀释剂中含苯、甲苯、二甲苯、非甲烷总烃等成分。
自动滚涂后通过烘干过程使得着色牢固。
上色好色的铝卷即可倒卷、包装、入成品库。
喷涂线工艺流程烘干工段产生的废气,铝片烤漆线工艺流程烘干工段和自动滚涂工段产生的废气年排放量为150万m3/a,废气中含有苯、甲苯、二甲苯等有毒害物质,混合浓度为800mg/m3,非甲烷总烃浓度为800mg/m3,请设计方案对喷涂线产生废气进行治理。
答:目前含苯废气治理技术主要为吸附净化技术、吸收净化技术、催化燃烧净化技术、生物净化技术和光催化氧化技术。
①吸附净化:吸附净化法处理含苯废气是利用颗粒活性炭、纤维活性炭或蜂窝状活性炭巨大的比表面积吸附废气中的苯系物,使其净化。
当活性炭吸附饱和后可用蒸汽进行解析,并回收吸附质,活性炭吸附工艺最常用的是固定床吸附器。
②吸收净化:吸收法净化含苯废气是采用吸收剂吸收废气中的苯系物。
常用的吸收剂为柴油、煤油、664消泡剂、碳酸丙烯醋等。
该方法对处理大风量、常温、低浓度含苯废气比较有效和费用低,在工程上得到实际应用。
在喷漆工艺过程中,油漆随压缩空气由喷枪中喷出,涂于工件表面,既产生部分漆雾飞扬,又有苯、甲苯、二甲苯等溶剂扩散。
由于漆雾与溶剂混杂在气相中,形成气相非均一系统,目前主要采用吸收净化法处理。
以水为吸收介质,对“三苯”去除率达到以上80%。
③催化燃烧净化:催化燃烧净化是在克服热力燃烧耗能大等缺点上发展起来的。
目前国内工业应用中比较先进的工艺是采用“吸附浓缩一催化燃烧”流程,即将浓度较低的含苯废气先用蜂窝状活性炭吸附以达到净化空气的目的,当吸附饱和后再用热空气脱附使蜂窝活性炭再生,脱附温度控制在120~150℃。
脱附出的含苯废气被送往稀土钙钦矿蜂窝陶瓷催。