UV固化亲水涂料的制备及性能研究
51 紫外线(UV)固化涂层的配制及固化

实验序号:51实验名称:紫外线(UV)固化涂层的配制及固化专业:实验日期:报告日期:班级:学生姓名: 学号:实验地点:指导老师:实验成绩:一、实验目的(1)了解紫外线固化的基本原理。
(2)学习和掌握紫外线固化涂层的基本组成、配制方法、黏度测定、涂层涂布方式、漆膜光泽的测量与紫外线固化方法等基本操作。
二、实验原理紫外线(UV)固化的基本含义就是利用UV为能源,引发具有化学活性的液体配方,在基体表面实现快速反应的固化过程。
光敏涂层是光聚合反应的具体应用之一,即在光(一般为紫外线)作用下引发聚合或交联反应,从而达到固化目的。
与传统的溶剂涂层体系相比,紫外线固化涂层具有以下优点:(1)固化速度快,可在数十秒时间内固化,且不含挥发性有机溶剂,有利于环境保护;(2)室温固化,工作场地无污染,快速生产,节省能源,节约空间;(3)涂层高光泽,能赋予产品独特性能。
紫外线固化涂层体系主要由预聚物、光引发剂或光敏剂、活性稀释剂以及其他添加剂(如着色剂、流平剂及增塑剂等)构成。
预聚物是紫外线固化涂料中最重要的成分,涂层的最终性能(如硬度、柔韧性、耐久性等)在很大程度上与预聚物有关。
作为光敏涂料预聚物,应该具有能进一步发生光聚合或光交联反应的能力,因此必须带有可聚合的基团。
为了取得合适的黏度,预聚物通常为相对分子质量较小(1000~5000)的低聚物。
预聚物的主要品种有环氧丙烯酸树脂、不饱和聚酯、聚氨酯丙烯酸酯等。
光引发剂在光照下分解成自由基或阳离子,引发聚合反应。
活性稀释剂实际上是可聚合的单体,使用最多的是单官能团或多官能团的(甲基)丙烯酸酯类单体。
活性稀释剂在光固化前起溶剂的作用,调节黏度便于施工(涂布),在聚合过程中起交联作用,固化后与预聚物一起成为漆膜的组成部分。
活性稀释剂对涂膜的硬度与柔顺性等性能也有很大影响。
三、实验试剂及仪器药品:丙烯酸环氧树脂,丙烯酸酯,丙烯酸羟乙酯,TMPTA,Ciba Daracure 1173(2- 羟基-2-甲基-1-苯基-1-丙酮),助剂等。
水性光固化涂料的研究和应用

水性光固化涂料的研究和应用水性光固化涂料是一种新型绿色涂料,由于其良好的环保性、无毒无味、高效节能、色泽鲜艳等优点,在现代工业生产、建筑装修、家具制造等领域得到了广泛应用。
一、研究现状随着环保意识的高涨和国家对环境保护的要求不断提升,水性光固化涂料的研究发展越来越深入。
当前,水性光固化涂料研究主要集中在以下几个方面:1. 材料开发。
水性光固化涂料的耐候性、耐刮擦性、抗磨损性等性能需要不断提高,因此材料的开发和改进是研究的重点。
2. 光固化技术。
光固化技术是水性光固化涂料的核心技术,现在主要采用紫外线和LED光固化技术。
3. 涂装工艺。
水性光固化涂料的涂装工艺涉及到喷涂、滚涂、刷涂等多种技术,如何在不同材料上实现最佳涂装效果是研究的难点之一。
二、应用前景1. 工业生产。
水性光固化涂料以其高效节能、无毒无味等优点成为工业生产中替代溶剂型涂料的首选。
2. 建筑装饰。
水性光固化涂料能在墙面、地面等不同材质上实现平滑、美观的效果,适合多种建筑内外墙装修。
3. 家具制造。
水性光固化涂料的环保性能满足了现代家居环保素质的要求,而且造型更灵活、颜色更鲜艳,广泛应用于家具制造业中。
三、现实难点1. 技术瓶颈。
目前紫外线和LED光固化技术还没有实现充分发展,需要不断提高技术性能和稳定性。
2. 配套设备不足。
相比于传统溶剂型涂料,水性光固化涂料需要新型设备的支撑和配套,但大部分厂家的设备还没有跟上。
3. 价格更高。
相较传统涂料,水性光固化涂料价格更高,目前还不利于大规模推广应用。
四、未来展望1. 离线涂装技术。
离线涂装技术能够解决水性光固化涂料涂装后需要等干燥的时间问题,可实现即涂即用。
2. 涂装后处理技术。
涂装后处理技术可以使水性光固化涂料的硬度、高光度和柔韧度等性能得到进一步提升。
3. 价格下降。
随着技术的不断提高,生产成本的降低会使水性光固化涂料价格更加亲民化,从而推动其市场地位的提升。
总之,随着社会对绿色环保的关注度不断提高,水性光固化涂料作为一种新型绿色涂料,在未来的研究和应用中,将会有越来越重要的地位。
uv固化木器漆 配方

uv固化木器漆配方
UV固化木器漆的配方通常包括树脂、光引发剂、颜料、填料和其他添加剂。
树脂是UV固化木器漆的主要成分,用于形成漆膜。
常用的树脂有聚氨酯、丙烯酸和环氧树脂等。
这些树脂在UV光的照射下能够迅速固化,形成坚硬且耐磨的漆膜。
光引发剂是UV固化木器漆中的关键成分,其作用是吸收UV光并转化成能量,引发树脂的固化反应。
常用的光引发剂包括苯乙酮、樟脑醌等。
颜料和填料的作用是调节漆膜的颜色和遮盖力,同时也能够改善漆膜的质地和手感。
常用的颜料和填料有钛白粉、碳酸钙等。
其他添加剂包括流平剂、消泡剂、润湿剂等,用于改善漆膜的性能和施工效果。
具体的配方比例需要根据所需的漆膜性能、施工要求以及原材料的特性来确定。
在配制UV固化木器漆时,需要按照规定的比例混合树脂、光引发剂、颜料、填料和其他添加剂,并在搅拌均匀后进行过滤包装。
需要注意的是,UV固化木器漆的配方和制备过程需要严格控制,以确保其性能和稳定性。
同时,由于UV固化木器漆中含有光引发剂,因此在储存和使用过程中需要避免阳光直接照射,以免引发不必要的化学反应。
总的来说,UV固化木器漆的配方是一种技术含量较高的精细化工产品,需要经过专业的研发和生产过程来保证其质量和性能。
紫外光固化聚氨酯丙烯酸酯的合成及涂料的性能

紫外光固化聚氨酯丙烯酸酯的合成及涂料的性能胡波年, 王金银3(湖南建材高等专科学校,湖南衡阳421001)摘 要:以甲苯22,42二异氰酸酯,聚己二酸丁二醇酯二醇,二羟甲基丙烯等原料合成聚氨酯丙烯酸酯树酯(PUA )。
通过改变反应条件,研究和分析了温度、反应时间、催化剂浓度对树脂合成的影响,并对PUV 涂料基本性能进行了初步探讨。
关键词:紫外光固化;聚氨酯丙烯酸树脂;涂料中图分类号:TQ 630.4 文献标识码:A 文章编号:036726358(2004)0620302203Study on Syn thesis of PU A and Its U V 2cu rab le Coating P rop ertiesHU Bo 2n ian , W AN G J in 2yin(H unan B u ild ing M a teria ls Colleg e ,H unan H engy ang 421001,Ch ina )Abstract :PUV resin w as p rep ared from to luene 22,42diisocyanat ,po ly (bu tylene adi pate glyco l )and di m ethylo l p rop i on ic acid .T he effect of tem peratu re ,reacti on ti m e and catalyst concen trati on on syn thesis of PUA w as studied in detail ,and som e foundati onal p rop erties of the coating w ere detected .Key words :u ltravi o let 2cu rab le ;po ly (u rethane acrylate );coating收稿日期:2003209230;修回日期:2003212220基金项目:湖南省自然科学基金资助项目(01JJY 2129)作者简介:胡波年(1957~),男,湖南长沙人,硕士,副教授,主要从事涂料的开发和新产品的研究。
论紫外光固化水性聚氨酯丙烯酸酯的制备与性能

论紫外光固化水性聚氨酯丙烯酸酯的制备与性能紫外光固化水性涂料继承和发展了传统紫外光(UV)固化技术和水性技术的许多优点,绿色健康、对环境低污染甚至无污染、黏度低易喷涂、不易发生火灾、安全性好,近年来得到快速的发展,已成为涂料发展的热门方向之一。
紫外光固化水性聚氨酯丙烯酸酯结合了聚氨酯和聚丙烯酸酯二者的优点,既具有良好的耐候性、耐水性,又具有良好的柔韧性、耐磨性、附着力等性能。
一、紫外光固化的技术概述紫外光固化技术作为一种绿色的快速发展技术,在20世纪60年代初就己经脱颖而出,进入人们的视野。
紫外光固化相比于其他固化手段,具有固化速率快、效率高、有机挥发分含量低、设备投资少、低能耗等优点,被广泛应用于涂料、油墨、齿科修复材料及3D打印等诸多领域,在世界各国倡导绿色科技的影响下飞速发展,发展前景十分可观。
1. 紫外光固化特点紫外光固化是指光引发剂经紫外光照射后,会产生活性种(包括自由基或者阳离子),从而引发具有化学反应活性的液态乙烯基的单体或者预聚物发生聚合,形成交联网状结构,固化成膜。
其过程如下图所示。
紫外光固化过程2. 紫外光固化原理紫外光固化的实质是光聚合反应,根据其机理不同,可以将其划分成两种主要的聚合类型:一类是自由基聚合,一类是阳离子聚合。
光引发自由基聚合是紫外光固化产品中应用最广的一类聚合反应。
光引发自由基聚合是指光引发剂经紫外光的照射后,会吸收光能进而分解形成自由基,引发不饱和双键发生交联聚合反应。
光聚合的另一类反应则是阳离子光聚合。
阳离子光引发剂受激发后,会分解出超强质子酸,起催化功能,使低聚物中的环氧开环或使不饱和双键断开,从而发生聚合反应。
二、光固化水性涂料的优缺点1. 光固化水性涂料的优点(1)以水作为稀释介质,稀释低聚物或树脂,易于调节体系黏度,廉价易得。
(2)流变性用水或增稠剂就能得到方便地控制,适用于辊涂、淋涂、喷涂等多种涂布方式,施工便利。
(3)黏度用水调节,使得有机溶剂的含量下降,降低了VOC,减少了刺激性和毒性,对环境低污染甚至无污染,对人体健康无影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
UV固化亲水涂料的制备及性能研究UV固化亲水涂料的制备及性能研究核心提示:在丙烯酸酯亲水树脂上引入光敏单体甲基丙烯酸缩水甘油酯(GMA),使涂膜能常温固化且具有良好的亲水性和耐水性能。研究了引发剂和链转移剂摩尔分数对丙烯酸酯共聚物分子量、分子量分散度的影响,以及稀释剂、单体配比和GMA摩尔分数对涂膜亲水性和耐水性的影响。摘要:在丙烯酸酯亲水树脂上引入光敏单体甲基丙烯酸缩水甘油酯(GMA),使涂膜能常温固化且具有良好的亲水性和耐水性能。研究了引发剂和链转移剂摩尔分数对丙烯酸酯共聚物分子量、分子量分散度的影响,以及稀释剂、单体配比和GMA摩尔分数对涂膜亲水性和耐水性的影响。实验结果表明,当引发剂摩尔分数为1.2%,链转移剂摩尔分数为2%时,可制得分子量1300左右,分子量分散度1.85的丙烯酸酯共聚物;当GMA摩尔分数为15%(相对于AA物质的量)、稀释剂为丙烯酸羟丙酯(HPA)且质量分数为30%、AA与HPA的质量比为6∶4时,薄膜亲水和耐水的综合性能达到最佳,亲水角为14.2°,失重率为1.61%。引言光固化涂料有固化速度快、环境友好、节能、费用低等优点,在纸张、橡胶、塑料等涂装领域应用较广。一般来说,在室温下将光敏性的液态树脂置于UV灯下就可以直接转化成固化树脂,且一般不含易挥发性有机物。随着对环境问题的重视,这种环保型“绿色”工艺的研究开发和应用也越来越深入和普及。亲水涂料是近年来发展迅速的一种功能性涂料,主要用于铝和铝合金制品中,如空调热交换器的铝翅片上。传统的亲水涂料通常是亲水树脂在200℃高温下烘烤数十秒,热固化交联成膜制得。虽然制备方法工艺成熟、亲水性能好,但耗能大、有机溶剂挥发多、施工环境差。采用光固化交联方式制备纯有机亲水涂料,既利用了UV固化的优点又能满足亲水性要求,而目前暂未见这方面的报道。本文采用了一条新的合成思路,以低分子量丙烯酸酯共聚物为基础,引入光敏性单体,再光固化交联成膜制得亲水涂料,考察了GMA的引入及单体比例、活性稀释剂种类及含量等因素对涂料亲水性和耐水性能的影响。1·实验部分1.1实验原料丙烯酸(AA)、丙烯酸羟丙酯(HPA)、醋酸丁酯、乙二醇独甲醚、偶氮二异丁腈(AIBN)、十二硫醇、四丁基溴化铵、对苯二酚、甲基丙烯酸缩水甘油酯(GMA)、N-乙烯基吡咯烷酮(NVP),均为分析纯,北京化学试剂公司;光引发剂1173,1,6-己二醇二丙烯酸酯(HDDA),工业级,迪比喜化学贸易有限公司。1.2光敏型亲水性丙烯酸树脂的合成在四口瓶中加入一定量的醋酸丁酯和乙二醇独甲醚混合溶剂,升温至70℃左右;将计量好的引发剂偶氮二异丁腈、十二硫醇溶解于混合单体丙烯酸和丙烯酸羟丙酯中,然后将混合液在4~5h内滴加到四口瓶中进行聚合,保温2h。待聚合完全后把体系温度升至105~110℃,加入一定量的GMA、催化剂四丁基溴化铵、阻聚剂对苯二酚,反应2.5h,得到光敏型亲水性预聚物。具体的反应过程示意图如图1所示。图1光敏型亲水性预聚物的合成示意图1.3UV光固化涂料的制备将光敏型亲水性预聚物减压蒸馏,加入光引发剂、活性稀释剂,搅拌分散均匀。然后用线棒涂布器(XB型,上海标仪仪器有限公司)涂布于已处理过的铝箔表面,在高压汞灯下曝光2min,制得亲水涂料。1.4测试与表征丙烯酸酯预聚物的红外光谱利用美国尼高力公司的Nexus670傅里叶红外光谱仪进行表征;涂层亲水角采用德国dataphysics公司的OCA20型接触角测量仪测得;涂料黏度采用上海魁元科学仪器有限公司的DV-ⅢULTRA黏度仪测得。涂层的耐水性用失重率进行表征。失重率的测试为:将涂层浸泡在流动水中,24h后取出,室温干燥至恒重,以此循环3次后,称量浸泡前后涂层的质量。失重率s计算公式为s=(m0-m1)/m0(1)式(1)中m0为涂层浸泡前质量,m1为涂层浸泡后质量。2·结果与讨论2.1丙烯酸酯共聚物的分子量和分子量分散度用20g丙烯酸与13.4g丙烯酸羟丙酯进行共聚,共聚物分子量和分子量分散度与引发剂和链转移剂含量的关系如表1所示。表1引发剂和链转移剂含量的关系自由基聚合体系中,聚合物的聚合度Xn可以表示为
式(2)中链引发速率常数kp,链增长速率常数kd,链终止速率常数kt,链转移常数Ks,聚合效率f都为定值,所以当单体的浓度cM固定时,聚合度Xn只与引发剂浓度cI和链转移剂浓度cS相关。从表1中可以看出,当单体质量为恒值,链转移剂摩尔分数固定为1%时,共聚物的分子量随着引发剂含量的增大由4300降至1000左右。因为引发剂摩尔分数增大,自由基密度增大,即活性中心增大,从而导致聚合度降低,分子量减小,分子量分散度降低。但是引发剂含量不能无限量的增大,由于丙烯酸聚合是强放热反应,如果引发剂含量过大,反应过快,将导致局部过热而使聚合物的羟基和羧基发生交联,生成白色不溶物。固定引发剂摩尔分数为1.2%,聚合物分子量随着链转移剂浓度增大而减小。当链转移剂摩尔分数为2%时,聚合物分子量分散度最小。理论上一个偶氮二异丁腈分解两个自由基,一个链转移剂终止一个自由基,因此链转移剂浓度为引发剂浓度2倍时,分散度最低。但是引发剂的效率不可能达到1,同时自由基还有向溶剂等转移的可能,所以链转移剂与引发剂的物质的量比稍小于2时分散度最小。表1中可以看出,引发剂摩尔分数为1.2%,链转移剂摩尔分数为2%时,得到的共聚物分子量为1300左右,分子量分散度为1.85。2.2丙烯酸酯及光敏型丙烯酸酯的红外光谱分析图2是丙烯酸酯共聚物(a)和光敏型丙烯酸酯低聚物(b)的红外光谱图。
图2丙烯酸酯共聚物(a)和光敏型丙烯酸酯低聚物(b)的红外光谱图图2中,谱线a在1731.4cm-1处出现了丙烯酸羧基上C-O的特征峰,在1170.1cm-1处出现了丙烯酸羟丙酯上-CO的特征吸收峰,3340.2cm-1处出现了宽而强的羟基特征峰,说明了羧基和羟基的存在,AA与HPA发生了共聚。b曲线中在1635.9cm-1和812.8cm-1处出现了C=C双键特征吸收峰,并且在908cm-1处无环氧基团的特征吸收峰,说明GMA上的环氧基团和丙烯酸酯的羧基发生了酯化反应,丙烯酸酯接枝上了GMA,制备了含双键的丙烯酸酯树脂。2.3涂层性能的影响因素2.3.1稀释剂由于丙烯酸酯共聚物含有大量羟基和羧基,聚合物之间氢键作用很强,体系黏度较高,必须加入一定量的稀释剂来调节黏度。表2中给出的活性稀释剂分别为单官能团活性稀释剂HPA、NVP和双官能团活性稀释剂HDDA。表2中的3种稀释剂的用量相同,质量分数都为涂液配方的30%。从表2中可以看出,HDDA由于本身不含亲水基团,所以涂膜亲水角较大。NVP虽具有良好的亲水性,但不具耐水性能,失重率过大,同时加入后与低聚物的相容性不佳,薄膜颜色过深。因此,从薄膜亲水性和耐水性、薄膜颜色及涂膜前体系黏度考虑,HPA为本体系最佳活性稀释剂。
表2稀释剂种类对涂膜性能的影响HPA单官能团活性稀释剂每分子仅含1个可参与固化反应的CC双键,一般具有转化率高、固化速度低、交联密度低等特点。由于活性稀释剂直接参与了固化反应,故稀释剂的用量也将对涂料的综合性能产生重大影响。HPA稀释剂用量与涂料黏度、涂层亲水性和耐水性的关系如表3所示。
表3稀释剂用量对薄膜亲水角和耐水性的影响从表3中可以发现,稀释剂的含量越小,亲水角越小。当HPA质量分数为20%时,亲水角减小到13.1°。因为稀释剂用量少时,亲水树脂相应的比例大,亲水官能团密度增大,特别是羧基增多,从而亲水角变小。但是当HPA质量分数为20%时,涂液黏度过高,不易操作,光固化后的薄膜难以均匀。而当HPA质量分数大于30%时,薄膜失重率显著增大,当稀释剂质量分数增加到50%时,失重率可达5.93%。这是由于单官能团稀释剂用量增大,交联密度减小,耐水性能下降所致。综合较之,选用HPA的质量分数为30%。2.3.2单体比例涂膜的亲水性能主要受亲水树脂的影响,而树脂的亲水能力依靠分子链上的亲水基团含量以及几种亲水基团的协同作用。两种共聚单体的亲水性能不同,因而对共聚物产生的亲水性也不同。表4中列出了亲水单体不同质量比对涂层亲水性的影响。
表4单体比例对涂层亲水性的影响从表4可以发现,GMA含量一定时,随着AA含量的增大,涂膜亲水角减小,这是由于羧基亲水性强于羟基的原因。当AA与HPA的质量比为6∶4时达到最小,为15.7°,而当AA含量再增大时亲水角反而稍有增大。这是因为AA含量继续增加,羧基过于密集,羧基与羟基之间的氢键作用强烈,影响分子链的伸展状态,致使树脂光固化成膜后裸露在外的亲水基团减少,亲水性降低。从表4中可以看出,本体系AA与HPA的协同作用在质量比为6∶4时达到最佳,亲水性最好。2.3.3GMA含量含不饱和双键的亲水性丙烯酸酯预聚物固化后会成为一个交联的体型结构。本体系中GMA起到相当于交联剂的作用。GMA引入后,聚合物链上消耗一定量的羧基同时生成等物质的量的羟基。不同的GMA用量将对涂膜的亲水性和耐水性产生关键的影响。图3和图4所示为单体AA与HPA的质量比不变,稀释剂HPA含量不变,改变GMA加入量时,GMA摩尔分数xGMA(相对于AA物质的量)对涂膜亲水性和耐水性的影响。图3GMA含量与涂膜亲水性的关系
图4GMA含量与涂膜失重率的关系从图3可以看出,随着GMA含量的增加,亲水角逐渐增大。当GMA的摩尔分数由10%增大到30%时,亲水角由12.6°增大到34.5°。这是由于羧基的亲水性强于羟基,而GMA含量增加,消耗的羧基增多。同时,GMA含量增加,薄膜致密度增加,亲水基团的自由性变差,致使光固化膜亲水性变差。但并非GMA含量越低,涂层性能越好,图4所示为GMA含量与涂膜失重率的关系。随着GMA含量增大,薄膜交联度增加,耐水性增强,失重率减小。共聚物的分子量在1300左右,平均每条分子链上约有0.6Mn/72=11个丙烯酸分子。当GMA摩尔分数超过15%以