高三物理二轮复习各专题同步练习 4.2 带电粒子在磁场、复合场中的运动

合集下载

2013届高考物理二轮复习 第一部分 专题4 第二讲 带电粒子在磁场和复合场中的运动精品课件

2013届高考物理二轮复习 第一部分 专题4 第二讲 带电粒子在磁场和复合场中的运动精品课件

轴.不计微粒重力,求:(结果保留两位有效数字)
(1)带电微粒进入电场时的初速度v0多大; (2)带电微粒在磁场中做圆周运动的半径;
(3)画出粒子运动轨迹图并求出最小矩形
磁场区域的长和宽.
【解析】
(1)带电微粒做类平抛运动把速度v分解如图所示.
v0=vcos 30°=2.6×104 m/s
(2)洛伦兹力提供向心力,有 v2 qvB=m R mv R= qB =0.3 m. (3)画出粒子的运动轨迹如图所示. 设最小矩形磁场区域的长为a、宽为b,由数学知识可知α= 60° , a=2R=0.6 m b=Rcos 30° +R b=0.56 m.
3.受力分析及解题观点 (1)带电粒子在混合场中的运动问题是电磁学知识和力学知识的结 合,分析方法和力学问题的分析方法基本相同,不同之处是多了电 场力、洛伦兹力. (2)带电粒子在混合场中的运动问题,除了利用力学即动力学观点 、能量观点来分析外,还要注意电场和磁场对带电粒子的作用特点
,如电场力做功与路径无关,洛伦兹力方向始终和运动速度方向垂
【答案】
A
3. (2012· 新课标全国高考)如图4-2-8,一半径为R的圆表示一柱形 区域的横截面(纸面).在柱形区域内加一方向垂直于纸面的匀强磁场, 一质量为m、电荷量为q的粒子沿图中直线在圆上的a点射入柱形区域, 在圆上的b点离开该区域,离开时速度方向与直线垂直.圆心O到直线的 3 距离为5R.现将磁场换为平行于纸面且垂直于直线的匀强电场,同一粒子 以同样速度沿直线在a点射入柱形区域,也在b点离开该区域.若磁感应 强度大小为B,不计重力,求电场强度的大小.
【答案】 A
2. (2012·大连模拟)如图4-2-7所示,回旋 加速器D形盒的半径为R,所加磁场的磁感 应强度为B,被加速的质子从D形盒中央由

高考物理带电粒子在复合场中的运动技巧(很有用)及练习题含解析

高考物理带电粒子在复合场中的运动技巧(很有用)及练习题含解析

一、带电粒子在复合场中的运动专项训练1.扭摆器是同步辐射装置中的插入件,能使粒子的运动轨迹发生扭摆.其简化模型如图:Ⅰ、Ⅱ两处的条形匀强磁场区边界竖直,相距为L ,磁场方向相反且垂直纸面.一质量为m ,电量为-q ,重力不计的粒子,从靠近平行板电容器MN 板处由静止释放,极板间电压为U ,粒子经电场加速后平行于纸面射入Ⅰ区,射入时速度与水平和方向夹角30θ=︒(1)当Ⅰ区宽度1L L =、磁感应强度大小10B B =时,粒子从Ⅰ区右边界射出时速度与水平方向夹角也为30︒,求B 0及粒子在Ⅰ区运动的时间t 0(2)若Ⅱ区宽度21L L L ==磁感应强度大小210B B B ==,求粒子在Ⅰ区的最高点与Ⅱ区的最低点之间的高度差h(3)若21L L L ==、10B B =,为使粒子能返回Ⅰ区,求B 2应满足的条件(4)若12B B ≠,12L L ≠,且已保证了粒子能从Ⅱ区右边界射出.为使粒子从Ⅱ区右边界射出的方向与从Ⅰ区左边界射出的方向总相同,求B 1、B 2、L 1、、L 2、之间应满足的关系式.【来源】2011年普通高等学校招生全国统一考试物理卷(山东) 【答案】(1)32lm t qU π=(2)2233h L ⎛⎫=- ⎪⎝⎭(3)232mU B L q >(或232mUB L q≥)(4)1122B L B L =【解析】图1(1)如图1所示,设粒子射入磁场Ⅰ区的速度为v ,在磁场Ⅰ区中做圆周运动的半径为1R ,由动能定理和牛顿第二定律得212qU mv =①211v qvB m R = ②由几何知识得12sin L R θ= ③联立①②③,带入数据得012mUB L q=④设粒子在磁场Ⅰ区中做圆周运动的周期为T ,运动的时间为t12R T v π= ⑤ 22t T θπ=⑥ 联立②④⑤⑥式,带入数据得32Lmt qUπ=⑦ (2)设粒子在磁场Ⅱ区做圆周运动的半径为2R ,有牛顿第二定律得222v qvB m R = ⑧由几何知识得()()121cos tan h R R L θθ=+-+ ⑨联立②③⑧⑨式,带入数据得2233h L ⎛⎫=- ⎪⎝⎭⑩图2(3)如图2所示,为时粒子能再次回到Ⅰ区,应满足()21sin R L θ+<[或()21sin R L θ+≤] ⑾联立①⑧⑾式,带入数据得232mU B L q >(或232mUB L q≥) ⑿图3图4(4)如图3(或图4)所示,设粒子射出磁场Ⅰ区时速度与水平方向得夹角为α,有几何知识得()11sin sin L R θα=+ ⒀ [或()11sin sin L R θα=-]()22sin sin L R θα=+ ⒁[或]()22sin sin L R θα=- 联立②⑧式得1122B R B R = ⒂联立⒀⒁⒂式得1122B L B L = ⒃【点睛】(1)加速电场中,由动能定理求出粒子获得的速度.画出轨迹,由几何知识求出半径,根据牛顿定律求出B 0.找出轨迹的圆心角,求出时间;(2)由几何知识求出高度差;(3)当粒子在区域Ⅱ中轨迹恰好与右侧边界相切时,粒子恰能返回Ⅰ区,由几何知识求出半径,由牛顿定律求出B 2满足的条件;(4)由几何知识分析L 1、L 2与半径的关系,再牛顿定律研究关系式.2.如图1所示,宽度为d 的竖直狭长区域内(边界为12L L 、),存在垂直纸面向里的匀强磁场和竖直方向上的周期性变化的电场(如图2所示),电场强度的大小为0E ,0E >表示电场方向竖直向上。

带电粒子在复合场中的运动(含详细解析过程)

带电粒子在复合场中的运动(含详细解析过程)

带电粒子在复合场中的运动1、如图所示,在y > 0的空间中存在匀强电场,场强沿y 轴负方向;在y < 0的空间中,存在匀强磁场,磁场方向垂直xy 平面(纸面)向外.一电量为q 、质量为m 的带正电的运动粒子,经过y 轴上y = h 处的点P1时速率为v0,方向沿x 轴正方向,然后经过x 轴上x = 2h 处的P2点进入磁场,并经过y 轴上y = – 2h 处的P3点.不计粒子的重力,求 (1)电场强度的大小;(2)粒子到达P2时速度的大小和方向; (3)磁感应强度的大小. 2、如图所示的区域中,第二象限为垂直纸面向外的匀强磁场,磁感应强度为B ,第一、第四象限是一个电场强度大小未知的匀强电场,其方向如图。

一个质量为m ,电荷量为+q 的带电粒子从P 孔以初速度v0沿垂直于磁场方向进入匀强磁场中,初速度方向与边界线的夹角θ=30°,粒子恰好从y 轴上的C孔垂直于匀强电场射入匀强电场,经过x 轴的Q 点,已知OQ=OP ,不计粒子的重力,求:(1)粒子从P 运动到C 所用的时间t ; (2)电场强度E 的大小;(3)粒子到达Q 点的动能Ek 。

3、如图所示,半径分别为a 、b 的两同心虚线圆所围空间分别存在电场和磁场,中心O 处固定一个半径很小(可忽略)的金属球,在小圆空间内存在沿半径向内的辐向电场,小圆周与金属球间电势差为U ,两圆之间的空间存在垂直于纸面向里的匀强磁场,设有一个带负电的粒子从金属球表面沿+x 轴方向以很小的初速度逸出,粒子质量为m ,电量为q ,(不计粒子重力,忽略粒子初速度)求:(1)粒子到达小圆周上时的速度为多大?(2)粒子以(1)中的速度进入两圆间的磁场中,当磁感应强度超过某一临界值时,粒子将不能到达大圆周,求此最小值B 。

(3)若磁感应强度取(2)中最小值,且b =(2+1)a ,要粒子恰好第一次沿逸出方向的反方向回到原出发点,粒子需经过多少次回旋?并求粒子在磁场中运动的时间。

带电粒子在复合场、组合场中的运动(解析版)2024年高考物理压轴题专项训练(新高考通用)

带电粒子在复合场、组合场中的运动(解析版)2024年高考物理压轴题专项训练(新高考通用)

压轴题08带电粒子在复合场、组合场中的运动1.本专题是电磁场的典型题型之一,包括应用电场力洛伦兹力的知识解决实际问题。

高考中经常在选择题中命题,更是在在计算题中频繁出现。

2024年高考对于复合场、组合场的考查仍然是热点。

2.通过本专题的复习,不仅利于完善学生的知识体系,也有利于培养学生的物理核心素养。

3.用到的相关知识有:电场的知识,磁场的知识等。

近几年的高考命题中一直都是以压轴题的形式存在,重点考查类型带电粒子在复合场中的运动,组合场中的运动等。

考向一:带电体在磁场中的运动1.带电体在匀强磁场中速度变化时洛伦兹力往往随之变化,并进一步导致弹力、摩擦力等的变化,带电体将在变力作用下做变加速运动。

2.利用牛顿运动定律和平衡条件分析各物理量的动态变化时要注意弹力为零的临界状态,此状态是弹力方向发生改变的转折点。

考向二:带电粒子在叠加场中的运动1.三种场的比较力的特点功和能的特点重力场大小:G =mg 方向:竖直向下重力做功与路径无关;重力做功改变物体的重力势能电场大小:F =qE方向:正电荷受力方向与场强方向相同,负电荷受力方向与电强方向相反电场力做功与路径无关;W =qU ;电场力做功改变电势能磁场大小:f =qvB (v ⊥B )方向:可用左手定则判断洛伦兹力不做功,不改变带电粒子的动能2.分析的基本思路(1)弄清叠加场的组成。

(2)进行受力分析,确定带电粒子的运动状态,注意运动情况和受力情况的结合。

(3)画出粒子的运动轨迹,灵活选择不同的运动规律。

①由于洛伦兹力的大小与速度有关,带电粒子在含有磁场的叠加场中的直线运动一定为匀速直线运动,根据平衡条件列式求解。

②当带电粒子在叠加场中做匀速圆周运动时,一定是电场力和重力平衡,洛伦兹力提供向心力,应用平衡条件和牛顿运动定律分别列方程求解。

③当带电粒子做复杂曲线运动时,一般用动能定理或能量守恒定律求解。

考向三:带电粒子在组合场中的运动带电粒子在电场、磁场组合场中的运动是指粒子从电场到磁场或从磁场到电场的运动。

2021届高考物理二轮专题复习-带电粒子在复合场中的运动PPT

2021届高考物理二轮专题复习-带电粒子在复合场中的运动PPT

A.半径为R的离子的比荷为B222UR2
B.半径为R的离子的比荷为B1EB2R C.若氕、氘、氚可以经过E、B1一定的速度选择器,则它们加速电场的电压之
比为3∶2∶1
D.若氕、氘、氚可以经过E、B1一定的速度选择器,则它们的谱线位置到S3的
距离之比为1∶2∶3
第2轮 物理(全国版)
返回导航
第一部分 专题突破
【教学重点】人物形象的分析 5.写女子不愿同氓终老的句子是:及尔偕老,老使我怨。 生2:应该是忧郁的,你只要多看一眼就忍不住被吸引的姑娘。 问:为什么是紫色的灵魂?这首赞歌,仅仅是呈给大堰河的 内容分析
第2轮 物理(全国版)
返回导航
第一部分 专题突破
关于粒子在质谱仪中的运动分析,下列说法正确的是
( ABD )
第2轮 物理(全国版)
返回导航
第一部分 专题突破
02
命题热点突破
热点一 电磁场与现代科技
(2020·北京高三学业考试)笔记本
电脑机身和显示屏对应部位分别有磁体和
霍尔元件.当显示屏开启时磁体远离霍尔
元件,电脑正常工作;当显示屏闭合时磁
体靠近霍尔元件,屏幕熄灭,电脑进入休
眠状态.如图所示,一块宽为a、长为c的矩形半导体霍尔元件,元件内的导电粒子是
(2)偏转运动:一般研究带电粒子在匀强电场中的偏转问题.对于类平抛运动可直 接利用__平__抛____运动的规律以及推论;较复杂的曲线运动常用__运__动__的__合__成__与__分__解____
的方法来处理.
第2轮 物理(全国版)
返回导航
第一部分 专题突破
2.匀强磁场中常见的运动类型(仅受磁场力作用) (1)匀速直线运动:当v∥B时,带电粒子以速度v做__匀__速__直__线____运动. (2)匀速圆周运动:当v⊥B时,带电粒子在垂直于磁感线的平面内以入射速度大 小做__匀__速__圆__周____运动. 3.关于粒子的重力 (1)对于微观粒子,如电子、质子、离子等,因为其重力一般情况下与__电__场__力____ 或磁场力相比太小,可以忽略;而对于一些宏观物体,如带电小球、液滴、金属块等 一般应__考__虑____其重力. (2)不能直接判断是否要考虑重力的情况,在进行__受__力____分析与运动分析时,根 据运动状态可分析出是否要考虑重力.

高三物理带电粒子在复合场中的运动(二轮突破)

高三物理带电粒子在复合场中的运动(二轮突破)

课题:带电粒子在复合场中的运动一、目标要求:能分析掌握带电粒子在重力场、电场、磁场同时存在的叠加场中运动的基本特点,会用力学知识和观点及相关场的知识解答有关问题 二、典型例题:题型一 电场和磁场彼此分离情形下的带电粒子运动例1.如图所示,在直角坐标系xoy 的第一象限中分布着沿y 轴负方向的匀强电场,在第四象限中分布着方向向里垂直纸面的匀强磁场。

一个质量为m 、带电+q 的微粒,在A 点(0,3)以初速度v 0=120m/s 平行x 轴射入电场区域,然后从电场区域进入磁场,又从磁场进入电场,并且先后只通过x 轴上的p 点(6,0)和Q 点(8,0)各一次。

已知该微粒的比荷为mq=102C/kg, 微粒重力不计,求:(1)微粒从A 到P 所经历的时间和加速度的大小; (2)求出微粒到达P 点时速度方向与x 轴正方向的夹角,并画出带电微粒在电磁场中由 A 至Q 的运动轨迹;(3)电场强度E 和磁感强度B 的大小。

题型二 带电粒子在电场、磁场及重力场同时存在情形下的运动 2.(湖北八校联考)如图所示,宽度为d 1的I 区里有与水平方向成45°角的匀强电场E 1,宽度为d 2的II 区里有相互正交的匀强磁场B 和匀强电场E 2。

一带电量为q ,质量为m 的微粒自图中P 点由静止释放后水平向右做直线运动进入II 区的复合场再做匀速圆周运动到右边界上的Q 点,其速度方向改变了60°,重力加速度为g 。

(d 1、E 1、E 2未知)求:(1)E 1、E 2的大小;(2)有界电场E 1的宽度d 1。

ⅡⅠE 2E 1PQBd 1d 2x/my/m A (0,3)P (6,0) Q(8,0)课堂练习:1.如图所示,在真空中,半径为b 的虚线所围的圆形区域内存在匀强磁场,磁场方向垂直纸面向外。

在磁场右侧有一对平行金属板M 和N ,两板间距离也为b ,板长为2b 。

两板的中心线O 1O 2与磁场区域的圆心O 在同一直线上,两板左端与O 1也在同一直线上。

2021届高考物理二轮备考专题特训:带电粒子在复合场中运动的实例分析(解析版)

带电粒子在复合场中运动的实例分析1.在如图所示的平行板器件中,电场强度E和磁感应强度B相互垂直.一带电粒子(重力不计)从左端以速度v沿虚线射入后做直线运动,则该粒子()A.一定带正电B.速度v=E BC.若速度v>EB,粒子一定不能从板间射出D.若此粒子从右端沿虚线方向进入,仍做直线运动2.(多选)医用回旋加速器的核心部分是两个D形金属盒,如图所示,两金属盒置于匀强磁场中,并分别与高频电源相连.现分别加速氘核(21H)和氦核(42He)并通过线束引出加速器.下列说法中正确的是()A.加速两种粒子的高频电源的频率相同B.两种粒子获得的最大动能相同C.两种粒子在D形盒中运动的周期相同D.增大高频电源的电压可增大粒子的最大动能3.(多选)如图所示是磁流体发电机的示意图,两平行金属板P、Q之间有一个很强的磁场.一束等离子体(即高温下电离的气体,含有大量正、负带电离子)沿垂直于磁场的方向喷入磁场.把P、Q与电阻R相连接.下列说法正确的是()A.Q板的电势高于P板的电势B.R中有由a向b方向的电流C.若只改变磁场强弱,R中电流保持不变D.若只增大离子入射速度,R中电流增大4.(多选)利用霍尔效应制作的霍尔元件,广泛应用于测量和自动控制等领域.如图所示是霍尔元件的工作原理示意图,磁感应强度B垂直于霍尔元件的工作面向下,当元件中通入图示方向的电流I时,C、D两侧面会形成一定的电势差U.下列说法中正确的是()A.若C侧面电势高于D侧面,则元件中形成电流的载流子带负电B.若C侧面电势高于D侧面,则元件中形成电流的载流子带正电C.在地球南、北极上方测地磁场强弱时,元件工作面竖直放置时U最大D.在地球赤道上方测地磁场强弱时,元件工作面竖直放置且与地球经线垂直时,U最大5.容器A中装有大量的质量、电荷量不同但均带正电的粒子,粒子从容器下方的小孔S1不断飘入加速电场(初速度可视为零)做直线运动,通过小孔S2后从两平行板中央沿垂直电场方向射入偏转电场.粒子通过平行板后沿垂直磁场方向进入磁感应强度为B、方向垂直纸面向里的匀强磁场区域,最后打在感光片上,如图所示.已知加速电场中S1、S2间的加速电压为U,偏转电场极板长为L,两板间距也为L,板间匀强电场强度E=2UL,方向水平向左(忽略板间外的电场),平行板f的下端与磁场边界ab相交于点P,在边界ab上实线处固定放置感光片.测得从容器A中逸出的所有粒子均打在感光片PQ之间,且Q距P的长度为3L,不考虑粒子所受重力与粒子间的相互作用,求:(1)粒子射入磁场时,其速度方向与边界ab间的夹角;(2)射到感光片Q处的粒子的比荷(电荷量q与质量m之比);(3)粒子在磁场中运动的最短时间.6.质谱仪可利用电场和磁场将比荷不同的离子分开,这种方法在化学分析和原子核技术等领域有重要的应用.如图所示,虚线上方有两条半径分别为R和r(R>r)的半圆形边界,分别与虚线相交于A、B、C、D点,圆心均为虚线上的O点,C、D间有一荧光屏.虚线上方区域处在垂直纸面向外的匀强磁场中,磁感应强度大小为B.虚线下方有一电压可调的加速电场,离子源发出的某一正离子由静止开始经电场加速后,从AB的中点垂直进入磁场,离子打在边界上时会被吸收.当加速电压为U时,离子恰能打在荧光屏的中点.不计离子的重力及电、磁场的边缘效应.求:(1)离子的比荷;(2)离子在磁场中运动的时间;(3)离子能打在荧光屏上的加速电压范围.7.质谱仪的原理如图所示,虚线AD上方区域处在垂直纸面向外的匀强磁场中,C、D间有一荧光屏.同位素离子源产生a、b两种电荷量相同的离子,无初速度进入加速电场,经同一电压加速后,垂直进入磁场,a离子恰好打在荧光屏C点,b离子恰好打在D点.离子重力不计.则()A.a离子质量比b的大B.a离子质量比b的小C.a离子在磁场中的运动时间比b的长D.a、b离子在磁场中的运动时间相等8.(多选)如图所示是回旋加速器的示意图,其核心部分是两个D形金属盒,分别与高频交流电源连接,两个D形金属盒间的狭缝中形成周期性变化的电场,使粒子在通过狭缝时都能得到加速,两个D形金属盒处于垂直于盒底的匀强磁场中,下列说法中正确的是()A.加速电压越大,粒子最终射出时获得的动能就越大B.粒子射出时的最大动能与加速电压无关,与D形金属盒的半径和磁感应强度有关C.若增大加速电压,粒子在金属盒间的加速次数将减少,在回旋加速器中运动的时间将减小D.粒子第5次被加速前、后的轨道半径之比为5∶69.(多选)(2020·福建龙岩市3月质量检查)回旋加速器是加速带电粒子的装置,如图6所示.其核心部件是分别与高频交流电源两极相连接的两个D形金属盒(D1、D2),两盒间的狭缝中形成周期性变化的电场,使粒子在通过狭缝时都能得到加速,两D形金属盒处于垂直于盒底的匀强磁场中,D形盒的半径为R.质量为m、电荷量为q的质子从D1半盒的质子源(A点)由静止释放,加速到最大动能E km后经粒子出口处射出.若忽略质子在电场中的加速时间,且不考虑相对论效应,则下列说法正确的是()A.质子加速后的最大动能E km与交变电压U大小无关B.质子在加速器中的运行时间与交变电压U大小无关C.回旋加速器所加交变电压的周期为πR 2m E kmD.D2盒内质子的轨道半径由小到大之比为1∶3∶5∶…10.如图所示是一速度选择器,当粒子速度满足v0=EB时,粒子沿图中虚线水平射出;若某一粒子以速度v射入该速度选择器后,运动轨迹为图中实线,则关于该粒子的说法正确的是()A .粒子射入的速度一定是v >E BB .粒子射入的速度可能是v <E BC .粒子射出时的速度一定大于射入速度D .粒子射出时的速度一定小于射入速度11.(2020·福建三明市期末质量检测)磁流体发电机的原理如图所示.将一束等离子体连续以速度v 垂直于磁场方向喷入磁感应强度大小为B 的匀强磁场中,可在相距为d 、面积为S 的两平行金属板间产生电压.现把上、下板和电阻R 连接,上、下板等效为直流电源的两极.等离子体稳定时在两极板间均匀分布,电阻率为ρ.忽略边缘效应及离子的重力,下列说法正确的是( )A .上板为正极,a 、b 两端电压U =Bd vB .上板为负极,a 、b 两端电压U =Bd 2v ρS RS +ρdC .上板为正极,a 、b 两端电压U =Bd v RS RS +ρdD.上板为负极,a、b两端电压U=Bd v RS Rd+ρS12.为监测某化工厂的污水排放量,技术人员在该厂的排污管末端安装了如图所示的长方体流量计.该装置由绝缘材料制成,其长、宽、高分别为a、b、c,左右两端开口.在垂直于上下底面方向加一匀强磁场,前后两个内侧面分别固定有金属板作为电极.污水充满管口从左向右流经该装置时,接在M、N两端间的电压表将显示两个电极间的电压U.若用Q表示污水流量(单位时间内排出的污水体积),下列说法中正确的是()A.M端的电势比N端的高B.电压表的示数U与a和b均成正比,与c无关C.电压表的示数U与污水的流量Q成正比D.若污水中正、负离子数相同,则电压表的示数为0带电粒子在复合场中运动的实例分析2.在如图所示的平行板器件中,电场强度E和磁感应强度B相互垂直.一带电粒子(重力不计)从左端以速度v沿虚线射入后做直线运动,则该粒子()A .一定带正电B .速度v =E BC .若速度v >E B ,粒子一定不能从板间射出D .若此粒子从右端沿虚线方向进入,仍做直线运动【答案】 B【解析】 粒子带正电和负电均可,选项A 错误;由洛伦兹力等于电场力,可得q v B =qE ,解得速度v =E B ,选项B 正确;若速度v >E B ,粒子可能会从板间射出,选项C 错误;若此粒子从右端沿虚线方向进入,所受电场力和洛伦兹力方向相同,不能做直线运动,选项D 错误.2.(多选)医用回旋加速器的核心部分是两个D 形金属盒,如图所示,两金属盒置于匀强磁场中,并分别与高频电源相连.现分别加速氘核(21H)和氦核(42He)并通过线束引出加速器.下列说法中正确的是( )A .加速两种粒子的高频电源的频率相同B .两种粒子获得的最大动能相同C .两种粒子在D 形盒中运动的周期相同D.增大高频电源的电压可增大粒子的最大动能【答案】AC【解析】回旋加速器加速粒子时,粒子在磁场中运动的周期应和交流电的周期相同.带电粒子在磁场中运动的周期T=2πmqB,两粒子的比荷qm相等,所以周期相同,故加速两种粒子的高频电源的频率也相同,A、C正确;根据q v B=m v2R,得v=qBRm,最大动能E k=12m v2=q2B2R22m,与加速电压无关,两粒子的比荷qm相等,电荷量q不相等,所以最大动能不等,故B、D错误.3.(多选)如图所示是磁流体发电机的示意图,两平行金属板P、Q之间有一个很强的磁场.一束等离子体(即高温下电离的气体,含有大量正、负带电离子)沿垂直于磁场的方向喷入磁场.把P、Q与电阻R相连接.下列说法正确的是()A.Q板的电势高于P板的电势B.R中有由a向b方向的电流C.若只改变磁场强弱,R中电流保持不变D.若只增大离子入射速度,R中电流增大【答案】BD【解析】等离子体进入磁场,根据左手定则,正离子向上偏,打在上极板上,负离子向下偏,打在下极板上,所以上极板带正电,下极板带负电,则P板的电势高于Q 板的电势,流过电阻R 的电流方向由a 到b ,故A 错误,B 正确;依据电场力等于洛伦兹力,即q U d =q v B ,则有U =Bd v ,再由闭合电路欧姆定律I=U R +r =Bd v R +r,电流与磁感应强度成正比,故C 错误;由以上分析可知,若只增大离子的入射速度,R 中电流会增大,故D 正确.4.(多选)利用霍尔效应制作的霍尔元件,广泛应用于测量和自动控制等领域.如图所示是霍尔元件的工作原理示意图,磁感应强度B 垂直于霍尔元件的工作面向下,当元件中通入图示方向的电流I 时,C 、D 两侧面会形成一定的电势差U .下列说法中正确的是( )A .若C 侧面电势高于D 侧面,则元件中形成电流的载流子带负电B .若C 侧面电势高于D 侧面,则元件中形成电流的载流子带正电C .在地球南、北极上方测地磁场强弱时,元件工作面竖直放置时U 最大D .在地球赤道上方测地磁场强弱时,元件工作面竖直放置且与地球经线垂直时,U 最大【答案】 AD【解析】 若元件的载流子带负电,由左手定则可知,载流子受到洛伦兹力向D 侧面偏,则C 侧面的电势高于D 侧面的电势,故A 正确;若元件的载流子带正电,由左手定则可知,载流子受到洛伦兹力向D 侧面偏,则D 侧面的电势高于C 侧面的电势,故B 错误;在测地球南、北极上方的地磁场强弱时,因磁场方向竖直,则元件的工作面保持水平时U 最大,故C 错误;地球赤道上方的地磁场方向水平,在测地球赤道上方的地磁场强弱时,元件的工作面应保持竖直,当与地球经线垂直时U 最大,故D 正确.5.容器A 中装有大量的质量、电荷量不同但均带正电的粒子,粒子从容器下方的小孔S 1不断飘入加速电场(初速度可视为零)做直线运动,通过小孔S 2后从两平行板中央沿垂直电场方向射入偏转电场.粒子通过平行板后沿垂直磁场方向进入磁感应强度为B 、方向垂直纸面向里的匀强磁场区域,最后打在感光片上,如图所示.已知加速电场中S 1、S 2间的加速电压为U ,偏转电场极板长为L ,两板间距也为L ,板间匀强电场强度E =2U L ,方向水平向左(忽略板间外的电场),平行板f 的下端与磁场边界ab 相交于点P ,在边界ab 上实线处固定放置感光片.测得从容器A 中逸出的所有粒子均打在感光片PQ 之间,且Q 距P 的长度为3L ,不考虑粒子所受重力与粒子间的相互作用,求:(1)粒子射入磁场时,其速度方向与边界ab 间的夹角;(2)射到感光片Q 处的粒子的比荷(电荷量q 与质量m 之比);(3)粒子在磁场中运动的最短时间.【答案】 (1)45° (2)U 2L 2B 2 (3)3πBL 216U【解析】 (1)设质量为m 、电荷量为q 的粒子通过孔S 2的速度为v 0,则:qU =12m v 02 粒子在平行板e 、f 间做类平抛运动:L =v 0t ,v x =qE m t ,tan θ=v 0v x联立可得:tan θ=1,则θ=45°,故其速度方向与边界ab 间的夹角为θ=45°.(2)粒子在偏转电场中沿场强方向的位移x =12v x t =L 2,故粒子从e 板下端与水平方向成45°角斜向下射入匀强磁场,如图所示,设质量为m 、电荷量为q 的粒子射入磁场时的速度为v ,做圆周运动的轨道半径为r ,则v =v 02+v x 2=2v 0=2qUm由几何关系:r 2+r 2=(4L )2则r =22Lq v B =m v 2r ,则r =m v qB 联立解得:q m =U 2L 2B2.(3)设粒子在磁场中运动的时间为t ,偏转角为α,则t =αm qB ,r =m v qB =2B mU q联立可得:t =αBr 24U 因为粒子在磁场中运动的偏转角α=32π,所以粒子打在P 处时间最短,此时半径为r ′,由几何关系知:r ′2+r ′2=L 2,则r ′=22L 联立可得:t min =32πB L 224U =3πBL 216U. 6.质谱仪可利用电场和磁场将比荷不同的离子分开,这种方法在化学分析和原子核技术等领域有重要的应用.如图所示,虚线上方有两条半径分别为R 和r (R >r )的半圆形边界,分别与虚线相交于A 、B 、C 、D 点,圆心均为虚线上的O 点,C 、D 间有一荧光屏.虚线上方区域处在垂直纸面向外的匀强磁场中,磁感应强度大小为B .虚线下方有一电压可调的加速电场,离子源发出的某一正离子由静止开始经电场加速后,从AB 的中点垂直进入磁场,离子打在边界上时会被吸收.当加速电压为U 时,离子恰能打在荧光屏的中点.不计离子的重力及电、磁场的边缘效应.求:(1)离子的比荷;(2)离子在磁场中运动的时间;(3)离子能打在荧光屏上的加速电压范围.【答案】 (1)8U B 2(R +r )2 (2)πB (R +r )28U (3)U (R +3r )24(R +r )2≤U ′≤U (3R +r )24(R +r )2【解析】 (1)由题意知,加速电压为U 时,离子在磁场区域做匀速圆周运动的半径r 0=R +r 2洛伦兹力提供向心力,q v B =m v 2r 0在电场中加速,有qU =12m v 2 解得:q m =8U B 2(R +r )2(2)离子在磁场中运动的周期为T =2πm qB在磁场中运动的时间t =T 2解得:t =πB (R +r )28U(3)由(1)中关系,知加速电压和离子轨迹半径之间的关系为U ′=4U (R +r )2r ′2 若离子恰好打在荧光屏上的C 点,轨道半径r C =R +3r 4U C =U (R +3r )24(R +r )2若离子恰好打在荧光屏上的D点,轨道半径r D=3R+r 4U D=U(3R+r)2 4(R+r)2即离子能打在荧光屏上的加速电压范围:U(R+3r)24(R+r)2≤U′≤U(3R+r)24(R+r)2.7.质谱仪的原理如图所示,虚线AD上方区域处在垂直纸面向外的匀强磁场中,C、D间有一荧光屏.同位素离子源产生a、b两种电荷量相同的离子,无初速度进入加速电场,经同一电压加速后,垂直进入磁场,a离子恰好打在荧光屏C点,b离子恰好打在D点.离子重力不计.则()A.a离子质量比b的大B.a离子质量比b的小C.a离子在磁场中的运动时间比b的长D.a、b离子在磁场中的运动时间相等【答案】B【解析】设离子进入磁场的速度为v,在电场中qU=12m v2,在磁场中Bq v=m v2r,联立解得:r=m vBq=1B2mUq,由题图知,b离子在磁场中运动的轨道半径较大,a、b为同位素,电荷量相同,所以b离子的质量大于a离子的质量,所以A错误,B正确;在磁场中运动的时间均为半个周期,即t=T2=πmBq,由于b离子的质量大于a离子的质量,故b离子在磁场中运动的时间较长,C、D错误.8.(多选)如图所示是回旋加速器的示意图,其核心部分是两个D形金属盒,分别与高频交流电源连接,两个D形金属盒间的狭缝中形成周期性变化的电场,使粒子在通过狭缝时都能得到加速,两个D形金属盒处于垂直于盒底的匀强磁场中,下列说法中正确的是()A.加速电压越大,粒子最终射出时获得的动能就越大B.粒子射出时的最大动能与加速电压无关,与D形金属盒的半径和磁感应强度有关C.若增大加速电压,粒子在金属盒间的加速次数将减少,在回旋加速器中运动的时间将减小D.粒子第5次被加速前、后的轨道半径之比为5∶6【答案】BC【解析】粒子在磁场中做圆周运动,由牛顿第二定律得:q v m B=m v m2 R,解得:v m=qBRm,则粒子获得的最大动能为:E km=12m v m2=q2B2R22m,知粒子获得的最大动能与加速电压无关,与D形金属盒的半径R和磁感应强度B有关,故A错误,B正确;对粒子,由动能定理得:nqU=q2B2R22m,加速次数:n=qB2R22mU,增大加速电压U,粒子在金属盒间的加速次数将减少,粒子在回旋加速器中运动的时间:t=n2T=nπmqB将减小,故C正确;对粒子,由动能定理得:nqU=12m v n2,解得v n=2nqUm,粒子在磁场中做圆周运动,由牛顿第二定律得:q v n B=mv n2r n,解得:r n=1B2nmUq,则粒子第5次被加速前、后的轨道半径之比为:r4r5=45,故D错误.9.(多选)(2020·福建龙岩市3月质量检查)回旋加速器是加速带电粒子的装置,如图6所示.其核心部件是分别与高频交流电源两极相连接的两个D形金属盒(D1、D2),两盒间的狭缝中形成周期性变化的电场,使粒子在通过狭缝时都能得到加速,两D形金属盒处于垂直于盒底的匀强磁场中,D形盒的半径为R.质量为m、电荷量为q的质子从D1半盒的质子源(A点)由静止释放,加速到最大动能E km后经粒子出口处射出.若忽略质子在电场中的加速时间,且不考虑相对论效应,则下列说法正确的是()A.质子加速后的最大动能E km与交变电压U大小无关B.质子在加速器中的运行时间与交变电压U大小无关C.回旋加速器所加交变电压的周期为πR 2m E kmD.D2盒内质子的轨道半径由小到大之比为1∶3∶5∶…【答案】 ACD【解析】 质子在回旋加速器中做圆周运动,洛伦兹力提供向心力,有q v B =m v 2r ,则v =qBr m ,当r =R 时,质子有最大动能:E km =12m v m 2=q 2B 2R 22m,知质子加速后的最大动能E km 与交变电压U 大小无关,故A 正确;质子离开回旋加速器时的动能是一定的,与加速电压无关,由T =2πm qB 可知相邻两次经过电场加速的时间间隔不变,获得的动能为qU ,故电压越大,加速的次数n 越少,在加速器中的运行时间越短,故B 错误;回旋加速器所加交变电压的周期与质子在D形盒中运动的周期相同,由T =2πm qB ,R =m v m qB ,E km =12m v m 2知,T =πR 2m E km,故C 正确;质子每经过1次加速电场动能增大qU ,知D 2盒内质子的动能由小到大依次为qU 、3qU 、5qU …,又r =m v qB =2mE k qB ,则半径由小到大之比为1∶3∶5∶…,故D 正确.10.如图所示是一速度选择器,当粒子速度满足v 0=E B 时,粒子沿图中虚线水平射出;若某一粒子以速度v 射入该速度选择器后,运动轨迹为图中实线,则关于该粒子的说法正确的是( )A .粒子射入的速度一定是v >E BB .粒子射入的速度可能是v <E BC.粒子射出时的速度一定大于射入速度D.粒子射出时的速度一定小于射入速度【答案】B11.(2020·福建三明市期末质量检测)磁流体发电机的原理如图所示.将一束等离子体连续以速度v垂直于磁场方向喷入磁感应强度大小为B的匀强磁场中,可在相距为d、面积为S的两平行金属板间产生电压.现把上、下板和电阻R连接,上、下板等效为直流电源的两极.等离子体稳定时在两极板间均匀分布,电阻率为ρ.忽略边缘效应及离子的重力,下列说法正确的是()A.上板为正极,a、b两端电压U=Bd vB.上板为负极,a、b两端电压U=Bd2vρS RS+ρdC.上板为正极,a、b两端电压U=Bd v RS RS+ρdD.上板为负极,a、b两端电压U=Bd v RS Rd+ρS【答案】C【解析】根据左手定则可知,等离子体射入两极板之间时,正离子偏向a板,负离子偏向b板,即上板为正极;稳定时满足U′d q=Bq v,解得U′=Bd v;根据电阻定律可知两极板间的电阻为r =ρd S ,根据闭合电路欧姆定律:I =U ′R +r,a 、b 两端电压U =IR ,联立解得U =Bd v RS RS +ρd,故选C. 12.为监测某化工厂的污水排放量,技术人员在该厂的排污管末端安装了如图所示的长方体流量计.该装置由绝缘材料制成,其长、宽、高分别为a 、b 、c ,左右两端开口.在垂直于上下底面方向加一匀强磁场,前后两个内侧面分别固定有金属板作为电极.污水充满管口从左向右流经该装置时,接在M 、N 两端间的电压表将显示两个电极间的电压U .若用Q 表示污水流量(单位时间内排出的污水体积),下列说法中正确的是( )A .M 端的电势比N 端的高B .电压表的示数U 与a 和b 均成正比,与c 无关C .电压表的示数U 与污水的流量Q 成正比D .若污水中正、负离子数相同,则电压表的示数为0【答案】 C【解析】 根据左手定则知,正离子所受的洛伦兹力方向向里,则向里偏转,N 端带正电,M 端带负电,则M 端的电势比N 端电势低,故A 错误; 最终离子在电场力和洛伦兹力作用下平衡,有:q v B =q U b ,解得U =v Bb ,电压表的示数U 与b 成正比,与污水中正、负离子数无关,故B 、D 错误;因v =U Bb ,则流量Q=v bc=UcB,因此U=BQc,所以电压表的示数U与污水流量Q成正比,故C正确.。

高中物理带电粒子在复合场中的运动题20套(带答案)含解析

一、带电粒子在复合场中的运动专项训练1.下图为某种离子加速器的设计方案.两个半圆形金属盒内存在相同的垂直于纸面向外的匀强磁场.其中MN 和M N ''是间距为h 的两平行极板,其上分别有正对的两个小孔O 和O ',O N ON d ''==,P 为靶点,O P kd '=(k 为大于1的整数)。

极板间存在方向向上的匀强电场,两极板间电压为U 。

质量为m 、带电量为q 的正离子从O 点由静止开始加速,经O '进入磁场区域.当离子打到极板上O N ''区域(含N '点)或外壳上时将会被吸收。

两虚线之间的区域无电场和磁场存在,离子可匀速穿过。

忽略相对论效应和离子所受的重力。

求:(1)离子经过电场仅加速一次后能打到P 点所需的磁感应强度大小; (2)能使离子打到P 点的磁感应强度的所有可能值;(3)打到P 点的能量最大的离子在磁场中运动的时间和在电场中运动的时间。

【来源】2015年全国普通高等学校招生统一考试物理(重庆卷带解析) 【答案】(1)22qUm B =(2)22nqUm B =,2(1,2,3,,1)n k =-L (3)2222(1)t qum k -磁,22(1)=k m t h qU-电 【解析】 【分析】带电粒子在电场和磁场中的运动、牛顿第二定律、运动学公式。

【详解】(1)离子经电场加速,由动能定理:212qU mv =可得2qUv m=磁场中做匀速圆周运动:2v qvB m r=刚好打在P 点,轨迹为半圆,由几何关系可知:2kd r =联立解得B =; (2)若磁感应强度较大,设离子经过一次加速后若速度较小,圆周运动半径较小,不能直接打在P 点,而做圆周运动到达N '右端,再匀速直线到下端磁场,将重新回到O 点重新加速,直到打在P 点。

设共加速了n 次,有:212n nqU mv =2nn nv qv B m r =且:2n kd r =解得:B =,要求离子第一次加速后不能打在板上,有12d r >且:2112qU mv =2111v qv B m r =解得:2n k <,故加速次数n 为正整数最大取21n k =- 即:B =2(1,2,3,,1)n k =-L ;(3)加速次数最多的离子速度最大,取21n k =-,离子在磁场中做n -1个完整的匀速圆周运动和半个圆周打到P 点。

高考物理二轮复习 文档:第10讲 带电粒子在复合场中的运动(专题强化训练) 含答案

专题强化训练(十) 带电粒子在复合场中的运动一、选择题(1~3为单选题,4~8为多选题)1. 如图所示,平行金属板P 、Q 间有磁感应强度为B 的匀强磁场,静止的电子在O 点经加速电压U 作用后由P 板上的小孔垂直进入磁场,打在Q 板上的A 点.现使磁感应强度大小B 加倍,要使电子的运动轨迹不发生变化,仍打在Q 板上的A 点,应该使U 变为原来的( )A .4倍B .2倍C .2倍B .14倍解析:要使粒子在磁场中仍打在A 点,则可知,粒子的运动半径不变,则由Bq v =m v 2R 可知R =m v Bq ;B 加倍,而R 不变,速度一定也要加倍;由加速过程可知,Uq =12m v 2,解得v=2Uqm ,故要使速度加倍,电势差应变为原来的4倍,故A 正确. 答案:A2.如图所示,长方体发电导管的前后两个侧面是绝缘体,上下两个侧面是电阻可忽略的导体电极,两极间距为d ,极板面积为S ,这两个电极与可变电阻R 相连.在垂直前后侧面的方向上,有一匀强磁场,磁感应强度大小为B .发电导管内有电阻率为ρ的高温电离气体,气体以速度v 向右流动,并通过专用管道导出.由于运动的电离气体受到磁场的作用,将产生大小不变的电动势.若不计气体流动时的阻力,由以上条件可推导出可变电阻消耗的电功率P =⎝⎛⎭⎫v BdS RS +ρd 2R .调节可变电阻的阻值,根据上面的公式或你所学过的物理知识,可求得可变电阻R 消耗电功率的最大值为( )A .v 2B 2dS 3ρB .v 2B 2dS 4ρC .v 2B 2dS 5ρD .v 2B 2dS 6ρ解析:运动的电离气体,受到磁场的作用,将产生大小不变的电动势,相当于电源,其内阻为r =ρdS,根据数学知识可知,当外电阻等于电源的内阻,即R =r 时,外电阻消耗的电功率最大,此时R =ρdS ,由题知P =⎝ ⎛⎭⎪⎫v BdS RS +ρd 2R ,可得最大电功率P m =v 2B 2dS 4ρ.故选B . 答案:B3.如图所示是速度选择器的原理图,已知电场强度为E 、磁感应强度为B 并相互垂直分布,某一带电粒子(重力不计)沿图中虚线水平通过.则该带电粒子( )A .一定带正电B .速度大小为EBC .可能沿QP 方向运动D .若沿PQ 方向运动的速度大于EB,将一定向下极板偏转解析:粒子从左射入,不论带正电还是负电,电场力大小为qE ,洛伦兹力大小F =q v B =qE ,两个力平衡,速度v =EB ,粒子做匀速直线运动,故A 错误,B 正确.此粒子从右端沿虚线方向进入,电场力与洛伦兹力在同一方向,不能做直线运动,故C 错误.若速度v >EB ,则粒子受到的洛伦兹力大于电场力,使粒子偏转,只有当粒子带负电时粒子向下偏转,故D 错误;故选B .答案:B4.长方形区域内存在有正交的匀强电场和匀强磁场,其方向如图所示,一个质量m 带电荷量q 的小球以初速度v 0竖直向下进入该区域.若小球恰好沿直线下降,则下列选项正确的是( )A .小球带正电B .场强E =mgqC .小球做匀速直线运动D .磁感应强度B =mgq v 0解析:小球在复合场内受到自身重力竖直向下,电场力和洛伦兹力,其中电场力和重力都是恒力,若速度变化则洛伦兹力变化,合力变化,小球必不能沿直线下降,所以合力等于0,小球做匀速直线运动.选项C 正确.若小球带正电,则电场力斜向下,洛伦兹力水平向左,和重力的合力不可能等于0,所以小球不可能带正电,选项A 错误.小球带负电,受到斜向上的电场力和水平向右的洛伦兹力,根据力的合成可得qE =2mg ,电场强度E =2mgq,选项B 错误.洛伦兹力q v 0B =mg ,磁感应强度B =mgq v 0选项D 正确.答案:CD5.如图所示,空间同时存在竖直向上的匀强磁场和匀强电场,磁感应强度为B ,电场强度为E .一质量为m ,电量为q 的带正电小球恰好处于静止状态,现在将磁场方向顺时针旋转30°,同时给小球一个垂直磁场方向斜向下的速度v ,则关于小球的运动,下列说法正确的是( )A .小球做匀速圆周运动B .小球运动过程中机械能守恒C .小球运动到最低点时电势能增加了mg v2BqD .小球第一次运动到最低点历时πm2qB解析:小球在复合电磁场中处于静止状态,只受两个力作用,即重力和电场力且两者平衡.当把磁场顺时针方向倾斜30°,且给小球一个垂直磁场方向的速度v ,则小球受到的合力就是洛仑兹力,且与速度方向垂直,所以带电小球将做匀速圆周运动,选项A 正确.由于带电小球在垂直于纸面的倾斜平面内做匀速圆周运动运动过程中受到电场力要做功,所以机械能不守恒,选项B 错误.电场力从开始到最低点克服电场力做功为W =EqR sin 30°=mg ×m v Bq ×12=m 2g v 2Bq ,所以电势能的增加量为m 2g v 2Bq ,选项C 错误.小球从第一次运动到最低点的时间为14T =πm 2Bq,所以选项D 正确,故选AD .答案:AD6. 一个足够长的绝缘斜面,倾角为θ,置于匀强磁场中,磁感应强度为B ,方向垂直于纸面向里,与水平面平行,如图所示,现有一带电荷量为q ,质量为m 的小球在斜面顶端由静止开始释放,小球与斜面间的动摩擦因数为μ,则( )A .如果小球带正电,小球在斜面上的最大速度为mg cos θqBB .如果小球带正电,小球在斜面上的最大速度为mg (sin θ-μcos θ)μqBC .如果小球带负电,小球在斜面上的最大速度为mg cos θqBD .如果小球带负电,小球在斜面上的最大速度为mg (sin θ-μcos θ)μqB解析:如果小球带正电,小球下滑过程中受到重力、垂直于斜面向下的洛伦兹力、斜面的支持力和滑动摩擦力,小球由静止开始做加速运动,随着小球速度的增大,洛伦兹力增大,摩擦力增大,加速度减小,当小球的受力达到平衡时,做匀速运动,速度达到最大.由平衡条件得mg sin θ=μ(mg cos θ+q v m B ),解得最大速度为v m =mg (sin θ-μcos θ)μqB,故A 错误B 正确;如果小球带负电,小球下滑过程中受到重力、垂直于斜面向上的洛伦兹力、斜面的支持力和滑动摩擦力,小球由静止开始做加速运动,随着小球速度的增大,洛伦兹力增大,当小球刚要离开斜面时速度达到最大,此时有mg cos θ=q v m B ,解得v m =mg cos θqB,故C 正确D 错误.答案:BC7.如图所示,某带电粒子由静止开始经电压为U 1的电场加速后,射入水平放置、电势差为U 2的两块平行导体板间的匀强电场中,带电粒子沿平行于两板的方向从两板正中间射入,穿过两板后又垂直于磁场方向射入边界线竖直、磁感应强度为B 的匀强磁场中,设粒子射入磁场和射出磁场的M 、N 两点间的距离为s (不计重力,不考虑边缘效应).下列说法正确的是( )A .若仅将水平放置的平行板间距增大,则s 减小B .若仅增大磁感应强度B ,则s 减小C .若仅增大U 1,则s 增大D .若仅增大U 2,则s 增大解析:对于加速过程,有qU 1=12m v 20,得v 0=2qU 1m带电粒子在电场中做类平抛运动,可将射出电场的粒子速度v 分解成初速度方向与加速度方向,设出射速度与水平夹角为θ,则有:v 0v =cos θ而在磁场中做匀速圆周运动,设运动轨迹对应的半径为R ,由几何关系可得,半径与直线MN 夹角正好等于θ,则有:s 2R =cos θ,所以s =2R v 0v ;又因为半径公式R =m vqB ,则有s =2m v 0qB =2B2mU 1q.可知增大平行金属板两板间距时,s 不变;选项A 错误;故s 随U 1变化,s 与U 2无关,仅增大U 1,s 将增大,故C 正确,D 错误;仅增大磁感应强度B ,则s 减小,选项B 正确;故选BC .答案:BC8. 在真空中,半径为R 的圆形区域内存在垂直于纸面向外的匀强磁场,磁感应强度为B ,一束质子在纸面内以相同的速度射向磁场区域,质子的电量为e ,质量为m ,速度为v =eBR m,则以下说法正确的是( )A .对着圆心入射的质子,其出射方向的反向延长线一定过圆心B .沿a 点比沿b 点进入磁场的质子在磁场中运动时间短C .所有质子都在磁场边缘同一点射出磁场D .若质子以相等的速率v =eBRm 从同一点沿各个方向射入磁场,则他们离开磁场的出射方向可能垂直解析:质子做圆周运动的半径为r =m veB=R ;对着圆心入射的质子,其洛伦兹力方向与圆周相切,由几何关系可知,其出射方向的反向延长线一定过圆心,选项A 正确;质子射入磁场中,受到向下的洛伦兹力而向下偏转,因质子的运转半径相同,故沿a 点比沿b 点进入磁场的质子在磁场中运动经过的弧长更长,则时间长,选项B 错误;所有质子做圆周运动的半径都等于R ,画出各个质子的运动轨迹,由几何关系可知,所有质子都在O 点的正下方一点射出磁场,选项C 正确;质子的速度为v =eBRm 时,质子运动的半径r =m v eB=R ,若质子从同一点沿各个方向射入磁场,则竖直向上射入的质子沿磁场做圆周运动,射出磁场时方向竖直向下;水平指向圆心方向射入磁场的质子从圆周的正下方沿竖直向下的方向射出;竖直向下射入磁场的质子出离磁场的方向也是竖直向下的,故不存在离开磁场的出射方向垂直的情况,选项D 错误;故选AC .答案:AC 二、计算题9.如图所示,在平面直角坐标系xOy 中的第一象限内存在磁感应强度大小为B 、方向垂直于坐标平面向内的有界圆形匀强磁场区域(图中未画出);在第二象限内存在沿x 轴负方向的匀强电场,一粒子源固定在x 轴上的A 点,A 点坐标为(-L,0).粒子源沿y 轴正方向释放出速度大小为v 的电子,电子恰好能通过y 轴上的C 点,C 点坐标为(0,2L ),电子经过磁场偏转后恰好垂直通过第一象限内与x 轴正方向成15°角的射线ON (已知电子的质量为m ,电荷量为e ,不考虑粒子的重力和粒子之间的相互作用).求:(1)第二象限内电场强度E 的大小.(2)电子离开电场时的速度方向与y 轴正方向的夹角θ. (3)圆形磁场的最小半径R m .解析:(1)从A 到C 的过程中,电子做类平抛运动,有:L =eE2m t 22L =v t联立解得:E =m v 22eL.(2)设电子到达C 点的速度大小为v C ,方向与y 轴正方向的夹角为θ.由动能定理,有:12m v 2C -12m v 2=eEL 解得:v C =2v ,cos θ=v v C =22解得:θ=45°.(3)电子的运动轨迹图如图,电子在磁场中做匀速圆周运动的半径r =m v C eB =2m v eB电子在磁场中偏转120°后垂直于ON 射出,则磁场最小半径:R min =PQ2=r sin 60° 由以上两式可得:R min =6m v2eB. 答案:(1)E =m v 22eL (2)45° (3)6m v2eB10.“太空粒子探测器”是由加速装置、偏转装置和收集装置三部分组成的,其原理可简化如下:如图所示,辐射状的加速电场区域边界为两个同心圆,圆心为O ,外圆的半径R 1=2 m ,电势φ1=50 V ,内圆的半径R 2=1 m ,电势φ2=0,内圆内有磁感应强度大小B =5×10-3T 、方向垂直纸面向里的匀强磁场,收集薄板MN 与内圆的一条直径重合,收集薄板两端M 、N 与内圆间各存在狭缝.假设太空中漂浮着质量m =1.0×10-10kg 、电荷量q =4×10-4C 的带正电粒子,它们能均匀地吸附到外圆面上,并被加速电场从静止开始加速,进入磁场后,发生偏转,最后打在收集薄板MN 上并被吸收(收集薄板两侧均能吸收粒子),不考虑粒子相互间的碰撞和作用.(1)求粒子刚到达内圆时速度的大小;(2)以收集薄板MN 所在的直线为x 轴建立如图的平面直角坐标系.分析外圆哪些位置的粒子将在电场和磁场中做周期性运动.指出该位置并求出这些粒子运动一个周期内在磁场中所用时间.解析:(1)带电粒子在电场中被加速时,由动能定理可知qU =12m v 2-0U =φ1-φ2 解得:v =2qUm=2×104m/s (2)粒子进入磁场后,在洛伦兹力的作用下发生偏转,有q v B =m v 2r解得r =1.0 m因为r =R 2,所以由几何关系可知,从收集板左端贴着收集板上表面进入磁场的粒子在磁场中运动14圆周后,射出磁场,进入电场,在电场中先减速后反向加速,并返回磁场,如此反复的周期运动.其运动轨迹如图所示.则在磁场中运动的时间为T .T =2πr v =2πm qB解得T =π2×10-4s粒子进入电场的四个位置坐标分别为(0,2m),(2m,0),(0,-2m),(-2m,0) 答案:(1)2×104m/s (2)π2×10-4s(0,2m),(2m,0),(0,-2m),(-2m,0)11.一台质谱仪的工作原理如图所示.大量的甲、乙两种离子飘入电压为U 0的加速电场,其初速度几乎为0,经加速后,通过宽为L 的狭缝MN 沿着与磁场垂直的方向进入磁感应强度为B 的匀强磁场中,最后打到照相底片上.已知甲、乙两种离子的电荷量均为+q ,质量分别为2m 和m ,图中虚线为经过狭缝左、右边界M 、N 的甲种离子的运动轨迹.不考虑离子间的相互作用.(1)求甲种离子打在底片上的位置到N 点的最小距离x ;(2)在图中用斜线标出磁场中甲种离子经过的区域,并求该区域最窄处的宽度d ; (3)若考虑加速电压有波动,在(U 0-ΔU )到(U 0+ΔU )之间变化,要使甲、乙两种离子在底片上没有重叠,求狭缝宽度L 满足的条件.解析:(1)设甲种离子在磁场中的运动半径为r 1 电场加速qU 0=12×2m v 2且q v B =2m v 2r 1解得r 1=2BmU 0q根据几何关系x =2r 1-L 解得x =4BmU 0q-L (2)如图所示最窄处位于过两虚线交点的垂线上d =r 1- r 21-⎝⎛⎭⎫L 22解得d =2BmU 0q- 4mU 0qB 2-L 24(3)设乙种离子在磁场中的运动半径为r 2 r 1的最小半径 r 1min =2Bm (U 0-ΔU )qr 2的最大半径r 2max =1B2m (U 0+ΔU )q由题意知2r 1min -2r 2max >L ,即4Bm (U 0-ΔU )q -2B2m (U 0+ΔU )q>L解得L<2B mq[2(U0-ΔU)-2(U0+ΔU)]答案:见解析。

高考物理专题 磁场、复合场练习及参考答案

高三物理磁场、带电粒子在磁场、复合场中的运动专题练习一、选择题。

本题共8小题。

(第1—5题在每小题给出的四个选项中,只有一项符合题目要求,第6—8题有的有多项符合题目要求。

)1、为了解释地球的磁性,19世纪安培假设:地球的磁场是由绕过地心的轴的环形电流I 引起的。

在下列四个图中,正确表示安培假设中环形电流方向的是( )2、如图所示为水平放置的两根等高固定长直细导线的截面图,O 点是两导线间距离的中点,a 、b 是过O 点的竖直线上与O 点距离相等的两点,两导线中通有大小相等、方向相反的恒定电流 下列说法正确的是( ) A.O 点的磁感应强度为零B.O 点的磁感应强度方向竖直向下C.两导线之间存在相互吸引的安培力D.a 、b 两点的磁感应强度大小相等、方向相反3、如图所示,21q q 和为两带电粒子,其中q 1带正电,q 2带负电 某时刻,它们以相同的速度垂直进入同一磁场,此时所受洛伦兹力分别为F 1、F 2则( )A. F 1、F 2的方向均向右B.F 1、F 2的方向均向左C.F 1的方向向左,F 2的方向向右D.F 1的方向向右,F 2的方向向左4、如图所示,质量m =0.1kg 的AB 杆放在倾角030=θ的光滑轨道上,轨道间距L =0.2m ,电流I =0.5A 当加上垂直于杆AB 的某一方向的匀强磁场后,杆AB 处于静止状态,则所加磁场的磁感应强度不可能为(取2/10s m g =)( )A. 4TB. 5TC. 7TD. 10T5、平面OM 和平面ON 之间的夹角为30°,其横截面(纸面)如图所示,平面OM 上方存在匀强磁场,磁感应强度大小为B ,方向垂直于纸面向外。

一带电粒子的质量为m ,电荷量为q (q >0)。

粒子沿纸面以大小为v 的速度从PM 的某点向左上方射入磁场,速度与OM 成30°角。

已知粒子在磁场中的运动轨迹与ON 只有一个交点,并从OM 上另一点射出磁场。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

▁▂▃▄▅▆▇█▉▊▋▌精诚凝聚 =^_^= 成就梦想 ▁▂▃▄▅▆▇█▉▊▋▌ ▃ ▄ ▅ ▆ ▇ █ █ ■ ▓点亮心灯 ~~~///(^v^)\\\~~~ 照亮人生 ▃ ▄ ▅ ▆ ▇ █ █ ■ ▓ 专题4 第2讲 带电粒子在磁场、复合场中的运动

1.(2011·北京海淀模拟)在我们生活的地球周围,每时每刻都会有大量的由带电粒子组成的宇宙射线向地球射来,地球磁场可以有效地改变这些宇宙射线中大多数带电粒子的运动方向,使它们不能到达地面,这对地球上的生命有十分重要的意义.如图所示为地磁场的示意图.现有一束宇宙射线在赤道上方沿垂直于地磁场的方向射出地球,在地磁场的作用下,射线方向发生改变的情况是( )

A.若这束射线是由带正电荷的粒子组成,它将向南偏移 B.若这束射线是由带正电荷的粒子组成,它将向北偏移 C.若这束射线是由带负电荷的粒子组成,它将向东偏移 D.若这束射线是由带负电荷的粒子组成,它将向西偏移 [答案] D [解析] 由左手定则可知,选项D正确. 2.(2011·琼海模拟)一根容易形变的弹性导线,两端固定,导线中通有电流,方向如图中箭头所示.当没有磁场时,导线呈直线状态;当分别加上方向竖直向上、水平向右或垂直于纸面向外的匀强磁场时,描述导线状态的四个图示中正确的是( )

[答案] D [解析] 当电流方向与磁场方向平行时,通电导线不受安培力的作用,选项A错误;由左手定则可知,选项B中导线受到的安培力的方向应该垂直纸面向里;选项C中导线受到安培力的方向应该水平向右,选项D正确. 3.(2011·东北师大附中模拟)如图所示,把一个装有Na2SO4导电溶液的圆形玻璃器皿放入磁场中,玻璃器皿的中心放一个圆柱形电极,沿器皿边缘内壁放一个圆环形电极,把两电极分别与电池的正、负极相连.对于导电溶液中正、负离子的运动,下列说法中正确的是( ) ▁▂▃▄▅▆▇█▉▊▋▌精诚凝聚 =^_^= 成就梦想 ▁▂▃▄▅▆▇█▉▊▋▌ ▃ ▄ ▅ ▆ ▇ █ █ ■ ▓点亮心灯 ~~~///(^v^)\\\~~~ 照亮人生 ▃ ▄ ▅ ▆ ▇ █ █ ■ ▓ A.正、负离子均做逆时针方向的螺旋形运动 B.正、负离子均做顺时针方向的螺旋形运动 C.正离子沿圆形玻璃器皿的半径向边缘内壁移动 D.负离子做顺时针方向的螺旋形运动 [答案] A [解析] 玻璃器皿中的Na2SO4导电溶液的电流方向是从中心到器皿边缘内壁,根据左手定则,磁场对由此形成的电流有逆时针方向的安培力,故正、负离子均做逆时针方向的螺旋形运动,选项A正确. 4.(2011·课标全国)电磁轨道炮工作原理如图所示.待发射弹体可在两平行轨道之间自由移动,并与轨道保持良好接触.电流I从一条轨道流入,通过导电弹体后从另一条轨道流回.轨道电流可形成在弹体处垂直于轨道面的磁场(可视为匀强磁场),磁感应强度的大小与I成正比,通电的弹体在轨道上受到安培力的作用而高速射出.现欲使弹体的出射速度增加至原来的2倍,理论上可采用的办法是( )

A.只将轨道长度L变为原来的2倍 B.只将电流I增加至原来的2倍 C.只将弹体质量减至原来的一半 D.将弹体质量减至原来的一半,轨道长度L变为原来的2倍,其它量不变 [答案] BD [解析] 由题意可知,B=kI,设轨道宽为d,则F安=BId=kI2d,由动能定理得,F安·L

=12mv2,联立以上式子解得v=2kI2dLm,选项B、D正确. 5.(2011·豫南九校模拟)如图所示,在沿水平方向向里的匀强磁场中,带电小球A与B在同一直线上,其中小球B带正电荷并被固定,小球A与一水平放置的光滑绝缘板C接触(不粘连)而处于静止状态.若将绝缘板C沿水平方向抽去后,以下说法正确的是( )

A.小球A仍可能处于静止状态 B.小球A将可能沿轨迹1运动 ▁▂▃▄▅▆▇█▉▊▋▌精诚凝聚 =^_^= 成就梦想 ▁▂▃▄▅▆▇█▉▊▋▌ ▃ ▄ ▅ ▆ ▇ █ █ ■ ▓点亮心灯 ~~~///(^v^)\\\~~~ 照亮人生 ▃ ▄ ▅ ▆ ▇ █ █ ■ ▓ C.小球A将可能沿轨迹2运动 D.小球A将可能沿轨迹3运动 [答案] AB [解析] 小球A处于静止状态,可判断小球A带正电,若此时小球A重力与库仑力平衡,将绝缘板C沿水平方向抽去后,小球A仍处于静止状态;若库仑力大于小球A重力,则将绝缘板C沿水平方向抽去后,小球A向上运动,此后小球A在库仑力、重力、洛伦兹力的作用下将可能沿轨迹1运动. 6.(2011·苏北四市调研)利用霍尔效应制作的霍尔元件,广泛应用于测量和自动控制等领域.如图是霍尔元件的工作原理示意图,磁感应强度B垂直于霍尔元件的工作面向下,通入图示方向的电流I,C、D两侧面会形成电势差UCD.下列说法中正确的是( )

A.电势差UCD仅与材料有关 B.若霍尔元件的载流子是自由电子,则电势差UCD<0 C.仅增大磁感应强度时,电势差UCD变大 D.在测定地球赤道上方的地磁场强弱时,元件的工作面应保持水平 [答案] BC [解析] 若载流子是自由电子,由左手定则可知,自由电子往C板积聚,则φC

项B正确;设自由电荷定向运动的速率为v,则qvB=qUCDL,电流微观表达式I=nqvS,其中

S=Ld,三式联立得,UCD=IBnqd,选项A错误而C正确;磁感应强度B应垂直穿过霍尔元件的工作面,地球赤道上方地磁场方向水平指向北,故工作面应保持竖直,选项D错误. 7.(2011·海南)空间存在方向垂直于纸面向里的匀强磁场,图中的正方形为其边界.一细束由两种粒子组成的粒子流沿垂直于磁场的方向从O点入射.这两种粒子带同种电荷,它们的电荷量、质量均不同,但其比荷相同,且都包含不同速率的粒子.不计重力.下列说法正确的是( )

A.入射速度不同的粒子在磁场中的运动时间一定不同 B.入射速度相同的粒子在磁场中的运动轨迹一定相同 C.在磁场中运动时间相同的粒子,其运动轨迹一定相同 ▁▂▃▄▅▆▇█▉▊▋▌精诚凝聚 =^_^= 成就梦想 ▁▂▃▄▅▆▇█▉▊▋▌ ▃ ▄ ▅ ▆ ▇ █ █ ■ ▓点亮心灯 ~~~///(^v^)\\\~~~ 照亮人生 ▃ ▄ ▅ ▆ ▇ █ █ ■ ▓ D.在磁场中运动时间越长的粒子,其轨迹所对的圆心角一定越大 [答案] BD

[解析] 粒子进入磁场后做匀速圆周运动,洛伦兹力提供向心力,即qvB=mv2r,则轨

迹半径r=mvqB,周期T=2πrv=2πmqB.由于粒子的比荷相同,入射速度相同的粒子在磁场中的运动轨迹一定相同,选项B正确.入射速度不同的粒子,在磁场中的运动轨迹不同,但运动时间可能相同.比如,速度较小的粒子会从磁场的左边界飞出,都运动半个周期,而它们的周期相同,故选项A错误;进而可知选项C错误.由于所有粒子做圆周运动的周期相同,故在磁场中运动时间越长的,其轨迹所对的圆心角一定越大,选项D正确. 8.(2011·佛山模拟)1922年英国物理学家阿斯顿因质谱仪的发明、同位素和质谱的研究荣获了诺贝尔化学奖.若速度相同的同一束粒子由左端射入质谱仪后的运动轨迹如图所示,则下列相关说法中正确的是( )

A.该束带电粒子带负电 B.速度选择器的P1极板带正电 C.在B2磁场中运动半径越大的粒子,质量越大 D.在B2磁场中运动半径越大的粒子,比荷q/m越小 [答案] BD [解析] 由带电粒子在磁场B2中的偏转方向可知,粒子带正电,选项A错误;带电粒子在如图所示的速度选择器中受到两个力平衡,即qvB=qE,因为受到的洛伦兹力方向向上,故受到的电场力方向向下,则P1极板带正电,选项B正确;带电粒子在右侧的偏转磁场中,

半径R=mvqB2,则比荷q/m越小,半径越大,选项D正确,选项C错误. 9.(2011·南昌模拟)如图所示为磁流体发电机的原理图:将一束等离子体喷射入磁场,在磁场中有两块金属板A、B,这时金属板上就会聚集电荷 ,产生电压.如果射入的等离子体速度均为v,两金属板的板长为L,板间距离为d,板平面的面积为S,匀强磁场的磁感应强度为B,方向垂直于速度方向,负载电阻为R,等离子体充满两板间的空间.当发电机稳定发电时,电流表示数为I,那么板间等离子体的电阻率为( ) ▁▂▃▄▅▆▇█▉▊▋▌精诚凝聚 =^_^= 成就梦想 ▁▂▃▄▅▆▇█▉▊▋▌ ▃ ▄ ▅ ▆ ▇ █ █ ■ ▓点亮心灯 ~~~///(^v^)\\\~~~ 照亮人生 ▃ ▄ ▅ ▆ ▇ █ █ ■ ▓ A.Sd(BdvI-R) B.Sd(BLvI-R) C.SL(BdvI-R) D.SL(BLvI-R) [答案] A [解析] 根据磁流体发电机的原理可推知:A、B板间产生的电动势为E=Bdv,A、B

板间的等效电阻r=ρds,根据闭合电路的欧姆定律得I=ER+r,联立可得ρ=Sd(BdvI-R),A正确. 10.(2011·郑州模拟)如图所示,真空中存在竖直向上的匀强电场和水平方向的匀强磁场.一质量为m,带电荷量为q的小球以速度v在竖直平面内做半径为R的匀速圆周运动,假设t=0时小球在轨迹最低点且重力势能为零,电势能也为零,下列说法正确的是( )

A.小球带负电 B.小球运动的过程中,机械能守恒,且机械能为E=12mv2

C.重力势能随时间的变化关系为Ep=mgRcosvRt D.电势能随时间变化关系为Ep′=mgR(cosvRt-1) [答案] D [解析] 小球做匀速圆周运动,说明电场力与重力平衡,所以小球带正电,A错;小球在运动过程中,由于电场力做功,所以机械能不守恒,B错;小球从最低点开始做匀速圆周运动,经历时间t,运动的弧长为vt,设小球所在位置与球心的连线和竖直方向的夹角为θ,由几何关系vt=Rθ,小球的高度变化h=R(1-cosθ),所以重力势能随时间的变化关系为Ep=

mgR(1-cosvRt),C错;电势能随时间的变化关系为Ep=mgR(cosvRt-1),D正确. 11.(2011·豫南九校模拟)如图所示,MN是一段在竖直平面内半径为1m的光滑的1/4圆弧轨道,轨道上存在水平向右的匀强电场.轨道的右侧有一垂直纸面向里的匀强磁场,磁感应强度为B1=0.1T.现有一带电荷量为1C、质量为100g的带正电小球从M点由静止开始自由

相关文档
最新文档