生物化学糖代谢笔记

合集下载

生物化学(合工大)第八章糖代谢

生物化学(合工大)第八章糖代谢
NAD
(一)丙酮酸的无氧还原
酵母菌
焦磷酸硫胺素 ( TPP )
H
O
(2)酒精发酵(alcoholic fermation)
糖的无氧降解及厌氧发酵总图
基本反应: 糖酵解生成的丙酮酸可穿过线粒体膜进入线粒体基质,在丙酮酸脱氢酶系的催化下,生成乙酰辅酶A。
TPP, FAD, 硫辛酸, Mg2+
3步
1,6-二磷酸果糖
第二阶段:糖的裂解阶段
1,6-二磷酸果糖
两分子的磷酸丙糖
2步
第三阶段:产能阶段
两分子的3-磷酸甘油醛
两分子丙酮酸
5步
G+2NAD+2ADP+2Pi
2丙酮酸+2NADH+2H +2ATP +2H2O
整个过程无氧参加;
三个关键酶;
从葡萄糖开始净生成2分子ATP, 从糖原开始净生成3分子ATP;
一次脱氢,辅酶为NAD+,生成NADH+H+。
总反应式:
(四)糖酵解的反应特点
2. 丙酮酸的去路
葡萄糖
葡萄糖
丙酮酸
乳酸
乙醇
乙酰 CoA
三羧酸循环
(有氧或无氧)
丙酮酸
乳酸
乙醇
乙酰 CoA
糖酵解途径
三羧酸循环
(有氧或无氧)
(有氧)
(无氧)
(1) 乳酸发酵(lactic fermation) 动物,藻类、乳酸菌 G +2ADP+ 2Pi 2乳酸 +2ATP+2H2O
(五)生理意义
02
04
葡萄糖完全氧化产生的ATP
酵解阶段: 2 ATP 2 1 NADH

医学生物化学(第六章)糖 代 谢

医学生物化学(第六章)糖  代  谢

46
F-2,6-BP的生成与作用 * 生成:
(PFK-2)
(F-6-P)
(F-2,6-BP)
* 作用:促进F-1,6-BP生成
图6-5
47
PFK-2是一双功能酶:
PFK-2活性(使F-2,6-BP↑) 具有
2,6-二磷酸果糖酶2活性(使F-2,6-BP↓)
(PFK-2)
(F-6-P)
(F-2,6-BP)
TCA循环
56
图6-3 糖代谢三条途径间的关系
①无氧酵解 ②磷酸戊糖途径 ③有氧氧化
57
(一) 葡萄糖
丙酮酸
* 胞浆内进行
* 过程同糖酵解, 消耗2ATP
* 生成4ATP
* 生成2 NADH + H+
(3-磷酸甘油醛 (×2)
1,3-二磷酸甘油酸)
58
己糖激酶
6-磷酸果糖 激酶-1
(直链)
丙 酮 酸 激 酶
四个阶段:
I.己糖磷酸化(Glc
F-1,6P)
II.
(×1)
磷酸己糖
裂解
(×2)
磷酸丙糖
(×2) 氧化 (×2)
III. 磷酸丙糖 丙酮酸
IV.
(×2)
丙酮酸
还原乳(×酸2)(无氧)
18
(×2) (×2)
(×2)
19
1.己糖磷酸化(Glc
F-1,6P)
(1) Glc/Gn磷酸化为G-6-P
第一次磷酸化反应
a. 神经系统:
下丘脑和自主神经 调节 激素分泌
b. 激素:
(表6-1)
c. 组织器官: 肝脏最主要
9
激素对血糖浓度的调节
相互协同/拮抗

生物化学糖代谢

生物化学糖代谢
糖内酯酶
H
C
OH
6-磷酸葡萄 糖酸脱氢酶
H
C
OH
HC
H C ቤተ መጻሕፍቲ ባይዱH
H C OH
CH2OPO3 2-
CH2OPO3 2-
CH2OPO3 2-
6-磷酸葡萄糖酸
核酮糖5-磷酸
阶段2. 5-磷酸核酮糖的基团转移反应过程
CH2OH 2 CO
H C OH
磷酸戊糖异构酶
H C OH
CH2OPO3 2-
核酮糖5-磷酸
OH C
2 H C OH H C OH H C OH CH2OPO3 2-
核糖5-磷酸
CH2OH 4 CO
H C OH H C OH
CH2OPO3 2-
磷酸戊糖差向异构酶
CH2OH CO
4 HO C H H C OH CH2OPO3 2-
核酮糖5-磷酸
木酮糖5-磷酸
CH2OH CO
OH C
CH2OH C=O
2.缩合: UDPG + (G)n
*
糖原合酶
(G)n+1 + UDP
3.分支:
• 当直链长度达12个葡萄糖残基以上时,在 分支酶的催化下,将距末端6~7个葡萄糖 残基组成的寡糖链由α-1,4-糖苷键转变 为α-1,6-糖苷键,使糖原出现分支。
α-1,4 α-1,6
由葡萄糖生成糖原主要有5步反应:
CH2OH CO
OH C
转酮酶
1CH2OH 2C=O
HO C H + 2 H C OH
2 H C OH
H C OH
CH2OPO3 2- CH2OPO3 2-
HO 3C H
CHO
2 H 4C OH + CHOH

动物生物化学 第六章 糖的代谢

动物生物化学  第六章  糖的代谢

2. 糖原的 合成
(UDP-葡萄 糖焦磷酸化 酶、糖原合 成酶、糖原 分支酶)
糖原合成酶催化的反应
糖原的合成与分解总反应示意图
3. 糖原代谢的调节
• 葡萄糖分解代谢总反应式 • C6H6O6 + 6 H2O + 10 NAD+ + 2 FAD + 4 ADP +
4Pi 6 CO2 + 10 NADH + 10 H+ + 2 FADH2 + 4 ATP • 按照一个NADH能够产生3个ATP,1个FADH2能够产 生2个ATP计算,1分子葡萄糖在分解代谢过程中共产 生38个ATP: • 4 ATP +(10 3)ATP + (2 2)ATP = 38 ATP
Байду номын сангаас
CH2OH CO
HO C H
CHO
H C OH + H C OH
H C OH H C OH
CH2O P
转醛酶
CH2O P
7-磷酸景天庚酮糖 3-磷酸甘油醛
CHO
H C OH +
H C OH CH2O P
4-磷酸赤藓糖
CH2OH CO HO C H HO C H H C OH CH2O P
6-磷酸果糖
H
O
H
OH H HO
H OH
H2O
H C OH
HO C H
O 内酯酶
H C OH
H C OH
G-6-P
6-磷酸葡萄 糖酸内酯
CH2O P 6-磷酸葡萄糖酸
COOH H C OH
NADP+
+ NADPH + H

动物生物化学 第六章 糖代谢

动物生物化学 第六章 糖代谢
葡萄糖在有氧条件下,氧化分解生成二氧化碳和水的过程称为 糖的有氧氧化(aerobicoxidation)。有氧氧化是糖分解代谢的主要 方式。
丙酮酸脱氢酶系(pyruvate dehydrogenase system) 1 丙酮酸脱羧酶,辅酶是TPP, 2 二氢硫辛酸乙酰转移酶,辅酶是二氢硫辛酸和辅酶A, 3 二氢硫辛酸脱氢酶,辅酶是FAD及NAD+
(三)血糖
人 80-120mg/100ml 4.4-6.7mmol/L
第一节 糖的分解代谢 (catabolism of carbohydrate)
动物组织均能对糖进行分解代谢,主要的分解途 径有三条:
(1)无氧条件下进行糖酵解途径;
(2)有氧条件下进行有氧氧化;
(3)生成磷酸戊糖-磷酸戊糖通路。
葡萄糖(glucose G)
-1ATP
6-磷酸葡萄糖(glucose-6-phophate, G-6-P)
己糖激酶(hexokinase,HK)。
葡萄糖激酶(glucokinase,GK)
6-磷酸葡萄糖是HK的反馈抑制物,此酶是糖氧化 反应过程的限速酶(rate limiting enzyme)或称关键酶 (key enzyme)。它有同工酶Ⅰ-Ⅳ型,Ⅰ、Ⅱ、Ⅲ型主 要存在于肝外组织,其对葡萄糖Km值为10-5~10-6M。
第六章 糖代谢
一 糖的生理功能
1 机体的组成成分 核糖 糖脂 2 提供能量和碳源 70%
二 糖代谢的概况
(一)糖的来源
1 由消化道吸收(单胃动物) 2 由非糖物质转化而来(反刍兽)
(二)动物体内糖的主要代谢途径
1 分解供能—— 酵解、有氧氧化、磷酸戊糖途 径、糖原分解
2 贮存—— 糖异生、合成糖原或转变成脂肪

《生化》第六章糖代谢

《生化》第六章糖代谢
O=C O
P
ATP ADP
ADP
ATP
COOH C OH
C
OH
磷酸甘油酸激酶
F-1,6-2P
CH2 O
磷酸二 羟丙酮
NAD+ NADH+H+
P
CH2 O
P
3-磷酸 甘油醛
1,3-二磷酸 甘油酸
3-磷酸甘油酸
磷酸甘油酸激酶(phosphoglycerate kinase)
ATP
1,3-二磷酸甘油酸
ADP
G-1-P
二、单糖的氧化分解 主要指G,经多糖降解后生成的G,吸收进 入细胞进行氧化分解,从而为机体提供能量。机 体几乎所有的组织的细胞中,都能进行糖的分解 以获能。
G进行氧化分解供能的途径主要有三条
糖的无氧分解(酵解)
糖的有氧分解 糖的磷酸戊糖支路分解
1.糖酵解的反应过程
(1)糖酵解(glycolysis)的定义
第二阶段
由丙酮酸转变成乳酸。
Glu
ATP ADP
(一)葡萄糖分解成丙酮酸
⑴ 葡萄糖磷酸化为6-磷酸葡萄糖
G-6-P F-6-P
ATP ADP
F-1,6-2P 磷酸二 羟丙酮
NAD+ NADH+H+
HO CH2 H HO O H OH H H H OH
P O CH2
ATP ADP
H HO O H OH H H H OH
门静脉
肝脏
GLUT
各种组织细胞
体循环
三、糖代谢的概况
糖原
糖原合成 肝糖原分解
酵解途径
ATP
有氧
核糖 磷酸戊糖途径 +
NADPH+H+

生物化学 --糖代谢(共32张PPT)

生物化学 --糖代谢(共32张PPT)
新陈代谢
同小分化子作物用质合成大分子的需能过程
中间代谢
大异分化子分作解用成简单小分子的放能过程
Top
1
2
3
4
糖代谢概述 糖原的代谢
糖酵解
柠檬酸循环
磷酸戊糖通路 糖异生
糖代谢与其 他代谢关系
第一节 糖类的一般概况
1.单糖:不能再水解的糖,葡萄糖,果糖,核糖等。
2.双糖:由两个相同或不同的单糖组成, 乳糖、蔗糖等.
CH3
丙酮酸
COO HC OH + NAD+
CH3 乳酸
甘油醛3-磷酸氧化为 甘油酸1,3-二磷酸
丙酮酸
无有氧条条件件
NADH
丙酮酸进一步被氧化分解
乳酸
NADH经呼吸链生成水
氧化为二氧化碳和水
乳酸
合成肝糖原或葡萄糖
糖异生
乳酸
乙醇
NADH
乳酸发酵
NADH 乙醇脱氢酶
丙酮酸 脱羧酶 乙醛
乙醇发酵
糖酵解途径汇总Βιβλιοθήκη HOCH 2C O P O OH
HC OH HO
H 2C O P O OH
3-磷酸甘油醛
上述的5步反应完成了糖酵解的准备阶段 。酵解的准备阶段包括两个磷酸化步骤由六 碳糖裂解为两分子三碳糖,最后都转变为甘 油醛3-磷酸。
在准备阶段中,并没有从中获得任何能量 ,与此相反,却消耗了两个ATP分子。
以下的5步反应包括氧化—还原反应、磷酸
3113-PPii
3 生成甘油酸2-磷酸
4 生成烯醇式丙酮酸磷酸
ATP
ATP
5 生成烯醇式丙酮酸 6 生成丙酮酸
⑹甘油醛3-磷酸氧化为甘油酸1,3-二磷酸
O

生物化学及分子生物学(人卫第九版)-05-05节糖代谢

生物化学及分子生物学(人卫第九版)-05-05节糖代谢

熟悉 糖原合成与分解关键酶的调节;糖异生与糖酵解的底物循环 调节;乳酸循环的概念和生理意义;血糖调节激素及其作用 机制
了解
糖原累积症的发病机制;糖醛酸途径、多元醇途径的概念和 生理意义;血糖的来源和去路;糖代谢异常所致疾病
第五节
糖原的合成与分解
Glycogenesis and Glycogenolysis
激素调节的整合作用
糖、脂肪、氨基酸代谢相协调 肝、肌、脂肪组织等各组织代谢相协调
(一)胰岛素是降低血糖的主要激素
特点: 血糖升高时分泌增多 机制: 促进糖原、脂肪、蛋白质合成
促进肌、脂肪组织等通过GLUT4摄取葡萄糖
激活磷酸二酯酶而降低cAMP水平,使糖原合酶活化、磷酸化酶抑制 激活丙酮酸脱氢酶磷酸酶,使丙酮酸脱氢酶活化
一、血糖水平保持恒定
是血糖来源和去路相对平衡的结果
食物糖
糖原合成
CO2 + H2O 肝(肌)糖原 其他糖
肝糖原
分解
血糖
磷酸戊糖途径等
非糖物质
脂肪、氨基酸
二、血糖稳态主要受激素调节
调节血糖的主要激素
降低血糖:胰岛素 (insulin)等
升高血糖:胰高血糖素 (glucagon)、糖皮质激素、肾上腺素等
葡糖-1-磷酸
UDPG
ATP
UTP
CH 2 OH
H
HO
H OH H
O H
H O P
+
P
P
P
尿苷
葡糖-1- 磷酸 UDPG焦磷酸化酶 PPi
H
HO
OH
UTP
CH 2 OH H OH H O H H O P P
尿苷
2Pi+能量
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第九章糖代谢第二节糖的有氧氧化葡萄糖在有氧条件下彻底氧化分解生成CO2和H2O,并释放出大量能量的过程称为糖的有氧氧化绝大多数组织细胞通过糖的有氧氧化途径获得能量。

此代谢过程在细胞的胞液和线粒体内进行。

一分子葡萄糖彻底氧化分解可产生36/38分子ATP。

糖的有氧氧化代谢途径可分为:葡萄糖酵解、丙酮酸氧化脱羧和三羧酸循环三个阶段。

(一)葡萄糖经酵解途径生成丙酮酸:此阶段在细胞胞液(cytoplasm)中进行,一分子葡萄糖(glucose)分解后净生成2分子丙酮酸(pyruvate),2分子ATP,和2分子(NADH +H+)。

2分子(NADH +H+)在有氧条件下可进入线粒体(mitochondrion)产能,共可得到2×2或者2×3分子A TP。

故第一阶段可净生成6或8分子A TP。

(二)丙酮酸氧化脱羧生成乙酰CoA:丙酮酸进入线粒体(mitochondrion),在丙酮酸脱氢酶系(pyruvate dehydrogenase complex)的催化下氧化脱羧生成乙酰CoA (acetyl CoA)。

由一分子葡萄糖氧化分解产生两分子丙酮酸(pyruvate),故可生成两分子乙酰CoA(acetyl CoA),两分子CO2和两分子(NADH+H+),可生成2×3分子A TP 。

丙酮酸脱氢酶系(pyruvate dehydrogenase complex)是糖有氧氧化途径的关键酶之一。

多酶复合体:是催化功能上有联系的几种酶通过非共价键连接彼此嵌合形成的复合体。

其中每一个酶都有其特定的催化功能,都有其催化活性必需的辅酶。

丙酮酸脱氢酶系由三种酶单体构成:丙酮酸脱氢酶(E1),硫辛酸乙酰基转移酶(E2),二氢硫辛酸脱氢酶(E3)。

该多酶复合体包含六种辅助因子:TPP,硫辛酸,NAD+,FAD,HSCoA和Mg2+。

(三)经三羧酸循环彻底氧化分解:三羧酸循环(TAC,柠檬酸循环或Krebs循环)是指在线粒体中,乙酰CoA首先与草酰乙酸缩合生成柠檬酸,然后经过一系列的代谢反应,乙酰基被氧化分解,而草酰乙酸再生的循环反应过程。

三羧酸循环在线粒体中进行。

一分子乙酰CoA氧化分解后共可生成12分子ATP,故此阶段可生成2×12=24分子ATP。

三羧酸循环的特点①循环反应在线粒体(mitochondrion)中进行,为不可逆反应。

②每完成一次循环,氧化分解掉一分子乙酰基,可生成12分子ATP。

③循环的中间产物既不能通过此循环反应生成,也不被此循环反应所消耗。

④三羧酸循环中有两次脱羧反应,生成两分子CO2。

⑤循环中有四次脱氢反应,生成三分子NADH和一分子FADH2。

⑥循环中有一次底物水平磷酸化,生成一分子GTP。

⑦三羧酸循环的关键酶是柠檬酸合酶、异柠檬酸脱氢酶和 -酮戊二酸脱氢酶系。

1,三羧酸循环小结TCA运转一周的净结果是氧化1分子乙酰CoA,草酰乙酸仅起载体作用,反应前后无改变。

2,TCA中的一些反应在生理条件下是不可逆的,所以整个三羧酸循环是一个不可逆的系统.3,TCA的中间产物可转化为其他物质,故需不断补充三羧酸循环的生理意义:1是糖、脂、蛋白质三大物质互变的共同途径。

2 三羧酸循环所产生的多种中间产物是生物体内许多重要物质生物合成的原料。

在细胞迅速生长时期,三羧酸循环可提供多种化合物的碳架,以供细胞生物合成使用。

3是糖、脂、蛋白质三大物质分解供能的共同通路。

④植物体内三羧酸循环所形成的有机酸,既是生物氧化的基质,又是一定器官的积累物质,⑤发酵工业上利用微生物三羧酸循环生产各种代谢产物.有氧氧化的调节特点⑴有氧氧化的调节通过对其关键酶的调节实现。

⑵ATP/ADP或ATP/AMP比值全程调节。

该比值升高,所有关键酶均被抑制。

⑶氧化磷酸化速率影响三羧酸循环。

前者速率降低,则后者速率也减慢。

⑷三羧酸循环与酵解途径互相协调。

三羧酸循环需要多少乙酰CoA,则酵解途径相应产生多少丙酮酸以生成乙酰CoA。

四、巴斯德效应巴斯德效应(Pastuer effect)是指糖的有氧氧化可以抑制糖的无氧酵解的现象。

* 机制1 有氧时,NADH+H+进入线粒体内氧化,丙酮酸进入线粒体进一步氧化而不生成乳酸;2缺氧时,酵解途径加强,NADH+H+在胞浆浓度升高,丙酮酸作为氢接受体生成乳酸。

五.三羧酸循环的回补反应表面上看来,三羧酸循环运转必不可少的草酰乙酸在三羧酸循环中是不会消耗的,它可被反复利用。

但是,Ⅰ机体内各种物质代谢之间是彼此联系、相互配合的,TCA中的某些中间代谢物能够转变合成其他物质,借以沟通糖和其他物质代谢之间的联系。

Ⅱ机体糖供不足时,可能引起TCA运转障碍,这时苹果酸、草酰乙酸可脱羧生成丙酮酸,再进一步生成乙酰CoA进入TCA氧化分解。

回补反应三羧酸循环中的任何一种中间产物被抽走,都会影响三羧酸循环的正常运转,如果缺少草酰乙酸,乙酰CoA就不能形成柠檬酸而进入三羧酸循环,所以草酰乙酸必须不断地得以补充.这种补充反应就称为回补反应.六.TCA中ATP的形成及其生物学意义❖1分子乙酰辅酶A经三羧酸循环可生成1分子GTP(可转变成ATP),共有4次脱氢,生成3分子NADH和1分子FADH2。

❖当经呼吸链氧化生成H2O时,前者每对电子可生成3分子A TP,3对电子共生成9分子ATP;后者则生成2分子A TP。

❖因此,每分子乙酰辅酶A经三羧酸循环可产生12分子ATP。

若从丙酮酸开始计算,则1分子丙酮酸可产生15分子ATP。

❖1分子葡萄糖可以产生2分子丙酮酸,因此,原核细胞每分子葡萄糖经糖酵解、三羧酸循环及氧化磷酸化三个阶段共产生8+2×15=38个A TP分子。

第三节磷酸戊糖途径一、磷酸戊糖途径的概念 1.概念:以6-磷酸葡萄糖开始,在6-磷酸葡萄糖脱氢酶催化下形成6-磷酸葡萄糖酸,进而代谢生成以磷酸戊糖为中间代谢物的过程,称为磷酸戊糖途径,简称PPP途径。

又称磷酸已糖旁路.3×6-磷酸葡萄糖+6 NADP+ 2×6-磷酸果糖+ 3-磷酸甘油醛+6(NADPH+H+ ) + 3CO22.反应部位:胞浆二、磷酸戊糖途径的过程第一阶段:氧化反应生成NADPH和CO2第二阶段:非氧化反应一系列基团转移反应(生成3-磷酸甘油醛和6-磷酸果糖)许多细胞中合成代谢消耗的NADPH远比核糖需要量大,因此,葡萄糖经此途径生成了多余的核糖。

第二阶段反应的意义就在于能通过一系列基团转移反应,将核糖转变成6-磷酸果糖和3-磷酸甘油醛而与糖酵解过程联系起来,因此磷酸戊糖途径亦称为磷酸已糖旁路。

转酮酶与转醛酶1转酮酶(transketolase)就是催化含有一个酮基、一个醇基的2碳基团转移的酶。

其接受体是醛,辅酶是TPP。

2,转醛酶(transaldolase)是催化含有一个酮基、二个醇基的3碳基团转移的酶。

其接受体是亦是醛,但不需要TPP。

磷酸戊糖途径小结胞浆反应部位:胞浆反应底物:6-磷酸葡萄糖重要反应产物:NADPH、5-磷酸核糖限速酶:6-磷酸葡萄糖脱氢酶(G-6-PD)四、磷酸戊糖途径的生物学意义1、磷酸戊糖途径也是普遍存在的糖代谢的一种方式2、产生大量的NADPH,为细胞的各种合成反应提供还原力3、该途径的反应起始物为6-磷酸葡萄糖,不需要A TP参与起始反应,因此磷酸戊糖循环可在低A TP浓度下进行。

4、此途径中产生的5-磷酸核酮糖是辅酶及核苷酸生物合成的必需原料。

5、磷酸戊糖途径是机体内核糖产生的唯一场所。

五、磷酸戊糖途径的调节 1 NADPH反馈抑制6-P-葡萄糖脱氢酶的活性。

2 磷酸戊糖途径的速度主要受生物合成时NADPH的需要所调节。

第四节糖的合成代谢 1.糖的异生作用 2.糖原的生物合成自然界中糖的基本来源是绿色植物及光能细菌进行的光合作用(Photosynthesis)糖异生作用(单糖的生物合成)* 概念糖异生作用是指以非糖物质作为前体合成为葡萄糖的作用。

部位主要在肝脏、肾脏细胞的胞浆及线粒体原料主要有乳酸、丙酮酸、甘油、生糖氨基酸一、糖异生的反应过程*糖异生途径(gluconeogenic pathway)是从丙酮酸生成葡萄糖的具体反应过程。

过程糖异生途径与酵解途径大多数反应是共有的、可逆的;酵解途径中有3个由关键酶催化的不可逆反应。

在糖异生时,须由另外的反应和酶代替。

1. 丙酮酸转变成磷酸烯醇式丙酮酸(PEP)①丙酮酸羧化酶(pyruvate carboxylase),辅酶为生物素(反应在线粒体)②磷酸烯醇式丙酮酸羧激酶(反应在胞液)糖异生途径所需NADH+H+的来源糖异生途径中,1,3-二磷酸甘油酸生成3-磷酸甘油醛时,需要NADH+H+。

①由乳酸为原料异生糖时,NADH+H+由下述反应提供。

②由氨基酸为原料进行糖异生时,NADH+H+则由线粒体内NADH+H+提供,它们来自于脂酸的β-氧化或三羧酸循环,NADH+H+转运则通过草酰乙酸与苹果酸相互转变而转运。

非糖物质进入糖异生的途径⑴糖异生的原料转变成糖代谢的中间产物⑵上述糖代谢中间代谢产物进入糖异生途径,异生为葡萄糖或糖原二、糖异生的调节在前面的三个反应过程中,作用物的互变分别由不同酶催化其单向反应,这样一对由不同酶催化所进行的正逆反应称之为底物循环当两种酶活性相等时,则不能将代谢向前推进,结果仅是ATP分解释放出能量,因而称之为无效循环(futile cycle)。

因此,有必要通过调节使糖异生途径与酵解途径相互协调,主要是对6-磷酸果糖与1,6-二磷酸果糖之间和磷酸烯醇式丙酮酸与丙酮酸之间进行调节。

三、糖异生的生理意义(一)葡糖异生可维持动物和人体内血糖浓度的相对恒定。

这对需糖较多的脑组织、红细胞和视网膜等非常重要(二)葡糖异生是草食动物,特别是反刍动物体内葡萄糖的唯一来源。

(三)葡糖异生与乳酸的利用有密切关系,对于回收乳酸分子中的能量、更新肝糖原、防止乳酸中毒的发生等都有一定的意义。

(四)协助氨基酸代谢。

四、乳酸循环葡萄糖在肌肉组织中经糖的无氧酵解产生的乳酸,可经血循环转运至肝,再经糖的异生作用生成自由葡萄糖后转运至肌肉组织加以利用,这一循环过程就称为乳酸循环(Cori循环)。

⑵乳酸循环是一个耗能的过程2分子乳酸异生为1分子葡萄糖需6分子ATP。

⑶生理意义①乳酸再利用,避免了乳酸的损失。

②防止乳酸的堆积引起酸中毒。

糖原的生物合成糖原是动物体内糖的储存形式之一,是机体能迅速动用的能量储备。

糖原是由葡萄糖残基构成的含许多分支的大分子高聚物。

糖原储存的主要器官及其生理意义1肌肉:肌糖原,180—300g,主要供肌肉收缩所需2肝脏:肝糖原,70—100g,维持血糖水平糖原的结构特点及其意义 1. 葡萄糖单元以α-1,4-糖苷键形成长链。

2. 约10个葡萄糖单元处形成分枝,分枝处葡萄糖以α-1,6-糖苷键连接,分支增加,溶解度增加。

相关文档
最新文档