必修一第三章函数的概念与性质(学案)

必修一第三章函数的概念与性质(学案)
必修一第三章函数的概念与性质(学案)

人教版高一数学必修一第一章 集合与函数概念知识点

高一数学必修1各章知识点总结 第一章集合与函数概念 一、集合有关概念 1.集合的含义 2.集合的中元素的三个特性: (1)元素的确定性如:世界上最高的山 (2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y} (3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西 洋,印度洋,北冰洋} (1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (2)集合的表示方法:列举法与描述法。 ◆注意:常用数集及其记法: 非负整数集(即自然数集)记作:N 正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R 1)列举法:{a,b,c……} 2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{x∈R| x-3>2} ,{x| x-3>2} 3)语言描述法:例:{不是直角三角形的三角形} 4)Venn图: 4、集合的分类: (1)有限集含有有限个元素的集合 (2)无限集含有无限个元素的集合 (3)空集不含任何元素的集合例:{x|x2=-5} 二、集合间的基本关系 1.“包含”关系—子集 A?有两种可能(1)A是B的一部分,;(2)A与B是注意:B 同一集合。 ?/B 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A ?/A 或B 2.“相等”关系:A=B (5≥5,且5≤5,则5=5) 实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等” 即:①任何一个集合是它本身的子集。A?A ②真子集:如果A?B,且A≠ B那就说集合A是集合B的真子集,记作A B(或B A) ③如果 A?B, B?C ,那么 A?C ④如果A?B 同时 B?A 那么A=B 3. 不含任何元素的集合叫做空集,记为Φ 规定: 空集是任何集合的子集,空集是任何非空集合的真子集。 ◆有n个元素的集合,含有2n个子集,2n-1个真子集

高一函数概念与性质测试题

1、下列哪组中的两个函数是同一函数 (A )2()y x 与y x (B )33()y x 与y x (C )2y x 与2()y x (D )33y x 与2 x y x 2、下列集合A 到集合B 的对应f 是映射的是 (A )1,0,1,1,0,1,A B f :A 中的数平方; (B )f B A ,1,0,1,1,0:A 中的数开方; (C ),,A Z B Q f :A 中的数取倒数; (D ),,A R B R f :A 中的数取绝对值; 3、已知函数11)(22x x x f 的定义域是() (A )[-1,1] (B ){-1,1} (C )(-1,1)(D )) ,1[]1,(4、若函数)(x f 在区间(a ,b )上为增函数,在区间(b ,c )上也是增函数,则函数)(x f 在区间(a ,c )上() (A )必是增函数(B )必是减函数 (C )是增函数或是减函数(D )无法确定增减性 5、)(x f 是定义在R 上的奇函数,下列结论中,不正确...的是( ) (A )0)()(x f x f (B )) (2)()(x f x f x f (C ))(x f ·)(x f ≤0(D )1 )() (x f x f 6、函数()f x 的定义域为),(b a ,且对其内任意实数12,x x 均有:1212()[()()]0x x f x f x ,则()f x 在),(b a 上是 (A )增函数(B )减函数 (C )奇函数(D )偶函数 7、若函数()(()0)f x f x 为奇函数,则必有 (A )()()0f x f x (B )()()0 f x f x (C )()()f x f x (D )()() f x f x 8、设偶函数f(x)的定义域为R ,当x ],0[时f(x)是增函数,则f(-2),f(),f(-3)的大小关系是()

函数的概念学案

函数的概念学案 学习目标 1、通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用 2、了解构成函数的要素,进一步巩固初中常见函数(一次函数、二次函数、反比例函数)的图像、定义域、值域 3、理解区间的概念,能准确地利用区间表示数集 4、通过从实际问题中抽象概括函数概念的活动,培养抽象概括能力 教学重点体会函数是描述变量之间的依赖关系的重要数学模型,正确理解函数的概念 教学难点函数的概念、符号y=f(x)的理解、 教学流程 一、问题1、在初中,甚至在小学我们就接触过函数,在实际生产生活中,函数也发挥着重要的作用,那么,请大家举出以前学习过的几个具体的函数 问题2、请大家用自己的语言来描述一下函数 二、结合刚才的问题,阅读课本实例(1)、(2)、(3),进一步体会函数的概念问题3、在实例(1)、(2)中是怎样描述变量之间的关系的?你能仿照描述一下实例(3)中恩格尔系数和时间(年)之间的关系吗? 问题4、分析、归纳上述三个实例,对变量之间的关系的描述有什么共同点呢? 函数的概念 一般地,设、是,如果按照某种确定的对应关系,使对于集合中的一个数,在集合中都有和它对应,那么就称为从集合到集合的一个函数,记作其中叫做自变量,的取值范围叫做函数的;与的值相对应的值叫做函数值,函数值的集合叫做函数的 问题5、在实例(2)中,按照图中的曲线,从集合B到集合A能不能构成一个函数呢?请说明理由 练习1、 1、在下列从集合到集合的对应关系中,不可以确定是的函数的是()(1),对应关系 (2),对应关系 (3),对应关系 (4),对应关系 2、下图中,可表示函数的图像只能是() 三、区间的概念

陕西省高中数学人教新课标A版必修1第一章集合与函数概念1.3.1单调性与最大(小)值

陕西省高中数学人教新课标A版必修1 第一章集合与函数概念 1.3.1 单调性与最大 (小)值 姓名:________ 班级:________ 成绩:________ 一、选择题 (共15题;共30分) 1. (2分) (2019高一上·宁乡期中) 若一次函数的图像经过第二、三、四象限,则二次函数 的图像只可能是() A . B . C . D . 2. (2分)已知y=f(x)是定义在[﹣1,1]上的偶函数,与g(x)图象关于x=1对称,当x∈[2,3]时,g (x)=2a(x﹣2)﹣3(x﹣2)2 , a为常数,若f(x)的最大值为12,则a=() A . 3 B . 6 C . 6或 D .

3. (2分) (2019高一上·兰州期中) 已知函数(是常数,且)在区间 上有最大值3,最小值,则的值是() A . B . C . D . 4. (2分)下列函数中,是偶函数且在区间(0,+∞)上单调递减的是() A . y=﹣3|x| B . y= C . y=log3x2 D . y=x﹣x2 5. (2分)已知f(x)是定义在上的非负可导函数,且满足.对任意正数a,b,若a

C . D . 7. (2分)已知函数f(x)=在R上单调递增,则实数a的取值范围是() A . 0<a≤3 B . a≥2 C . 2≤a≤3 D . 0<a≤2或a≥3 8. (2分)定义在R上的偶函数满足:对任意的,有,则() A . B . C . D . 9. (2分) (2016高一上·杭州期中) 下列函数中,值域为(0,+∞)的是() A . y= B . C . D . y=x2+x+1 10. (2分) (2019高一上·杭州期中) 下列函数中,既是偶函数,又在上单调递增的是() A .

高一函数概念和性质

高一函数基本性质 1.下列判断正确的是( ) A .函数22)(2--=x x x x f 是奇函数 B .函数()(1f x x =- C .函数()f x x = D .函数1)(=x f 既是奇函数又是偶函数 2.若函数2()48f x x kx =--在[5,8]上是单调函数,则k 的取值范围是( ) A .(],40-∞ B .[40,64] C .(] [),4064,-∞+∞ D .[)64,+∞ 3.函数y =( ) A .(]2,∞- B .(]2,0 C .[)+∞,2 D .[)+∞,0 4.函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围是( ) A .3a ≤- B .3a ≥- C .5a ≤ D .3a ≥ 5.下列四个命题: (1)函数f x ()在0x >时是增函数,0x <也是增函数,所以)(x f 是增函数; (2)若函数2()2f x ax bx =++与x 轴没有交点,则280b a -<且0a >; (3) 223y x x =--的递增区间为[)1,+∞; (4) 1y x =+和y =表示相等函数。其中正确命题的个数是( ) A .0 B .1 C .2 D .3 6.已知定义域为R 的函数f (x )在区间(-∞,5)上单调递减,对任意实数t ,都有 f (5+t )=f (5-t ),那么下列式子一定成立的是 ( ) A .f (-1)<f (9)<f (13) B .f (13)<f (9)<f (-1) C .f (9)<f (-1)<f (13) D .f (13)<f (-1)<f (9) 7.定义在R 上的偶函数()f x 满足(4)()f x f x +=-,且在区间[0,4]上是减函数则( ) A.(10)(13)(15)f f f << B.(13)(10)(15)f f f << C.(15)(10)(13)f f f << D.(15)(13)(10)f f f << 8.函数x x x f -=2)(的单调递减区间是____________________。 9.定义在R 上的奇函数()f x ,当0x >时,1||)(2-+=x x x f ,那么0x <时,()f x = . 10.若函数2()1x a f x x bx += ++在[]1,1-上是奇函数,则()f x 的解析式为______________.

数学必修一集合与函数概念知识点梳理

高中数学必修1知识点 第一章集合与函数概念 〖〗集合 【】集合的含义与表示 (1) 集合的概念 集合中的元素具有确定性、互异性和无序性 (2) 常用数集及其记法 N表示自然数集,N 或N表示正整数集,Z表示整数集,Q表示有理数集,R表 示实数集? (3) 集合与元素间的关系 对象a与集合M的关系是a M,或者a M,两者必居其一. (4) 集合的表示法 ①自然语言法:用文字叙述的形式来描述集合 ②列举法:把集合中的元素一一列举出来,写在大括号内表示集合 ③描述法:{X| x具有的性质},其中x为集合的代表元素? ④图示法:用数轴或韦恩图来表示集合? (5) 集合的分类 ①含有有限个元素的集合叫做有限集?②含有无限个元素的集合叫做 无限集?③不含有 任何元素的集合叫做空集()? 【】集合间的基本关系

)已知集合有个元素,则它有个子集,它有个真子集,它有个 非空子集,它有2n2非空真子集. 【】集合的基本运算 (1)

(2)—元二次不等式的解法 〖〗函数及其表示 【】函数的概念 (1) 函数的概念 ① 设A 、B 是两个非空的数集,如果按照某种对应法则 f ,对于集合A 中任何一个数x , 在集合B 中都有唯一确定的数 f(x)和它对应,那么这样的对应(包括集合 A ,B 以及 A 到B 的对应法则f )叫做集合 A 到B 的一个函数,记作 f : A B . ② 函数的三要素:定义域、值域和对应法则. ③ 只有定义域相同,且对应法则也相同的两个函数才是同一函数.

(2)区间的概念及表示法 ①设a,b是两个实数,且a b,满足a x b的实数x的集合叫做闭区间,记做[a,b]; 满足a x b的实数x的集合叫做开区间,记做(a,b);满足a x b,或a x b 的实数x的集合叫做半开半闭区间,分别记做[a,b) , (a,b];满足x a, x a,x b,x b 的实数x 的集合分别记做[a, ),(a, ),( , b],( , b). 注意:对于集合{x|a x b}与区间(a,b),前者a可以大于或等于b,而后者必须 a b. (3)求函数的定义域时,一般遵循以下原则: ①f(x)是整式时,定义域是全体实数. ②f(x)是分式函数时,定义域是使分母不为零的一切实数. ③f(x)是偶次根式时,定义域是使被开方式为非负值时的实数的集合. ④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等 于1. ⑤y tanx中,x k (k Z). 2 ⑥零(负)指数幕的底数不能为零. ⑦若f(x)是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各 基本初等函数的定义域的交集. ⑧对于求复合函数定义域问题,一般步骤是:若已知 f (x)的定义域为[a,b],其复合函 数f[g(x)]的定义域应由不等式a g(x) b解出. ⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值 求函数最值的常用方法和求函数值域的方法基本上是相同的?事实上,如果在函数的值 域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值

(浙江专用)高中数学第一章集合与函数概念新人教版必修1

【创新设计】(浙江专用)2016-2017学年高中数学 第一章 集合与函数概念 新人教版必修1 1.1 集 合 1.1.1 集合的含义与表示 第1课时 集合的含义 目标定位 1.通过实例了解集合的含义,体会元素与集合的“属于”关系,集合相等的含义.2.理解集合中 元素的三个特性,掌握常用数集的表示符号并会识别应用. 自 主 预 习 1.元素与集合的相关概念 . 统称为元素研究对象我们把,元素:一般地(1) . 组成的总体叫做集合一些元素把集合:(2) . 、无序性互异性、确定性集合中元素的三个特性:(3) . 我们称这两个集合是相等的,一样的集合的相等:构成两集合的元素是(4) 2.元素与集合的表示 . 表示集合中的元素…,c ,b ,a 元素的表示:通常用小写拉丁字母(1) . 表示集合…,C ,B ,A 集合的表示:通常用大写拉丁字母(2) 3.元素与集合的关系 .A ∈a 记作,A 属于集合a 就说,的元素A 是集合a :如果”属于(1)“ . A ?a 记作,A 不属于集合a 就说,的元素A 不是集合a :如果”不属于(2)“ 4.常用数集及表示符号 数集 非负整数集(自然数集) 正整数集 整数集 有理数集 实数集 符号 N N * 或 N + Z Q R 即 时 自 测 1.思考判断(正确的打“√”,错误的打“×”) (1)期末考试成绩出来了,我们班的数学成绩较好的在120分以上的同学组成一个集合.( ) (2)一个集合可以表示成{a ,a ,b ,c ,}.( ) (3)若集合A 是由元素1,2,3,4,5,6所组成的集合,则-1和0都不是集合A 中的元素.( ) 提示 (1)“120分以上”是明确的标准,所以“120分以上的同学”能组成集合.正确. (2)集合中的元素是互不相同的,任何两个相同的对象归入同一个集合中,只能算作这个集合的一个元素.错 误. (3)集合中A 只有元素1,2,3,4,5,6,没有-1和0.正确. 答案 (1)√ (2)× (3)√ 2.下列各组对象:①高中数学中所有难题;②所有偶数;③平面上到定点O 距离等于5的点的全体;④全体 著名的数学家.其中能构成集合的个数为( ) A.1 B.2 C.3 D.4 解析 ②、③中的元素是确定的,能够构成集合,其余的都不能构成集合.

(推荐)高中数学会考专题集锦-函数的概念与性质专题训练

函数的概念与性质专题训练 一、选择题:(本大题共12小题,每小题4分,共48分) 题号 1 2 3 4 5 6 7 8 9 10 11 12 得分 答案 1、映射f :X →Y 是定义域到值域的函数,则下面四个结论中正确的是 A 、Y 中的元素不一定有原象 B 、X 中不同的元素在Y 中有不同的象 C 、Y 可以是空集 D 、以上结论都不对 2、下列各组函数中,表示同一函数的是 A 、||2x y x y ==与 B 、2 lg lg 2x y x y ==与 C 、23) 3)(2(+=--+= x y x x x y 与 D 、10 ==y x y 与 3、函数1+=x y 的定义域是 A 、( ,+) B 、[1,+ ) C 、[0,+] D 、(1,+) 4、若函数y f x =()的图象过点(0,1), 则y f x =+()4的反函数的图象必过点 A 、(4,—1) B 、(—4,1) C 、(1,—4) D 、(1,4) 5、函数)10(≠>+=+=a a b ax y b a y x 且与函数的图像有可能是 A B C D 6、函数241x y --=的单调递减区间是 A 、 ?? ? ? ?∞-2 1, B 、 ?? ????+∞,21 C 、 ?? ? ???- 0,21 D 、 ?? ????2 1,0 7、函数f(x)()R x ∈是偶函数,则下列各点中必在y=f(x)图象上的是 A 、())(,a f a - B 、())(,a f a -- C 、())(,a f a --- D 、())(,a f a -- 8、如果奇函数f(x)在区间[3,7]上是增函数且最大值为5,那么f(x)在区间[-7,-3]上是 x y O x y O x y O x y O

高一必修一函数的概念教学设计及反思

函数的概念 教学目标:1.通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型。 2.了解对应关系在刻画函数概念中的作用。 3.了解构成函数的三要素,会求一些简单函数的定义域和值域。 教学重点:函数概念和函数定义域及值域的求法。 教学难点:函数概念的理解。 教学方法:自学法和尝试指导法 教学过程: (Ⅰ)引入问题 问题1 初中我们学过哪些函数?(正比例函数、反比例函数、一次函数和二次函数) 问题2 初中所学函数的定义是什么?(设在某变化过程中有两个变量x 和y ,,如果给定了一个x 的值,相应地确定唯一的一个y 值,那么就称y 是x 的函数,其中x 是自变量,y 是因变量)。 (Ⅱ)函数感性认识 教材例子(1):炮弹飞行时间的变化范围是数集{026}A x x =≤≤,炮弹距地面的高度h 的变化范围是数集{0845}B h h =≤≤,对应关系21305h t t =- (*)。从问题的实际意义可知,对于数集A 中的任意一个时间t ,按照对应关系(*),在数集B 中都有唯一确定的高度h 和它对应。 例子(2)中数集{19792001}A t t =≤≤,{026}B S S =≤≤,并且对于数集A 中的任意一个时间t ,按图中曲线,在数集B 中都有唯一确定的臭氧层空洞面积S 和它对应。 例子(3)中数集{1991,1992,,2001},{53.8,52.9,,37.9(%)}A B ==L L ,且对于数集A 中的每一个时间(年份),按表格,在数集B 中都有唯一确定的恩格尔系数和它对应。 (III )归纳总结给函数“定性” 归纳以上三例,三个实数中变量之间的关系都可以描述为两个数集A 、B 间的一种对应关系:对数集A 中的每一个x ,按照某个对应关系,在数集B 中都有唯一确定的y 和它对应,记作:f A B →。 (IV)理性认识函数的定义 设A 、B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应,那么就称:f A B →为从集合A 到集合B 的一个函数(function ),记作(),y f x x A =∈,其中x 叫做自变量,x 的取值范围A 叫做函数的定义域(domain ),与x 的值相队对应的y 的值叫做函数值,函数值的集合{()}f x x A ∈叫做函数的值域(range)。 定义域、值域、对应法则,称为函数的三个要素,缺一不可; (1)对应法则f (x)是一个函数符号,表示为“y 是x 的函数”,绝对不能理解为“y 等于f 与x 的乘积”,在不同的函数中,f 的具体含义不一样; y=f(x)不一定是解析式,在不少问题中,对应法则f 可能不便使用或不能使用解析式,这时就必须采用其它方式,如数表和图象,在研究函数时,除用符号f (x)表示外,还常用g(x)、F(x)、G(x)等符号来表示; 自变量x 在其定义域内任取一个确定的值a 时,对应的函数值用符号f (a)来表示。如函数f (x)=x 2+3x+1,当x=2时的函数值是:f (2)=22 +3×2+1=11。

必修一数学第一章集合与函数概念知识点总结

必修一数学第一章集合与函数概念知识点总结 一、集合有关概念 1. 集合的含义 2. 集合的中元素的三个特性: (1) 元素的确定性如:世界上最高的山 (2) 元素的互异性如:由HAPPY 的字母组成的集合{H,A,P ,Y} (3) 元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合 3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋} (1) 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (2) 集合的表示方法:列举法与描述法。 ◆ 注意:常用数集及其记法: 非负整数集(即自然数集) 记作:N 正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R 1) 列举法:{a,b,c ……} 2) 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{x ∈R| x-3>2} ,{x| x-3>2} 3) 语言描述法:例:{不是直角三角形的三角形} 4) Venn 图: 4、集合的分类: (1) 有限集 含有有限个元素的集合 (2) 无限集 含有无限个元素的集合 (3) 空集 不含任何元素的集合 例:{x|x 2=-5} 二、集合间的基本关系 1.“包含”关系—子集 注意:有两种可能(1)A 是B 的一部分,;(2)A 与B 是同一集合。 反之: 集合A 不包含于集合B,或集合B 不包含集合A,记作A B 或B A 2.“相等”关系:A=B (5≥5,且5≤5,则5=5) 实例:设 A={x|x 2-1=0} B={-1,1} “元素相同则两集合相等” 即:① 任何一个集合是它本身的子集。A ?A ②真子集:如果A ?B,且A ≠ B 那就说集合A 是集合B 的真子集,记作A B(或B A) ③如果 A ?B, B ?C ,那么 A ?C ④ 如果A ?B 同时 B ?A 那么A=B 3. 不含任何元素的集合叫做空集,记为Φ 规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。 ◆ 有n 个元素的集合,含有2n 个子集,2n-1个真子集 B A ?? /?/

高一函数的概念与性质

函数概念与性质 一、选择题 1、下列哪组中的两个函数是同一函数 (A )2y =与y x = (B )3y =与y x = (C )y =与2y = (D )y 与2 x y x = 2、下列集合A 到集合B 的对应f 是映射的是 (A ){}{}1,0,1,1,0,1,A B f =-=-:A 中的数平方; (B ){}{}f B A ,1,0,1,1,0-==:A 中的数开方; (C ),,A Z B Q f ==:A 中的数取倒数; (D ),,A R B R f +==:A 中的数取绝对值; 3、已知函数11)(22-+ -=x x x f 的定义域是( ) (A )[-1,1] (B ){-1,1} (C )(-1,1) (D )),1[]1,(+∞--∞ 4、若函数)(x f 在区间(a,b)上为增函数,在区间(b,c)上也是增函数,则函数)(x f 在区间(a,c)上( ) (A )必是增函数 (B )必是减函数 (C )是增函数或是减函数 (D )无法确定增减性 5、)(x f 是定义在R 上的奇函数,下列结论中,不正确... 的是( ) (A )0)()(=+-x f x f (B ))(2)()(x f x f x f -=-- (C ))(x f ·)(x f -≤0 (D ) 1) ()(-=-x f x f 6、函数()f x 的定义域为),(b a ,且对其内任意实数12,x x 均有:1212()[()()]0x x f x f x --<,则()f x 在),(b a 上是 (A )增函数 (B )减函数 (C )奇函数 (D )偶函数 7、若函数()(()0)f x f x ≠为奇函数,则必有 (A )()()0f x f x ?-> (B )()()0f x f x ?-<(C )()()f x f x <-(D )()()f x f x >- 8、设偶函数f(x)的定义域为R ,当x ],0[+∞∈时f(x)是增函数,则f(-2),f(π),f(-3)的大小关系是( ) (A )f(π)>f(-3)>f(-2) (B )f(π)>f(-2)>f(-3)(C )f(π)

人教版高中数学必修一《集合与函数概念》全章练习及答案

第一章集合与函数 建议用时实际用时满分实际得分120分钟150分 1.集合{1,2,3}的所有真子集的个数为() A.3B.6 C.7 D.8 2.下列五个写法,其中错误 ..写法的个数为() ①{0}∈{0,2,3};②?{0};③{0,1,2}?{1,2,0};④0∈?;⑤0∩?=?. A.1 B.2 C.3 D.4 3.使根式x-1与x-2分别有意义的x的允许值集合依次为M、F,则使根式x-1+x-2有意义的x的允许值的集合可以表示为() A.M∪F B.M∩F C.?M F D.?F M 4.已知M={x|y=x2-2},N={y|y=x2-2},则M∩N等于() A.N B.M C.R D.? 5.已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-2x,则f(x)在R上的表达式是() A.y=x(x-2) B.y=x(|x|-1) C.y=|x|(x-2) D.y=x(|x|-2) 6.等腰三角形的周长是20,底边长y是一腰的长x的函数,则y等于() A.20-2x(0

8.已知y=f(x)是定义在R上的奇函数,则下列函数中为奇函数的是() ①y=f(|x|); ②y=f(-x); ③y=xf(x); ④y=f(x)+x. A.①③B.②③ C.①④D.②④ 9.已知0≤x≤3 2,则函数f(x)=x 2+x+1() A.有最小值-3 4,无最大值 B.有最小值3 4,最大值1 C.有最小值1,最大值19 4 D.无最小值和最大值 10.已知函数f(x)的定义域为[a,b],函数y=f(x)的图象如图所示,则函数f(|x|)的图象是() c

人教版高中数学必修1 集合与函数概念 教学设计

人教版高中数学必修1 集合与函数概念教学设计 一、教材分析 集合语言是现代数学的基本语言使用集合语言可以简洁、准确地表达数学的一些内容本章中只将集合作为一种语言来学习学生将学会使用最基本的集合语言去表示有关的数学对象发展运用数学语言进行交流的能力函数的学习促使学生的数学思维方式发生了重大的转变思维从静止走向了运动、从运算转向了关系函数是高中数学的核心内容是高中数学课程的一个基本主线,有了这条主线就可以把数学知识编织在一起这样可以使我们对知识的掌握更牢固一些函数与不等式、数列、导数、立体、解析、算法、概率、选修中的很多专题内容有着密切的联系用函数的思想去理解这些内容是非常重要的出发点,反过来通过这些内容的学习加深了对函数思想的认识函数的思想方法贯穿于高中数学课程的始终高中数学课程中函数有许多下位知识,如必修1第二章的幂、指、对函数数在必修四将学习三角函数函数是描述客观世界变化规律的重要数学模型。 二、学情分析 1学生的作业与试卷部分缺失导致易错问题分析不全面通过布置易错点分析的任务让学生意识到保留资料的重要性。 2学生学基本功较扎实学习态度较端正有一定的自主学习能力但是没有养成及时复习的习惯有些内容已经淡忘通过自主梳理知识让学生感受复习的必要性培养学生良好的复习习惯. 三、设计思路 本节课新课中渗透的理念是“强调过程教学启发思维调动学生学习数学的积极性”在本节课的学习过程中教师没有把梳理好的知识展示给学生而是让学生自己进行知识的梳理一方让学生体会到知识网络化的必要性另一方面希望学生养成知识梳理的习惯在本节课中不断提出问题采取问题驱动引导学生积极思考让学生全面参与整个教学过程尊重学生的思维方式引导学生在“最近发展区”发现问题、解决问题通过自主分析、交流合作从而进行有机建构解决问题改变学生模仿式的学习方式在教学过程中渗透了特殊到一般的思想、数形结合思想、函数与方程思想在教学过程中通过恰当的应用信息技术从而突破难点。 四、教学目标分析 (一)知识与技能 1了解集合的含义与表示理解集合间的基本关系集合的基本运算 A能从集合间的运算分析出集合的基本关系 B对于分类讨论问题能区分取交还是取并。 2理解函数的定义掌握函数的基本性质会运用函数的图象理解和研究函数的性质 A会用定义证明函数的单调性、奇偶性 B会分析函数的单调性、奇偶性、对称性的关系 (二)过程与方法 1通过学生自主知识梳理了解自己学习的不足,明确知识的来龙去脉,把学

高一函数的概念与性质

函数概念与性质 一、选择题(每小题5分,共50分) 1、下列哪组中的两个函数是同一函数 (A )2y =与y x = (B )3y =与y x = (C )y =2y = (D )y =2 x y x = 2、下列集合A 到集合B 的对应f 是映射的是 (A ){}{}1,0,1,1,0,1,A B f =-=-:A 中的数平方; (B ){}{}f B A ,1,0,1,1,0-==:A 中的数开方; (C ),,A Z B Q f ==:A 中的数取倒数; (D ),,A R B R f +==:A 中的数取绝对值; 3、已知函数11)(22-+ -=x x x f 的定义域是( ) (A )[-1,1] (B ){-1,1} (C )(-1,1) (D )),1[]1,(+∞--∞ 4、若函数)(x f 在区间(a ,b )上为增函数,在区间(b ,c )上也是增函数,则函数)(x f 在区间(a ,c )上( ) (A )必是增函数 (B )必是减函数 (C )是增函数或是减函数 (D )无法确定增减性 5、)(x f 是定义在R 上的奇函数,下列结论中,不正确... 的是( ) (A )0)()(=+-x f x f (B ))(2)()(x f x f x f -=-- (C ))(x f ·)(x f -≤0 (D )1) ()(-=-x f x f 6、函数()f x 的定义域为),(b a ,且对其内任意实数12,x x 均有:1212()[()()]0x x f x f x --<,则 ()f x 在),(b a 上是

(A )增函数 (B )减函数 (C )奇函数 (D )偶函数 7、若函数()(()0)f x f x ≠为奇函数,则必有 (A )()()0f x f x ?-> (B )()()0f x f x ?-< (C )()()f x f x <- (D )()()f x f x >- 8、设偶函数f(x)的定义域为R ,当x ],0[+∞∈时f(x)是增函数,则f(-2),f(π),f(-3)的大小关系是( ) (A )f(π)>f(-3)>f(-2) (B )f(π)>f(-2)>f(-3) (C )f(π)

2011高一数学学案:2.1.1《变量与函数的概念》(新人教B版必修一)

2.1.1函数(第一课时) 【知识梳理】 自学课本P 29—P 31,填充以下空格。 1、设集合A 是一个非空的实数集,对于A 内 ,按照确定的对应法则f ,都有 与它对应,则这种对应关系叫做集合A 上的一个函数,记作 。 2、对函数A x x f y ∈=),(,其中x 叫做 ,x 的取值范围(数集A )叫做这个函数的 ,所有函数值的集合}),(|{A x x f y y ∈=叫做这个函数的 ,函数y=f(x) 也经常写为 。 3、因为函数的值域被 完全确定,所以确定一个函数只需要 。 4、依函数定义,要检验两个给定的变量之间是否存在函数关系,只要检验: ① ;② 。 【例题解析】 题型一:函数的概念 例1:下图中可表示函数y=f (x)的图像的只可能是( ) 题型二:相同函数的判断问题 例2:已知下列四组函数:①x y x = 与y=1 ②y =y=x ③y =y =④2 1y x =+与2 1y t =+其中表示同一函数的是( ) A . ② ③ B. ② ④ C. ① ④ D. ④ 题型三:函数的定义域和函数值问题 例3:求下列函数的定义域 1、 (1)1 ()1f x x =+ (2)、0()f x x =+ (3) 、()f x =2、 例4:求函数21()1f x x =+,()x R ∈,求(0)f ,(1)f ,(2)f ,(1)f -,(2)f - 【当堂检测】 1、下列图形哪些是函数的图象,哪些不是,为什么? 2、已知下列四组函数,表示同一函数的是( ) A. ()1f x x =-和21()1 x f x x -=+ B. 0 ()f x x =和()1f x = C. 2 ()f x x =和2 ()(1)f x x =+ D. ()f x =和()g x = 3、求下列函数的定义域 (1)、1 ()2 f x x =- (2)()f x = (3)、0 (x )(1)f x =+ (4)1 ()2f x x = +- 4、已知21()1f x x = +,21 ()1 x g x x +=+ (1)求(2),g(2)f 的值 (2)求(g(2))f 的值 A B C D

新课标高一数学必修1第一章集合与函数概念单元测试题 5

中江中学校集合与函数测试题 一、选择题 1.集合},{b a 的子集有 ( ) A .2个 B .3个 C .4个 D .5个 2. 设集合{}|43A x x =-<<,{}|2B x x =≤,则A B = ( ) A .(4,3)- B .(4,2]- C .(,2]-∞ D .(,3)-∞ 3.已知()5412-+=-x x x f ,则()x f 的表达式是( ) A .x x 62+ B .782++x x C .322-+x x D .1062-+x x 4.下列对应关系:( ) ①{1,4,9},{3,2,1,1,2,3},A B ==---f :x x →的平方根 ②,,A R B R ==f :x x →的倒数 ③,,A R B R ==f :22x x →- ④{}{}1,0,1,1,0,1,A B f =-=-:A 中的数平方 其中是A 到B 的映射的是 A .①③ B .②④ C .③④ D .②③ 5.下列四个函数:①3y x =-;②21 1y x =+;③2210y x x =+-;④(0) 1 (0) x x y x x ?-≤?=?- >??. 其中值域为R 的函数有 ( ) A .1个 B .2个 C .3个 D .4个 6. 已知函数212x y x ?+=?-? (0) (0)x x ≤>,使函数值为5的x 的值是( ) A .-2 B .2或52 - C . 2或-2 D .2或-2或52 - 7.下列函数中,定义域为[0,∞)的函数是 ( ) A .x y = B .2 2x y -= C .13+=x y D .2 )1(-=x y 8.若R y x ∈,,且)()()(y f x f y x f +=+,则函数)(x f ( ) A . 0)0(=f 且)(x f 为奇函数 B .0)0(=f 且)(x f 为偶函数 C .)(x f 为增函数且为奇函数 D .)(x f 为增函数且为偶函数

必修一第一章集合与函数概念

第一章 集合与函数概念 一、选择题. 1. 设 A ={a },则下列各式中正确的是( ) A. 0∈A B. a ∈A C. a ∈A D. a = A 2. 设集合 A ={x |x = a 2 +1,a ∈N +},B ={y |y = b 2 - 4b + 5,b ∈N +},则下述关系中正确的是( ) A . A = B B. A B C. A ?B D. A ∩B =? 3. 如图,阴影部分可用集合 M ,P 表示为( ) A. M ∩ P B. M ∪P C.(UM )∩(UP ) D.(UM )∪(UP ) 4. 若集合 A ,B ,C 满足 A ∩B = A ,B ∪C = C ,则 A 与 C 之间的关系必定是( ) A. A C B. C A C. A ?C D. C ?A 5. 下列四组函数中,表示同一个函数的是( ) A. )(x f = |x |,2)(t t g = B. 2)(x x f =,2)()(x x g = C. 1 1)(2--=x x x f ,1)(+=x x g D. 11)(-?+=x x x f ,1)(2-=x x g 6. 若函数 )(x f 的定义域为 [1,2],则函数 )(2x f y = 的定义域为( ) A. [1,4] B. [1,2] C. [2-,2] D. [2-,-1]∪[1,2] 7. 函数 1 1 1-- =x y 的图象是( ) A B 第 3 题

C D 8. 若二次函数y = x 2 + bx + c 的图象的对称轴是 x = 2,则有( ) A. f (1)<f (2)<f (4) B. f (2)<f (1)<f (4) C. f (2)<f (4)<f (1) D. f (4)<f (2)<f (1) 9. 如果奇函数 f (x )在区间[3,7]上是增函数且最小值是 5,那么函数 f (x )在区间 [-7,-3]上( ) A. 是增函数且最小值为 -5 B. 是增函数且最大值是 -5 C. 是减函数且最小值为 -5 D. 是减函数且最大值是 -5 10. 已知函数f (x )= x 5 + ax 3 + bx - 3,且 f (2) = 2,则 f (-2) =( ) A. -6 B. -8 C. -2 D. 6 二、填空题. 1. 若B ={a ,b ,c ,d ,e },C = {a ,c ,e ,f },且集合 A 满足 A ?B ,A ?C ,则集合 A 的个数是______. 2. 设 f (x )= 2x - 1,g (x )= x + 1,则 f [g (x )] = . 3. 已知f (2x + 1)= x 2 - 2x ,则=)2(f . 4. 已知一次函数 y = f (x )中,f (8)= 16,f (2)+ f (3)= f (5),则 f (1)+ f (2)+ f (3)+ ··· + f (100) = . 5. 若函数 a x bx x f ++= 2)( 为奇函数,则 a = ,b = . 6. 若函数 f (x )= x 2 + px + 3在(-∞,1]上单调递减,则 p 的取值范围是 . 三、解答题. 1. 已知非空集合 A ={x |2a + 1≤x ≤3a - 5},B ={x |3≤x ≤22},能使 A ?(A ∩B )成立的所有 a 值的集合是什么?

高中数学1.2.1函数的概念学案新人教A版必修5

1.2.1 函数的概念 自主学习 1.理解函数的概念,能用集合与对应的语言刻画函数,体会对应关系在刻画函数概念中的作用. 2.通过实例领悟构成函数的三要素;会求一些简单函数的定义域. 3.了解区间的概念,体会用区间表示数集的意义和作用. 设A、B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B 的一个函数,记作:y=f(x),x∈A.其中x叫自变量,x的取值范围A叫做函数的定义域,与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.2.函数的三要素是定义域、值域和对应关系. 3.由于值域是由函数的定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,则称这两个函数相同. 4.(1)满足不等式a≤x≤b的实数x的集合叫做闭区间,表示为[a,b]. (2)满足不等式aa,x≤b,x

相关文档
最新文档