北航最优化方法大作业参考

北航最优化方法大作业参考
北航最优化方法大作业参考

北航最优化方法大作业参考

1 流量工程问题

1.1 问题重述

定义一个有向网络G=(N,E),其中N是节点集,E是弧集。令A是网络G的点弧关联矩阵,即N×E阶矩阵,且第l列与弧里(I,j)对应,仅第i行元素为1,第j行元素为-1,其余元素为0。再令b m=(b m1,…,b mN)T,f m=(f m1,…,f mE)T,则可将等式约束表示成:

Af m=b m

本算例为一经典TE算例。算例网络有7个节点和13条弧,每条弧的容量是5个单位。此外有四个需求量均为4个单位的源一目的对,具体的源节点、目的节点信息如图所示。这里为了简单,省区了未用到的弧。此外,弧上的数字表示弧的编号。此时,c=((5,5…,5)1 )T,

×13

根据上述四个约束条件,分别求得四个情况下的最优决策变量x=((x12,x13,…,x75)1×

)。

13

图 1 网络拓扑和流量需求

1.2 7节点算例求解

1.2.1 算例1(b1=[4;-4;0;0;0;0;0]T)

转化为线性规划问题:

Minimize c T x1

Subject to Ax1=b1

x1>=0 利用Matlab编写对偶单纯形法程序,可求得:

最优解为x1*=[4 0 0 0 0 0 0 0 0 0 0 0 0]T

对应的最优值c T x1=20

1.2.2 算例2(b2=[4;0;-4;0;0;0;0]T)

Minimize c T x2

Subject to Ax2=b2

X2>=0 利用Matlab编写对偶单纯形法程序,可求得:

最优解为x2*=[0 4 0 0 0 0 0 0 0 0 0 0 0]T

对应的最优值c T x2=20

1.2.3 算例3(b3=[0;-4;4;0;0;0;0]T)

Minimize c T x3

Subject to Ax3=b3

X3>=0 利用Matlab编写对偶单纯形法程序,可求得:

最优解为x3*=[4 0 0 0 4 0 0 0 0 0 0 0 0]T

对应的最优值c T x3=40

1.2.4 算例4(b4=[4;0;0;0;0;0;-4]T)

Minimize c T x4

Subject to Ax4=b4

X4>=0

利用Matlab编写对偶单纯形法程序,可求得:

最优解为x4*=[4 0 0 4 0 0 0 0 0 4 0 0 0]T

对应的最优值c T x4=60

1.3 计算结果及结果说明

1.3.1 算例1(b1=[4;-4;0;0;0;0;0]T)

算例1中,由b1可知,节点2为需求节点,节点1为供给节点,由节点1将信息传输至节点2的最短路径为弧1。

图 2 算例1最优传输示意图

求得的最优解为x1*=[4 0 0 0 0 0 0 0 0 0 0 0 0]T,即只经过弧1运输4个单位流量,其余弧无流量。又因为,每条弧的费用均为5,所以最小费用为20。

经分析,计算结果合理可信。

1.3.2 算例2(b2=[4;0;-4;0;0;0;0]T)

算例2中,由b2可知,节点3为需求节点,节点1为供给节点,由节点1将信息传输至节点2的最短路径为弧2。

图 3 算例2最优传输示意图

求得的最优解为x2*=[0 4 0 0 0 0 0 0 0 0 0 0 0]T,即只经过弧2运输4个单位流量,其余弧无流量。又因为,每条弧的费用均为5,所以最小费用为20。

经分析,计算结果合理可信。

1.3.3 算例3(b3=[0;-4;4;0;0;0;0]T)

算例3中,由b3可知,节点2为需求节点,节点3为供给节点,由节点3将信息传输至节点2的最短路径为弧5->弧1。

图 4 算例3最优传输示意图

求得的最优解为x3*=[4 0 0 0 4 0 0 0 0 0 0 0 0]T,即经过弧5运输4个单位流量至节点1,再经弧1运输4个单位流量至节点2,其余弧无流量。又因为,每条弧的费用均为5,所以最小费用为40。

经分析,计算结果合理可信。

1.3.4 算例4(b4=[4;0;0;0;0;0;-4]T)

算例4中,由b4可知,节点7为需求节点,节点1为供给节点,由节点1将信息传输至节点7的最短路径为弧1->弧4->弧10。

最优化方法简明教程—centre

①图与网 破圈法:任取一个圈,去掉一条权最大的边,直到最小树。 避圈法:选最小权的边,避圈前进,直到最小树。 最短路算法: Dijkstra法:从V s给定P标号T标号λ标号(T标号变为P标号λ标号记位置) 反向追踪:列表,d1(V1,V j)→d k(V1,V j)=min(ωij+d k(V1,V i))据最小权反向追踪 网络优化: 最小截集最大流:找到最小截集(弧的集合) 标号法:开始,为的标号, 最小费用最大流: 邮递员问题:通过消灭奇点,找欧拉回路 网络计划图: 最早开始最晚开始机动时间 最早结束最晚结束自由时差 工期优化:人力,费用,工期优化。 费用率=(最短时间费用-正常时间费用)/(正常时间-最短时间)②排队论(保证服务质量,又减少费用) 顾客源→(排队规则)队列→(服务规则)服务机构→离去 服务规则:FCFS,LCFS,随机服务,PR

M(顾客到达)|A(服务时间)|1(服务台数)|∞(容量)|∞(顾客源) N(t)队长N q (t)排队长T(t)顾客逗留时间T q (t)顾客等待时间 L 平均队长L q 平均等待队长W 平均逗留时间W q 平均等待时间 R 为系统利用率 泊松流(M):无后效性;平稳性;单个性; P 1(t,t+Δt)=λΔt+o(Δt); o(Δt)=∑∞ 2P n (t,t+Δt);E ξ=D ξ=λt (t 时刻n 个顾客的概率) 负指数分布(M):无记忆性(P(T>t+s/t>s)=P(T>t));[0,t)至少到达一 个顾客1-P 0(t )=1-e -t λ,t>0 !)()(K t e t V K t k λλ-= ,2,1,0=K ?? ?<≥-=-0,00,1)(t t e t F t i λξ),2,1( =i 爱尔朗分布(E K ):(相当于泊松流到达后被k 个服务台均分顾客形成) (其中,t>0,E(T)=1/μ,Var(T)=1/μ2k ) )! 1()()(1 >-= --t e k t t f t k μμμ K=1为M ,k=∞定长分布D,k ≥30正态分布近似 G 表示一般相互独立的随机分布 Little 公式:(四者知一即可) μ1 + =q W W W L λ= q q W L λ= ρ+=q L L ∑∞ ==0 n n nP L ∑∑∞=∞ =+=-=s n n m s n q nP P s n L 0 )( 服务率:ρ=λ/μ(λ为到达μ为服务) 排队系统分析:

北航最优化方法大作业参考

北航最优化方法大作业参考

1 流量工程问题 1.1 问题重述 定义一个有向网络G=(N,E),其中N是节点集,E是弧集。令A是网络G的点弧关联矩阵,即N×E阶矩阵,且第l列与弧里(I,j)对应,仅第i行元素为1,第j行元素为-1,其余元素为0。再令b m=(b m1,…,b mN)T,f m=(f m1,…,f mE)T,则可将等式约束表示成: Af m=b m 本算例为一经典TE算例。算例网络有7个节点和13条弧,每条弧的容量是5个单位。此外有四个需求量均为4个单位的源一目的对,具体的源节点、目的节点信息如图所示。这里为了简单,省区了未用到的弧。此外,弧上的数字表示弧的编号。此时,c=((5,5…,5)1 )T, ×13 根据上述四个约束条件,分别求得四个情况下的最优决策变量x=((x12,x13,…,x75)1× )。 13 图 1 网络拓扑和流量需求

1.2 7节点算例求解 1.2.1 算例1(b1=[4;-4;0;0;0;0;0]T) 转化为线性规划问题: Minimize c T x1 Subject to Ax1=b1 x1>=0 利用Matlab编写对偶单纯形法程序,可求得: 最优解为x1*=[4 0 0 0 0 0 0 0 0 0 0 0 0]T 对应的最优值c T x1=20 1.2.2 算例2(b2=[4;0;-4;0;0;0;0]T) Minimize c T x2 Subject to Ax2=b2 X2>=0 利用Matlab编写对偶单纯形法程序,可求得: 最优解为x2*=[0 4 0 0 0 0 0 0 0 0 0 0 0]T 对应的最优值c T x2=20 1.2.3 算例3(b3=[0;-4;4;0;0;0;0]T) Minimize c T x3 Subject to Ax3=b3 X3>=0 利用Matlab编写对偶单纯形法程序,可求得: 最优解为x3*=[4 0 0 0 4 0 0 0 0 0 0 0 0]T 对应的最优值c T x3=40

最优化方法大作业答案

1.用薄钢板制造一体积5m 3,长度不小于4m ,无上盖的货箱,要求钢板耗量最小。确定货箱的长x 1、宽x 2和高x 3。试列出问题的数学模型。 解:min 32312122x x x x x x z ++= s.t 5321=x x x 41≥x 0,,321≥x x x 2.将下面的线性规划问题表示为标准型并用单纯形法求解 max f=x 1+2x 2+x 3 s .t .2x 1+x 2-x 3≤2 -2x 1+x 2-5x 3≥-6 4x 1+x 2+x 3≤6 x i ≥0 i=1,2,3 解:先化标准形: Min 321x x x z -+= 224321=+-+x x x x 6525321=++-x x x x 646321=+++x x x x 列成表格:

1 2 1 610011460105122001112----- 可见此表已具备1°,2°,3°三个特点,可采用单纯形法。首先从底行中选元素-1,由2/2,6/2,6/4最小者决定选第一行第一列的元素2,标以记号,迭代一次得 1 2 1 2102310401162010021212 11-------- 再从底行中选元素-2/3,和第二列正元素1/2,迭代一次得 1 2 12 32 30 210231040116201002121211- ------ 再从底行中选元素-3,和第二列正元素2,迭代一次得 4 2 3 3 410120280114042001112--- 再迭代一次得 10 2 30 2 10 6 221023 1010213000421021013-- 选取最优解:

北航博士研究生培养方案

交通科学与工程学院 道路与铁道工程(082301) 博士研究生培养方案 一、适用学科 道路与铁道工程(081401) 二、培养目标 1.坚持党的基本路线,热爱祖国,遵纪守法,品行端正,诚实守信,身心健康,具有良好的科研道德和敬业精神。 2.适应科技进步和社会发展的需要,在本学科上掌握坚实宽广的基础理论和系统深入的专门知识;熟练掌握一门外语;具有独立从事科学研究的能力;具有良好的综合素质。 3.在科学或专门技术上做出创造性的成果。 三、培养方向 1.道路与铁道工程的检测与加固; 2.土木工程结构分析与设计理论; 3.岩土本构理论及工程应用; 4.土木工程施工技术与材料; 5.工程结构仿真。 四、学制 学历博士研究生学制为3年。 博士研究生一般在入学后1年内完成课程学习,应在文献综述与开题报告前完成课程学分,应在博士论文答辩前完成全部学分和培养要求的有关环节。 鼓励博士研究生从入学开始就进行学位论文研究工作;文献综述与开题报告至申请学位论文答辩的时间间隔不得少于1年。 五、知识结构、课程设置与学分要求 1.知识结构要求 (1)基础理论与专业基础知识 高等工程数学与数学基础(数值分析、数理统计、矩阵理论、最优化理论与算法、数理方程、常微分方程、数学试验),专业基础知识(变分与有限元素法原理、高等混凝土结构、高等土力学、高等土木工程材料学、高等结构动力学、工程结构可靠度、工程塑性力学)。 (2)专业综合知识 混凝土结构非线性分析,高等钢结构,混凝土徐变力学,基础工程学,建设项目管理,高等岩石力学,建筑结构健康诊治,混凝土结构试验,岩土工程测试技术,建筑结构无损检测技术,土动力学,建筑结构有限元分析与应用,组合结构,城市地下工程,理论土力学与现代岩石测试技术,道路与铁道工程学科综合课。 (3)学科前沿与交叉学科知识 现代工程结构进展,材料科学进展,空间数据处理,科技信息检索与利用,科学

最优化方法及应用

陆吾生教授是加拿大维多利亚大学电气与计算机工程系 (Dept. of Elect. and Comp. Eng. University of Victoria) 的正教授, 且为我校兼职教授,曾多次来我校数学系电子系讲学。陆吾生教授的研究方向是:最优化理论和小波理论及其在1维和2维的数字信号处理、数字图像处理、控制系统优化方面的应用。 现陆吾生教授计划在 2007 年 10-11 月来校开设一门为期一个月的短期课程“最优化理论及其应用”(每周两次,每次两节课),对象是数学系、计算机系、电子系的教师、高年级本科生及研究生,以他在2006年出版的最优化理论的专著作为教材。欢迎数学系、计算机系、电子系的研究生及高年级本科生选修该短期课程,修毕的研究生及本科生可给学分。 上课地点及时间:每周二及周四下午2:00开始,在闵行新校区第三教学楼326教室。(自10月11日至11月8日) 下面是此课程的内容介绍。 ----------------------------------- 最优化方法及应用 I. 函数的最优化及应用 1.1 无约束和有约束的函数优化问题 1.2 有约束优化问题的Karush-Kuhn-Tucker条件 1.3 凸集、凸函数和凸规划 1.4 Wolfe对偶 1.5 线性规划与二次规划 1.6 半正定规划 1.7 二次凸锥规划 1.8 多项式规划 1.9解最优化问题的计算机软件 II 泛函的最优化及应用 2.1 有界变差函数 2.2 泛函的变分与泛函的极值问题 2.3 Euler-Lagrange方程 2.4 二维图像的Osher模型 2.5 泛函最优化方法在图像处理中的应用 2.5.1 噪声的消减 2.5.2 De-Blurring 2.5.3 Segmentation ----------------------------------------------- 注:这是一门约二十学时左右的短期课程,旨在介绍函数及泛函的最优化理论和方法,及其在信息处理中的应用。只要学过一元及多元微积分和线性代数的学生就能修读并听懂本课程。课程中涉及到的算法实现和应用举例都使用数学软件MATLAB 华东师大数学系

最优化方法大作业

发动机空燃比控制器 引言:我主要从事自动化相关研究。这里介绍我曾经接触过的发动机空燃比控制器设计中的优化问题。 发动机空燃比控制器设计中的最优化问题 AFR =a f m m && (1) 空燃比由方程(1)定义,在发动机运行过程中如果控制AFR 稳定在14.7可以获 得最好的动力性能和排放性能。如果假设进入气缸的空气流量a m &可以由相关单元检测得到,则可以通过控制进入气缸的燃油流量f m &来实现空燃比的精确控制。由于实际发动机的燃油喷嘴并不是直接对气缸喷燃油,而是通过进气歧管喷燃油,这么做会在进 气歧管壁上液化形成油膜,因此不仅是喷嘴喷出的未液化部分燃油会进入气缸,油膜 蒸发部分燃油也会进入气缸,如方程(2)。这样如何更好的喷射燃油成为了一个问题。 1110101122211ττττ?? ?? -?? ??????????=+????????-????????????-???? ? ??? ?? ????????? ?f f f v X x x u x x X x y =x && (2) 其中12、,==ff fv x m x m &&=f y m &,=fi u m &这里面,表示油膜蒸发量ff m &、fv m &表示为液化部分燃油、fi m &表示喷嘴喷射的燃油,在τf 、τv 、X 都已知的情况下,由现代控制理论知识,根据系统的增广状态空间模型方程(3) 0000001 1 011011114.70ττττ????-?? ??????????=-+-??????????????? ??????????????? ?? ??=?????? f f v v a X X u +q q m y q x x x &&& (3) 其中()0 14.7?t a q = y -m &。由极点配置方法,只要设计控制器方程(4),就可以 使得y 无差的跟踪阶跃输入,那么y 也能较好的跟踪AFR *a m /&。 12-- u =K q K x (4) 这里面的12、K K 确定,可由主导极点概念降维成两个参数12C ,C ,虽然都是最终稳态无差,但是目标是使得瞬态过程中y 和阶跃输入y r 的差异尽可能的小。所以原问

全日制工程硕士研究生培养方案-北航研究生院-北京航空航天大学

大型飞机高级人才培养班 航空工程全日制工程硕士研究生培养方案 一、适用类别或领域 航空工程(085232) 二、培养目标 材料工程、电子与通信工程、控制工程、航空工程领域全日制工程硕士 (以下简称航空工程等领域全日制工程硕士)是与以上各工程领域任职资格相联系的专业学位,主要为国民经济和国防建设等领域培养应用型、复合型高层次工程技术和工程管理人才。大飞机班旨在探索一条“以国家大型项目人才需求为索引,培养具有献身精神、团结协作精神、开拓创新精神的设计型和复合型人才”的研究生培养新模式,是北航研究生培养体系的一部分。 航空工程等领域全日制工程硕士培养的基本要求是: 1、坚持党的基本路线,热爱祖国、遵纪守法、品行端正、诚实守信、身心健康,具有良好的科研道德和敬业精神。 2、在本领域掌握坚实的基础理论和系统的专门知识,有较宽的知识面和较强的自立能力,具有大飞机设计、制造、运营、管理等领域需求的创造能力和工程实践能力。 3、掌握一门外国语。 三、培养模式及学习年限 1.航空工程等领域全日制工程硕士研究生培养实行导师负责制,或以导师为主的指导小组制,负责制订硕士研究生个人培养计划,选课、组织开题报告、论文中期检查、指导科学研究和学位论文,并与中国商飞、第一飞机设计研究院、西飞公司等航空企业联合培养,实行导师组指导。 2.硕士研究生一般用1学年完成课程学习,课程学习实行学分制,具体学习、考核及管理工作执行《北京航空航天大学研究生院关于研究生课程学习管理规定》。 3.专业实习是全日制工程硕士研究生培养中的重要环节,全日制工程硕士研究生在学期间,应保证不少于0.5年的工程实践。 4.学位论文选题应来源于航空工程等领域工程技术背景。鼓励实行双导师制,其中第一导师为校内导师,校外导师应是与本工程领域相关的专家,也可以根据学生的论文

北航惯性导航大作业

惯性导航基础课程大作业报告(一)光纤陀螺误差建模与分析 班级:111514 姓名: 学号 2014年5月26日

一.系统误差原理图 二.系统误差的分析 (一)漂移引起的系统误差 1. εx ,εy ,εz 对东向速度误差δVx 的影响 clc;clear all; t=1:0.01:25; g=9.8; L=pi/180*39; Ws=2*pi/84.4*60; Wie=2*pi/24; R=g/(Ws)^2; e=0.1*180/pi; mcVx1=e*g*sin(L)/(Ws^2-Wie^2)*(sin(Wie*t)-Wie*sin(Ws*t)/Ws); mcVx2=e*((Ws^2-(Wie^2)*((cos(L))^2))/(Ws^2-Wie^2)*cos(Ws*t)-(Ws^2)*((sin(L))^2)*cos(Wi e*t)/(Ws^2-Wie^2)-(cos(L))^2); mcVx3=(sin(L))*(cos(L))*R*e*((Ws^2)*cos(Wie*t)/(Ws^2-Wie^2)-(Wie^2)*cos(Ws*t)/(Ws^2-Wi e^2)-1); plot(t,[mcVx1',mcVx2',mcVx3']); title('Ex,Ey,Ez 对Vx 的影响'); xlabel('时间t'); ylabel('Vx(t)'); 0,δλδL ,v v δδ

legend('Ex-mcVx1','Ey-mcVx2','Ez-mcVx3'); grid; axis square; 分析:εx,εy,εz对东向速度误差δVx均有地球自转周期的影响,εx,εy还会有舒勒周期分量的影响,其中,εy对δVx的影响较大。 2.εx,εy,εz对东向速度误差δVy的影响 clc;clear all; t=1:0.01:25; g=9.8; L=pi/180*39; Ws=2*pi/84.4*60; Wie=2*pi/24; R=g/(Ws)^2; e=0.1*180/pi; mcVy1=e*g*(cos(Wie*t)-cos(Ws*t))/(Ws^2-Wie^2); mcVy2=g*sin(L)*e/(Ws^2-Wie^2)*(sin(Wie*t)-Wie/Ws*sin(Ws*t)); mcVy3=g*cos(L)*e/(Ws^2-Wie^2)*(sin(Wie*t)-Wie/Ws*sin(Ws*t)); plot(t,[mcVy1',mcVy2',mcVy3']); title('Ex,Ey,Ez对Vy的影响'); xlabel('时间t'); ylabel('Vy(t)'); legend('Ex-mcVy1','Ey-mcVy2','Ez-mcVy3'); grid; axis square;

北航经济管理复习纲要(From xx_buaa)

固定资产:使用期限较长,单位价值在规定标准以上,在生产过程中为多个生产周期服务,在使用过程中保持原来物质形态的资产。 流动资产:可以在一年或虽然超过一年但仍然是一个生产经营周期内变现或耗用的资产。 无形资产:指没有物质实体而以某种特殊权利和技术知识等资源形态存在并发挥作用的资产。 递延资产:只不能全部计入当期损益,需要分期摊销计入成本的各项费用。 折旧:固定资产由于其价值在多个时期内损耗降低的部分 固定资产折旧:固定资产由于其价值在多个时期内损耗降低的部分。 资金的时间价值:资金在使用中随时间推移所发生的增值。 边际收益:当影响收益的产量或投入要素增加一个单位所增的收益。 边际成本:边际成本指的是每一单位新增生产的产品带来到总成本的增量。 边际利润:单位产量所增加的销售单价扣除边际成本的值。 机会成本:在有限资源及该资源多用途条件下,将该资源用于某种用途而放弃的可能用于其它用途形成的最大代价(付出)。 价值工程:以最低寿命周期成本,可靠地实现必要功能,以功能分析为核心,以提高产品或作业价值为目的的有组织的技术经济活动。 并行工程:是对产品及其相关过程,包括制造过程和支持过程,进行并行、一体化设计的一种系统化方法,目标是降低成本、提高生产率、加快上市速度。 4P(营销组合):市场营销中指产品、价格、渠道与促销。 系统:(钱学森)系统是由相互作用和相互依赖的若干组成部分(要素)结合而成的具有特定功能的有机整体。 市场经济:商品在市场上的价格完全由供需双方决定,没有任何一方(例如政府)加以干涉。 简述全面质量管理的内涵 质量管理仅靠数理统计方法是不够的,还需要一系列的组织管理工作;质量管理活动必须对质量、价格、交货期和服务进行综合考虑,而不仅仅只考虑质量;产品质量的产生、形成和实现过程包括了从市场研究到销售和服务的螺旋上升的循环过程,所以质量管理必须是全过程的管理;产品质量必须同成本联系起来考虑 试说明价格下降使需求量增加的原因 (1)价格降低后,消费者可以用同样的钱买到比此前更多的东西。这相当于消费者实际收入的提高,因而使需求量有所增加。这是由于价格变化所产生的“收入效应”而引起的需求量的增加。 (2)价格降低后,人们会把对替代品的需求转移到这种商品上来,因而使这种商品的需求量增加,这是由于价格变化所产生的“替代效应”引起的。 试述市场均衡价格是怎样形成的 如果市场价格高于均衡价格,,则供给量>均衡产量,此时,卖者找不到足够的买主,就会降低价格;如果市场价格低于均衡价格,,则供给量小于均衡产量,,此时,买者不能如数买到想要的东西,就会抬高价格。如果市场价格等于均衡价格,供给量等于需求量,买者想买的量等于卖者想卖得量,市场达到均衡。 试述系统工程的基本观点 系统整体性观点不着重强调系统单个元素的最优,而是强调整个系统就其功能而言效果最优。 相关与制约观点元素之间存在关系,并且这种关系可以表达。强调尽量地定量或用图表描述出各元素之间或各子系统之间的关系。 系统模拟观点系统可以建立模型,模型是原系统的简化系统,一般要求它具有原系统的主要性能。建模是分析、研究的基础。 系统优化观点 简述开展价值工程工作的六个主要步骤 运用[价值工程]方法开发产品需要按六个步骤(阶段)进行,其分别是:信息收集、创意构想、评估判断、细部发展、汇报审批和追踪实践。 第一步骤的信息收集,包括了设计理念(含功能、条件、标准…等)、成本估价资料、现场状况…等,尽量列出可能的范围,再透过机能(Function)定义和评估,找出标的物中的主要机能(必须是具备的机能),和次要机能(非绝对必要,是用来辅助主要机能)。也就是借着了解问题和机能分析,去筛选和找出问题所在(高成本或成本不合理的项目)。第二步骤是创意构想阶段,这个阶段是在小组成员都对问题充份了解之后针对主要机能开始做脑力激荡,这时候大家仅提构想(方案),不对构想做任何批评,也不考量方案的可行性,大家完全拋开传统模式的思考,让思想任意遨游,经由这个阶段,经常能产生一些具创新性的构想。 第三步骤是评估判断阶段,是对上阶段所提出的各项构想(方案)加以评估分析,首先可删除那些不可行的方案,再对剩余的可行方案做优缺点分析,并依节省成本的潜力及机能的改善做评估,及排列先后次序,然后取其优者,进入下一步的细部发展。 第四步骤,细部发展阶段,对选取之替代方案,就成本、可行性、节省之成本(或提升之机能)做详细完整的叙述。第五步骤,汇报审批阶段,将上阶段所做的报告书对业主做口头报告,这时候业主的接受与否决定了建议方案的是否执行。 第六步骤,追踪与实践,业主接受建议之后,下一个阶段就是落实该建议的执行。因此,这阶段的工作是要追踪确认接受的替代方案已纳入设计中,并协助业主消除替代方案执行的可能障碍。

北航飞行器多学科设计优化复习题

飞行器多学科设计优化复习题 1.优化设计问题的三要素是什么?给出一个优化设计问题的例子,分别说明三个要素的具体内容。 三要素分别是设计变量,约束条件和目标函数。 以结构优化设计为例,设计变量可能是蒙皮厚度,前后翼梁缘条厚度,前后翼梁腹板厚度等结构参数;约束条件是机翼强度要求、刚度要求等目标函数是最小化结构重量。 2.飞行器设计一般分哪几个阶段?飞行器多学科优化设计有什么意义? 飞行器设计分三个阶段:概念设计、初步设计、详细设计。 飞行器MDO的意义为: (1)MDO符合系统工程的思想。能有效提高飞行器的设计质量 (2)MDO为飞行器设计提供了一种并行设计模式。 (3)MDO的设计模式与飞行器设计组织体制一致,能够实现更高程度的自动化。 (4)MDO的模块化结构使飞行器设计过程具有很强的灵活性。 3.在飞行器设计过程中,多学科设计优化方法与传统设计方法之间有哪些相同和不同点。 传统的飞行器设计优化中,采取的是一种串行的设计模式,往往首先进行性能设计优化,然后进行结构、操纵和控制系统设计优化,最后进行工艺装备设计。在传统的方法中,各个学科任务成了实现系统设计的最基本单元,影响飞机性能的气动、推进、结构和控制等学科被人为地割裂开来,各学科之间相互耦合所产生的协同效应并未被充分考虑进去,这可能导致失去系统的整体最优解,串行的模式也使得设计时间周期和成本大大增加。 而多学科优化设计技术是一种并行设计模式,它以各子系统、学科的优化设计为基础,在飞行器各个阶段力求各学科的平衡,充分考虑哥们学科之间的相互影响和耦合作用,应用有效的设计/优化策略和分布式计算机网络系统,来组织和管理整个系统的设计过程,通过充分利用各个学科之间的相互作用所产生的协同效应,以获得系统的整体最优解。 相同点在于都有对于子学科的分解,但是MDO更注重子学科间的协同。 4.给出MDO的三种定义,根据你的理解,MDO该如何定义? Definition1:MDO是一种通过充分探索和利用系统中相互作用的协同机制来设计复杂系统和子系统的方法论。 Definition2:MDO是指在复杂工程系统的设计过程中,必须对学科(子系统)之间的相互作用进行分析,并且充分利用这些相互作用进行系统优化合成的方法。 Definition3:多学科设计优化就是进行复杂系统的设计过程中,结合系统的多学科本质,充分利用各种多学科设计与多学科分析工具,最终达到基于多学科优化的方法论。 My Definition:当设计中每个因素都影响另外的所有因素时,确定该改变哪个因素以及改变到什么程度的一种设计方法。 5.多学科设计优化中,什么是学科分析?什么是系统分析? 学科分析:也成为子系统分析或子空间分析,以某一学科设计变量,其他学科对该学科的耦合状态变量和系统的参数为输入,根据某一学科满足的物理规律确定其物理特性的过程 系统分析:对整个系统,给定一组设计变量X,通过求解系统的状态方程得到系统状态变量的过程。 6.什么是多学科设计优化的状态变量?学科状态变量和耦合状态变量之间有什么区别?

北航数值分析大作业第二题精解

目标:使用带双步位移的QR 分解法求矩阵10*10[]ij A a =的全部特征值,并对其中的每一个实特征值求相应的特征向量。已知:sin(0.50.2)() 1.5cos( 1.2)(){i j i j ij i j i j a +≠+== (i,j=1,2, (10) 算法: 以上是程序运作的逻辑,其中具体的函数的算法,大部分都是数值分析课本上的逻辑,在这里特别写出矩阵A 的实特征值对应的一个特征向量的求法: ()[]()() []()[]()111111I 00000 i n n n B A I gause i n Q A I u Bu u λλ-?-?-=-?-?? ?-=????→=??????→= ?? ? 选主元的消元 检查知无重特征值 由于=0i A I λ- ,因此在经过选主元的高斯消元以后,i A I λ- 即B 的最后一行必然为零,左上方变 为n-1阶单位矩阵[]()()11I n n -?-,右上方变为n-1阶向量[]()11n Q ?-,然后令n u 1=-,则 ()1,2,,1j j u Q j n ==???-。

这样即求出所有A所有实特征值对应的一个特征向量。 #include #include #include #define N 10 #define E 1.0e-12 #define MAX 10000 //以下是符号函数 double sgn(double a) { double z; if(a>E) z=1; else z=-1; return z; } //以下是矩阵的拟三角分解 void nishangsanjiaodiv(double A[N][N]) { int i,j,k; int m=0; double d,c,h,t; double u[N],p[N],q[N],w[N]; for(i=0;i

第九章 最优化方法

第九章 最优化方法 本章主要介绍线性规划、0-1规划、非线性规划等问题的MATLAB 求解。 9.1 线性规划(Linear Programming ,简写为LP )问题 线性规划问题就是求多变量线性函数在线性约束条件下的最优值。满足约束条件的解称为可行解,所有可行解构成的集合称为可行域,满足目标式的可行解称为最优解。 MATLAB 解决的线性规划问题的标准形式为: min z f x ¢ =? .. A x b s t Aeq x beq lb x ub ì祝??? ?í??#??? 其中,,,,,f x b beq lb ub 为列向量,,A Aeq 为矩阵。 其它形式的线性规划问题都可经过适当变换化为此标准形式。 在MATLAB 中求解线性规划问题函数为linprog ,其使用格式为: [x, fval, exitflag, output, lambda] = linprog(f, A, b, Aeq, beq, lb, ub) 输入部分:其中各符号对应线性规划问题标准形式中的向量和矩阵,如果约束条件中有缺少,则其相应位置用空矩阵[]代替。 输出部分:其中x 为最优解,用列向量表示;fval 为最优值;exitflag 为退出标志,若exitflag=1表示函数有最优解,若exitflag=0表示超过设定的迭代最大次数,若exitflag=-2,表示约束区域不可行,若exitflag=-3,表示问题无解,若exitflag=-4,表示执行迭代算法时遇到NaN ,若exitflag=-5,表示原问题和对偶问题均不可行,若exitflag=-7,表示搜索方向太小,不能继续前进;output 表明算法和迭代情况;lambda 表示存储情况。 例1 用linprog 函数求下面的线性规划问题

结构优化设计大作业(北航)

《结构优化设计》 大作业报告 实验名称: 拓扑优化计算与分析 1、引言 大型的复杂结构诸如飞机、汽车中的复杂部件及桥梁等大型工程的设计问题,依靠传统的经验和模拟实验的优化设计方法已难以胜任,拓扑优化方法成为解决该问题的关键手段。近年来拓扑优化的研究的热点集中在其工程应用上,如: 用拓扑优化方法进行微型柔性机构的设计,车门设计,飞机加强框设计,机翼前缘肋设计,卫星结构设计等。在其具体的操作实现上有两种方法,一是采用计算机语言编程计算,该方法的优点是能最大限度的控制优化过程,改善优化过程中出现的诸如棋盘格现象等数值不稳定现象,得到较理想的优化结果,其缺点是计算规模过于庞大,计算效率太低;二是借助于商用有限元软件平台。本文基于matlab软件编程研究了不同边界条件平面薄板结构的在各种受力情况下拓扑优化,给出了几种典型结构的算例,并探讨了在实际优化中优化效果随各参数的变化,有助于初学者初涉拓扑优化的读者对拓扑优化有个基础的认识。

2、拓扑优化研究现状 结构拓扑优化是近20年来从结构优化研究中派生出来的新分支,它在计算结构力学中已经被认为是最富挑战性的一类研究工作。目前有关结构拓扑优化的工程应用研究还很不成熟,在国外处在发展的初期,尤其在国内尚属于起步阶段。1904 年Michell在桁架理论中首次提出了拓扑优化的概念。自1964 年Dorn等人提出基结构法,将数值方法引入拓扑优化领域,拓扑优化研究开始活跃。20 世纪80 年代初,程耿东和N. Olhoff在弹性板的最优厚度分布研究中首次将最优拓扑问题转化为尺寸优化问题,他们开创性的工作引起了众多学者的研究兴趣。1988年Bendsoe和Kikuchi发表的基于均匀化理论的结构拓扑优化设计,开创了连续体结构拓扑优化设计研究的新局面。1993年Xie.Y.M和Steven.G.P 提出了渐进结构优化法。1999年Bendsoe和Sigmund证实了变密度法物理意义的存在性。2002 年罗鹰等提出三角网格进化法,该方法在优化过程中实现了退化和进化的统一,提高了优化效率。目前常使用的拓扑优化设计方法可以分为两大类:退化法和进化法。结构拓扑优化设计研究,已被广泛应用于建筑、航天航空、机械、海洋工程、生物医学及船舶制造等领域。 3、拓扑优化建模(SIMP) 结构拓扑优化目前的主要研究对象是连续体结构。优化的基本方法是将设计区域划分为有限单元,依据一定的算法删除部分区域,形成带孔的连续体,实现连续体的拓扑优化。连续体结构拓扑优化方法目前比较成熟的是均匀化方法、变密度方法和渐进结构优化方法。 变密度法以连续变量的密度函数形式显式地表达单元相对密度与材料弹性模量之间的对应关系,这种方法基于各向同性材料,不需要引入微结构和附加的均匀化过程,它以每个单元的相对密度作为设计变量,人为假定相对密度和材料弹性模量之间的某种对应关系,程序实现简单,计算效率高。变密度法中常用的插值模型主要有:固体各向同性惩罚微结构模型(solidisotropic microstructures with penalization,简称SIMP)和材料属性的合理近似模型(rational approximation ofmaterial properties,简称RAMP)。而本文所用即为SIMP插值模型。

北航研究生算法(208精心整理)

一:判断题 1、一个正确的算法,对于每个合法输入,都会在有限的时间内输出一个满足要求的结果。(对) 2、NP完全问题比其他所有NP问题都要难。(错) 3、回溯法用深度优先法或广度优先法搜索状态空间树。(错,仅深度优先) 4、在动态规划中,各个阶段所确定的策略就构成一个策略序列,通常称为一个决策。(错) 5、P类和NP类问题的关系用P?NP来表示是错误的。(错) 6、若近似算法A求解某极小化问题一实例的解为Sa,且已知该问题的最优解为Sa/3,则该近似算法的性能比为3。(错) 7、通常来说,算法的最坏情况的时间复杂行比平均情况的时间复杂性容易计算。(对) 8、若P2多项式时间转化为(polynomial transforms to)P1,则P2至少与P1一样难。(错) 9、快速排序算法的平均时间复杂度是O(nlogn),使用随机化快速排序算法可以将平均时间复杂度降得更低。(错) 10、基于比较的寻找数组A[1,…,n]中最大元素的问题下届是Ω(n/3)。(错) 11、O(f(n))+O(g(n))=O(min{f(n),g(n)})(错) 12、若f(n)=Ω(g(n)),g(n)=Ω(h(n)),则f(n)=Ω(h(n))(对) 13、若f(n)=O(g(n)),则g(n)=Ω(f(n))(对) 14、贪婪技术所做的每一步选择所产生的部分解,不一定是可行性的。(错) 15、LasVegas算法只要给出解就是正确的。(对) 16、一个完全多项式近似方案是一个近似方案{Aε},其中每一个算法Aε在输入实例I的规模的多项式时间内运行。(错) 二:简答 1、二叉查找树属于减治策略的三个变种中的哪一个的应用?什么情况下二叉查找树表现出最差的效率?此时的查找和插入算法的复杂性如何? 答:减治策略有3个主要的变种,包括减常量、减常数因子和减可变规模。(1) 二叉查找树属于减可变规模变种的应用。(2) 当先后插入的关键字有序时,构成的二叉查找树蜕变为单支树,树的深度等于n,此时二叉查找树表现出最差的效率,(3) 查找和插入算法的时间效率都属于Θ(n)。 2、何谓伪多项式算法?如何将一Monte Carlo算法转化为Las Vegas算法? 答:若一个数值算法的时间复杂度可以表示为输入数值N的多项式,但其运行时间与输入数值N的二进制位数呈指数增长关系,则称其时间复杂度为伪多项式时间。 Las Vegas算法不会得到不正确的解。一旦用拉斯维加斯算法找到一个解,这个解就一定是正确解。但有时用拉斯维加斯算法找不到解。 Monte Carlo算法每次都能得到问题的解,但不保证所得解的准确性 转化:可以在Monte Carlo算法给出的解上加一个验证算法,如果正确就得到解,如果错误就不能生成问题的解,这样Monte Carlo算法便转化为了Las Vegas算法。 3、构造AVL树和2-3树的主要目的是什么?它们各自有什么样的查找和插入的效率? 答:(1)当先后插入的关键字有序时,构成的二叉查找树蜕变为单支树,树的深度等于n,此时二叉查找树表现出最差的效率,为了解决这一问题,可以构造AVL树或2-3树,使树的深度减小。一棵AVL树要求它的每个节点的左右子树的高度差不能超过1。2-3树和2-3-4树允许一棵查找树的单个节点不止包含一个元素。(2) AVL树在最差情况下,查找和插入操作的效率属于Θ(lgn)。2-3树无论在最差还是平均情况下,查找和插入的效率都属于Θ(log n)。 4、写出0/1背包问题的一个多项式等价(Polynomial Equivalent)的判定问题,并说明为什么它们是多项式等价的。 答:0/1背包问题:从M件物品中,取出若干件放在空间为W的背包里,给出一个能获得最大价值的方案。每件物品的体积为W1,W2……Wn,与之相对应的价值为P1,P2……Pn。+

北航最优化方法大作业参考

1流量工程问题 1.1问题重述 定义一个有向网络G=(N,E),其中N是节点集,E是弧集。令A是网络G的点弧关联矩阵,即N×E阶矩阵,且第l列与弧里(I,j)对应,仅第i行元素为1,第j行元素为-1, 其余元素为0。再令b m =(b m1 ,…,b mN )T,f m =(f m1 ,…,f mE )T,则可将等式约束表示成: Af m=b m 本算例为一经典TE算例。算例网络有7个节点和13条弧,每条弧的容量是5个单位。此外有四个需求量均为4个单位的源一目的对,具体的源节点、目的节点信息如图所示。这里为了简单,省区了未用到的弧。此外,弧上的数字表示弧的编号。此时,c=((5,5 (5) 1×13 )T, 根据上述四个约束条件,分别求得四个情况下的最优决策变量x=((x 12,x 13 ,…,x 75 ) 1×13 )。 图 1 网络拓扑和流量需求

1.27节点算例求解 1.2.1\ T) 1.2.2算例1(b1=[4;-4;0;0;0;0;0] 转化为线性规划问题: Minimize c T x1 Subject to Ax1=b1 x1>=0利用Matlab编写对偶单纯形法程序,可求得: 最优解为x1*=[4 0 0 0 0 0 0 0 0 0 0 0 0]T 对应的最优值c T x1=20 1.2.3算例2(b2=[4;0;-4;0;0;0;0]T) Minimize c T x2 Subject to Ax2=b2 \ X2>=0利用Matlab编写对偶单纯形法程序,可求得: 最优解为x2*=[0 4 0 0 0 0 0 0 0 0 0 0 0]T 对应的最优值c T x2=20 1.2.4算例3(b3=[0;-4;4;0;0;0;0]T) Minimize c T x3 Subject to Ax3=b3 X3>=0利用Matlab编写对偶单纯形法程序,可求得: 最优解为x3*=[4 0 0 0 4 0 0 0 0 0 0 0 0]T

最优化应用(数据处理)

最优化问题的数据处理以及Matlab求解摘要数学问题是科学研究领域经常需要解决的问题. 研究者通常将自己研究的问题用于数学建模的方法建立起数学模型, 然后通过求解数学模型的方法获得所研究问题的解.基于Matlab语言的应用数学问题的求解方法, 有着优于其他两种计算机数学语言Mathematica和Maple无法比拟的优势和适用面. 本文主要介绍的是有约束的线性规划和二次型规划的Matlab求解过程. 关键词: 数学模型线性规划二次型规划无约束问题约束问题 1.最优化方法应用背景 在生活和工作中, 人们对于同一问题往往会提出多种解决方案,并通过各方面的论证从中提取最佳方案. 最优化方法就是专门研究如何从多个方案中科学合理的提取出最佳方案的科学. 由于优化问题无处不在, 目前最优化方法的应用和研究已经深入到了生产和科研的各个领域, 如土木工程、机械工程、化学工程、运输调度、生产控制、经济规划、经济管理等, 并取得了显著地经济效益和社会效益. 用最优化方法求最优化问题的技术称为最优化技术, 它包含两个方面的内容: 1) 建立数学模型即用数学语言来描述最优化问题. 模型中的数学关系式反映了 最优化问题所要达到的的目标和各种约束条件. 2) 数学求解数学模型建好以后, 选择合适的最优化方法来进行求解. 最优化方法的发展很快, 现在已经包含有多个分支, 如线性规划、非线性规划、整数规划、动态规划、多目标规划等. 利用MATLAB优化工具箱可以求解线性规划、非线性规划和多目标规划问题. 具体而言, 包括线性、非线性最小化, 最大最小化, 二次规划, 半无限问题, 线性、非线性方程(组)的求解, 线性、非线性的最小二乘问题. 另外, 该工具箱还提供了线性、非线性最小化, 方程求解, 曲线拟合, 二次规划等问题中大型课题的求解方法. 为优化方法在工程中的实际应用提供了更方便快捷的途径. 关于最优化方法以及支持向量机的理论知识可参考文献[1][2]. 2.主要的数据处理方法 本学期学习的数据处理方法主要有矩阵分解、线性判别分析和局部降维方法. 2.1. 矩阵分解 矩阵分解[3]是将矩阵拆解为数个矩阵的乘积, 可分为三角分解、满秩分解、QR分解、Jordan 分解和奇异值分解等, 常见的有三种: 三角分解法(Triangular Factorization), QR分解法(QR Factorization), 奇异值分解法(Sigular Value Decomposition, SVD). 三角分解法是将原正方矩阵分解成一个上三角形矩阵或是排列的上三角形矩阵和一 个下三角形矩阵, 这样的分解法又称为LU分解法. 它的用途主要在简化一个大矩阵的行列式值的计算过程, 求反矩阵, 和求解联立方程组. 不过要注意这种分解法所得到的上下

北航【测试计量技术及仪器】-【学术硕士】培养方案

仪器科学与光电工程学院 测试计量技术及仪器(080402) 全日制学术硕士研究生培养方案 一、适用学科 仪器科学与技术(0804) 测试计量技术及仪器(080402) 二、培养目标 培养我国社会主义建设事业需要的德、智、体全面发展的高层次专门人才:热爱祖国,拥护党的基本路线,遵纪守法,品行端正,并具有艰苦奋斗、为人民服务和为社会主义建设事业献身的精神。 本学科全日制学术硕士研究生具有信息的感知获取、数据处理、结果评估以及对相关要素进行控制的基础理论和专门知识,掌握相应的技能和方法,具有从事本学科领域科学研究工作或独立承担专门技术工作的能力,对本学科所从事的研究方向及其有关技术领域有深入的研究。较熟练掌握一门外语。 三、培养方向 测试计量技术及仪器(080402) 测试计量技术及仪器学科属信息科学技术领域,研究信息感知获取、数据分析处理、结果验证评估以及对相关要素进行控制的理论与方法,是电子、光学、精密机械、计算机、信息与控制技术多学科互相渗透而形成的一门高新技术密集型综合学科。主要探讨和研究测量理论和测量方法、各种类型测量仪器、测控系统的工作原理、设计方法和应用技术。 主要培养方向: 1.自动测试与诊断 2、过程参数测量与成像 3. 先进传感技术与系统 4、传感网络与信息融合网络化传感系统 5. 计算机视觉及模式识别 6、光电精密测试与系统

7、动态计量与校准 四、培养模式及学习年限 本学科学术硕士研究生主要按二级学科培养,鼓励开展跨学科交叉培养、校企联合培养、本研统筹培养,实行导师或联合导师负责制,负责制订研究生个人培养计划、指导科学研究和学位论文。 硕士研究生实行学分制,学制为两年半至三年,一般在1年内完成课程学习,要求在申请硕士论文答辩前按培养方案获得知识结构中所规定的各部分学分及总学分。若因客观原因不能按时完成学业者,可申请适当延长培养年限,延长时间不得超过一年。 五、知识和能力结构 本学科硕士研究生培养方案的知识和能力结构由学位理论课程和综合实践能力两部分构成,如下表所示。知识和能力结构主要体现对研究生业务理论素质、科学及人文素质、实践能力素质、创新意识素质等培养层次,要取得相关学位的研究生必须按培养方案获得表中所规定的各部分学分及总学分。 六、课程设置及学分要求 课程及学分设置如附表所示。 七、主要培养环节及基本要求 1.制定个人培养计划 根据本学科的培养方案,在硕士研究生的知识结构与学位论文要求的基础上,由导师或指导小组与研究生本人共同制定硕士研究生的个人培养计划。个人培养计划分为课程学习计划和学位论文研究计划。课程学习计划应在研究生入学后2周内制定,研究生据此计划在网上办理选课手续,8周内可根据研究生特点进行调整;各类研究生的学位论文研究计划应在开题报告中详细描述。 研究生个人培养计划制定后,不能随意变更;研究生应完成个人培养计划中制定的

相关文档
最新文档