缠论“动力学”大揭秘6:斜率动力系统(上篇)

缠论“动力学”大揭秘6:斜率动力系统(上篇)
缠论“动力学”大揭秘6:斜率动力系统(上篇)

缠论“动力学”大揭秘6:斜率动力系统(上篇)

关于缠论动力的内容,在前面,跟大家分享过:均线、MACD 和BOLL 的动力系

统,今天我们继续往下分享。

首先,在这里说一下,缠论原文中,也只是提了一下斜率,并没有深入的去讲解。所以,关于斜率动力系统,是笔者个人的经验总结和理解;如果大家有自己的想法,也欢迎跟帖留言一起来讨论。

今天我们主要分享“斜率动力系统”上篇

关于斜率,顾名思义就是“倾斜的程度”也可以叫“倾斜的角度”

关于斜率的运用方式,大致有三种:1.趋势线斜率

2.乖离率斜率

3.角度线斜率

接下来,我们就把这三种斜率的大众方法,给大家简单说一下;因为很多同学,基础太薄弱,大众用法都没明白,再结合缠论,那简直是云里雾里了。所以,明天下篇再讲缠论中的应用。

一、趋势线

趋势线可分为两类,分别为:1.趋势压力线:高点和高点相连,得到下一个高点

2.趋势支撑线:低点和低点相连,得到下一个低点

具体看图:二、乖离率

乖离率来源于均线,当短期均线和长期均线交叉后,分开的距离过大时,就会回调或反弹。源于乖离率的运用也分为两类,分别为:

1.回调应用

2.反弹应用具体看图:三、角度线

角度线来源于江恩理论,在角度线中,把角度分成:1/8、2/8、3/8、4/8、5/8、6/8、7/8、8/8角度线的运用也分为两类,分别为:

1.压力监测

2.支撑监测

具体看图:压力监测支撑监测今天,介绍的这三种大众用法,也都是可以单独成体系的;那么,放到缠论,用好了那就更是如虎添翼,用不好那就是添堵了;所以,大家根据自己的接受能力,目前,你能接受能理解就学,不能理解,就看看等后期积累够了,再用不迟。

好,今天分享到这里结束,有问题的,跟帖留言看到都会及时回复大家的。九方缠课堂:

每日提供最具价值的新闻信息及干货技巧、启发您的投资思维,让您在有限的时间获得更有价值的信息!

长按下方图片识别二维码,微信扫一扫,关注我们友情提

醒:以上文章均原创,如有转载请注明出处!

机械设计基础第十四章 机械系统动力学

第十四章 机械系统动力学 14-11、在图14-19中,行星轮系各轮齿数为123z z z 、、,其质心与轮心重合,又齿轮1、2对质心12O O 、的转动惯量为12J J 、,系杆H 对的转动惯量为H J ,齿轮2的质量为2m ,现以齿轮1为等效构件,求该轮系的等效转动惯量J ν。 2222 2121221 12323121 13212 1 13222 12311212213121313 ( )()()()1()()()( )()()()o H H H o H J J J J m z z z z z z z z z O O z z z z z z z O O J J J J m z z z z z z z z νννωωω ωωωω ωω ωωωωνω=+++=-= += +=+-=++++++解: 14-12、机器主轴的角速度值1()rad ?从降到时2()rad ?,飞轮放出的功 (m)W N ,求飞轮的转动惯量。 max min 122 2 121 ()2 2F F Wy M d J W J ?ν??ωωωω==-=-? 解: 14-15、机器的一个稳定运动循环与主轴两转相对应,以曲柄和连杆所组成的转动副A 的中心为等效力的作用点,等效阻力变化曲线c A F S ν-如图14-22所示。等效驱动力a F ν为常数,等效构件(曲柄)的平均角速度值25/m rad s ?=, 3 H 1 2 3 2 1 H O 1 O 2

不均匀系数0.02δ=,曲柄长度0.5OA l m =,求装在主轴(曲柄轴)上的飞轮的转动惯量。 (a) W v 与时间关系图 (b )、能量指示图 a 2 24()2 3015m Wy=25N m 25 6.28250.02 c va OA vc OA OA va F W W F l F l l F N Mva N J kg m νν=∏?∏=∏+==∏= =?解:稳定运动循环过程 14-17、图14-24中各轮齿数为12213z z z z =、,,轮1为主动轮,在轮1上加力矩1M =常数。作用在轮 2 上的阻力距地变化为: 2r 22r 020M M M ??≤≤∏==∏≤≤∏=当时,常数;当时,,两轮对各自中心的转动惯量为12J J 、。轮的平均角速度值为m ω。若不均匀系数为δ,则:(1)画出以轮1为等效构件的等效力矩曲线M ν?-;(2)求出最大盈亏功;(3)求飞轮的转动惯量F J 。 图14-24 习题14-17图 40Nm 15∏ 12.5∏ 22.5∏ 15Nm ∏ 2∏ 2.5∏ 4∏ 25∏ 1 1 z 2 z 2 r M 2 M ∏ 2∏ 2?

铁道车辆系统动力学作业及试地的题目详解

作业题 1、车辆动力学的具体内容是研究车辆及其主要零部件在各种运用情况下,特别是在高速运行时的位移、加速度和由此而产生的动作用力。 2、车辆系统动力学目的在于解决下列主要问题: ①确定车辆在线路上安全运行的条件; ②研究车辆悬挂装置和牵引缓冲装置的结构、参数和性能对振动及 动载荷传递的影响,并为这些装置提供设计依据,以保证车辆高速、安全和平稳地运行; ③确定动载荷的特征,为计算车辆动作用力提供依据。 3、铁路车辆在线路上运行时,构成一个极其复杂的具有多自由度的振动系统。 4、动力学性能归根结底都是车辆运行过程中的振动性能。 5、线路不平顺不是一个确定量,它因时因地而有不同值,它的变化规律是随机的,具有统计规律,因而称为随机不平顺。 (1)水平不平顺; (2)轨距不平顺; (3)高低不平顺; (4)方向不平顺。 6、车轮半径越大、踏面斜度越小,蛇行运动的波长越长,即蛇行运动越平缓。 7、自由振动的振幅,振幅大小取决于车辆振动的初始条件:初始位移和初始速度(振动频率)。

8、转向架设计中,往往把车辆悬挂的静挠度大小作为一项重要技术指标。 9、具有变摩擦减振器的车辆,当振动停止时车体的停止位置不是一个点,而是一个停滞区。 10、在无阻尼的情况下共振时振幅随着时间增加,共振时间越长,车辆的振幅也越来越大,一直到弹簧全压缩和产生刚性冲击。 11、出现共振时的车辆运行速度称为共振临界速度 12、在车辆设计时一定要尽可能避免激振频率与自振频率接近,避免出现共振。 13、弹簧簧条之间要留较大的间距以避免在振动过程中簧条接触而出现刚性冲击 14、两线完全重叠时,摩擦阻力功与激振力功在任何振幅条件下均相等。 15、在机车车辆动力学研究中,把车体、转向架构架(侧架)、轮对等基本部件近似地视为刚性体,只有在研究车辆各部件的结构弹性振动时,才把他们视为弹性体。 16、簧上质量:车辆支持在弹性元件上的零部件,车体(包括载重)及摇枕质量 17、簧下质量:车辆中与钢轨直接刚性接触的质量,如轮对、轴箱装置和侧架,客车转向架构架,一般是簧上质量。 18、一般车辆(结构对称)的垂向振动与横向振动之间是弱耦合,因此车辆的垂向和横向两类振动可以分别研究。 19、若车体质心处于纵垂对称面上,但不处于车体的横垂对称面上,则车体的浮沉振动将和车体的点头振动耦合起来。

车辆系统动力学解析

汽车系统动力学的发展现状 仲鲁泉 2014020326 摘要:汽车系统动力学是研究所有与汽车系统运动有关的学科,它涉及的范围较广,除了影响车辆纵向运动及其子系统的动力学响应,还有汽车在垂直和横向两个方面的动力学内容。介绍车辆动力学建模的基础理论、轮胎力学及汽车空气动力学基础之外,重点介绍了受汽车发动机、传动系统、制动系统影响的驱动动力学和制动动力学,以及行驶动力学和操纵动力学内容。本文主要讲述的是通过对轮胎和悬架的系统动力学研究,来探究汽车系统动力学的发展现状。 关键词:轮胎;悬架;系统动力学;现状 0 前言 汽车系统动力学是讨论动态系统的数学模型和响应的学科。它是把汽车看做一个动态系统,对其进行研究,讨论数学模型和响应。是研究汽车的力与其汽车运动之间的相互关系,找出汽车的主要性能的内在联系,提出汽车设计参数选取的原则和依据。 车辆动力学是近代发展起来的一门新兴学科。有关车辆行驶振动分析的理论研究,最早可以追溯到100年前。事实上,知道20世纪20年代,人们对车辆行驶中的振动问题才开始有初步的了解;到20世纪30年代,英国的Lanchester、美国的Olley、法国的Broulhiet开始了车辆独立悬架的研究,并对转向运动学和悬架运动学对车辆性能的影响进行了分析。开始出现有关转向、稳定性、悬架方面的文章。同时,人们对轮胎侧向动力学的重要性也开始有所认识。在过去的70多年中,车辆动力学在理论和实际应用方面也都取得了很多成就。在新车型的设计开发中,汽车制造商不仅依靠功能强大的计算机软件,更重要的是具有丰富测试经验和高超主观评价技能的工程师队伍。 在随后的20年中,车辆动力学的进展甚微。进入20世纪50年代,可谓进入了一个车辆操纵动力学发展的“黄金时期”。这期间建立了较为完整的车辆操纵动力学线性域(即侧向加速度约小于0.3g)理论体系。随后有关行驶动力学的进一步发展,是在完善的测量和计算手段出现后才得以实现。人们对车辆动力学理解的进程中,理论和试验两方面因素均发挥了作用。随后的几十年,汽车制造商意识到行驶平顺性和操纵稳定性在汽车产品竞争中的重要作用,因而车辆动力学得以迅速发展。计算机及应用软件的开发,使建模的复杂程度不断提高。

系统动力学(自己总结)

系统动力学 1.系统动力学的发展 系统动力学(简称SD—system dynamics)的出现于1956年,创始人为美国麻省理工学院的福瑞斯特教授。系统动力学是福瑞斯特教授于1958年为分析生产管理及库存管理等企业问题而提出的系统仿真方法,最初叫工业动态学。是一门分析研究信息反馈系统的学科,也是一门认识系统问题和解决系统问题的交叉综合学科。从系统方法论来说:系统动力学是结构的方法、功能的方法和历史的方法的统一。它基于系统论,吸收了控制论、信息论的精髓,是一门综合自然科学和社会科学的横向学科。 系统动力学的发展过程大致可分为三个阶段: 1)系统动力学的诞生—20世纪50-60年代 由于SD这种方法早期研究对象是以企业为中心的工业系统,初名也就叫工业动力学。这阶段主要是以福雷斯特教授在哈佛商业评论发表的《工业动力学》作为奠基之作,之后他又讲述了系统动力学的方法论和原理,系统产生动态行为的基本原理。后来,以福雷斯特教授对城市的兴衰问题进行深入的研究,提出了城市模型。 2)系统动力学发展成熟—20世纪70-80 这阶段主要的标准性成果是系统动力学世界模型与美国国家模型的研究成功。这两个模型的研究成功地解决了困扰经济学界长波问题,因此吸引了世界范围内学者的关注,促进它在世界范围内的传播与发展,确立了在社会经济问题研究中的学科地位。 3)系统动力学广泛运用与传播—20世纪90年代-至今 在这一阶段,SD在世界范围内得到广泛的传播,其应用范围更广泛,并且获得新的发展.系统动力学正加强与控制理论、系统科学、突变理论、耗散结构与分叉、结构稳定性分析、灵敏度分析、统计分析、参数估计、最优化技术应用、类属结构研究、专家系统等方面的联系。许多学者纷纷采用系统动力学方法来研究各自的社会经济问题,涉及到经济、能源、交通、环境、生态、生物、医学、工业、城市等广泛的领域。 2.系统动力学的原理 系统动力学是一门分析研究信息反馈系统的学科。它是系统科学中的一个分支,是跨越自然科学和社会科学的横向学科。系统动力学基于系统论,吸收控制论、信息论的精髓,是一门认识系统问题和解决系统问题交叉、综合性的新学科。从系统方法论来说,系统动力学的方法是结构方法、功能方法和历史方法的统一。 系统动力学是在系统论的基础上发展起来的,因此它包含着系统论的思想。系统动力学是以系统的结构决定着系统行为前提条件而展开研究的。它认为存在系统内的众多变量在它们相互作用的反馈环里有因果联系。反馈之间有系统的相

最新系统动力学原理

5.1 系统动力学理论 1 2 5.1.1 系统动力学的概念 3 系统动力学(简称SD—System Dynamics),是由美国麻省理工学院(MIT)的 4 福瑞斯特(J.W.Forrester)教授创造的,一门以控制论、信息论、决策论等 5 有关理论为理论基础,以计算机仿真技术为手段,定量研究非线性、高阶次、 6 多重反馈复杂系统的学科。它也是一门认识系统问题并解决系统问题的综合交 叉学科[1-3]。从系统方法论来说:系统动力学是结构的方法、功能的方法和历7 8 史的方法的统一。它基于系统论,吸收了控制论、信息论的精髓,是一门综合 9 自然科学和社会科学的横向学科。系统动力学对问题的理解,是基于系统行为 与内在机制间的相互紧密的依赖关系,并且透过数学模型的建立与操作的过程10 11 而获得的,逐步发掘出产生变化形态的因、果关系,系统动力学称之为结构。 12 系统动力学模型不但能够将系统论中的因果逻辑关系与控制论中的反馈原理相 13 结合,还能够从区域系统内部和结构入手,针对系统问题采用非线性约束,动 14 态跟踪其变化情况,实时反馈调整系统参数及结构,寻求最完善的系统行为模 15 式,建立最优化的模拟方案。 5.1.2 系统动力学的特点 16 17 系统动力学是一门基于系统内部变量的因果关系,通过建模仿真方法,全面 18 动态研究系统问题的学科,它具有如下特点[4-8]: 19 (1)系统动力学能够研究工业、农业、经济、社会、生态等多学科系统问题。 20 系统动力学模型能够明确反映系统内部、外部因素间的相互关系。随着调整系 21 统中的控制因素,可以实时观测系统行为的变化趋势。它通过将研究对象划分 22 为若干子系统,并且建立各个子系统之间的因果关系网络,建立整体与各组成 23 元素相协调的机制,强调宏观与微观相结合、实时调整结构参数,多方面、多 24 角度、综合性地研究系统问题。

(完整word版)系统动力学步骤

系统动力学分析步骤 (1)系统分析(分析问题,剖析要因) 1)调查收集有关系统的情况与统计数据 2)了解用户提出的要求、目的与明确所要解决的问题 3)分析系统的基本问题与主要问题、基本矛盾与主要矛盾、变量与主要变 量 4)初步划分系统的界限,并确定内生变量、外生变量和输入量 5)确定系统行为的参考模式 (2)系统的结构分析(处理系统信息,分析系统的反馈机制) 1)分析系统总体的与局部的反馈机制 2)划分系统的层次与子块 3)分析系统的变量、变量之间的关系,定义变量(包括常数),确定变量的 种类及主要变量。 4)确定回路及回路间的反馈耦合关系,初步确定系统的主回路及它们的性 质,分析主回路随时间转移的可能性 (3)确定定量的规范模型 1)确定系统中的状态、速率、辅助变量和建立主要变量之间的关系; 2)设计各非线性表函数和确定、估计各类参数; 3)给所有N方程、C方程与表函数赋值; (4)模型模拟与政策分析 1)以系统动力学的理论为指导进行模型模拟与政策分析,进而更深入地剖 析系统的问题; 2)寻找解决问题的决策,并尽可能付诸实施,取得实践结果,获取更丰富 的信息,发现新的矛盾与问题; 3)修改模型,包括结构与参数的修改; (5)模型的检验和评估 这一步骤的任务不是放在最后一起来做的,其中相当一部分是在上述过程中分散进行的。 参考模式:用图形表示重要变量,并推论和绘出与这些最有关的其他重要的两,从而突出、集中的勾画出有待研究的问题的发展趋势和轮廓,我们称这类随时间变化的变量图形为行为参考模式。在建模的过程中,要反复地参考这些模式。当系统的模型建成后,检验其有效性标准之一就是看模型产生的行为模式与参考模式是否大体一致。

系统动力学原理

5.1 系统动力学理论 5.1.1 系统动力学的概念 系统动力学(简称SD—System Dynamics),是由美国麻省理工学院(MIT)的福瑞斯特(J.W.Forrester)教授创造的,一门以控制论、信息论、决策论等有关理论为理论基础,以计算机仿真技术为手段,定量研究非线性、高阶次、多重反馈复杂系统的学科。它也是一门认识系统问题并解决系统问题的综合交叉学科[1-3]。从系统方法论来说:系统动力学是结构的方法、功能的方法和历史的方法的统一。它基于系统论,吸收了控制论、信息论的精髓,是一门综合自然科学和社会科学的横向学科。系统动力学对问题的理解,是基于系统行为与内在机制间的相互紧密的依赖关系,并且透过数学模型的建立与操作的过程而获得的,逐步发掘出产生变化形态的因、果关系,系统动力学称之为结构。系统动力学模型不但能够将系统论中的因果逻辑关系与控制论中的反馈原理相结合,还能够从区域系统内部和结构入手,针对系统问题采用非线性约束,动态跟踪其变化情况,实时反馈调整系统参数及结构,寻求最完善的系统行为模式,建立最优化的模拟方案。 5.1.2 系统动力学的特点 系统动力学是一门基于系统内部变量的因果关系,通过建模仿真方法,全面动态研究系统问题的学科,它具有如下特点[4-8]: (1)系统动力学能够研究工业、农业、经济、社会、生态等多学科系统问题。系统动力学模型能够明确反映系统内部、外部因素间的相互关系。随着调整系统中的控制因素,可以实时观测系统行为的变化趋势。它通过将研究对象划分

为若干子系统,并且建立各个子系统之间的因果关系网络,建立整体与各组成元素相协调的机制,强调宏观与微观相结合、实时调整结构参数,多方面、多角度、综合性地研究系统问题。 (2)系统动力学模型是一种因果关系机理性模型,它强调系统与环境相互联系、相互作用;它的行为模式与特性主要由系统内部的动态结构和反馈机制所决定,不受外界因素干扰。系统中所包含的变量是随时间变化的,因此运用该模型可以模拟长期性和周期性系统问题。 (3)系统动力学模型是一种结构模型,不需要提供特别精确的参数,着重于系统结构和动态行为的研究。它处理问题的方法是定性与定量结合统一,分析、综合与推理的方法。以定性分析为先导,尽可能采用“白化”技术,然后再以定量分析为支持,把不良结构尽可能相对地“良化”,两者相辅相成,和谐统一,逐步深化。 (4)系统动力学模型针对高阶次、非线性、时变性系统问题的求解不是采用传统的降阶方法,而是采用数字模拟技术,因此系统动力学可在宏观与微观层次上对复杂的多层次、多部门的大系统进行综合研究。 (5)系统动力学的建模过程便于实现建模人员、决策人员和专家群众的三结合,便于运用各种数据、资料、人们的经验与知识、也便于汲取、融汇其他系统学科与其他科学的精髓。 5.1.3 系统动力学的结构模式[9-10] 系统动力学对系统问题的研究,是基于系统内在行为模式、与结构间紧密的依赖关系,通过建立数学模型,逐步发掘出产生变化形态的因、果关系。系统动力学的基本思想是充分认识系统中的反馈和延迟,并按照一定的规则从因果逻辑

铁道车辆平稳性分析

铁道车辆平稳性分析 1.车辆平稳性评价指标 1.1 sperling平稳性指标 欧洲铁路联盟以及前社会主义国家铁路合作组织均采用平稳性指数来评定车辆的运行品质。等人在大量单一频率振动的实验基础上提出影响车辆平稳性的两个重要因素。其中一个重要因素是位移对时间的三次导数,亦即(加速度变化率)。若上式两边均乘以车体质 量,并将之积改写为,则。由此可见,在一定意义上代表力F的变化率的增减变化引起冲动的感觉。 如果车体的简谐振动为,则,其幅值为: 影响平稳性指数的另一个因素是振动时的动能大小,车体振动时的最大动能为: 所以: sperling在确定平稳性指数时,把反映冲动的和反映振动动能的乘积作为衡量标准来评定车辆运行平稳性。 车辆运行平稳性指数的经验公式为: 式中——振幅(cm); f——振动频率(Hz); a——加速度,其值为:; ——与振动频率有关的加权系数。 对于垂向振动和横向振动是不同的,具体情况见错误!未找到引用源。。 表1振动频率与加权系数关系 对于垂向振动的加权系数对于横向振动的加权系 f的取值范围(Hz)公式f的取值范围(Hz)公式 0.5~5.9 0.5~5.5

5.9~20 5.4~2.6 大于20 1 大于26 1 以上的平稳性指数只适用一种频率一个振幅的单一振动,但实际上车辆在线路上运行时的振动是随机的,即振动频率和振幅都是随时间变化的。因此在整理车辆平稳性指数时,通常把实测的车辆振动加速度按频率分解,进行频谱分析,求出每段频率范围的振幅值,然后对每一频段计算各自的平稳性指数,然后再求出全部频率段总的平稳性指数: Sperling平稳性指标等级一般分为5级,sperling乘坐舒适度指标一般分为4级。但在两级之间可按要求进一步细化。根据W值来评定平稳性等级表见错误!未找到引用源。 表2车辆运行平稳性及舒适度指标与等级 W值运行品质W值乘坐舒适度(对振动的感觉) 1 很好 1 刚能感觉 2 好 2 明显感觉 3 满意 2.5 更明显但无不快 4 可以运行 3 强烈,不正常,但还能忍受3.25 很不正常 4.5 运行不合格 3.5 极不正常,可厌,烦恼,不能长时忍 受 5 危险 4 极可厌,长时忍受有害 我国也主要用平稳性指标来评定车辆运行性能,但对等级做了简化,见错误!未找到引用源。。 表3车辆运行平稳性指标与等级 平稳性等级评定 平稳性指标 客车机车货车 1 优<2.5 <2.75 <3.5 2 良好 2.5~2.75 2.75~3.10 3.5~4.0 3 合格 2.75~3.0 3.10~3.45 4.0~4.25 对sperling评价方法的分析: 1.该评价方法仅按照某一个方向的平稳性指标等级来判断车辆的性能是不全面的,需要同时考虑垂向与横向振动对人体的生理及心理的相互影响,因为有时根据垂向振动确定的平稳性指标等级与根据横向振动确定的平稳性指标等级存在较大的差异。 2.该评价方法不够灵敏。由于人体对不同振动频率的反应不同,当对应某一频率范围的平稳性指标值很大值大于,在该窄带中的振动已超出了人体能够承受的限度,但在其它频带中值都很小,由于该方向总的平稳性指标是不同振动频率的平稳性指标求和,因而可能该方向总的砰值并不大,从而认为该车辆的平稳性能符合要求是不正确的。

车辆系统动力学仿真大作业(带程序)

Assignment Vehicle system dynamics simulation 学院:机电学院 专业:机械工程及自动化 姓名: 指导教师:

The model we are going to analys: The FBD of the suspension system is shown as follow:

According to the New's second Law, we can get the equation: 2 )()(221211mg z z c z z k z m --+-=???? 221212)()(z k mg z z c z z k z m w +-----=? ??? 0)()()()(222111222111=-++--+-++--+? ? ? ? ? ? ? ?w w w w z L z k z L z k z L z c z L z c z m χχχχ 0)()()()(2222111122221111=-++----++---? ? ? ? ? ? ? ?w w w w z L z L k z L z L k z L z L c z L z L c J χχχχχ d w w w w Q z L z k z L z c z m ,111111111)()(-=------? ? ? ? ?χχ d w w w w Q z L z k z L z c z m ,222222222)()(-=-+--+-? ????χχ When there is no excitation we can get the equation: 2)()(221211mg z z c z z k z m --+-=???? 2 21212)()(z k mg z z c z z k z m w +-----=? ??? Then we substitude the data into the equation, we write a procedure to simulate the system: Date: ???? ?? ??? ??==?==?===MN/m 0.10k m 25.1s/m kN 0.20MN/m 0.1m kg 3020kg 2100kg 3250w 2l c k I m m by w b

系统动力学与案例分析

系统动力学与案例分析 一、系统动力学发展历程 (一)产生背景 第二次世界大战以后,随着工业化的进程,某些国家的社会问题日趋严重,例如城市人口剧增、失业、环境污染、资源枯竭。这些问题范围广泛,关系复杂,因素众多,具有如下三个特点:各问题之间有密切的关联,而且往往存在矛盾的关系,例如经济增长与环境保护等。 许多问题如投资效果、环境污染、信息传递等有较长的延迟,因此处理问题必须从动态而不是静态的角度出发。许多问题中既存在如经济量那样的定量的东西,又存在如价值观念等偏于定性的东西。这就给问题的处理带来很大的困难。 新的问题迫切需要有新的方法来处理;另一方面,在技术上由于电子计算机技术的突破使得新的方法有了产生的可能。于是系统动力学便应运而生。 (二)J.W.Forrester等教授在系统动力学的主要成果: 1958年发表著名论文《工业动力学——决策的一个重要突破口》,首次介绍工业动力学的概念与方法。 1961年出版《工业动力学》(Industrial Dynamics)一书,该书代表了系统动力学的早期成果。 1968年出版《系统原理》(Principles of Systems)一书,论述了系统动力学的基本原理和方法。 1969年出版《城市动力学》(Urban Dynamics),研究波士顿市的各种问题。 1971年进一步把研究对象扩大到世界范围,出版《世界动力学》(World Dynamics)一书,提出了“世界模型II”。 1972年他的学生梅多斯教授等出版了《增长的极限》(The Limits to Growth)一书,提出了更为细致的“世界模型III”。这个由罗马俱乐部主持的世界模型的研究报告已被翻译成34种语言,在世界上发行了600多万册。两个世界模型在国际上引起强烈的反响。 1972年Forrester领导MIT小组,在政府与企业的资助下花费10年的时间完成国家模型的研究,该模型揭示了美国与西方国家的经济长波的内在机制,成功解释了美国70年代以来的通货膨胀、失业率和实际利率同时增长的经济问题。(经济长波通常是指经济发展过程中存在的持续时间为50年左右的周期波动) (三)系统动力学的发展过程大致可分为三个阶段: 1、系统动力学的诞生—20世纪50-60年代 由于SD这种方法早期研究对象是以企业为中心的工业系统,初名也就叫工业动力学。这阶段主要是以福雷斯特教授在哈佛商业评论发表的《工业动力学》作为奠基之作,之后他又讲述了系统动力学的方法论和原理,系统产生动态行为的基本原理。后来,以福雷斯特教授对城市的兴衰问题进行深入的研究,提出了城市模型。 2、系统动力学发展成熟—20世纪70-80年代 这阶段主要的标准性成果是系统动力学世界模型与美国国家模型的研究成功。这两个模型的研究成功地解决了困扰经济学界长波问题,因此吸引了世界范围内学者的关注,促进它在世界范围内的传播与发展,确立了在社会经济问题研究中的学科地位。 3、系统动力学广泛运用与传播—20世纪90年代-至今 在这一阶段,SD在世界范围内得到广泛的传播,其应用范围更广泛,并且获得新的发展.系统动力学正加强与控制理论、系统科学、突变理论、耗散结构与分叉、结构稳定性分析、灵敏度分析、统计分析、参数估计、最优化技术应用、类属结构研究、专家系统等方面的联系。许多学者纷纷采用系统动力学方法来研究各自的社会经济问题,涉及到经济、能源、交通、环境、生态、生物、医学、工业、城市等广泛的领域。 (四)国内系统动力学发展状况 20世纪70年代末系统动力学引入我国,其中杨通谊,王其藩,许庆瑞,陶在朴,胡玉奎等专家学者是先驱和积极倡导者。二十多年来,系统动力学研究和应用在我国取得飞跃发展。我国成立国内系统动力学学会,国际系统动力学学会中国分会,主持了多次国际系统动力学大会和有关会议。 目前我国SD学者和研究人员在区域和城市规划、企业管理、产业研究、科技管理、生态环保、海洋经济等应用研究领域都取得了巨大的成绩。 二、系统动力学的原理 系统动力学是一门分析研究信息反馈系统的学科。它是系统科学中的一个分支,是跨越自然科学和社会科学的横向学科。系统动力学基于系统论,吸收控制论、信息论的精髓,是一门认识系统问题和解决系统问题交叉、综合性的新学科。从系统方法论来说,系统动力学的方法是结构方法、功能方法和历史方法的统一。 系统动力学是在系统论的基础上发展起来的,因此它包含着系统论的思想。系统动力学是以系统的结构决定着系统行为前提条件而展开研究的。它认为存在系统内的众多变量在它们相互作用的反馈环里有因果联系。反馈之间有系统的相互联系,构成了该系统的结构,而正是这个结构成为系统行为的根本性决定因素。

狭义相对论应用

第13讲:狭义相对论——应用 内容:§18-4,§18-5 1.狭义相对论的时空观(50分钟) 2.光的多普勒效应 3.狭义相对论动力学的几个结论(50分钟) 4.广义相对论简介 要求: 1.理解狭义相对论的时空观,包括同时性的相对性、长度的收缩与时 间的延缓 2.了解光的多普勒效应。 3.掌握狭义相对论动力学的几个结论,明确当物体运动速度V〈〈C时,相对论力学过渡到牛顿力学,牛顿力学仅适用于低速动动的物体。 4.了解广义相对论的意义。 重点与难点: 1.狭义相对论时空观的理解。 2.狭义相对论动力学的主要结论。 作业: 问题:P213:7,8,9,11 习题:P214:11,12,13,14 复习: ●伽俐略变换式牛顿的绝对时空观 ●迈克尔逊-莫雷实验 ●狭义相对论的基本原理

2 1111β -=,2 2221β -= 2 121β-= 21β -= 2 1β -'21β-'l 观察者与被测物体有相对运动时,长度的测量值等于其原长的21β-倍,即相对观察运动,则在运动方向上缩短,只有原长的21β-倍;??+2v ??+2v

()t t t t t t '?='-'=-=?γγ21/β-

,x x 1=,空间间隔为x x 1='() () 112 122 1212c v c v -= -=(() 2 21c v c --=(() (1222 c c v c =-=()c x x 342 12 12 12=???-??'-'-1033?=?=8103999.0??= =v ()2 1c v t -' ()22 999.011-?=-c v t 23c

系统动力学

目录 第一章绪论 1.1问题的提出 1.2研究的目的及意义 1.3国内外研究现状 第二章系统动力学及库存控制基本理论分析 2.1系统动力学的基本概念 2.1.1系统的概念 2.1.2系统动力学中系统的概念 2.2系统动力学模型结构 2.2.1反馈系统、因果关系图和反馈回路 2.2.2系统动力学流图 2.2.3系统变量 2.2.4系统动力学模型特点 2.3系统动力学建模 2.3.1系统动力学建模原则 2.4库存管理基础理论 2.4.1库存 2.4.2库存的作用 2.5库存控制理论及其模型 2.5.1库存控制 第三章系统动力学模型建立与分析 第四章模型仿真运行及结果分析 4.1系统动力学仿真设计 4.2仿真结果输出 致谢 参考文献

第一章绪论 1.1问题的提出 当今管理问题日益复杂化,促使人们认识、分析、研究、解决问题的思想方法开始从点与线的思考慢慢面向思考和系统化的思考转变。在此背景下,出现了以供应链管理(Supply Chain Management,SCM)为代表的新的管理理论与方法。供应链管理是当前管理学界研究的热点与难点问题,国际上一些著名的企业如IBM、戴尔、海尔等在供应链管理的实践中取得了巨大成就,因而受到管理学家和公司管理人员的极大的推崇。 供应链系统包括原材料供应商、制造商、分销商、零售商、最终客户等。每个组织内部又包含若干职能部门,如产品研发、生产制造、市场营销、人力资源、财务会计、物流运输等。这些职能部门可以看作是相互联系的子系统,他们之间是相互联系,相互制约的关系,而不是独立存在的。推而广之,供应链中的各个组织都具有这种交互关系。子系统与子系统之间的交互关系、系统与外部环境之间的交互关系,决定了供应链系统的复杂性、开放性、动态性和突变性。 供应链库存管理的目的就是使整个供应链系统中各个节点企业的库存波动控制在合理的范围并且使库存水平最小。库存的优化管理可以为企业带来比如减弱牛鞭效应、降低成本、加快资金周转等诸多好处,因此可以说是实现价值链增值的重要环节。但是由于供应链系统的非线性、复杂性以及动态性等特征,库存管理的科学决策很难由以往的直观经验和数学模型获得。系统动力学(System Dynamics,SD)是由美国麻省理工大学的J.W.福瑞斯特(J.W.Forrester)教授于20世纪50年代中期利用系统信息反馈理论为解决社会经济问题而开创的新学科。系统动力学可以根据系统内部各子系统的因果关系构造出具有多重反馈、非线性和时滞性的模型,并可利用计算机仿真来模拟系统的动态变化过程,分析关键因素对系统整体及其内部变量的影响。因此系统动力学方法是研究供应链库存问题行之有效的科学方法。 1.2研究的目的及意义 供应链库存管理不仅仅是一种新型的供应链库存管理模式,更是一

车辆系统动力学-复习提纲

1. 简要给出完整约束与非完整约束的概念2-23,24,25, 1)、约束与约束方程 一般的力学系统在运动时都会受到某些几何或运动学特性的限制,这些构成限制条件的具体物体称为约束,用数学方程所表示的约束关系称为约束方程。 2)、完整约束与非完整约束 如果约束方程只是系统位形及时间的解析方程,则这种约束称为完整约束。 完整约束方程的一般形式为: 式中,qi为描述系统位形的广义坐标(i=1,2,…,n);n为广义坐标个数;m为完整约束方程个数;t为时间。 如果约束方程是不可积分的微分方程,这种约束就称为非完整约束。 一阶非完整约束方程的一般形式为:

式中,qi为描述系统位形的广义坐(i = 1, 2, …,n);为广义坐标对时间的一阶与数;n为广义坐标个数;m为系统中非完整约束方程个数;t为时间。 2. 解释滑动率的概念3-7,8 1.滑动率S 车轮滑动率表示车轮相对于纯滚动(或纯滑动)状态的偏离程度,是影响轮胎产生纵向力的一个重要因素。 为了使其总为正值,可将驱动和被驱动两种情况分开考虑。驱动工况时称为滑转率;被驱动(包括制动,常以下标b以示区别)时称为滑移率,二者统称为车轮的滑动率。

参照图3-2,若车轮的滚动半径为rd,轮心前进速度(等于车辆行驶速度)为uw,车轮角速度为ω,则车轮滑动率s定义如下: 车轮的滑动率数值在0~1之间变化。当车轮作纯滚动时,即uw=rd ω,此时s=0;当被驱动轮处于纯滑动状态时,s=1。 3. 轮胎模型中表达的输入量和输出量有哪些?3-22,23 轮胎模型描述了轮胎六分力与车轮运动参数之间的数学关系,即轮胎在特定工作条件下的输入和输出之间的关系,如图3-7所示。 根据车辆动力学研究内容的不同,轮胎模型可分为:

铁道车辆系统动力学及应用-西南交通大学出版社

成都西南交大出版社有限公司关于《铁道车辆系统动力学及应用》 图书印刷项目 招标书 2018年1月25日

目录 第一部分招标公告 第二部分投标方须知 第三部分商务资料 第四部分投标相关文件格式

第一部分招标公告 根据《中华人民共和国投标招标法》有关规定,经成都西南交大出版社有限公司总经理办公会决定,现对外公开招标《铁道车辆系统动力学及应用》图书的印刷企业,兹邀请合格投标企业参加竞标。 一、招标内容: 1.招标内容为《铁道车辆系统动力学及应用》图书的印制。 2.投标人按招标人给定的样式清单,根据自身业务经营情况,以综合印张价方式报价,作为投标文件内容之一。报价单上只允许有一种报价,任何有选择报价将不予接受。投标人必须对样式清单上全部事项进行报价,只投其中部分事项投标文件无效。本投标文件中的报价采用人民币表示。 二、投标人资格要求: 1、在中华人民共和国境内注册,具有独立法人资格的印刷企业; 2、必须取得《印刷经营许可证》,且在投标时年审合格。 三、投标截止和开标时间、地点: 1.投标截止时间:2018年1月25日下午17:00(北京时间),逾期不予受理。 投标文件递交地点:成都市二环路北一段111号西南交通大学创新大厦21楼2105室 2.开标时间和地点: 2018年1月25日下午17:00 开标地点:成都市二环路北一段111号西南交通大学创新大厦21楼西南交通大学出版社 四、招标机构联系人信息: 联系人:王蕾 地址:成都市二环路北一段111号西南交通大学创新大厦21楼西南交通大学出版社 邮政编码:610031

电话:8700627 第二部分投标方须知 一、项目说明 1、“招标方”系指本次项目的招标人“成都西南交大出版社有限公司”。 2、“投标方”系指符合招标公告中投标人资格要求的投标单位: 3、“投标报价”应包含该书印刷材料成本、印刷、装订、送货下货、税金等所有费用。 4、无论投标过程中的做法和结果如何,投标方自行承担所有参加投标有关的全部费用。 二、投标文件的编写 1、投标要求 1)投标方应仔细阅读招标文件的所有内容,按招标文件的要求提供投标文件,并保证所提供的全部资料的真实性,不真实的投标文件将视为废标。 2)投标文件应备正本一份、副本一份。在每一份投标文件上要注明“正本”或“副本”字样,一旦正本和副本有差异,以正本为准。若投标文件正本和副本存在较大差异,将在评标中酌情扣分。 3)投标文件应有投标人法定代表人亲自签署并加盖法人单位公章和法定代表人印鉴或授权代表签字,装入档案袋密封,封条上须加盖投标单位印章,在投标截止时间前由法定代表人或法人委托人持本人有效身份证件递交招标单位。 4)投标人必须保证投标文件所提供的全部资料真实可靠,并接受招标人对其中任何资料进一步审查的要求。 5)投标文件所有封袋上都应写明以下内容:

系统动力学自己总结)

系统动力学1.系统动力学的发展 系统动力学(简称SD—system dynamics)的出现于1956年,创始人为美国麻省理工学院的福瑞斯特教授。系统动力学是福瑞斯特教授于1958年为分析生产管理及库存管理等企业问题而提出的系统仿真方法,最初叫工业动态学。是一门分析研究信息反馈系统的学科,也是一门认识系统问题和解决系统问题的交叉综合学科。从系统方法论来说:系统动力学是结构的方法、功能的方法和历史的方法的统一。它基于系统论,吸收了控制论、信息论的精髓,是一门综合自然科学和社会科学的横向学科。 系统动力学的发展过程大致可分为三个阶段: 1)系统动力学的诞生—20世纪50-60年代 由于SD这种方法早期研究对象是以企业为中心的工业系统,初名也就叫工业动力学。这阶段主要是以福雷斯特教授在哈佛商业评论发表的《工业动力学》作为奠基之作,之后他又讲述了系统动力学的方法论和原理,系统产生动态行为的基本原理。后来,以福雷斯特教授对城市的兴衰问题进行深入的研究,提出了城市模型。 2)系统动力学发展成熟—20世纪70-80 这阶段主要的标准性成果是系统动力学世界模型与美国国家模型的研究成功。这两个模型的研究成功地解决了困扰经济学界长波问题,因此吸引了世界范围内学者的关注,促进它在世界范围内的传播与发展,确立了在社会经济问题研究中的学科地位。 3)系统动力学广泛运用与传播—20世纪90年代-至今 在这一阶段,SD在世界范围内得到广泛的传播,其应用范围更广泛,并且获得新的发展.系统动力学正加强与控制理论、系统科学、突变理论、耗散结构与分叉、结构稳定性分析、灵敏度分析、统计分析、参数估计、最优化技术应用、类属结构研究、专家系统等方面的联系。许多学者纷纷采用系统动力学方法来研究各自的社会经济问题,涉及到经济、能源、交通、环境、生态、生物、医学、工业、城市等广泛的领域。 2.系统动力学的原理 系统动力学是一门分析研究信息反馈系统的学科。它是系统科学中的一个分支,是跨越自然科学和社会科学的横向学科。系统动力学基于系统论,吸收控制论、信息论的精髓,是一门认识系统问题和解决系统问题交叉、综合性的新学科。从系统方法论来说,系统动力学的方法是结构方法、功能方法和历史方法的统一。 系统动力学是在系统论的基础上发展起来的,因此它包含着系统论的思想。系统动力学是以系统的结构决定着系统行为前提条件而展开研究的。它认为存在系统内的众多变量在它们相互作用的反馈环里有因果联系。反馈之间有系统的相互联系,构成了该系统的结构,而正是这个结构成为系统行为的根本性决定因素。

车辆系统动力学 作业

车辆系统动力学作业 课程名称:车辆系统动力学 学院名称:汽车学院 专业班级:2013级车辆工程(一)班 学生姓名:宋攀琨 学生学号:2013122030

作业题目: 一、垂直动力学部分 以车辆整车模型为基础,建立车辆1/4模型,并利用模型参数进行: 1)车身位移、加速度传递特性分析; 2)车轮动载荷传递特性分析; 3)悬架动挠度传递特性分析; 4)在典型路面车身加速度的功率谱密度函数计算; 5)在典型路面车轮动载荷的功率谱密度函数计算; 6)在典型路面车辆行驶平顺性分析; 7)在典型路面车辆行驶安全性分析; 8)在典型路面行驶速度对车辆行驶平顺性的影响计算分析; 9)在典型路面行驶速度对车辆行驶安全性的影响计算分析。 模型参数为: m 1 = 25 kg ;k 1 = 170000 N/m ;m 2 = 330 kg ;k 2 = 13000 (N/m);d 2 =1000Ns/m 二、横向动力学部分 以车辆整车模型为基础,建立二自由度轿车模型,并利用二自由度模型分析计算: 1) 汽车的稳态转向特性; 2) 汽车的瞬态转向特性; 3)若驾驶员以最低速沿圆周行驶,转向盘转角0sw δ,随着车速的提高,转向盘转角位sw δ,试由 20sw sw u δδ-曲线和0 sw y sw a δ δ-曲线分析汽车的转向特性。 模型的有关参数如下: 总质量 1818.2m kg = 绕z O 轴转动惯量 23885z I kg m =? 轴距 3.048L m = 质心至前轴距离 1.463a m =

质心至后轴距离 1.585b m = 前轮总侧偏刚度 162618/k N rad =- 后轮总侧偏刚度 2110185/k N rad =- 转向系总传动比 20i =

系统动力学原理

系统动力学理论 系统动力学的概念 系统动力学(简称SD—System Dynamics),是由美国麻省理工学院(MIT)的福瑞斯特(.Forrester)教授创造的,一门以控制论、信息论、决策论等有关理论为理论基础,以计算机仿真技术为手段,定量研究非线性、高阶次、多重反馈复杂系统的学科。它也是一门认识系统问题并解决系统问题的综合交叉学科[1-3]。从系统方法论来说:系统动力学是结构的方法、功能的方法和历史的方法的统一。它基于系统论,吸收了控制论、信息论的精髓,是一门综合自然科学和社会科学的横向学科。系统动力学对问题的理解,是基于系统行为与内在机制间的相互紧密的依赖关系,并且透过数学模型的建立与操作的过程而获得的,逐步发掘出产生变化形态的因、果关系,系统动力学称之为结构。系统动力学模型不但能够将系统论中的因果逻辑关系与控制论中的反馈原理相结合,还能够从区域系统内部和结构入手,针对系统问题采用非线性约束,动态跟踪其变化情况,实时反馈调整系统参数及结构,寻求最完善的系统行为模式,建立最优化的模拟方案。 系统动力学的特点 系统动力学是一门基于系统内部变量的因果关系,通过建模仿真方法,全面动态研究系统问题的学科,它具有如下特点[4-8]: (1)系统动力学能够研究工业、农业、经济、社会、生态等多学科系统问题。系统动力学模型能够明确反映系统内部、外部因素间的相互关系。随着调整系统中的控制因素,可以实时观测系统行为的变化趋势。它通过将研究对象划分为若干子系统,并且建立各个子系统之间的因果关系网络,建立整体与各组成元素相协调的机制,强调宏观与微观相结合、实时调整结构参数,多方面、多角度、综合性地研究系统问题。 (2)系统动力学模型是一种因果关系机理性模型,它强调系统与环境相互联系、相互作用;它的行为模式与特性主要由系统内部的动态结构和反馈机制所决定,不受外界因素干扰。系统中所包含的变量是随时间变化的,因此运用该模

《车辆系统动力学》教学大纲

《车辆系统动力学》教学大纲 Primary theories of V ehicle system dynamics 课程编号: 适用专业:铁道机车车辆课程层次及学位课否:必修课 总学时:32 学分数:2 执笔者:任尊松金新灿 一、课程性质和任务 本课程主要面向本科三年级学生开设,其目的是让学生从动力学角度了解、掌握铁道车辆动力学基本理论和准则。 由于车辆的运行性能主要决定于悬挂装置中诸如弹簧和各种弹簧元件、减振器、弹簧支承以及各种拉杆、定位装置等的结构型式的选择是否合理,设计参数是否选用恰当;因此,本课程将围绕采取哪些措施来提高或获得车辆系统优良的动力学性能来讲解。 二、内容简介和学时分配 第一章概论(2课时) §1-1 研究内容和目的(20分钟) §1-2 车辆动力学研究与实践(30分钟) §1-3 铁路发展趋势(15分钟) §1-4 我国铁路高速技术发展(20分钟) §1-5 铁道部技术引进与动车组(15分钟) 重点:铁道车辆动力学研究目的和世界轮轨铁路发展趋势 第二章世界轮轨高速(2课时) §2-1 世界轮轨高速铁路(40分钟) §2-2 高速列车十大关键技术(60分钟) 重点:高速列车的高性能转向架技术、牵引与制动技术、轻量化技术等 难点:自动控制监测与诊断技术 第三章车辆动力性能与评判标准(2课时) §3-1 车辆运行安全性及其评估标准(50分钟) §3-2 车辆运行品质及其评估标准(50分钟) 重点:GB5599-1985中关于脱轨系数、减载率、轮轨横向力等安全性指标和舒适性指标的限定标准。 难点:脱轨系数、减载率求解公式推导。 第四章车辆系统动力学结构模型(2课时) §4-1 车辆系统基本结构(25分钟) §4-2 车辆系统振动自由度(35分钟) §4-3 车辆系统数学模型(40分钟) 重点:车辆定距、轴距、车轮名义半径、车轮踏面、轮缘等基本概念和车辆运动自由度定义。 第五章轮轨踏面设计与接触几何关系(2课时)

相关文档
最新文档