涂层界面结合力的滑移线场的计算与分析

涂层界面结合力的滑移线场的计算与分析
涂层界面结合力的滑移线场的计算与分析

涂层界面结合力的滑移线场的计算与分析

张焕周里群刘亚

(湘潭大学机械工程学院,湘潭411105)

The calculation and analysis by slip-line field for interfacial adhesion of electrodeposited nickel coating

ZHANG Huan ,ZHOU Li-qun ,LIU Ya

(Mechanical Engineering School of Xiangtan University ,Xiangtan 411105,China )

文章编号:1001-3997(2009)10-0027-03

【摘

要】涂层-基体界面结合强度的好坏是评价涂层质量的关键指标,是保证涂层-基体满足力学、

物理和化学等性能的基本前提。在所有测试方法中,划痕法是最成熟和应用最广的方法之一。通过李和谢费的滑移线场理论,建立了涂层-基体界面结合力的理论计算方法,计算出(0.01~0.09)mm 厚电沉积镍涂层的界面结合力,其数值为(5.4~48.6)N/mm ,并运用有限元软件对该涂层的划痕过程进行了仿真,两者结果比较发现该解析解和有限元数值解有较好的一致性,他们之间的界面结合力计算误差在5%以内。并且在有限元仿真过程中能够直观体现刮刀在行进过程中涂层-基体界面所发生的应力、

应变情况。关键词:结合强度;界面结合力;滑移线场;有限元

【Abstract 】The interfacial adhesion and bond strength between the coating and substrate is often the key parameter in determining the quality of coatings ,and is the basic precondition in guarantee the perfor -mance of mechanics 、physics and chemistry.Scratch test is one of the most widely applied methods in all tests.In this text ,the theoretical calculation method of the interfacial adhesion has been developed through the theory of Lee and Shaffer ’s slip-line field and the interfacial adhesion of nickel coating whose thick -

ness is from 0.01mm to 0.09mm has been calculated ,and the results are from 5.4N/mm to 48.6N/mm ,and the courses of scratch test have been stimulated by finite element https://www.360docs.net/doc/009155398.html,pared the analytic results with the numerical results ,we found that they were almost consistent and their errors were less than 5%.Further -

more ,the stress and strain of the interface between the coating and substrate could be presented all in the process of simulation.

Key words :Bond strength ;Interfacial adhesion ;Slip-line field ;Finite element

中图分类号:TH12,TP274文献标识码:A

*来稿日期:2008-12-01

随着涂层技术的广泛应用,人们对涂层应用的可靠性和使用

寿命提出越来越高的要求,而涂层与基体的结合性能在很大程度上决定了涂层应用的可靠性和使用寿命,是得以发挥薄膜涂层作用的基本条件,也是涂层制造过程中普遍关心的问题,涂层与基体的结合强度是影响涂层质量的首要指标。

测量涂层-基体界面结合强度的试验方法很多,有划痕法、压痕法、弯曲法、冲击法、拉伸法及断裂力学法等。在所有实用的涂层-基体界面结合强度检验方法中,尤其是硬质涂层-基体界面结合强度的检验方法中,仅划痕检验法得到广泛的应用。

借用划痕法的力学模型,如图1所示。并采用冯爱新切向力法来确定临界切向载荷L C 。从图1中,很容易看出,只要把作用在刮刀上向下的压力改为对刮刀在垂直方向的约束,其图1可以等同于的刀具切削模型,如图2所示。而临界切向力L C 也就等同于主切削力F Z 的确定,其中图1和图2的α、

β分别表示刀具的前角和后角。此模型的改变有助于按照切削的原理和方法求解主切削力F Z 即临界切向载荷L C ,而不改变原来临界切向载荷L C 的值。并借助

有限元软件ANSYS 对这一切削过程进行动态仿真与模拟。

图1Xie 的划痕法示意图

图2刀具切削示意图1主切削力的计算

1.1切削过程滑移线场模型和速矢图的建立

采用前刀面为均布压力及库伦摩擦时的滑移线场。

Machinery Design &Manufacture

机械设计与制造

第10期

2009年10月

27

(1)基本假设

①切削层中的变形满足平面应变的条件;被切削材料为理想刚塑性材料;

②沿刀屑接触面上作用均布的法向压应力σn及均布的切向应力τc;刀屑接触摩擦属于库伦摩擦的范畴(0<τc

(2)建立李和谢费滑移线场图形及速矢图,如图3所示。

(a)(b)

图3李和谢费的滑移线场模型及速矢图

①由于BC上作用有均布的法向应力和接触切应力,BC就是一个作用着均布载荷的直线边界。因此,可以判断,以BC为边界的第一个滑移线场是均匀场BCE。这个滑移线场的两族正交滑移线中,其中一族与BC相交为β角。根据边界上摩擦条件,β角由下式决定:

β=1

2cos-1μσn

k

(1)

式中:σn—BC上的法向应力;μ—摩擦系数;k—变形材料的临界剪应力,其表达式为:

k=(1)12σs(2)式中:σs—涂层材料的屈服极限。

②由于切削层的材料要变成切屑,因此塑性区不能只限制在BCE而必须向切削层内延展。李和谢费把CE线延长,使之与工作表面相交于A,并以AB为整个塑性变形区的另以假想边界。这样,ABE构成另一个均匀场。由于在AB以上,设想材料正形成为切屑并作刚性的向上运动(排屑运动),AB上是零载荷,所以AB可以看成为自由边界,因而第二个均匀场的两族滑移线与AB 相交成±π/4。

③最后得到的滑移线场模型是AECB。它是由两个均匀场ABE和BCE共同构成的。然而,由于AE是由EC直接延长而得到的,所以实际上整个滑移线场仍是一个均匀场。整个场内的一族滑移线是与BE平行的直线,另一族滑移线是与AEC平行的直线。

(3)建立速矢图,如图3(b)所示。

①设刀具不动,则速矢图的固定点0就表示刀具T。由0引02表示工件W相对于刀具T的运动速度,即02=υ。

②由0点引01线平行BC,表示不动区◎(即刀具)与塑性区①的相对剪切速度。

③由点2引21线平行AEC,表示第②区(即工件)与塑性区①的相对剪切速度。21和01的交点确定了速矢图上的点1。

从速矢图上可见,这个速矢图实际上是由主切削速度υ,切屑流向速度υch(即01),及剪切面上的剪切速度υs(即21)所构成的速度三角形。1.2滑移线场模型的力学分析。

力学分析的重要任务之一是求出切削力和刀屑接触面上的应力状态。图3的AB是一假想的塑性区边界,AB上任一点的应力状态可以用应力莫尔圆来表示,如图4所示。

图4应力莫尔图

正如基本假设中提出的,AB可定为自由边界,则AB上任一点的应力状态为σ1=0,σ3<0,σ2=(1/2)σ3。因此σ1的方向是最大主应力的方向,这个方向与AB垂直。AB上任一点的平均压应力为p AB为:

p AB=k(3)图3(b)中的滑移线场虽然实际由两个均匀场构成,但两个均匀场的滑移线取向是一样的,并伍滑移线转角的变化。因此,AB上的应力状态实际上也是整个变形区(包括刀屑接触面BC 在内的各点)的应力形态,即p BC=p AB=k。

在BC上取一微三角单元体,其中一边是BC上的一小段,另两边是滑移线的一段(图3的右上角)。根据单元体上作用力沿BC的方向和BC的法向上静力平衡条件,可得:

τc=κcos2β(4)σn=κ(1+sin2β)(5)故作用在水平方向单位切削宽度上的主切削力F Z为:

F Z=σn|BC|cosγ0+μσn|BC|sinγ0(6)

式中:γ0—刀具前角;|BC|—的值可由图1的几何关系得出:|BC|=a c cosβ

sin(γ0+β)

[tanβ+tan(π

4

-β)](7)式中:a c—切削层厚度。

2有限元仿真

2.1建立有限元模型

在切削过程中,刀具材料的变形按弹性计算,而工件材料的变形按弹塑性计算。所以,工件采用大应变弹塑性单元进行弹塑性分析;刀具采用弹性单元只进行弹性分析。考虑到前刀面与切屑以及后刀面与工件之间存在摩擦,且摩擦类型因刀面上各个点所受的等效剪应力而异,因此,在各接触对上采用目标单元和接触单元来模拟接触并控制摩擦类型。另外,用有限元技术模拟切屑形成,在建模时应首先建立切屑与加工表面的初始联系,并指定分离准则,采用基于几何和等效塑性应变的综合标准作为切屑分离标准,0.5为等效塑性应变分离标准值,0.3L为几何分离标准值,其中L为刀尖前单元的边长。

切削模型采用直角自由切削(此时被切金属仅产生平面应变),据此建立的二维模型,如图5所示。刀具几何参数为:前角10°,后角8°。

第10期

张焕等:涂层界面结合力的滑移线场的计算与分析28

图5有限元模型

2.2加载计算

在刀具右端加水平向左的位移,刀具在给定的速度和不同的位移边界条件下向左移动,形成切削过程。通过计算软件的解算器进行综合计算。

2.3切削形成的控制

切屑与产生的己加工表面间的对应节点在初始时是联系在一起的,我们选取的分离准则为von Mises 分离准则(等效塑性应变)。随着刀具的位移,刀尖前面的节点对产生塑性应变,在每一时步,计算出对应节点的应变,当等效塑性应变值达到分离准则值时,节点对分开。随着节点对的连续分离,就形成了切屑,如图6所示。

图6切屑形成

3计算实例

所采用的材料为以低碳钢为基体,以镍为涂层材料,分别对涂层厚度为0.01mm 、0.02mm 、0.03mm 、0.04mm 、0.05mm 、0.06mm 、0.07mm 、0.08mm 、0.09mm 进行切削计算。其中刀具采用YT5类硬质合金刀,其弹性模量为600GPa ,泊松比为0.3,其几何参数为:前角10°,后角8°;摩擦系数为0.15;镍涂层的屈服极限为480MPa ,弹性模量为223GPa ,泊松比为0.3;低碳钢的弹性模量为200GPa ,泊松比为0.25;有限元切削仿真过程共分为四个阶段:碰刀、切入、成形及稳定切削。显示了0.02mm 厚涂层的稳定切削阶段的应力云图,如图7所示。在切削过程中,我们能够有效的观察到涂层的应力和应变的变化。

正交切削问题属于平面应变问题,其主切削力为刀具前进方向(为-X 方向)的力,可将其视为刀屑接触面上的力沿刀具前进方向的分力,为此,提取刀具前刀面接触区域节点在X 方向的分力,并将其对接触面的长度进行数值积分,这样就可得到单位切削宽度上的主切削力,如图8所示。图8所反映的是切削0.02mm 镍涂层时,主切削力由零迅速上升到峰值12.5N/mm ,之后逐步下降并趋于平稳。稳定切削状态下的主切削力大约为11.3N/mm ,与用

李和谢费的滑移线场理论计算的主切削力10.8N/mm 基本一致。

图7稳定切削阶段

图8ANSYS 计算的主切削力随时间变化情况

通过上述方法,我们可以在稳定切削状态时,求解出厚度为(0.01~0.09)mm 的镍涂层的主切削力,其有限元计算数值与滑移线场理论的数值解做成,如表1所示。

表1(0.01~0.09)mm 涂层主切削力

从表1中,我们可以得出随着涂层厚度的增加,解析解和数

值解中的主切削力也随着增加;从解析式(6)和(7)中,我们可以得出,主切削力F Z 随着切削厚度a c 线性递增;滑移线场理论的解析解与数值解的误差范围在5%以内,他们之间符合程度较好,这说明假设材料为理想刚塑性的滑移线场理论计算方法能够很好的计算该切削力,所述的切削力计算方法是可行的。

4结论

采用李和谢费的滑移线场理论较好的计算出主切削力F Z 也即临界切向力L C ,并对0.01~0.09mm 镍涂层的用有限元软件进行仿真和模拟,对比两者的值,发现两者间有较好的一致性,说明这种方法的提出能够有效且实用的解决涂层-基体的界面结合力。

参考文献

1M.Murakawa and S.Takeuchi.Quantitative adhesion strength measurement of diamond coatings

[J ].Thin Solid Films ,1989,181(1~2):443~4502Zhongwei Xie ,

Jing Zhu ,Wei Guo.The Scraping Test and Adhesion Mea -surements of Diamond and Nickel Electroless Coatings [J ].Materials char -acterization ,2000,44:347~352

3冯爱新,

张永康,谢华琨,范真.划痕实验法表征薄膜涂层界面结合强度[J ].江苏大学学报,2003,24(2):15~20

4王仲仁.塑性加工力学基础[M ].北京:国防工业出版社,1987

5黄志刚,柯映林,王立淘.金属切削加工有限元模拟的相关技术研究[J ].中国机械工程,2003,14(10):846~849

涂层厚度(mm )0.080.09解析解(N/mm )数值解(N/mm )误差(%)

43.245.34.9

48.650.43.7

0.010.020.030.040.050.060.075.410.816.221.627.032.437.85.511.316.822.428.034.039.61.9

4.6

3.7

4.8

3.7

4.9

4.8

机械设计与制造No.10Oct.2009

29

涂层界面结合力的滑移线场的计算与分析

涂层界面结合力的滑移线场的计算与分析 张焕周里群刘亚 (湘潭大学机械工程学院,湘潭411105) The calculation and analysis by slip-line field for interfacial adhesion of electrodeposited nickel coating ZHANG Huan ,ZHOU Li-qun ,LIU Ya (Mechanical Engineering School of Xiangtan University ,Xiangtan 411105,China ) 文章编号:1001-3997(2009)10-0027-03 【摘 要】涂层-基体界面结合强度的好坏是评价涂层质量的关键指标,是保证涂层-基体满足力学、 物理和化学等性能的基本前提。在所有测试方法中,划痕法是最成熟和应用最广的方法之一。通过李和谢费的滑移线场理论,建立了涂层-基体界面结合力的理论计算方法,计算出(0.01~0.09)mm 厚电沉积镍涂层的界面结合力,其数值为(5.4~48.6)N/mm ,并运用有限元软件对该涂层的划痕过程进行了仿真,两者结果比较发现该解析解和有限元数值解有较好的一致性,他们之间的界面结合力计算误差在5%以内。并且在有限元仿真过程中能够直观体现刮刀在行进过程中涂层-基体界面所发生的应力、 应变情况。关键词:结合强度;界面结合力;滑移线场;有限元 【Abstract 】The interfacial adhesion and bond strength between the coating and substrate is often the key parameter in determining the quality of coatings ,and is the basic precondition in guarantee the perfor -mance of mechanics 、physics and chemistry.Scratch test is one of the most widely applied methods in all tests.In this text ,the theoretical calculation method of the interfacial adhesion has been developed through the theory of Lee and Shaffer ’s slip-line field and the interfacial adhesion of nickel coating whose thick - ness is from 0.01mm to 0.09mm has been calculated ,and the results are from 5.4N/mm to 48.6N/mm ,and the courses of scratch test have been stimulated by finite element https://www.360docs.net/doc/009155398.html,pared the analytic results with the numerical results ,we found that they were almost consistent and their errors were less than 5%.Further - more ,the stress and strain of the interface between the coating and substrate could be presented all in the process of simulation. Key words :Bond strength ;Interfacial adhesion ;Slip-line field ;Finite element 中图分类号:TH12,TP274文献标识码:A *来稿日期:2008-12-01 随着涂层技术的广泛应用,人们对涂层应用的可靠性和使用 寿命提出越来越高的要求,而涂层与基体的结合性能在很大程度上决定了涂层应用的可靠性和使用寿命,是得以发挥薄膜涂层作用的基本条件,也是涂层制造过程中普遍关心的问题,涂层与基体的结合强度是影响涂层质量的首要指标。 测量涂层-基体界面结合强度的试验方法很多,有划痕法、压痕法、弯曲法、冲击法、拉伸法及断裂力学法等。在所有实用的涂层-基体界面结合强度检验方法中,尤其是硬质涂层-基体界面结合强度的检验方法中,仅划痕检验法得到广泛的应用。 借用划痕法的力学模型,如图1所示。并采用冯爱新切向力法来确定临界切向载荷L C 。从图1中,很容易看出,只要把作用在刮刀上向下的压力改为对刮刀在垂直方向的约束,其图1可以等同于的刀具切削模型,如图2所示。而临界切向力L C 也就等同于主切削力F Z 的确定,其中图1和图2的α、 β分别表示刀具的前角和后角。此模型的改变有助于按照切削的原理和方法求解主切削力F Z 即临界切向载荷L C ,而不改变原来临界切向载荷L C 的值。并借助 有限元软件ANSYS 对这一切削过程进行动态仿真与模拟。 图1Xie 的划痕法示意图 图2刀具切削示意图1主切削力的计算 1.1切削过程滑移线场模型和速矢图的建立 采用前刀面为均布压力及库伦摩擦时的滑移线场。 Machinery Design &Manufacture 机械设计与制造 第10期 2009年10月 27

提高镀层与基体结合强度的途径

提高镀层与基体结合强度的途径 前言 镀层的结合力是指镀层与基体金属或中间镀层的结合强度,即单位表面积的镀层从基体金属或中间镀层上剥离时所需要的力。镀层结合力不好,多数是因为镀前处理不当所致。此外,镀液成分和工艺规范不当或基体金属与镀层金属的热膨胀系数悬殊,均会对镀层结合力有明显影响。通过对镀层与基体结合机理的探讨,提出了提高基体金属与镀层结合力的方法。 1 镀层的形成 镀液中的金属离子在阴极上获得电子被还原为金属原子,并均匀覆盖在作为阴极的零部件表面(界面),形成镀层。其过程一般分为三个步骤: (1)金属的水化离子由溶液内部移动到阴极界面处,即液相中物质的传递步骤。 (2)金属水化离子脱水,并与阴极上的电子反应还原成金属原子。实际上是电子在阴极上与金属离子间的跃迁,完成了电子从阴极界面向电解液界面的转移,使脱水的离子获得电子,形成失水的吸附原子,即电子跃迁。(3)金属原子排列成一定构型的金属晶体,即生成新相步骤。结晶又分形核和生长两个过程。形核和生长的速率决定了晶粒尺寸大小,若形核速率大于生长速率,则生成的晶粒数量多,尺寸小;反之晶粒数量少,尺寸大。 2 结合机理 2.1 电化学行为产生的结合 电解液中金属离子经过电化学作用还原为金属原子,继而形成镀层。与基体牢固地结合在一起,这就是电化学行为产生的镀层与基体的结合。电化学结合又分为金属键结合与固溶体结合。 2.1.1 金属键结合 镀层金属与基体金属的原子间存在着强烈的相互作用,这种作用力称为化学键。在金属晶体中的原子与自由电子之间通过强烈的静电吸引力结合在一起所形成的化学键称为金属键。金属键合的强度取决于两种界面的晶体结构和晶面性质,而镀层结合强度则主要取决于键合的强度。 2.1.2 固溶体结合 所谓固溶体是指溶质原子溶入金属溶剂的晶格中所组成的合金相。在镀层与基体两种金属的界面之间,固溶体仍能保持与基体金属相同的晶体结构,但由于合金中少量组元原子的溶入,会引起晶格畸变和晶格常数的变化。 固溶体根据溶人原子所处的位置可形成间隙固溶体和置换固溶体。影响固溶体类型的基本元素是原子的尺寸、晶格的点阵形式和晶格常数、元素的电化学性质等。 2.2 机械镶嵌产生的结合 利用基体材料表面粗糙度造成的镶嵌作用来实现镀层金属与基体的结合,称为机械镶嵌作用产生的结合,简称机械结合,主要有: (1) 由于基体材料表面加工痕迹形成的许多较小间距的微小峰谷或活化工序刻蚀后的微坑凹凸不平,两者之间形成相互交错咬合。在单纯机械结合情况下,薄膜的结合力一般都较低。

挡土墙稳定性验算

附件1 滑坡稳定性及挡土墙稳定性验算 1、滑坡体工况1稳定性计算 计算项目:土层滑坡稳定性计算-自重工况 ------------------------------------------------------------------------ [计算简图] [控制参数]: 采用规范: 通用方法 计算目标: 安全系数计算 滑裂面形状: 圆弧滑动法 不考虑地震 [坡面信息] 坡面线段数10 坡面线号水平投影(m) 竖直投影(m) 超载数 1 0.000 2.320 0 2 9.340 1.780 0

3 3.710 4.880 0 4 3.030 0.700 0 5 3.620 2.000 0 6 3.330 1.000 0 7 0.590 0.800 0 8 2.830 0.200 0 9 3.080 1.000 0 10 9.780 4.000 0 [土层信息] 坡面节点数11 编号X(m) Y(m) 0 0.000 0.000 -1 0.000 2.320 -2 9.340 4.100 -3 13.050 8.980 -4 16.080 9.680 -5 19.700 11.680 -6 23.030 12.680 -7 23.620 13.480 -8 26.450 13.680 -9 29.530 14.680 -10 39.310 18.680 附加节点数8 编号X(m) Y(m) 1 0.000 -0.870 2 7.970 0.000 3 27.620 6.400 4 39.310 8.080 5 4.470 -4.200 6 39.310 0.860 7 6.540 -4.200

挡土墙验算安全系数取值问题

各规中关于挡墙稳定验算安全系数的规定 1、建筑支挡: 1.1 《GB 50330-2002 建筑边坡工程技术规》规定: 5.3.1 边坡工程稳定性验算时,其稳定性系数应不小于下表规定的稳定安全系数的要求,否则应对边坡进行处理。 注:对地质条件很复杂或破坏后果极严重的边坡工程,其稳定安全系数宜适当提高。 10.2.3 重力式挡土墙抗滑稳定性安全系数不得小于1.3。 10.2.4 重力式挡土墙抗倾覆稳定性安全系数不得小于1.6。 10.2.5 重力式挡土墙的土质地基稳定性可采用圆滑滑动法验算,岩质地基稳定性可采用平面滑动法验算。 2、水利支挡: 2.1 《CJJ 50-1992 城市防洪工程设计规》规定: 2.4.1 堤(岸)坡抗滑稳定安全系数,应符合下表的规定。 2.4.2 建于非岩基上的混凝土或圬工砌体防洪建筑物与非岩基接触面的水平抗滑时稳定安全系数,应符合下表的规定。 2.4.3 建于岩基上的混凝土或圬工砌体防洪建筑物与岩基接触的抗滑稳定安全系数,应符合下表的规定。 2.4.4 防洪建筑物抗倾覆稳定安全系数应符合下表的规定。

2.2 《GB 50286-1998 堤防工程设计规》规: 2.2.3 土堤的抗滑稳定安全系数不应小于下表的规定。 2.2.4 滨海软弱堤基上的土堤的抗滑稳定安全系数,当难以达到规定数值时,经过论证,并报行业主管部门批准后,可以适当降低。 2.2.5 防洪墙抗滑稳定安全系数,不应小于下表的规定。 2.2.6 防洪墙抗倾覆稳定安全系数不应小于下表的规定。 2.3 《SL 379-2007 水工挡土墙设计规》规定: 3.2.7沿挡墙基底面的抗滑稳定安全系数不应小于下表规定的允许值。 注:特殊组合Ⅰ适用于施工情况及校核洪水位情况,特殊组合Ⅱ适用于地震情况。 3.2.8 当土质地基上的挡土墙沿软弱土体整体滑动时,按瑞典圆弧法或折线滑动法计算的抗滑稳定安全系数不应小于上表规定的允许值。 3.2.9 岩石地基上挡土墙沿软弱结构面整体滑动,当按公式6.3.6计算的稳定安全系数允许值,可根据工程实践经验按上表中相应规定的允许值降低采用。 3.2.11 对于加筋式挡土墙,不论其基本,基本荷载组合条件下的抗滑稳定安全系数不应小于 1.40,特殊荷载组合条件下的抗滑稳定安全系数不应小于1.30。 3.2.12 土质地基上挡土墙的抗倾覆稳定安全系数不应小于下表规定的允许

镀层的结合力

镀层的结合力 镀层结合力是指镀层与基体金属或中间镀层的结合强度,即单位表面积的镀层从基体金属或中间镀层上剥离所需要的力。 镀层结合力不好,多数原因是镀前处理不良所致。此外,镀液成分和工艺规范不当或基体金属与镀层金属的热膨胀系数悬殊,均对镀层结合力有明显影响。 GB/T 5270--200X((金属基体上的覆盖层(电沉积层和化学沉积层)附着强度试验方法》规定了测试方法。评定镀层与基体金属结合力的方法很多,但大多为定性方法,定量测试方法由于诸多困难,仅在试验研究中应用。通常用于车间检验的定性测量方法,是以镀层金属和基体金属的物理-力学性能的不同为基础,即当试样经受不均匀变形、热应力或外力的直接作用后,检查镀层是否有结合不良现象。具体方法可根据镀种和镀件选定。 (一)定性检测方法 1.弯曲试验 弯曲试验是在外力作用下使试样弯曲或拐折,由于镀层与基体金属(或中间镀层)受力程度不同,两者间产生分力,当该分力大于其结合强度时,镀层即从基体(或中间镀层)上剥落。任何剥离、碎裂、片状剥落的迹象均认为是结合力不好。 此法适用于薄型零件、线材、弹簧等产品的镀层结合力试验。弯曲试验通常有以下几种: (1)将试样沿一直径等于试样厚度的轴,反复弯曲l800,直至试样断裂,镀层不起皮、不脱落为合格。 (2)将试样沿一直径等于试样厚度的轴,弯曲l800,然后放大四倍检查弯曲部分,镀层不起皮、不脱落为合格。 (3)将试样固定在台钳中,反复弯曲试样,直至基体断裂,镀层不起皮、不脱落,或放大四倍检查,镀层与基体不分离均为合格。 (4)直径为1mm以下的线材,将其绕在直径为线材直径3倍的轴上;直径为1mm以上的线材,绕在直径与线材相同的金属轴上,均绕成l0个~l5个紧密靠近的线圈,镀层不起皮、不脱落为合格。 2.锉刀、戈q痕试验 锉刀法是将镀件夹在台钳上,用一种粗齿扁锉锉其锯断面,锉动的方向是从基体金属向镀层,锉刀与镀层表面大约成450角。结合力好的镀层,试验中不应出现剥离。此法不适用于很薄的镀层以及锌、镉之类的软镀层。 . 划痕试验是用一刃口磨成300锐角的硬质划刀,划两条相距为2mm的平行线。划线时,应施以足够的压力,使划刀一次就能划破镀层达到基体金属。如果两条划线之间的镀层有任何部分脱离基体金属,则认为结合力不好。本试验的另一划法是:划边长为1mm的正方形格子,观察格子内的镀层是否从基体上剥落。 3.热震试验(ASTM B571) 将受检试样在一定温度下进行加热,然后骤然冷却,便可以测定许多镀层的结合力,这是基于镀层金属与基体金属(或中间镀层)的热膨胀系数不同而发生变形差异。将试样放在炉中加热至表10—1—1中所规定的温度,温度误差±I0℃,时间一般为0.5h~1h,然后放入室温水中骤冷,检查镀层是否起泡、脱落。 表10—1—1 热震试验的温度

徐工特约:镀层结合力的实质及影响因素

徐工特约:镀层结合力的实质及影响因素一:镀层结合力的实质 1.万有引力 任何两个物体之间都存在相互作用的吸引力。当然,原子之间也有这种相互作用的力。我们把这种相互作用的力叫做万有引力。这种作用力与物体之间的距离大小的平方成反比。原子之间也有同样的道理。假如某基材上的油污没有除尽,镀层与基材之间的距离差拉大了,镀层与基材之间的万有引力比较小,所以结合力差,镀层容易脱皮,起泡。 2.形成金属键之间的作用力 金属键的定义为:金属离子靠共同的自由电子而结合到一起的作用力,我们把它叫做金属键。例如,我们电镀时,添加剂添加过多,镀层中夹杂有机物过多,很难与基材形成金属键或金属键形成不够强或镀层的脆性就比较大,高温烘烤时容易出现脆性引起的凸起麻点,像起小泡一样。 3.机械镶嵌作用力 例如我小时候,我的家庭条件比较差,到了冬季,因怕冷不愿洗头,一个月后,头发很蓬乱,我妈妈拿起梳子给我梳头,这个时候用很大的力梳子才能前进,那真的是叫做疼。阻碍梳子这么大的阻力是因为头发不光滑及蓬乱引起的,梳子和头发不仅存在阻力,蓬乱的头发加大了梳子与头发之间的机械镶嵌作用。同样,电镀同一个产品,基材光滑部分镀层与基材之间的结合力肯定没有基材粗糙部分与镀层之间的结合力好。镀层与镀层之间的结合力也可这样理解。在我们的论坛里,有位朋友说他的镀亮锡工件,基材光滑部分总是脱皮,粗糙部分没有问题。大家是不是可以从这方面考虑这个问题呢?那是必然的。 二:影响镀层结合力的因素 1.基体材质:不同材质上镀同一镀层,产生的结合力大小不一样,我个人认为可能是不同材质与同一镀层之间产生的金属键作用不一样,具体是什么原因,目前还没有定论。 2.镀层的光亮性:从事电镀行业的人都知道,在光亮镍上面镀酸铜,结合力很差。这是为什么呢?其原因有两个:1.是部分光亮电镀必然靠添加剂镀层才光亮,光亮镀层表面会产生一层添加剂膜层,阻碍了下一镀层与本镀层的结合。2.光亮镀层表面必然光滑,机械镶嵌较弱,也影响它们之间的结合。 3.金属还原性越强,在其表面镀上其他镀层结合力越差。原因是其还原能力强,其表面活化后在空中停留或水洗中越容易氧化,表面越容易形成一层氧化膜,这种膜层不仅阻碍了镀层与基材之间形成金属键,还减小了万有引力。 4.工艺条件也会影响结合力:例如光亮镍中湿润剂不够,氢气容易停留在产品表面或渗入基体,产品容易有氢气泡形成。例如镀锌温度低,镀层脆性大,镀液因扩散,对流及电迁移不够及时引起的阴极极化比较强,也容易产生起泡。同时,温度过低,添加剂的吸附能力比脱附能力强,夹杂在镀层比较多,镀层的脆性比较大,也容易脱皮或起泡。 5.渗氢也容易影响结合力:例如,某铁工件酸洗过度,基材铁与酸中的氢离子发生置换反应过强,氢原子或氢气渗入基材较多,当镀上镀层后,产品基体中的氢气或氢原子在

电镀镀层结合力不够的五大原因

归根起来大抵有以下五大原因。 一、电镀药液被污染 在工厂电镀生产中,由于各种原因导致金属氧化物、金属杂质、不溶性悬浮物、有机杂质等有害杂质进入电镀液,这些杂质积累过多导致电镀镀液性和镀层质量受到影响。因此,需要定期清理杂质,处理电镀液。 二、基材前处理不良 如果镀液没有问题,可能需要再次检查基材表面是否有灰层或液体残留物,以及其他化学物质。因为镀品没有清理好,轻则影响电镀层的平整度、抗腐蚀和结合力,重则导致镀层沉积、疏松不连续、甚至镀层剥落,是产品丧失实际使用价值。因此,确保电镀前处理工艺良好也是一项重要的工作。 三、工艺控制不到位 工艺的控制对电镀涂层的质量具有至关重要的作用。如果镀液和前处理都没有问题,就需要检查工艺控制是否有问题了。槽内的温度、电流的密度、药水的pH值、电镀时间等工艺控制都必须和产品相匹配。因此,工艺控制必须力求准确。

四、生产进度太赶 一个产品往往是由很多零部件加工组装而成。众所周知,为完成这些零部件的加工常常需要跨过多个车间,不巧电镀就属于末尾的一道工序。于是,我们经常看到这样一个场景:零部件还没来到电镀车间,装配车间的兄弟们已经等着零件装配了。 这样就造成了工期太紧,大家为了完成任务连续加班赶工期,导致电镀时间达不到工艺要求,加上夜间工作光线影响检查,最终影响电镀质量。 五、产品设计不合理 产品设计人员和生产人员是两批完全不同的人。产品设计人员在零件图纸的设计中更多的注重产品零件的形状、尺寸、加工精度等条件,而对产品的加工工艺考虑不多,更不用说电镀工艺了。因此,也给电镀工作带来了一些不必要的麻烦,这对电镀产品的质量也有一定的影响。

基础稳定验算

基础稳定性验算 一、工程概况 根据*******提供的岩土工程勘察报告。本工程采用嵌岩桩基础,基础持力层为中等风化砂岩,桩端岩石饱和单轴抗压强度标准值为frk=,地基承载力特征值fak=1200Kpa ,桩长约为6m 。桩基础最不利地质剖面如下图所示,桩侧土层厚度分别为一般填土或粘土、强风化砂岩、中风化砂岩按考虑。 二、基础抗倾覆验算 本工程设防烈度6度,根据《高规》条,304.0/12.0)(/)(max max ==小震中震αα,考虑到中震作用下结构的塑性耗能,本工程取中震地震作用力为小震的倍。 根据PKPM 计算结果,结构在小震、风荷载、中震作用下整体抗倾覆验算如下: 楼栋号 13-24轴单体 1~12轴单体 结构抗倾覆力矩 结构倾覆力矩 比值 结构抗倾覆力矩 结构倾覆力 矩 比值 X 向风荷载 Y 向风荷载 X 向小震 Y 向小震 X 向中震 Y 向中震 参照《高层建筑筏形与箱形基础技术规范》(JGJ6-2011)第条,本工程抗倾覆稳定性安全系数远大于,故结构的整体抗倾覆稳定性满足要求。 三、基础抗滑移验算 本工程采用嵌岩桩基础,基础抗滑移由基桩水平承载力提供。13-14轴单体共有基桩48根,1-12轴单体共有基桩62根。 单桩水平承载力计算 1. 设计资料 桩土关系简图 已知条件 (1) 桩参数 承载力性状 端承桩 桩身材料与施工工艺 干作业挖孔桩 截面形状 圆形

砼强度等级 C30 桩身纵筋级别 HRB400 直径(mm) 900 桩长(m) 是否清底干净 √ 端头形状 不扩底 (2) 计算内容参数 水平承载力 √ 桩顶约束情况 铰接 允许水平位移(mm) 轴力标准值(kN) (3) 土层参数 2 计算过程及计算结果 单桩水平承载力 根据《桩基规范》第4款(式及第7款(考虑地震作用) 计算 桩的水平变形系数α = (1/m) 桩截面模量塑性系数γm = 桩身砼抗拉强度设计值ft = (kPa) 桩身换算截面模量W0 = (m3) 桩身最大弯矩系数vM = 桩顶竖向力影响系数ζN = 桩身换算截面积An = (m2) 承载力特征值地震调整系数 = 单桩水平承载力特征值 Rha = (kN) 本工程地震作用下取单桩水平承载力特征值为250kN 。非地震作用下取200KN 。 基础抗滑移验算 根据PKPM 计算结果,结构在小震、风荷载、中震作用下整体抗倾覆验算如下: 参照《高层建筑筏形与箱形基础技术规范》(JGJ6-2011)第条,本工程抗滑移稳定性安全系数远大于,故结构的整体抗滑移稳定性满足要求。 四、构造加强措施 1)将塔楼外围基础梁加高(本工程取为300x1000),提高塔楼周边土体的压实标准,将建筑物水平荷 载有效传给地基。 2)提高桩基础的嵌岩深度,本工程取最小嵌岩深度.

挡土墙验算安全系数取值问题

挡土墙验算安全系数取值问题标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-

各规范中关于挡墙稳定验算安全系数的规定 1、建筑支挡: 《GB 50330-2002 建筑边坡工程技术规范》规定: 边坡工程稳定性验算时,其稳定性系数应不小于下表规定的稳定安全系数的要求,否则应对边坡进行处理。 适当提高。 重力式挡土墙抗滑稳定性安全系数不得小于。 重力式挡土墙抗倾覆稳定性安全系数不得小于。 重力式挡土墙的土质地基稳定性可采用圆滑滑动法验算,岩质地基稳定性可采用平面滑动法验算。 2、水利支挡: 《CJJ 50-1992 城市防洪工程设计规范》规定: 堤(岸)坡抗滑稳定安全系数,应符合下表的规定。 建于非岩基上的混凝土或圬工砌体防洪建筑物与非岩基接触面的水平抗滑时稳定安全系数,应符合下表的规定。 建于岩基上的混凝土或圬工砌体防洪建筑物与岩基接触的抗滑稳定安全系数,应符合下表的规定。 防洪建筑物抗倾覆稳定安全系数应符合下表的规定。

《GB 50286-1998 堤防工程设计规范》规范: 土堤的抗滑稳定安全系数不应小于下表的规定。 滨海软弱堤基上的土堤的抗滑稳定安全系数,当难以达到规定数值时,经过论证,并报行业主管部门批准后,可以适当降低。 防洪墙抗滑稳定安全系数,不应小于下表的规定。 防洪墙抗倾覆稳定安全系数不应小于下表的规定。 《SL 379-2007 水工挡土墙设计规范》规定: 沿挡墙基底面的抗滑稳定安全系数不应小于下表规定的允许值。 况。 当土质地基上的挡土墙沿软弱土体整体滑动时,按瑞典圆弧法或折线滑动法计算的抗滑稳定安全系数不应小于上表规定的允许值。 岩石地基上挡土墙沿软弱结构面整体滑动,当按公式计算的稳定安全系数允许值,可根据工程实践经验按上表中相应规定的允许值降低采用。 对于加筋式挡土墙,不论其基本,基本荷载组合条件下的抗滑稳定安全系数不应小于,特殊荷载组合条件下的抗滑稳定安全系数不应小于。 土质地基上挡土墙的抗倾覆稳定安全系数不应小于下表规定的允许值。

挡土墙稳定性计算

2、农田护墙(挡土墙)稳定性计算书 (1):墙身尺寸: 墙身高: 1.500(m) 墙顶宽: 0.500(m) 面坡倾斜坡度: 1:0.250 背坡倾斜坡度: 1:0.200 采用1个扩展墙址台阶: 墙趾台阶b1: 0.300(m) 墙趾台阶h1: 0.400(m) 墙趾台阶与墙面坡坡度相同 墙底倾斜坡率: 0.200:1 (2):物理参数: 圬工砌体容重: 23.000(kN/m3) 圬工之间摩擦系数: 0.400 地基土摩擦系数: 0.500 墙身砌体容许压应力: 2100.000(kPa) 墙身砌体容许剪应力: 110.000(kPa) 墙身砌体容许拉应力: 150.000(kPa) 墙身砌体容许弯曲拉应力: 280.000(kPa) (3):挡土墙类型: 一般挡土墙 墙后填土内摩擦角: 35.000(度) 墙后填土粘聚力: 0.000(kPa) 墙后填土容重: 19.000(kN/m3) 墙背与墙后填土摩擦角: 17.500(度) 地基土容重: 18.000(kN/m3) 修正后地基土容许承载力: 500.000(kPa) 地基土容许承载力提高系数: 墙趾值提高系数: 1.200 墙踵值提高系数: 1.300 平均值提高系数: 1.000

墙底摩擦系数: 0.500 地基土类型: 土质地基 地基土内摩擦角: 30.000(度) 土压力计算方法: 库仑 (4):坡线土柱: 坡面线段数: 2 折线序号水平投影长(m) 竖向投影长(m) 换算土柱数 1 3.000 2.000 0 2 5.000 0.000 0 坡面起始距离: 0.000(m) 地面横坡角度: 20.000(度) 墙顶标高: 0.000(m) (5):稳定性计算书: 第 1 种情况: 一般情况 [土压力计算] 计算高度为 1.807(m)处的库仑主动土压力 按实际墙背计算得到: 第1破裂角: 38.300(度) Ea=21.071 Ex=18.463 Ey=10.154(kN) 作用点高度 Zy=0.615(m) 因为俯斜墙背,需判断第二破裂面是否存在,计算后发现第二破裂面存在:第2破裂角=10.021(度) 第1破裂角=39.550(度) Ea=23.256 Ex=16.438 Ey=16.450(kN) 作用点高度 Zy=0.632(m) 墙身截面积 = 1.603(m2) 重量 = 36.866 kN 墙背与第二破裂面之间土楔重 = 0.733(kN) 重心坐标(0.633,-0.594)(相对于墙面坡上角点) (一) 滑动稳定性验算 基底摩擦系数 = 0.500 采用倾斜基底增强抗滑动稳定性,计算过程如下: 基底倾斜角度 = 11.310 (度) Wn = 36.869(kN) En = 19.355(kN) Wt = 7.374(kN) Et = 12.893(kN) 滑移力= 5.519(kN) 抗滑力= 28.112(kN) 滑移验算满足: Kc = 5.093 > 1.300 地基土摩擦系数 = 0.500 地基土层水平向: 滑移力= 16.438(kN) 抗滑力= 29.149(kN) 地基土层水平向: 滑移验算满足: Kc2 = 1.773 > 1.300 (二) 倾覆稳定性验算 相对于墙趾点,墙身重力的力臂 Zw = 0.865 (m) 相对于墙趾点,Ey的力臂 Zx = 1.425 (m) 相对于墙趾点,Ex的力臂 Zy = 0.325 (m) 验算挡土墙绕墙趾的倾覆稳定性 倾覆力矩= 5.334(kN-m) 抗倾覆力矩= 56.294(kN-m)

钕铁硼电镀前处理对镀层结合力的影响

电镀前处理对烧结钕铁硼磁性材料 镀层结合力的影响综述
摘要:本文主要介绍了钕铁硼磁性材料的腐蚀机理,以及电镀前处理工艺对镀层质量的影响。重点研 究了酸洗、喷砂这两种前处理技术对钕铁硼基体表面形貌的改变和对不同镀层的结合力影响。 关键词:钕铁硼磁性材料、腐蚀机理、酸洗、喷砂、镀层结合力 NdFeB磁性材料是80年代发展起来的第3代新型功能材料, 磁性材料是一种不需要消耗电能就可 以持续提供磁能的物体,它具有能量转换功能,是重要的功能材料。NdFeB磁体以其极高的“磁能 积”轰动于世,成为目前世界上磁性能最强的磁体。NdFeB磁体在磁性材料发展史上具有重要地位, 在微波通讯、音像、仪器仪表、电机工程、计算机磁分离、磁疗等领域得到广泛应用,成为新技术应 用的重要物质基础[1]。由于材料中Nd含量高,材料的化学性质极为活泼,所以材料在潮湿的空气中 极易氧化,与酸发生强烈的反应。NdFeB合金的晶界处存在富Nd相,极易产生晶间腐蚀,严重时, 产生大量Nd的氧化物和氢化物使材料粉化。又因具有选择腐蚀性,导致磁性能下降。另外NdFeB磁 性材料是通过粉末冶金烧结成型的产品,结构疏松,孔隙率高,表面状况较差,脆性大。NdFeB尽 管具有优异的磁性能,但却存在耐腐蚀性能差的缺点,限制了它的进一步推广应用。目前该问题已经 成为NdFeB产业的一个共性问题。因此,对NdFeB磁性材料的腐蚀机理及表面防护技术的研究具有 十分重要的意义[2]。
1. 腐蚀机理
1.1 NdFeB磁性材料的相组成[3]
烧结钕铁硼磁体主要采用粉末冶金法进行生产,它至少同时存在以下4种不同的相: (1)基体相(主相):Nd2Fe14B相。它是在1200℃左右通过包晶反应形成的,是合金中唯一 的磁性相。NdFeB磁体的优异的磁性能主要归功于Nd2Fe14B相的高饱和磁化强度(μ0Ms=1.6T)

抗滑移系数

高强度螺栓连接摩擦面抗滑移系数检测作业指导书 一、制定目的及适用范围 为确保高强度螺栓连接摩擦面抗滑移系数检测的正常进行,取得正确可靠的检测数据,使高强度螺栓连接摩擦面抗滑移系数检测工作规范、有序,特制定高强度螺栓连接摩擦面抗滑移系数检测作业指导书。 本指导书适用于检测高强度螺栓连接摩擦面抗滑移系数。 二、引用标准 《钢结构工程施工质量验收规范》GB50205-2001。 三、抽样方法及数量。 应满足《钢结构工程施工质量验收规范》GB50205-2001规范6.3.1条之规定。 四、检测 1、接受委托 制造厂和安装单位分别以钢结构制造批为单位进行抗滑移系数试验。制造批可按分部(子分部)工程划分规定的工程量每2000t为一批,不足2000t的可视为一批。选用两种及两种以上表面处理工艺时,每种处理工艺应单独检验。每批三组试件。 2、高强螺栓的规格等级,试样的材质和表面处理情况。 3、利用高强螺栓抗滑移检测仪及液压万能试验机对试样进行试样检测。 4、设备及工具:高强螺栓抗滑移检测仪、液压万能试验机、扳手、记号笔等。 5、检测方法及规程: 5.1试样的制备 (1)试样双面拼接试板,其型式、尺寸见图1,宽度见表1。 (2)试样的材质和表面处理应与所代表的制作批相同。 (3)试样的连接副应用同批同一性能等级的高强度螺栓连接副。 L 图1抗滑移系数拼接试件的型式和尺寸 表1试板宽度(mm)

5.2紧固 (1)根据高强度螺栓强度等级和规格查出设计预拉力。 (2)选择与试件规格相匹配的传感器和专用螺栓,将传感器和专用螺栓一侧放置一个,用扭矩扳手分别将传感器处螺栓拧至设计预拉力值的50%,读出扭矩扳手的刻度。 (3)将其余的螺栓按此值进行初拧。 (4)用扭矩扳手分别将传感器处螺栓拧紧至设计预拉力值的95%~105%,读出扭矩扳手的刻度。(5)将其余的螺栓按此值进行终拧。 5.3试验方法 (1)试验用的试验机误差应在1%以内。试验机应根据试件的长度和计算载荷两个方面来选择。 (2)试验用的贴有电阻片的高强度螺栓、压力传感器和电阻应变仪,在试验前应用试验机进行标定,其误差应在2%以内。 (3)将试件侧面画出观察滑移的直线,放置试验机上。 (4)先按10%的抗滑移设计载荷值加荷,停1min后再平稳加荷,速度为3~5kN /s。直拉到滑动破坏,测得滑移载荷Nv。 (5)试验中发生以下情况之一时,认为达到滑动载荷: a.试验机发生回针现象; b.试件侧面画线发生错动现象; c.X-Y记录仪上变形曲线发生突变; d.试件突然发出“嘣”的响声。 五、计算 抗滑移系数应根据试验测得的滑移载荷Nv和螺栓预拉力P的实测值,按下式计算,宜取小数点二位有效数字。 m μ=Nv/n f*ΣP i i=1 式中 Nv—由试验测得的滑移载荷(kN); n f—摩擦面面数,取n f =2;

挡土墙稳定计算

For personal use only in study and research; not for commercial use 挡土墙型式划分 重力式挡土墙:由墙身和底板构成的、主要依靠自身重量维持稳定的挡土建筑物。 半重力式挡土墙:为减少圬工砌筑量而将墙背建造为折线型的重力式挡土建筑物。 衡重式挡土墙:墙背设有衡重台(减荷台)的重力式挡土建筑物。 悬臂式挡土墙:由底板及固定在底板上的悬臂式直墙构成的,主要依靠底板上的填土重量维持稳定的挡土建筑物。 扶壁式挡土墙(扶垛式挡土墙):由底板及固定在底板上的直墙和扶壁构成的,主要依靠底板上的填土重量维持稳定的挡土建筑物。 空箱式挡土墙:由底板、顶板及立墙组成空箱状的,依靠箱内填土或充水的重量维持稳定的挡土建筑物。 板桩式挡土墙:利用板桩挡土,依靠自身锚固力或设帽梁、拉杆及固定在可靠地基上的锚碇墙维持稳定的挡土建筑物。 锚杆式挡土墙:利用板肋式、格构式或排桩式墙身结构挡土,依靠固定在岩石或可靠地基上的锚杆维持稳定的挡土建筑物。 加筋式挡土墙:利用较薄的墙身结构挡土,依靠墙后布置的土工合成材料减少土压力以维持稳定的挡土建筑物。 级别划分 水工建筑物中的挡土墙应根据所属水工建筑物级别,按表3.1.1 确定。 根据建筑物级别确定洪水标准 水工挡土墙的洪水标准应与所属水工建筑物的洪水标准一致。 稳定计算 表 3.2.7 挡土墙抗滑稳定安全系数的允许值 滑动面的形状与边坡土质的关系 一般情况下,分三种情况: 1、均质黏性土,滑动面的形状在空间上呈圆柱状,剖面上呈曲线(圆弧)状,在坡顶处接近垂直,坡脚处趋于水平; 2、均质无黏性土,滑动面在空间上为一斜面,剖面上近于斜直线; 3、在土坡坡底夹有软层时,可能出现曲线与直线(软层处)组合的复合滑动面。 当土质地基上的挡土墙沿软弱土体整体滑动时,按瑞典圆弧法或折线滑动法计算的抗滑稳定安全系数不应小于表3.2.7规定的允许值。 无粘性土稳定计算按公式(6.3.5-1)计算。 粘性土地基上的1、2 级挡土墙,沿其基底面的抗滑稳定安全系数宜按公式(6.3.5-2)计算。tgφ 岩石地基上挡土墙沿软弱结构面整体滑动,当按公式(6.3.6)计算的稳定安全系数允许值,可根据工程实践经验按表3.2.7 中相应规定的允许值降低采用。

常见锌镀层结合力差的六种可能原

创固螺丝https://www.360docs.net/doc/009155398.html,158******** 常见锌镀层结合力差的六种可能原因 创固螺丝https://www.360docs.net/doc/009155398.html, 引起锌酸盐镀锌层结合力差的因素很多,其中以下六种情况尤为多见。 (1)光亮剂添加过量。锌酸盐镀锌层的光亮度稍逊于氯化钾镀锌层,有人认为可以用添加光亮剂来弥补,结果不但达不到预想目的,镀层的结合力还受到严重影响。 这一现象多发生在溶液严重老化阶段。这时镀液中有机物质过多,属于镀层中晶格严重扭曲之故。在这种情况必然会引起内应力增加,从而导致脆性增大,出现脱皮。为避免这种现象的出现,首先要合理控制光亮剂的用量,并适时地用活性炭进行吸附处理。 解决方法:稀释、用活性炭处理,调整溶液成分,平时要少加、勤加。 (2)工件镀前在镀槽中停留时间太长。有人认为锌酸盐镀锌溶液是碱性的,把经过前处理的工件挂在镀槽中,待聚够一槽后再配电施镀,结果工件发生钝化,影响到镀层的结合力。 解决方法:工件在槽内不要过长时间停留,以免引起钝化。 (3)镀层过厚。镀层内应力和脆性增大,工件边缘部位的镀层易起泡和脱落。 解决方法:镀层厚度要控制在20μm以内。 (4)镀液表面浮有油污。工件人槽后被镀液表面的油污和光亮剂分解物组成的污物所包围。从而引起镀层脱皮。 解决方法:这层浮油应随时用厚层手纸吸除,工件入槽后先在镀液中抖动几下,使吸附在工件表面的油污脱离下来。 (5)工件除油不彻底。有人认为锌酸盐镀锌溶液是碱性的,必定有除油能力,前处理可以马虎一点。其实镀液虽是碱性的,但当有油 污的工件人槽后,在其与碱性物质起作用之前,锌离子即抢先放电析出,锌层沉积在薄层油膜上,结合力显然会降低。 解决方法:加强前处理工序。 (6)工艺条件控制不当。工艺条件偏差过大,尤其是溶液温度要求为室温。室温通常是指18~25℃,但有人又认为既不加温又不降低即指的就是室温,冬季室内温度低于10℃时仍认为是室温,结果由于电流密度没有按温度的变化而变化而导致影响镀层的结合力。 解决方法:根据溶液温度范围的变化来调节电流密度,当溶液温度过低时需要适当加温。

第十三讲_镀层的结合力_二_

【电镀基础讲座】 第十三讲──镀层的结合力(二) 袁诗璞 4 钢铁件镀铜的结合力问题 钢铁件是应用最广的基体材料,而在其上镀铜的工艺又很多。镀铜的无氰化比镀取铜合金易于实现。故对钢铁镀铜的结合力问题应有较全面的了解。 4. 1 金属的钝化问题 金属的钝化性与电镀的关系十分密切。从许多书籍、手册中都可查到难镀材料的镀前特殊处理要求。这些材料之所以难镀,绝大部分都与其易钝性密切相关。第四讲已简单讨论过钝化与活化的问题,本讲考虑到这一问题对电镀的重要性,再作较详细的讨论。 钝化与活化是相反的行为:钝化使金属的电极电位向正方向偏移,而活化则使其向负方向偏移。通过测定金属在不同介质中的电位–时间曲线,可判定其钝化与活化状态。钝化是因为在纯金属或合金表面形成了钝化层(多为氧化层)。当设法去掉钝化层后,纯金属或合金由钝化态转变为活化态。电镀时,镀层只有在完全处于活化的表面上沉积,才能得到好的结合力和外观。若表面存在钝化层,一方面拉大了镀层与基体金属原子间的距离,使万有引力下降;另一方面,不可能在两种金属原子之间形成金属键。 金属是否会钝化,与所处介质条件有关,但更主要的是取决于金属本身的性质。对此,可比较金属“钝性系数”的大小:钝性系数越大的金属,越易钝化,且钝化层越致密。部分金属的钝性系数为:钛,2.44;铝,0.82;铬,0.74;铍,0.73;钼,0.49;镁,0.47;镍,0.37;钴,0.20;铁,0.18;锰,0.13;锌,0.024;钙、铜、铅、锡,~ 0.00。钛是极易钝化的金属,而钙、铜、铅、锡则不易钝化。 在钝性系数小的金属中掺入一定质量分数的一种或几种钝性系数大的金属而形成合金,则会提高其易钝化性,从而提高耐蚀能力。例如,在钢中加入13%以上的铬则成为铁素体或马氏体不锈钢(如0Cr13和4Cr13);再掺入更易钝化的钛等,则成为更耐蚀的奥氏体不锈钢,典型的是不具铁磁性的1Cr18Ni9Ti不锈钢(含铬18%、镍9%及少量的钛)。而含钼的不锈钢则具有较好的耐硫酸腐蚀性。电镀锌镍合金甚至锌铁合金的耐蚀性也比电镀纯锌要好得多。为了取代六价铬镀锌钝化,目前的三价铬钝化液中多要加入镍盐、钴盐。无铬钝化虽有不少研究,但其耐蚀性均不如含铬钝化。有人认为无铬钝化最有前途的还是采用钛盐、稀土金属,钼酸盐钝化则次之。在20世纪70年代末,笔者曾见过用硫酸氧钛作主盐的钛盐银白钝化产品,不但白度很高,且抗蚀性不错;但其缺点是为了保证钛离子处于高价态,要加入大量不稳定的双氧水,故未有推广。 4. 2 铁的易钝化性 尽管铁的钝性系数仅0.18,但已属于易钝化金属。多年前就有人做过试验:在空气中将铁丝折断,立即放入汞中,断面处已不能生成铁汞齐;而在汞中将铁丝折断,断面处却可以生成铁汞齐。原因是:铁丝在空气中被折断的瞬间,其断面处已被空气中的氧所氧化而发生钝化,在钝化后的断面上不能形成铁汞齐。 钢铁件在除油、活化后本已被活化了,但活化后再水洗时,因溶解氧的氧化作用也不同程度地被钝化。在无氰碱铜液中,铁会进一步钝化,且在碱性条件下,其钝态可长期保持,而不会自然活化。20世纪70年代,笔者曾测定过当时提出的几种无氰碱铜液中铁试片的电位–时间曲线。发现在氰化镀铜液中,电位会随时间而变负,达到一稳定值;而在所有无氰碱铜液中,电位都会变得更正,最后也趋于一个完全钝化的稳定值,其中以焦磷酸盐镀铜液中的电位最正(有人认为还可形成某种形式的磷化膜)。由此证明,除了氰化镀铜液中CN?对钢铁件有化学活化作用外,无氰配位剂均无活化作用,钢铁件在无氰碱铜液中反而会进一步钝化。于是笔者撰文《钢铁件镀铜的结合力问题》,发表在《材料保护》1981年第2期上。 但与钛、铝、铬、镍不同的是,铁的钝性系数不大,形成的钝化膜薄而不致密,在大气中无防蚀能力而使铁很易生锈。 在电镀中利用铁的易钝性的例子也不少,如:在

基础稳定验算定稿版

基础稳定验算 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

基础稳定性验算 一、工程概况 根据*******提供的岩土工程勘察报告。本工程采用嵌岩桩基础,基础持力层为中等风化 砂岩,桩端岩石饱和单轴抗压强度标准值为frk=8.0Mpa,地基承载力特征值fak=1200Kpa ,桩长约为6m 。桩基础最不利地质剖面如下图所示,桩侧土层厚度分别为一般填土或粘土2.3m 、强风化砂岩3.7m 、中风化砂岩按0.5m 考虑。 二、基础抗倾覆验算 本工程设防烈度6度,根据《高规》4.3.7条,304.0/12.0)(/)(max max ==小震中震αα,考虑到中震作用下结构的塑性耗能,本工程取中震地震作用力为小震的2.5倍。 根据PKPM 计算结果,结构在小震、风荷载、中震作用下整体抗倾覆验算如下: 楼栋号 13-24轴单体 1~12轴单体 结构抗倾覆力 矩 结构倾覆力矩 比值 结构抗倾覆力矩 结构倾覆力 矩 比值 X 向风荷载 929781.9 34895.5 26.64 1357492.2 34799.1 39.01 Y 向风荷 975048.8 49451.8 19.72 1080998.4 54187.1 19.95 载 X 向小震 906114.4 31859.5 28.44 1320794.9 36099.9 36.59 Y 向小震 951836.3 31859.5 29.88 1054567.6 36099.9 29.21 X 向中震 906114.40 79648.75 11.38 1320794.9 90249.75 14.63 Y 向中震 951836.30 79648.75 11.95 1054567.6 90249.75 11.68 参照《高层建筑筏形与箱形基础技术规范》(JGJ6-2011)第5.5.2条,本工程抗倾覆稳定性安全系数远大于1.5,故结构的整体抗倾覆稳定性满足要求。 三、基础抗滑移验算 本工程采用嵌岩桩基础,基础抗滑移由基桩水平承载力提供。13-14轴单体共有基桩48根,1-12轴单体共有基桩62根。 3.1 单桩水平承载力计算 1. 设计资料 桩土关系简图 已知条件

相关文档
最新文档