分数阶微分方程的初值问题解的存在性

分数阶微分方程的初值问题解的存在性
分数阶微分方程的初值问题解的存在性

分数阶微分方程-课件

分数阶微分方程 第三讲分数阶微分方程基本理论 一、分数阶微分方程的出现背景及研究现状 1、出现背景 分数阶微积分是关于任意阶微分和积分的理论,它与整数阶微积分是统一的,是整数阶微积分的推广。 整数阶微积分作为描述经典物理及相关学科理论的解析数学工具已为人们普遍接受,很多问题的数学模型最终都可以归结为整数阶微分方程的定解问题,其无论在理论分析还是数值求解方面都已有较完善的理论。但当人们进入到复杂系统和复杂现象的研究时,经典整数阶微积分方程对这些系统的描述将遇到以下问题: (1)需要构造非线性方程,并引入一些人为的经验参数和与实际不符的假设条件; (2)因材料或外界条件的微小改变就需要构造新的模型; (3)这些非线性模型无论是理论求解还是数值求解都非常繁琐。 基于以上原因,人们迫切期待着有一种可用的数学工具和可依据的基本原理来对这些复杂系统进行建模。分数阶微积分方程非常适合于刻画具有记忆和遗传性质的材料和过程,其对复杂系统的描述具有建模简单、参数物理意义清楚、描述准确等优势,因而成为复杂力学与物理过程数学建模的重要工具之一。 2、研究现状 在近三个世纪里,对分数阶微积分理论的研究主要在数学的纯理论领域里进行,似乎它只对数学家们有用。然而在近几十年来,分数阶微分方程越来越多的被用来描述光学和热学系统、流变学及材料和力学系统、信号处理和系统识别、控制和机器人及其他应用领域中的问题。分数阶微积分理论也受到越来越多的国内外学者的广泛关注,特别是从实际问题抽象出来的分数阶微分方程成为很多数学工作者的研究热点。随着分数阶微分方程在越来越多的科学领域里出现,无论对分数阶微分方程的理论分析还是数值计算的研究都显得尤为迫切。然而由于分数阶微分是拟微分算子,它的保记忆性(非局部性)对现实问题进行了优美刻画的同时,也给我们的分析和计算造成很大困难。 在理论研究方面,几乎所有结果全都假定了满足李氏条件,而且证明方法也和经典微积分方程一样,换句话说,这些工作基本上可以说只是经典微积分方程理论的一个延拓。对分数阶微分方程的定性分析很少有系统性的结果,大多只是给出了一些非常特殊的方程的求解,且常用的求解方法都是具有局限性的。 在数值求解方面,现有分数阶方程数值算法还很不成熟,主要表现为: (1)在数值计算中一些挑战性难题仍未得到彻底解决,如长时间历程的计算和大空间域的计算等; (2)成熟的数值算法比较少,现在研究较多的算法主要集中在有限差分方法与有限单元法; (3)未形成成熟的数值计算软件,严重滞后于应用的需要。

第三章 一微分方程的解的存在定理

第三章 一阶微分方程的解的存在定理 教学目的 讨论一阶微分方程的解的存在与唯一性定理,解的延拓定理,解对初值的连续性与可微性定理,解对参数的连续性定理 教学要求 掌握存在与唯一性定理及其证明,会用皮卡逼近法求近似解,理解解对初值的连续性与可 微性定理,解对参数的连续性定理,了解奇解及其求法。 教学重点 几个主要定理的条件及其证明 教学难点 逐次逼近法的应用及其思想;应用存在与唯一性定理及解的延拓定理来研究方程的解;奇解及其求法 教学方法 讲练结合教学法、提问式与启发式相结合教学法。 教学手段 传统板书与多媒体课件辅助教学相结合。 课题导入 在上一章我们讨论了一阶方程的解的初等积分法。解决了几个特殊的方程。但是,对许多微分方程,为22'y x y +=,不可能通过初等积分法求解,这就产生了一个问题,一个不能用初等积分法求解的微分方程是否意味着没有解呢?或者说,一个微分方程的初值问题在何种条件下一定有解呢?当有解时,农的解是否是唯一的呢?毫无疑问,这是一个很基本的问题,不解决这个问题对微分方程的进一步研究,就无从谈起,本章将重点讨论一阶微分方程的解存在问题的唯一定理, §3.1解的存在唯一性定理与逐步逼近法 教学目的 讨论Picard 逼近法及一阶微分方程的解的存在与唯一性定理,解的延拓定理,解对初值的连续性与可微性定理。 教学要求 熟练掌握Picard 逼近法,并用它证明一阶微分方程初值问题解的存在与唯一性定理及其证明,会用Picard 逼近法求近似解, 教学重点 Picard 存在唯一性定理及其证明

教学难点 逐次逼近分析法的应用及其思想. 教学方法 讲练结合教学法、提问式与启发式相结合教学法。 教学手段 传统板书与多媒体课件辅助教学相结合。 一. 存在唯一性定理 1.定理1,考虑初值问题 ),(y x f dx dy = (3.1) 00)(y x y = 其中f(x,y)在矩形区域 R : b y y a x x ≤-≤-||,||00 (3.2) 上连续,并且对y 满足Lipsthits 条件:即存在常数L>0,使对所有 R y x y x ∈),(),,(21常存成立, |||),(),(|2121y y L y x f y x f -≤- 则初值问题(cauchy 问题)(3.1)在区间h x x ≤-||0上解存在唯一,这里 |),(|max ),, min(),(y x f M M b a h R y x ∈== 证明思路:1.初值问题(3.1)的解存在等价一动积分方程?+=x x dy y x f y y 0 ),(0(3.5)的连续解。 2.构造( 3.5)所得解函数序列{)(x n ?} 任取一连续函数)(0x ?,b y x ≤-|)(|00?代入(3.5)左端的y ,得 ?+=x x dx x x f y x 0 ))(,()(01??)(x n ?)(x n ? Λ2,1,))(,()(0 01=+=?+n dx x x f y x x x n n ?? 3.函数序列{)(x n ?}在|,|00h x h x +-上一致收敛到)(x ?。这里为3 ?∞→∞ →+x x n n n dx x x f y x 0 ))(,(lim )(lim 0?

Peano定理解的存在性定理的应用主讲范进军

第二讲 Peano 定理(解的存在性定理)的应用 (主讲:范进军) 例 利用 Peano 存在定理证明如下隐函数存在定理: 设D 是空间 n R R ′ 内的一个区域,函数 :?(,)(,) n F D R t x F t x ?? 是连续可微的, 而且满足条件 00 (,)0 F t x = 和 00 det{(,)}0, x F t x 1 其中初值 00 (,) t x D ? 。 则方程 (,)0 F t x = 确定一个满足条件 00 () x t x = 的隐函数 () x x t = 。 证明 由条件 00 det{(,)}0 x F t x 1 (其中 00 (,) t x D ? )知,存在充分小的矩形区域 { } 00 (,):||,||||(,0) n Q t x R R t t a x x b a b =?′-£-£> , 使得当(,) t x Q ? 时矩阵 00 (,) x F t x 是可逆的. 因此函数 1 (,){(,)}(,) x t f t x F t x F t x - =- 在区域Q 上是连续的。 根据 Peano 定理知,初值问题 00 (,), () dx f t x dt x t x ì = ? í ? = ? 存在一个局部解 00 (),[,](0) x t t t h t h h j =?-+> 。 从而 1 () {(,())}(,()) x t d t F t t F t t dt j j j - =- , 0 || t t h -£ 。 它等价于 () (,())(,()) 0 t x d t F t t F t t dt j j j += , 0 || t t h -£ , 即 (,()) 0 dF t t dt j = , 0 || t t h -£ 。

解的存在唯一性

解的存在唯一性定理证明及其研究 专业名称:数学与数学应用 组长:赵亚平 组员:刘粉娟、王蓓、孙翠莲 指导老师:岳宗敏

解的存在唯一性定理证明及其研究 摘要 线性微分方程是常微分课本中的重要组成部分,线性微分方程组解的存在唯一性是最重要,也是不可或缺的一部分,通过课本所学知识运用逐步逼近法以及压缩映射原理分别对一阶,高阶线性微分方程组解的存在唯一性进行的详细的论述证明。对于线性方程组解的情况,主要是通过对增广矩阵进行初等行变换,了解其秩的情况,在运用克莱默法则,从而得出其解的存在唯一性的情况。 关键词:解的存在唯一性 线性微分方程组 线性方程组 (一)一阶微分方程的解的存在唯一性定理与逐步逼近法 存在唯一性定理 考虑初值问题 ),(y x f dx dy = 00)(y x y = (1) 其中f(x,y)在矩形区域R : b y y a x x ≤-≤-||,||00 (2) 上连续,并且对y 满足Lipschits 条件:即存在常数L>0(L 为利普

希茨常数),使不等式 |||),(),(|2121y y L y x f y x f -≤- 对所有R y x y x ∈),(),,(21都成立,则初值问题(1)在区间h x x ≤-||0上解存在且唯一,这里 |),(|max ),, min(),(y x f M M b a h R y x ∈== 证明思路: 1.初值问题(1)的解存在等价于求积分方程 ?+=x x dy y x f y y 0),(0 (3) 的连续解。 2.构造(3)所得解函数序列{)(x n ?},任取一连续函数)(0x ?, b y x ≤-|)(|00?代入(3)右端的y ,得 …… 2,1,))(,()(0 01=+=?+n dx x x f y x x x n n ?? 3.函数序列{)(x n ?}在|,|00h x h x +-上一致收敛到)(x ?。这里为 )(x n ?=dx x x f y n x x n ))(,(lim 1-00 ??∞ →+ dx x x f y x x f y x x x x n ??+ =+=∞ →0 ))(,()) (,(lim 01-n 0?? 4.)(x ?为(3)的连续解且唯一。首先在区间],[00h x x +是讨论,在错误!未找到引用源。上类似。 证明过程: 命题1 :初值问题(1)等价于积分方程

常微分方程初值问题数值解法.

常微分方程初值问题数值解法 朱欲辉 (浙江海洋学院数理信息学院, 浙江舟山316004) [摘要]:在常微分方程的课程中讨论的都是对一些典型方程求解析解的方法.然而在生产实 际和科学研究中所遇到的问题往往很复杂, 在很多情况下都不可能给出解的解析表达式. 本篇文章详细介绍了常微分方程初值问题的一些数值方法, 导出了若干种数值方法, 如Euler法、改进的Euler法、Runge-Kutta法以及线性多步法中的Adams显隐式公式和预测校正 公式, 并且对其稳定性及收敛性作了理论分析. 最后给出了数值例子, 分别用不同的方法计算出近似解, 从得出的结果对比各种方法的优缺点. [关键词]:常微分方程;初值问题; 数值方法; 收敛性; 稳定性; 误差估计 Numerical Method for Initial-Value Problems Zhu Yuhui (School of Mathematics, Physics, and Information Science, Zhejiang Ocean University, Zhoushan, Zhejiang 316004) [Abstract]:In the course about ordinary differential equations, the methods for analytic solutions of some typical equations are often discussed. However, in scientific research, the problems are very complex and the analytic solutions about these problems can’t be e xpressed explicitly. In this paper, some numerical methods for the initial-value problems are introduced. these methods include Euler method, improved Euler method, Runge-Kutta method and some linear multistep method (e.g. Adams formula and predicted-corrected formula). The stability and convergence about the methods are presented. Some numerical examples are give to demonstrate the effectiveness and accuracy of theoretical analysis. [Keywords]:Ordinary differential equation; Initial-value problem; Numerical method; Convergence; Stability;Error estimate

分数阶微积分发展现状及展望教学文稿

分数阶微积分发展现状及展望 在数学领域中,大体分为五种研究方向:基础数学,应用数学,计 算数学,概率论与数理统计,统计学与控制论。这五个方向对数学在当 代的发展都有不可或缺的作用。从研究内容来讲,方程、算子、群论、 图论、代数、几何等等都是数学领域重要的研究对象。作为基础数学专 业分数阶微分方程方向的博士生,本文将从分数阶微分方程的发展的历 史及现状、本人对分数阶微分方程未来发展的看法来介绍分数阶微分的 基本知识。 (一)、发展历史及现状 牛顿和莱布尼兹发明的微积分是现代数学与古典数学的分水岭。分数阶微积分是关于任意阶微分和积分的理论,它与整数阶微积分是统一的,是整数阶微积分的推广。整数阶微积分作为描述经典物理及相关学科理论的解析数学工具已为人们普遍接受,很多问题的数学模型最终都可以归结为整数阶微分方程的定解问题,其无论在理论分析还是数值求解方面都已有了比较完善的理论。但当人们进入到复杂系统和复杂现象的研究时,经典整数阶微积分方程对这些系统的描述将遇到一些问题,如:需要构造非线性方程,并引入一些人为的经验参数和与实际不符的假设条件;因材料或外界条件的微小改变就需要构造新的模型等等。基于以上原因,人们迫切期待着有一种可用的数学工具和可依据的基本原理来对这些复杂系统进行建模。分数阶微积分方程非常适合于刻画具有记忆和遗传性质的材料和过程,其对复杂系统的描述具有建模简单、参数物理意义清楚、描述准确等优势,因而成为复杂力学与物理过程数学建模的重要工具之一。 对大多数研究人员和工程师而言,分数阶微积分也许还是比较陌生的,但它实际上早在300多年前就被提出。1695年9月,洛必达 (L’Hospital)在给莱布尼兹的著名信件中就写到“对于简单的线性函数 f(x)=x,如果函数导数次数为分数而不是整数那会怎样”。这是公认的第一次提及分数阶微分。1832年,刘维尔(Liouville)成功的应用了自己提出的分数阶导数的定义,解决了势理论问题。之后刘维尔发表的一系列文 章使他成为分数阶微积分理论的实际级创始人。1974年,Oldham与Spanier出版了第一本关于分数阶微积分理论的专著。 在近三个世纪里,对分数阶微积分理论的研究主要在数学的纯理论领域里进行,但是从近几十年,分数阶微分方程越来越多的被用来描述光学和热学系统、流变学及材料和力学系统、信号处理和系统识别、控制和机器人及其他应用领域中的问题。分数阶微积分理论也受到越来越多的国内

分数阶微分方程数值解的一种逼近方法.

分数阶微分方程数值解的一种逼近方法 By:Pankaj Kumar, Om Prakash Agrawal 摘要 本文提出了一类分数阶微分方程(FDEs)的数值解方案.在这种方法中,FDEs 被Caputo型分数阶导数所表现. Caputo型分数阶导数的属性可以让一个分数阶微分方程减弱为一个Volterra型积分方程. 这样做了之后,许多研究Volterra 型积分方程的数值方法也可以应用于寻找FDEs的数值解. 本文总时间被划分为一组小区间,在两个连续区间中,用二次多项式逼近未知函数. 这些近似被替换成转化的Volterra型积分方程由此获得一组方程. 这些方程的解提供了FDE的解. 这种方法被应用于解决两种类型的FDEs,线性和非线性. 用这里给出的方法得到的解能与解析解和其他方法的数值解较好的吻合. 同时结果说明这种数值方法是稳定的. 1.引言 本文讨论分数阶微分方程的数值解. 分数阶导数和分数阶积分近年来收到了广泛的关注. 在许多实际应用中,分数阶导数和分数阶积分为考虑的系统提供了更加精确地模型. 比如,分数阶导数已经被成功地运用到模拟许多粘性材料的依赖频率的阻尼行为.1980年之前,Bagley 和Torvik提出了这个领域已经被研究的工作的一个回顾,并且说明了半阶导数模型可以非常好地描述阻尼材料的频率以来. 另一些学者说明了分数阶导数和分数阶积分在电化学过程,电解质极化,有色噪声,粘性材料和混沌领域的应用. Mainardi,Rossikhin和Shitikova 提出了分数阶导数和分数阶积分在一般固体力学,特定粘弹性阻尼模型中的应用的调查. Magin提出了分数阶微积分在生物工程的三个关键部分的回顾. 分数阶导数和分数阶积分在其他领域的应用以及相关的数学工具和技巧还可以在许多其他文献上找到. 系统模型中分数阶导数的引进大多会导致分数阶微分方程的出现. 对某些特定的分数阶微分方程在通常系统条件下的解,已经有几种方法被找到. 这些方法包括,拉普拉斯变换,傅里叶变换,模态综合法和特征向量展开法,数值法以

数学“存在性”问题的解题策略(含解答)-

数学“存在性”问题的解题策略 存在性问题是指判断满足某种条件的事物是否存在的问题,这类问题的知识覆盖面较广,综合性较强,题意构思非常精巧,解题方法灵活,对学生分析问题和解决问题的能力要求较高,是近几年来各地中考的“热点”。这类题目解法的一般思路是:假设存在→推理论证→得出结论。若能导出合理的结果,就做出“存在”的判断,导出矛盾,就做出不存在的判断。 由于“存在性”问题的结论有两种可能,所以具有开放的特征,在假设存在性以后进行的推理或计算,对基础知识,基本技能提出了较高要求,并具备较强的探索性,正确、完整地解答这类问题,是对我们知识、能力的一次全面的考验。 【典型例题】 例1. 223(1)9200x x m x m m -++-+=若关于的一元二次方程有两个实数根, 390cos 5 a b c ABC A B C C B ==又已知、、分别是△的∠、∠、∠的对边,∠°,且, 3b a m Rt -=,是否存在整数,使上述一元二次方程两个实数根的平方和等于 ABC c m △的斜边的平方?若存在,求出满足条件的的值,若不存在,请说明 理由。 分析:这个题目题设较长,分析时要抓住关键,假设存在这样的m ,满足的条件有m 是整数,一元二次方程两个实数根的平方和等于Rt △ABC 斜边c 的平方,隐含条件判别式Δ≥0等,这时会发现先抓住Rt △ABC 的斜边为c 这个突破口,利用题设条件,运用勾股定理并不难解决。 解:在△中,∠°,∵Rt ABC C B ==903 5 cos ∴设a=3k ,c=5k ,则由勾股定理有b=4k , 33343==-=-k k k a b ∴,∴, ∵ ∴,,a b c ===91215 设一元二次方程的两个实数根为,x m x m m x x 2 2 12319200-++-+=() 则有:,x x m x x m m 12122 31920+=+=-+() ∴x x x x x x m m m 1222 12212222312920+=+-=+--+()[()]() =+-736312 m m 由,x x c c 12 22 2 15+== 有,即7363122573625602 2 m m m m +-=+-= ∴,m m 124647 ==-

常微分方程初值问题的数值解法

第七章 常微分方程初值问题的数值解法 --------学习小结 一、本章学习体会 通过本章的学习,我了解了常微分方程初值问题的计算方法,对于解决那些很难求解出解析表达式的,甚至有解析表达式但是解不出具体的值的常微分方程非常有用。在这一章里求解常微分方程的基本思想是将初值问题进行离散化,然后进行迭代求解。在这里将初值问题离散化的方法有三种,分别是差商代替导数的方法、Taylor 级数法和数值积分法。常微分方程初值问题的数值解法的分类有显示方法和隐式方法,或者可以分为单步法和多步法。在这里单步法是指计算第n+1个y 的值时,只用到前一步的值,而多步法则是指计算第n+1个y 的值时,用到了前几步的值。通过对本章的学习,已经能熟练掌握如何用Taylor 级数法去求解单步法中各方法的公式和截断误差,但是对线性多步法的求解理解不怎么透切,特别是计算过程较复杂的推理。 在本章的学习过程中还遇到不少问题,比如本章知识点多,公式多,在做题时容易混淆,其次对几种R-K 公式的理解不够透彻,处理一个实际问题时,不知道选取哪一种公式,通过课本里面几种方法的计算比较得知其误差并不一样,,这个还需要自己在往后的实际应用中多多实践留意并总结。 二、本章知识梳理 7.1 常微分方程初值问题的数值解法一般概念 步长h ,取节点0,(0,1,...,)n t t nh n M =+=,且M t T ≤,则初值问题000 '(,),()y f t y t t T y t y =≤≤??=?的数值解法的一般形式是 1(,,,...,,)0,(0,1,...,)n n n n k F t y y y h n M k ++==- 7.2 显示单步法 7.2.1 显示单步法的一般形式 1(,,),(0,1,...,1)n n n n y y h t y h n M ?+=+=-

分数阶微分方程_课件

分数阶微分方程 一、 预备知识 1、 分数阶微积分经典定义回顾 作为分数阶微积分方程的基础,本书在第二章中对分数阶微积分的定义及性质做了系统的介绍,为了接下来讨论的需要,我们首先对其进行一个简要的回顾。 (1)分数阶微积分的主要思想 如上图所示,分数阶微积分的主要思想是推广经典的整数阶微积分,从而将微积分的概念延拓到整个实数轴,甚至是整个复平面。但由于延拓的方法多种多样,因而根据不同的需求人们给出了分数阶微积分的不同定义方式。然而这些定义方式不仅只能针对某些特定条件下的函数给出,而且只能满足人们的某些特定需求,迄今为止,人们仍然没能给出分数阶微积分的一个统一的定义, 这对分数阶微积分的研究与应用造成了一定的困难。 1、分数阶微分的定义 为了满足实际需要,下面我们试图从形式上对分数阶微积分给出一种统一的表达式。 分数阶微积分的主要思想是推广经典的累次微积分,所有推广方法的共同目标是以非整数参数p 取代经典微积分符号中的整数参数n ,实际上,任意的n 阶微分都可以看成是一列一阶微分的叠加: ()()n n n d f t d d d f t dt dt dt dt = (1) 由此,我们可以给出一种在很多实际应用中十分重要的分数阶微积分的推广方 式。首先,我们假设已有一种合适的推广方式来将一阶微分推广为α(01α≤≤) 阶微分,即d D dt α→是可实现的。那么类似地可得到(1)的推广式为: ()()n n D f t D D D f t αααα= (2) 这种推广方式最初是由..K S Miller 和.B Ross 提出来的,其中D α采用的是R L -分数阶微分定义,他们称之为序列分数阶微分。序列分数阶微分的其他形式可以通过将D α替换为G L -分数阶微分、Caputo 分数阶微分或其他任意形式

常微分方程初值问题

常微分方程初值问题 12.1引言 在数学模型中经常出现的常微分方程在科学的许多分支中同样出现,例如工程和经济学。不幸的是却很少出现这些方程可得到表示在封闭的形式的解的情况,所以通常采用数值方法来寻找近似解。如今,这通常可以非常方便的达到高精度和在解析解和数值逼近之间可靠的误差界。在本节我们将关注一阶微分方程(12.1)形式关于实值函数y的实变 量x的结构和数值分析方法,其中和f是一个给定的实值函数的两个变量。为了从解曲线的无限族选择一个特定的积分构成(12.1)的通解,微分方程将与初始条件一起考虑:给定两个实数和,我们寻求一个(12.1)的解决方案,对于有 (12.2) 微分方程(12.1)与初始条件(12.2)被称为一个初值问题。如果你认为任何(12.1),(12.2)形式的初始值问题具有一个唯一解,看看以下例子。 例12.1考虑微分方程,初始条件,其中α是一个固定的实数,α∈(0,1)。 这是一个关于上述想法的简单验证,对于任何非负实数C, 是初值问题在区间[ 0,∞)上的一个解。因此解的存在性是肯定的,但解不一定唯一;事实上,初始值问题的解有一个无限族,当参数。 我们注意到,在与α∈(0,1)相反的情况下,当α≥1,初值问题,具有唯一解y(x)≡0。 例12.1表明函数f必须遵循相对于它的第二个参数的一定的增长性条件,以保证(12.1),(12.2)有唯一解。精确的保证初始值问题(12.1),(12.2)假设f解的存在惟一基于下面的定理。 定理12.1(Picard theorem)假定实值函数是连续的矩形区域D定义 ;当时;且f 满足Lipschitz条件:存在L>0则 。

常微分方程初值问题答案

1.(10分)对常微分方程初值问题(0)1(01) dy y dx y x ?=-???=≤≤? 取步长0.1,h = 分别用改进的Euler 法和标准的四阶Runge-Kutta 法作数值计算,写出公式和简要推导过程,并把结果填入表内。 解:(1) 改进的Euler 方法: 代入公式得10.905n n y y +=,即0.905n n y = …2分 (2)标准的四阶Runge-Kutta 方法: 1 12341213 2430.1(22)0.90483756 (0.05)0.95(0.05)0.9525(0.1)0.90475n n n n n n n n n n y y k k k k y k y k y k y k y k y k y k y +?=++++=?? =-?? =-+=-??=-+=-??=-+=-?? 即0.9048375n n y = ……(4分) 2. 对常微分方程初值问题12 (0)1(01) dy y dx y x ?=-???=≤≤? 取步长0.1,h = 分别用改进的Euler 法和标准的四阶Runge-Kutta 法作数值计算,写出公式和推导过程,并把结果填入表内。

解:(1) 改进的Euler 方法: 代入公式得10.95125n n y y +=,即0.95125n n y = ……………….(2分) (2)标准的四阶Runge-Kutta 方法: 1 12341213 2430.1(22)0.9512196 /2(0.05)/20.4875(0.05)/20.4878125(0.1)/20.47622n n n n n n n n n n y y k k k k y k y k y k y k y k y k y k y +?=++++=?? =-?? =-+=-??=-+=-??=-+=-?? 即0.95145314n n y =……(4分) 《数值分析》复习题 一、填空题 1.绝对误差限=末位的一半+单位,相对误差限=绝对误差限/原值*100% 1. 度量一根杆子长250厘米,则其绝对误差限为 ,相对误差限是 。 2. 测量一支铅笔长是16cm , 那么测量的绝对误差限是 ,测量的相对误差限是 。 3. 称量一件商品的质量为50千克,则其绝对误差限为 ,相对误差限是 。 2.利用平方差的方法 4. 在数值计算中,当a _____________

实验报告七 常微分方程初值问题的数值解法

课程名称 数值计算方法 实验项目名称 常微分方程初值问题的数值解法 实验成绩 指导老师(签名 ) 日期 2015/12/16 一. 实验目的和要求 1. 用Matlab 软件掌握求微分方程数值解的欧拉方法和龙格-库塔方法; 2. 通过实例学习用微分方程模型解决简化的实际问题。 二. 实验内容和原理 编程题2-1要求写出Matlab 源程序(m 文件),并有适当的注释语句;分析应用题2-2,2-3,2-4,2-5要求将问题的分析过程、Matlab 源程序和运行结果和结果的解释、算法的分析写在实验报告上。 2-1 编程 编写用向前欧拉公式和改进欧拉公式求微分方程数值解的Matlab 程序,问题如下: 在区间[],a b 内(1)N +个等距点处,逼近下列初值问题的解,并对程序的每一句添上注释语句。 0(,)()y f x y a x b y a y '=≤≤= Euler 法 y=euler(a,b,n,y0,f,f1,b1) 改进Euler 法 y=eulerpro(a,b,n,y0,f,f1,b1) 2-2 分析应用题 假设等分区间数100n =,用欧拉法和改进欧拉法在区间[0,10]t ∈内求解初值问题 ()()20 (0)10 y t y t y '=-?? =? 并作出解的曲线图形,同时将方程的解析解也画在同一张图上,并作比较,分析这两种方法的精度。 2-3 分析应用题 用以下三种不同的方法求下述微分方程的数值解,取10h =

201 (0)1 y y x x y '=+≤≤?? =? 画出解的图形,与精确值比较并进行分析。 1)欧拉法; 2)改进欧拉法; 3)龙格-库塔方法; 2-4 分析应用题 考虑一个涉及到社会上与众不同的人的繁衍问题模型。假设在时刻t (单位为年),社会上有人口()x t 人,又假设所有与众不同的人与别的与众不同的人结婚后所生后代也是与众不同的人。而固定比例为r 的所有其他的后代也是与众不同的人。如果对所有人来说出生率假定为常数b ,又如果普通的人和与众不同的人的婚配是任意的,则此问题可以用微分方程表示为: () (1())dp t rb p t dt =- 其中变量()()()i p t x t x t =表示在时刻t 社会上与众不同的人的比例,()i x t 表示在时刻t 人口中与众不同的人的数量。 1)假定(0)0.01,0.02p b ==和0.1r =,当步长为1h =年时,求从0t =到50t =解()p t 的近似值,并作出近似解的曲线图形。 2)精确求出微分方程的解()p t ,并将你当50t =时在分题(b)中得到的结果与此时的精确值进行比较。 【MATLAB 相关函数】 求微分方程的解析解及其数值的代入 dsolve(‘egn1’, ‘egn2’,L ‘x ’) subs (expr, {x,y,…}, {x1,y1,…} ) 其中‘egn i ’表示第i 个方程,‘x ’表示微分方程中的自变量,默认时自变量为t 。 subs 命令中的expr 、x 、y 为符合型表达式,x 、y 分别用数值x1、x2代入。 >> syms x y z >> subs('x+y+z',{x,y,z},{1,2,3}) ans = 6 >> syms x >> subs('x^2',x,2) ans = 4 >> s=dsolve(‘12Dy y ∧=+’, ‘(0)1y =’, ‘x ’) ans = tan(14)x pi -*

稳定性分析与分数阶微分方程

东华大学 2013~ 2014学年第II 学期研究生期末考试试题 考试学院:理学院 考试专业:基础数学应用数学 考试课程名称:稳定性分析与分数阶微分方程 学号姓名得分 (考生注意:答案必须写在答题上,写在本试题纸上一律不给分)[试题部分] 一、根据所学知识,概述Lyapunov第二方法的核心思想和基本理 论。 二、针对某一类问题或某个模型,运用Lyapunov第二方法进行 稳定性分析。 三、综述分数阶微积分的三种定义方式及其性质和联系。 四、谈谈你对分数阶微分方程研究的认识和看法。 要求:1. 第二题结合每人曾经报告过的文献来完成; 2. 用电子文档打印,并提交电子文件。

一、根据所学知识,概述Lyapunov 第二方法的核心思想和基本理论 李雅普诺夫(Lyapunov )提出了两种方法,分析运动的稳定性: 第一方法包含许多步骤,包括最终用微分方程的显式解来对稳定性近行分析,是一个间接的方法。 第二方法不是求解微分方程组,而是通过构造李雅普诺夫函数(标量函数)来直接判断运动的稳定性,因此又称为直接法。 李雅普诺夫直接法(也称第二方法)是整个稳定性理论的核心方法,李雅普诺夫1892年提出的稳定性理论、渐近稳定性定理及两个不稳定性定理,奠定了运动稳定性的基础,被誉为稳定性的基本定理。目前仍是研究非线性、时变系统最有效的方法,是许多系统控制律设计的基本工具。 李雅普诺夫第二方法的核心思想: 以二维自治系统为例,李雅普诺夫直接法借助于一个V 函数,利用方程右端的信息来探测解的稳定性的原始几何思想。 考虑方程 ?????==),(),(21222111 x x f dt dx x x f dt dx 0)0,0()0,0(21==f f 其中21,f f 连续,保证解的唯一性. 设),()(21x x V x V =是K 类函数,且],[)(1 21+∈R R C x V ,此方程的解 T t x t x t x ))(),(()(21=的信息是未知的,但它的导数满足 )),(),,((),(2122112. 1. x x f x x f x x =的信息是已知的,因为21,f f 是已知函数. 姑且把任意解)(t x 代入)(x V 得到))((:)(t x V t V =. 粗略的说,平凡解的稳定性(包括渐近稳定性、稳定、不稳定)是由解)(t x “走近”原点,“不远离”原点,“远离”原点来决定的,而这些信息分别等价于 ))((t x V 是t 的下降、不增、上升函数。由于],[)(121+∈R R C x V ,后者又分别等价于 0)) ((,0))((,0))((>≤

线性互补问题解的存在性_孙艳波

[收稿日期]2007212215  [作者简介]孙艳波(19792),女,2003年大学毕业,硕士,助教,现主要从事运筹学与控制论方面的研究工作。 线性互补问题解的存在性 孙艳波 (南京航空航天大学金城学院,江苏南京211156) [摘要]线性互补问题在经济学、对策论和数学规划领域中有广泛的应用,线性互补问题解的存在性与特 殊矩阵密切相关。主要从与线性互补问题密切相关的特殊矩阵入手,来研究线性互补问题解的存在性, 给出了二维线性互补问题解的存在定理。 [关键词]线性互补问题;解;存在性 [中图分类号]O21111[文献标识码]A [文章编号]167321409(2008)012N119202 设M ∈R n ×n ,q ∈R n ,线性互补问题[1]是指:求z =(z 1,z 2,…,z n )T ∈R n ,使: w =q +M z w ≥ 0,z ≥0w T z =0(1) 线性互补问题无论是解的存在性,唯一性还是算法的收敛性都与矩阵M 的结构有着密切系。Cottle 等[1]定义了2:设M ∈R n ×n ,如果对于任意的q ∈R n ,Lcp (M ,q )都有解,则称M 为Q 2矩阵;如果对于给定的使得Lcp (M ,q )可行的q ,Lcp (M ,q )有解,则称M 为Q 02矩阵。记所有的Q 2矩阵组成的集合为(Q )矩阵类,所有的Q 02矩阵组成的集合为(Q 0)矩阵类。关于子矩阵类的进一步的研究还可参阅文献 [2~4]等。笔者主要从与线性互补问题密切相关的特殊矩阵入手,来研究线性互补问题解的存在性,给出了二维线性互补问题解的存在定理。 设M ∈R 2×2,q ∈R 2,记M 的列向量分别为M 1,M 2,e 1=(0,1)T ,e 2=(1,0)T 。考虑线性互补问题Lcp (M ,q ):求x ∈R 2,使: x ≥0 M x +q ≥0 x T (M x +q )=0 定理1 设M ∈R 2×2,q ∈R 2,则x =(x 1,0)T 是Lcp (M ,q )的解Ζ-q ∈cone (M 1,-e 2)。其中,cone (M 1,-e 2)={v =aM 1+b (-e 2)|a ≥0,b ≥0}。 证明 必要性。设x =(x 1,0)T 是Lcp (M ,q )的解,则x 1≥0且m 11x 1=-q 1,m 21x 1+q 2≥0,令k 1=x 1,k 2=m 21k 1+q 2,则k 1≥0,k 2≥0,且: k 1M 1+ k 2(-e 2)= k 1m 11k 1m 21-k 2=-q 1-q 2 =-q 即-q ∈cone (M 1,-e 2)。充分性。设-q ∈cone (M 1,-e 2),则存在k 1≥0,k 2≥0,使k 1M 1+k 2(-e 2)=-q ,则: m 11 k 1=-q 1m 21k 1-k 2=-q 2取x 1= k 1,x 2=0,则: x ≥0 M x +q =m 11x 1+m 12x 2+q 1m 21x 1+m 22x 2+q 2=m 11k 1+q 1m 21k 1+q 2 =0k 2≥0且(x ,M x +q )=0,即(x 1,0)T 是Lcp (M ,q )的解。 定理2 设M ∈R 2×2,q ∈R 2,则x =(0,x 2)T 是Lcp (M ,q )的解Ζ-q ∈cone (-e 1,M 2)。其中,cone (-e 1,M 2)={v =a (-e 1)+bM 2|a ≥0,b ≥0}。 ? 911?长江大学学报(自然科学版)  2008年3月第5卷第1期:理工Journal of Yangtze U niversity (N at Sci Edit) Mar 12008,Vol 15No 11:Sci &Eng

第八章 常微分方程初值问题的解法

第八章常微分方程初值问题的解法 在科学与工程问题中,常微分方程描述物理量的变化规律,应用非常广泛. 本章介绍最基本的常微分方程初值问题的解法,主要针对单个常微分方程,也讨论常微分方程组的有关技术. 8.1引言 本节介绍常微分方程、以及初值问题的基本概念,并对常微分方程初值问题的敏感性进行分析. 8.1.1 问题分类与可解性 很多科学与工程问题在数学上都用微分方程来描述,比如,天体运动的轨迹、机器人控制、化学反应过程的描述和控制、以及电路瞬态过程分析,等等. 这些问题中要求解随时间变化的物理量,即未知函数y(t),t表示时间,而微分方程描述了未知函数与它的一阶或高阶导数之间的关系. 由于未知函数是单变量函数,这种微分方程被称为常微分方程(ordinary differential equation, ODE),它具有如下的一般形式①: g(t,y,y′,?,y(k))=0 ,(8.1) 其中函数g: ?k+2→?. 类似地,如果待求的物理量为多元函数,则由它及其偏导函数构成的微分方程称为偏微分方程(partial differential equation, PDE). 偏微分方程的数值解法超出了本书的范围,但其基础是常微分方程的解法. 在实际问题中,往往有多个物理量相互关联,它们构成的一组常微分方程决定了整个系统的变化规律. 我们先针对单个常微分方程的问题介绍一些基本概念和求解方法,然后在第8.5节讨论常微分方程组的有关问题. 如公式(8.1),若常微分方程包含未知函数的最高阶导数为y(k),则称之为k阶常微分方程. 大多数情况下,可将常微分方程(8.1)写成如下的等价形式: y(k)=f(t,y,y′,?,y(k?1)) ,(8.2) 其中函数f: ?k+1→?. 这种等号左边为未知函数的最高阶导数y(k)的方程称为显式常微分方程,对应的形如(8.1)式的方程称为隐式常微分方程. 通过简单的变量代换可将一般的k阶常微分方程转化为一阶常微分方程组. 例如对于方程(8.2),设u1(t)=y(t),u2(t)=y′(t),?,u k(t)=y(k?1), 则得到等价的一阶显式常微分方程组为: {u1′=u2 u2′=u3 ? u k′=f(t,u1,u2,?,u k) .(8.3) 本书仅讨论显式常微分方程,并且不失一般性,只需考虑一阶常微分方程或方程组. 例8.1 (一阶显式常微分方程):试用微积分知识求解如下一阶常微分方程: y′=y . [解] 采用分离变量法进行推导: ①为了表达式简洁,在常微分方程中一般省略函数的自变量,即将y(t)简记为y,y′(t)简记为y′,等等.

分数阶微分方程数值实验MATLAB编码

分数阶微分方程数值实验 实验题目: 考虑分数阶扩散微分方程 ),() ,()(),(t x q x t x u x d t t x u +??=??α α (1.1) 这里的6 )2.2()(1 +Γ=αx x d ,3)1(),(x e x t x q t -+-=,其中初值为()30,x x u =,边值 ???==-t e t u t u ),1(0 ),0(,其真解为3),(x e t x u t -=,计算其数值解。 实验算法: 1.将空间区间[0,1]等距剖分成N 段,1+N 个节点为 12101N x x x +=<<<= ;将时间区间]1,0[等距剖分成M 段,1+M 个节点为 1...0121=<<<=+M t t t 。 2.将方程组(1.1)中的()ααx t x u ??,用有限G runward Letnikov -算子离散,即 2 10,210)1(),(+=-+=---∑∑=??? ? ??-=j i k k j k i k j i GL F k i k i u g h u k h t x u D ααα αα 其中) 1()1() 1()1()1(,+Γ+-Γ+Γ-=? ?? ? ??-=k k k g k k k αααα i 1,2,...,1N =+,1,,2,1+=M j 其中α 是分数阶。 再对1+-j k i u 利用中心差分212 1 +--+-+=j k i j k i j k i u u u 进行离散,则得到()α αx t x u ??,的离散格式)(2110 ,2 1 ,+--=-+ =-+=∑∑-j k i j k i i k k j i k k u u g h u g h k i ααα α

解的存在定理

第三章一阶微分方程解的存在定理 [教学目标] 1.理解解的存在唯一性定理的条件、结论及证明思路,掌握逐次逼近法,熟练近似解的误差估计式。 2.了解解的延拓定理及延拓条件。 3.理解解对初值的连续性、可微性定理的条件和结论。 [教学重难点]解的存在唯一性定理的证明,解对初值的连续性、可微性定理的证明。 [教学方法]讲授,实践。 [教学时间]12学时 [教学内容]解的存在唯一性定理的条件、结论及证明思路,解的延拓概念及延拓条件,解对初值的连续性、 可微性定理及其证明。 [考核目标] 1?理解解的存在唯一性定理的条件、结论,能用逐次逼近法解简单的问题。 2?熟练近似解的误差估计式,解对初值的连续性及可微性公式。 3.利用解的存在唯一性定理、解的延拓定理及延拓条件能证明有关方程的某些性质。 § 1解的存在性唯一性定理和逐步逼近法 微分方程来源于生产实践际,研究微分方程的目的就在于掌握它所反映的客观规律,能动解释所出现的 各种现象并预测未来的可能情况。在第二章介绍了一阶微分方程初等解法的几种类型,但是,大量的一阶方程 一般是不能用初等解法求出其通解。而实际问题中所需要的往往是要求满足某种初始条件的解。因此初值问题 的研究就显得十分重要,从前面我们也了解到初值问题的解不一定是唯一的。 他必须满足一定的条件才能保证初值问题解的存在性与唯一性,而讨论初值问题解的存在性与唯一性在常微分 方程占有很重要的地位,是近代常微分方程定性理论,稳定性理论以及其他理论的基础。 例如方程 dx 过点(0,0)的解就是不唯一,易知y = 0是方程过(0,0)的解,此外,容易验证,讨或更一般地, 函数 丄00乞x乞c y =2 l(x-c) c

相关文档
最新文档