最优控制

最优控制
最优控制

最优控制综述

摘要:最优化方法是一种求极值的方法,即在一组约束为等式或不等式的条件下,使系统的目标函数达到极值,即最大值或最小值。从经济意义上说,是在一定的人力、物力和财力资源条件下,使经济效果达到最大(如产值、利润),或者在完成规定的生产或经济任务下,使投入的人力、物力和财力等资源为最少。而最优控制通常针对控制系统而言,目的在于使一个机组、一台设备或一个生产过程实现局部最优。本文重点阐述了最优系统常用的变分法、极小值原理和动态规划三种方法的基本理论及其在典型系统设计中的应用。

关键词:变分法、极小值原理、动态规划

1 引言

最优控制是分析控制系统常用的方法,是现代控制理论的核心之一。它尤其与航空航天的制导、导航和控制技术密不可分。最优控制理论所研究的问题可以概括为:对一个受控的动力学系统或运动过程,从一类允许的控制方案中找出一个最优的控制方案,使系统的运动在由某个初始状态转移到指定的目标状态的同时,其性能指标最优。

这类问题广泛存在于技术领域或社会问题中。例如,确定一个最优控制方式使空间飞行器由一个轨道转换到另一轨道过程中燃料消耗最少,选择一个温度的调节规律和相应的原料配比使化工反应过程的产量最多,制定一项最合理的人口政策使人口发展过程中的老化指数、抚养指数和劳动力指数为最优等,都是一些经典的最优控制问题。

最优控制问题是要在满足约束条件下寻求最优控制函数,使目标泛函取极值。求解动态最优化问题的方法主要有古典变分法,极小值原理及动态规划法等。

2 研究最优控制的前提条件

2.1状态方程

对连续时间系统:

x t=f x t,u t,t

对离散时间系统:x(k+1)=f x k,u k,k k=0,1,……,(N-1)

2.2作用域

控制矢量u(t)往往不能任意取值,必须受到某些物理限制。即u(t)要满足某些约束条件在R r中把所有满足上式的点u(t)的集合。

2.3 系统状态的初始条件以及终端条件

始端和终端条件却给出了系统状态在系统控制开始和结束时刻的约束条件。端点条件一般有三种类型:固定端、自由端和可变端。

固定端就是时间和状态值都是固定的端点。例如初始时间t0及其初始状态x(t0)都固定就称始端固定条件,而终端时间t f及其终端状态x(t f)都固定就称终端固定条件。一般来说,两端固定是最简单的情况。自由端是指端点时间固定,但端点状态值不受任何限制的端点。有始端自由和终端自由两种。可变端就是端点时间及其状态值都可变的端点。

2.4最优控制问题分类

①按状态方程分类:连续最优化系统、离散最优化系统。

②按控制作用实现方法分类:开环最优控制系统、闭环最优控制系统。

③按性能指标分类:最小时间控制问题、最少燃料控制问题、线性二次型性能指标最优控制问题、非线性性能指标最优控制问题。

④按终端条件分类:固定终端最优控制问题、自由终端(可变)最优控制问题、终端时间固定最优控制问题、终端时间可变最优控制问题。

⑤按应用领域来分:终端控制问题、调节器问题、跟踪问题、伺服机构问题、效果研究问题、最小时间问题、最少燃料问题。

浅谈最优控制

浅谈最优控制 发表时间:2008-12-10T10:25:09.263Z 来源:《黑龙江科技信息》供稿作者:李晶1 陈思2 [导读] 主要阐述了关于最优控制问题的基本概念,最优控制是最优化方法的一个应用。最优化一般可以分为最优设计、最优计划、最优管理和最优控制四个方面。 摘要:主要阐述了关于最优控制问题的基本概念,最优控制是最优化方法的一个应用。最优化一般可以分为最优设计、最优计划、最优管理和最优控制四个方面。而最优控制理论是研究和解决从一切可能的控制方案中寻找最优解的一门学科,解决最优控制问题的主要方法有古典变分法、极大值原理和动态规划。通过以上知识的讲解使初学者能够快速掌握最优控制的问题。关键词:最优化;最优控制;极值 最优控制是最优化方法的一个应用,如果想了解最优控制必须知道什么是最优化方法。所谓最优化方法为了达到最优化目的所提出的各种求解方法。从数学意义上说,最优化方法是一种求极值的方法,即在一组约束为等式或不等式的条件下,使系统的目标函数达到极值,即最大值或最小值。从经济意义上说,是在一定的人力、物力和财力资源条件下,使经济效果达到最大(如产值、利润),或者在完成规定的生产或经济任务下,使投入的人力、物力和财力等资源为最少。 最优化一般可以分为最优设计、最优计划、最优管理和最优控制四个方面。(1)最优设计:世界各国工程技术界,尤其是飞机、造船、机械、建筑等部门都已广泛应用最优化方法于设计中,从各种设计参数的优选到最佳结构形状的选取等,结合有限元方法已使许多设计优化问题得到解决。一个新的发展动向是最优设计和计算机辅助设计相结合。电子线路的最优设计是另一个应用最优化方法的重要领域,它存在着巨大的开发潜力,尤其是对于学电工学的学生来说。配方配比的优选方面在化工、橡胶、塑料等工业部门都得到成功的应用,并向计算机辅助搜索最佳配方、配比方向发展。(2)最优计划:现代国民经济或部门经济的计划,直至企业的发展规划和年度生产计划,尤其是农业规划、种植计划、能源规划和其他资源、环境和生态规划的制订,都已开始应用最优化方法。一个重要的发展趋势是帮助领导部门进行各种优化决策,使工作结构简单,工作效率最高化,节省了很多时间。(3)最优管理:一般在日常生产计划的制订、调度和运行中都可应用最优化方法。随着管理信息系统和决策支持系统的建立和使用,使最优管理得到迅速的发展。(4)最优控制:主要用于对各种控制系统的优化。下面着重来解释一下最优控制。 最优控制理论是研究和解决从一切可能的控制方案中寻找最优解的一门学科。它是现代控制理论的重要组成部分。这方面的开创性工作主要是由贝尔曼(R.E.Bellman)提出的动态规划和庞特里亚金等人提出的最大值原理。这方面的先期工作应该追溯到维纳(N.Wiener)等人奠基的控制论(Cybernetics)。1948年维纳发表了题为《控制论——关于动物和机器中控制与通讯的科学》的论文,第一次科学的提出了信息、反馈和控制的概念,为最优控制理论的诞生和发展奠定了基础。钱学森1954年所著的《工程控制论》(EngineeringCybernetics)直接促进了最优控制理论的发展和形成。 为了解决最优控制问题,必须建立描述受控运动过程的运动方程,即系统的数学模型,给出控制变量的允许取值范围,指定运动过程的初始状态和目标状态,并且规定一个评价运动过程品质优劣的性能指标。通常,性能指标的好坏取决于所选择的控制函数和相应的运动状态。系统的运动状态受到运动方程的约束,而控制函数只能在允许的范围内选取。因此,从数学上看,确定最优控制问题可以表述为:在运动方程和允许控制范围的约束下,对以控制函数和运动状态为变量的性能指标函数(称为泛函)求取极值(极大值或极小值)。解决最优控制问题的主要方法有古典变分法、极大值原理和动态规划。 1 古典变分法 研究对泛函求极值的一种数学方法。古典变分法只能用在控制变量的取值范围不受限制的情况。在许多实际控制问题中,控制函数的取值常常受到封闭性的边界限制,如方向舵只能在两个极限值范围内转动,电动机的力矩只能在正负的最大值范围内产生等。因此,古典变分法对于解决许多重要的实际最优控制问题,是无能为力的。 2 极大值原理 极大值原理,是分析力学中哈密顿方法的推广。极大值原理的突出优点是可用于控制变量受限制的情况,能给出问题中最优控制所必须满足的条件。 3 动态规划 动态规划是数学规划的一种,同样可用于控制变量受限制的情况,是一种很适合于在计算机上进行计算的比较有效的方法。随着社会科技的不断进步,最优控制理的应用领域十分广泛,如时间最短、能耗最小、线性二次型指标最优、跟踪问题、调节问题和伺服机构问题等。但它在理论上还有不完善的地方,其中两个重要的问题就是优化算法中的鲁棒性问题和最优化算法的简化和实用性问题。大体上说,在最优化理论研究和应用方面应加强的课题主要有:(1)适合于解决工程上普遍问题的稳定性最优化方法的研究;(2)智能最优化方法、最优模糊控制器设计的研究;(3)简单实用的优化集成芯片及最优化控制器的开发和推广利用;(4)复杂系统、模糊动态模型的辩识与优化方法的研究;(5)最优化算法的改进。相信随着对这些问题的研究和探索的不断深入,最优控制技术将越来越成熟和实用,它也将给人们带来不可限量的影响。 参考文献 [1]胡寿松.最优控制理论与系统[M].(第二版)北京:科学出版社,2005. [2]阳明盛.最优化原理、方法及求解软件[M].北京:科学出版社,2006. [3]葛宝明.先进控制理论及其应用[M].北京:机械工业出版社,2007. [4]章卫国.先进控制理论与方法导论[M].西安:西北工业大学出版社,2000.

连续系统的最优控制

第6章 连续系统的最优控制 6.1 最优化问题 6.2 最优控制的变分法求解 6.3 线性系统二次型性能指标的最优控制 1、线性系统有限时间最优状态调节系统 ◆二次型性能指标 设受控系统对平衡点的增量方程为 ()()()()()x t A t x t B t u t ?=?+?,00()x t x ?=? 简记为 ()()()()()x t A t x t B t u t =+,00()x t x = 最优状态调节是指:对上述系统,在时间区间0[,]f t t t ∈,

寻求最优状态反馈控制,使初始状态偏差00()x t x =迅速衰减,且同时使二次型性能泛函 11()()[()()()()]d 22f t t t t f f f x u t J x t Q x t x t Q x t u t Q u t t =++? * min f x u J J J J J =++→= 式中 ()0f n n Q ?≥——终端加权矩阵。 ()0x n n Q ?≥——状态加权矩阵。 ()0u r r Q ?>——控制加权矩阵。 三个加权矩阵均为对称矩阵,为简单,一般取为对角矩 阵。 ●1()()2 t f f f f J x t Q x t =表示对终端状态偏差即稳态控制精度的限制。当1 diag[]f f fn Q q q =,2 1 1()2n f fi i f i J q x t ==∑

●0 1()()d 2f t t x x t J x t Q x t t =?表示对控制过程中状态偏差衰减速度的要求。当1 diag[]x x xn Q q q =,0 2 11()d 2f t n x xi i i t J q x t t ==∑? ●0 1()()d 2f t t u u t J u t Q u t t =?表示对控制过程中所消耗的能量的限制,以避免状态偏差过快衰减导致控制量超过允许数值。当 1 diag[]u u ur Q q q =,0 2 11()d 2f t r u ui i i t J q u t t ==∑?,2()i u t 可理解为功率。 实际上,在性能指标中,x J 已经对控制的稳态精度有所要求。当对稳态精度有更高的要求时,才增加f J 项。 由上可知,上述二次型性能指标的物理意义是,在整个时间区间0[,]f t t t ∈,特别是终值时刻f t t =上状态变量尽量接近于0

最优控制

最优控制综述 摘要:最优化方法是一种求极值的方法,即在一组约束为等式或不等式的条件下,使系统的目标函数达到极值,即最大值或最小值。从经济意义上说,是在一定的人力、物力和财力资源条件下,使经济效果达到最大(如产值、利润),或者在完成规定的生产或经济任务下,使投入的人力、物力和财力等资源为最少。而最优控制通常针对控制系统而言,目的在于使一个机组、一台设备或一个生产过程实现局部最优。本文重点阐述了最优系统常用的变分法、极小值原理和动态规划三种方法的基本理论及其在典型系统设计中的应用。 关键词:变分法、极小值原理、动态规划 1 引言 最优控制是分析控制系统常用的方法,是现代控制理论的核心之一。它尤其与航空航天的制导、导航和控制技术密不可分。最优控制理论所研究的问题可以概括为:对一个受控的动力学系统或运动过程,从一类允许的控制方案中找出一个最优的控制方案,使系统的运动在由某个初始状态转移到指定的目标状态的同时,其性能指标最优。 这类问题广泛存在于技术领域或社会问题中。例如,确定一个最优控制方式使空间飞行器由一个轨道转换到另一轨道过程中燃料消耗最少,选择一个温度的调节规律和相应的原料配比使化工反应过程的产量最多,制定一项最合理的人口政策使人口发展过程中的老化指数、抚养指数和劳动力指数为最优等,都是一些经典的最优控制问题。 最优控制问题是要在满足约束条件下寻求最优控制函数,使目标泛函取极值。求解动态最优化问题的方法主要有古典变分法,极小值原理及动态规划法等。 2 研究最优控制的前提条件 2.1状态方程 对连续时间系统: x t=f x t,u t,t 对离散时间系统:x(k+1)=f x k,u k,k k=0,1,……,(N-1)

最优控制综述

最优控制综述 摘要:本文主要阐述了关于最优控制问题的基本概念。最优控制理论是研究和解决从一切可能的控制方案中寻找最优解的一门学科,解决最优控制问题的主要方法有古典变分法、极大值原理和动态规划,同时本文也介绍了最优控制理论在几个研究领域中的应用,并对最优控制理论做了一定的总结。 关键字:最优控制;最优化;最优控制理论 Abstract: This article mainly elaborated on the basic concept of optimal control problems. Optimal control theory is studied and solved from all possible solutions to find the optimal solution of a discipline, to solve optimal control problems of the main methods are classical variational method, with the maximum principle and dynamic programming principle. At the same time, this paper also introduces the application of optimal control theory in several research fields, and a summary of optimal control theory. Key Words: Optimal control; optimization; optimal control theory 1.引言 最优控制是现代控制理论的重要组成部分,它研究的主要问题是:在满足一定约束条件下,寻求最优控制策略,使得性能指标取极大值或极小值。最优控制是使控制系统的性能指标实现最优化的基本条件和综合方法。可概括为:对一个受控的动力学系统或运动过程,从一类允许的控制方案中找出一个最优的控制方案,使系统的运动在由某个初始状态转移到指定的目标状态的同时,其性能指标值为最优。最优控制是最优化方法的一个应用。从数学意义上说,最优化方法是一种求极值的方法,即在一组约束为等式或不等式的条件下,使系统的目标函数达到极值,即最大值或最小值。 最优控制理论是研究和解决从一切可能的控制方案中寻找最优解的一门学科,基本内容和常用方法包括动态规划、最大值原理和变分法。这方面的开创性工作主要是由贝尔曼(R.E.Bellman)提出的“动态规划”和庞特里亚金等人提出的“极大值原理”,到了60年代,卡尔曼(Kalman)等人又提出了可控制性及可观测性概念,建立了最优估计理论。这方面的先期工作应该追溯到维纳(N.Wiener)等人奠基的控制论(Cybernetics)。最优控制理论的实现离不开最优化技术。控制系统最优化问题,包括性能指标的合理选择以及最优化控制系统的设计,而性能指标在很大程度上决定了最优控制性能和最优控制形式。最优化技术就

最优控制应用概述

最优控制的应用概述 1.引言 最优控制是现代控制理论的重要组成部分,它研究的主要问题是:在满足一定约束条件下,寻求最优控制策略,使得性能指标取极大值或极小值。最优控制是使控制系统的性能指标实现最优化的基本条件和综合方法。可概括为:对一个受控的动力学系统或运动过程,从一类允许的控制方案中找出一个最优的控制方案,使系统的运动在由某个初始状态转移到指定的目标状态的同时,其性能指标值为最优。最优控制是最优化方法的一个应用。从数学意义上说,最优化方法是一种求极值的方法,即在一组约束为等式或不等式的条件下,使系统的目标函数达到极值,即最大值或最小值。从经济意义上说,是在一定的人力、物力和财力资源条件下,是经济效果达到最大(如产值、利润),或者在完成规定的生产或经济任务下,使投入的人力、物力和财力等资源为最少。 最优控制理论是研究和解决从一切可能的控制方案中寻找最优解的一门学科,基本内容和常用方法包括动态规划、最大值原理和变分法。这方面的开创性工作主要是由贝尔曼(R.E.Bellman)提出的“动态规划”和庞特里亚金等人提出的“极大值原理”,到了60年代,卡尔曼(Kalman)等人又提出了可控制性及可观测性概念,建立了最优估计理论。这方面的先期工作应该追溯到维纳(N.Wiener)等人奠基的控制论(Cybernetics)。最优控制理论的实现离不开最优化技术。控制系统最优化问题,包括性能指标的合理选择以及最优化控制系统的设计,而性能指标在很大程度上决定了最优控制性能和最优控制形式。最优化技术就是研究和解决最优化问题,主要包括两个需要研究和解决的方面:一个是如何将最优化问题表示为数学模型;另一个是如何根据数学模型尽快求出其最优解。 2.最优控制问题 所谓最优控制问题,就是指 在给定条件下,对给定系统确定 一种控制规律,使该系统能在规 定的性能指标下具有最优值。也 就是说最优控制就是要寻找容 许的控制作用(规律)使动态系 统(受控系统)从初始状态转移 到某种要求的终端状态,且保证 所规定的性能指标(目标函数)图1 最优控制问题示意图 达到最大(小)值。 最优控制问题的示意图如图1所示。其本质乃是一变分学问题。经典变分理论只能解决一类简单的最优控制问题。为满足工程实践的需要,20世纪50年代中期,出现了现代变分理论。最常用的方法就是极大值原理和动态规划。最优控制在被控对象参数已知的情况下,已成为设计复杂系统的有效方法之一。

MATLAB时间最优PID控制算法

MATLAB时间最优PID控制算法 function [ output_args ] = Untitled3( input_args ) %UNTITLED3 Summary of this function goes here % Detailed explanation goes here clear all; close all; ts=20; sys=tf([1],[60,1],'inputdelay',80); dsys=c2d(sys,ts,'zoh'); [num,den]=tfdata(dsys,'v'); u1=0;u2=0;u3=0;u4=0;u5=0; y1=0;y2=0;y3=0; error1=0;error2=0; ei=0; for k=1:1:200 time(k)=k*ts; yd(k)=1.0; y(k)=-den(2)*y1+num(2)*u5; error(k)=yd(k)-y(k); kp=0.45;kd=12;ki=0.0048; A=0.4;B=0.6; ei=ei+(error(k)+error1)/2*ts; M=1; if M==1 if abs(error(k))<=B f(k)=1; elseif abs(error(k))>B&abs(error(k))<=A+B f(k)=(A-abs(error(k))+B)/A; else f(k)=0; end elseif M==2 f(k)=1; end u(k)=kp*error(k)+kd*(error(k)-error1)/ts+ki*f(k)*ei; if u(k)>=10 u(k)=10; end if u(k)<=-10 u(k)=-10; end u5=u4;u4=u3;u3=u2;u2=u1;u1=u(k);

最优控制问题求解方法综述(中英双语)

最优控制问题求解方法综述 Summary of approaches of optimal control problem 摘要:最优控制问题就是依据各种不同的研究对象以及人们预期达到的目的,寻找一个最优控制规律或设计出一个最优控制方案或最优控制系统。解决最优问题的主要方法有变分法、极小值原理和动态规划法,本文重点阐述了各种方法的特点、适应范围、可求解问题的种类和各种方法之间的互相联系。 Abstract:Optimal control problems are to find an optimal control law or design a optimal control program or system according to various kinds of different research objects and the aim people want. The approaches to solve optimal control problems generally contain variational method, the pontryagin minimum principle and dynamic programming. This paper mainly states characteristics, range of application, kinds of the solvable problems of each approach and the association between these three methods. 关键词:最优控制、变分法、极小值、动态规划 Keywords: optimal control , classical variational method , the pontryagin minimum principle , dynamic programming 正文: 最优控制理论是现代控制理论的一个主要分支,着重于研究使控制系统的性能指标实现最优化的基本条件和综合方法。最优控制理论是研究和解决从一切可能的控制方案中寻找最优解的一门学科。它所研究的问题可以概括为:对一个受控的动力学系统或运动过程,从一类允许的控制方案中找出一个最优的控制方案,使系统的运动在由某个初始状态转移到指定的目标状态的同时,其性能指标值为最优。这类问题广泛存在于技术领域或社会问题中。 Optimal control theory is a main branch of modern control theory, which focuses on studying basic conditions and synthetic approaches of optimizing systematic performance index. Optimal control theory is a subject studying and solving for the optimal solution from all possible control solutions. What it study can be summarized in this way: given a manipulated dynamic system or motor process, we are supposed to find a optimal control solution from allowable solutions of the same category, making the systematic movement transfer to the appointed state from a original state and getting a optimal performance index at the same time. And this kind of problems exist in technology field or social problems. 为了解决最优控制问题,必须建立描述受控运动过程的运动方程,给出控制变量的允许取值范围,指定运动过程的初始状态和目标状态,并且规定一个评价运动过程品质优劣的性能指标。通常,性能指标的好坏取决于所选择的控制函数和相应的运动状态。系统的运动状态受到运动方程的约束,而控制函数只能在允许的范围内选取。因此,从数学上看,确定最优控制问题可以表述为:在运动方程和允许控制范围的约束下,对以控制函数和运动状态为变量的性能指标函数(泛函)求取极值(极大值或极小值)。解决最优控制问题的主要方法有古典变

最优控制实验报告

实验报告 课程名称:现代控制工程与理论实验课题:最优控制 学号:12014001070 姓名:陈龙 授课老师:施心陵

最优控制 一、最优控制理论中心问题: 给定一个控制系统(已建立的被控对象的数学模型),选择一个容许的控制律,使被控对象按预定要求运行,并使给定的某一性能指标达到极小值(或极大值) 二、最优控制动态规划法 对离散型控制系统更为有效,而且得出的是综合控制函数。这种方法来源于多决策过程,并由贝尔曼首先提出,故称贝尔曼动态规划。 最优性原理:在一个多级决策问题中的最优决策具有这样的性质,不管初始级、初始状态和初始决策是什么,当把其中任何一级和状态做为初始级和初始状态时,余下的决策对此仍是最优决策 三、线性二次型性能指标的最优控制 用最大值原理求最优控制,求出的最优控制通常是时间的函数,这样的控制为开环控制当用开环控制时,在控制过程中不允许有任何干扰,这样才能使系统以最优状态运行。在实际问题中,干扰不可能没有,因此工程上总希望应用闭环控制,即控制函数表示成时间和状态的函数。 求解这样的问题一般来说是很困难的。但对一类线性的且指标是

二次型的动态系统,却得了完全的解决。不但理论比较完善,数学处理简单,而且在工际中又容易实现,因而在工程中有着广泛的应用。 一.实验目的 1.熟悉Matlab的仿真及运行环境; 2.掌握系统最优控制的设计方法; 3.验证最优控制的效果。 二.实验原理 对于一个给定的系统,实现系统的稳定有很多途径,所以我们需要一个评价的指标,使系统在该指标下达到最优。如果给定指标为线性二次型,那么我们就可以利用MATLAB快速的计算卡尔曼增益。 三.实验器材 PC机一台,Matlab仿真平台。 四.实验步骤 例题1 (P269)考虑液压激振系统简化后的传递函数方框图如下,其中K a为系统前馈增益,K f为系统反馈增益,w h为阻尼固有频率。(如图5-5所示) 将系统传递函数变为状态方程的形式如下: ,

伪谱最优控制方法

伪谱最优控制方法, 又称为正交配置法, 主要利用Lagrange 插值多项式近似离散最优控制问题中的状态变量和控制变量, 将连续型最优控制问题转化成离散形式的非线性规划(NLP) 问题, 然后利用相应的NLP 算法求解. 根据配置点的不同, 伪谱法主要分为Legendre 伪谱法[1]、Gauss 伪谱法[2-3] 和Radau 伪谱法[4-5] 3 种. 为了利用最优控制理论研究串联式混合动力的能量管理策略,需要建立动力总成和各个能量源的数学模型。文中忽略动力系统传动部件的效率损失。串联混合动力驱动系统的能量管理为复杂的非线性系统,其最优控制问题是寻找最优控制序列使得给定的性能指标能够达到最小,同时,也要满足一定的机械和电气约束。本文研究重点在最优控制理论的应用,采用较简单的模型进行混合动力车辆能量管理的研究。整车能量管理问题作为最优控制问题求解,需要形成通用形式表达的最优控制问题。 非线性最优控制问题(Optimal Control Problem, OCP)是指性能指标、状态方程或者约束条件中存在非线性函数项的最优控制问题,通用的表述形式为确定状态x (t),控制u(t) 使性能泛函J 取得最小值:

从数学上看,混合动力汽车能量管理问题就是利用一系列离散控制使一定时间范围内车辆行驶的的性能指标达到最优,故可将能量管理问题抽象为最优控制问题,其核心任务就是获得最优的控制律。 直接法理论 优化问题一般分为参数优化(离散、静态)和过程优化(连续、动态)两大类。最优控制问题本质上是一个连续、动态的过程优化问题,采用动态优化方法求解,比如变分法和极大值原理。但现代计算技术的高速发展使得静态/动态、离散/连续的界限越来越模糊。目前基于求解非线性规划问题的参数优化方法越来越多应用于求解类似于最优控制问题或者动态轨迹优化问题,这就是轨迹优化中的直接法。 直接法通过引入时间离散网格,将控制变量和/或状态变量离散,并将动态约束条件转化为代数约束条件,最终使原来的连续轨迹优化问题转化为一个离散参数优化问题即非线性规划问题(Nonlinear Programing, NLP),结合非线性规划求解器即可获得最优解。优化变量通常包含离散网格点上的控制变量序列和/或状态变量序列。

最优控制课程介绍

最优控制 先修课程:常微分方程,最优化方法最优控制问题是具有特殊数学结构的一类最优化问题,在科学、工程和管理乃至人文领域都存在大量的最优控制问题。最优控制研究动态系统在各种约束条件下,寻求目标泛函取极值的最优控制函数与最优状态轨线的数学理论和方法,它是静态最优化在无穷维空间的扩展。希望学生通过本课程的学习,能够结合实际背景,建立最优控制的模型,理解求解最优控制的三大类基本方法的数学思想,灵活地掌握这些方法的基本过程,并能解释计算结果的意义。主要内容如下:最优控制问题及其建模;数学基础;变分法及其在最优控制的应用;极小值原理及其应用;动态规划方法及其应用;应用。 最优控制 一、课程基本信息 1.先修课程:数学系本科包括到大三的全部课程 2.面向对象:理学院数学系各专业 3.推荐教学参考书:吴沧浦,《最优控制的理论与方法》,国防工业出版社,2000 王朝珠等,《最优控制理论》,科学出版社,2003 邢继祥等,《最优控制应用基础》,科学出版社,2003 W. L. Brogan, Modern C ontrol Theor y, (3th eidition), Prentice-Hall, Englew ood C liffs,1991 二、课程的性质和任务本课程是数学与应用数学专业本科生高年级选修课程之一。从数学的角度,最优控制问题是最优化问题中具有特殊结构的一类问题。就问题的来源看,它又是控制问题。最优控制研究动态系统在各种约束条件下寻求使目标泛函取极值的最优控制函数和最优状态轨线的数学理论和方法。最优控制问题涉及范围广跨度大,几乎理工医农,管理军事乃至人文经法领域,都存在着大量此类问题。最优化已是寻求最优系统和结构,挖掘系统潜力的有力武器,学会求解最优控制问题,是应用数学工作者的最基本素养之一。通过本课程的主要任务是,从各个教学环节引导学生认识不同数学问题的特点和相应数学模型的结构,自己学会分析实际问题,建立各种数量之间的联系,写出正确的合理的最优控制的模型;领会求解最优控制问题解法是如何提出的数学思想,并学会如何根据这些思想来构成相应方法的技巧;学会能正确地解释计算结果的物理意义的能力。最根本的是学会和培养系统地、动态地、综合地考虑,认识和处理问题的思想方法和动手能力。这样,通过本课程的各个教学环节,提高学生的数学素质,加强学生开展科研工作和解决实际问题的能力。三、教学内容和要求基本要求:期望学生能够结合工程背景认识最优控制问题的数学结构的特点,从而能灵活地建立实际问题的数学模型,深刻领会求解它们的三大类方法的数学思想,熟练地掌握这些方法的运用步骤,能正确地解释求解结果的意义,并学会最优控制问题的数值解法。第一章最优控制与最优化问题 1.1 最优化问题的源和流 1.2 最优控制问题的例子和数学描述 1.3 最优控制问题求解的基本思想第二章数学基础 2.1 向量与矩阵的求导法则 2.2 函数极值的几个条件 2.3 线性微分方程的解第三章变分法 3.1 泛函的变分与极值 3.2 Euler方程 3.3 等式约束条件下泛函极值问题的必要条件 3.4 几类可用变分方法求解的最优控制问题 3.5 应用实例第四章极小值原理 4.1 极值曲线场与充分条件 4.2 有控制变量不等式约束的极小值原 理 4.3 含有状态变量不等式的极小值原理 *4.4 极小值原理的证明 4.5 极小值原理的应用实例 4.6 离散极小值原理第五章极小值原理的几类应用 5.1 时间最短最优控制问题 5.2 燃料最省最优控制问题 5.3 线性二次型最优控制问题第六章动态规划 6.1 多阶段决策问题与动态规划思想 6.2 用动态规划思想解最优化问题 6.3 离散系统最优控制问题的动态规划解法 6.4 离散线性二次型问题的动态规划解 6.5 连续系统做优控制问题的动态规划解和HJB方程 6.6 连续二次型问题的动态规划解 6.7 Riccatti方程的求解第七章最优控制的新发展 7.1 对策论和微分对策 7.2 随机最优控制四.实验(上机)内容和基本要求本课程无实验和上机的教学安排,但要求学生结合本专业的特点和所研究的课题,选择部分算法自己上机实现。要求学生熟悉至少一门数学软件平台(Mathematica/ matleb/Maple)和至少一种编程语言。教学实验就是编程解决实际问题。至少做有求解

Lorenz 系统的最优控制

- 37 - Lorenz 系统的最优控制 周俊冬 马 明 (南通广播电视大学,江苏 南通 226006) 【摘 要】文章讨论了Lorenz 系统的最优控制问题,将该混沌系统控制到任意所期望的状态。基于哈密顿-雅可比-贝尔曼方程将构建最优控制器问题归结为解偏微分方程问题,通过巧妙构造Lyapunov 函数从而得到最优控制器。数值仿真表明,所设计的控制器实用有效并且易于实现。 【关键词】Lorenz 系统;最优控制;哈密顿-雅可比-贝尔曼方程 【中图分类号】TP273 【文献标识码】A 【文章编号】1008-1151(2010)05-0037-02 (一)引言 1963年Lorenz 发现了第一个混沌吸引子——Lorenz 系统,从此揭开了混沌研究的序幕。Lorenz 系统在信息加密和保密通信等领域有着广阔的应用前景,自从Pecora 和Carroll 提出混沌系统控制的观点和理论以后,线性和非线性反馈控制、自适应控制、延迟控制、变结构控制等多种不同方法都被成功地应用于Lorenz 混沌系统的控制中。 近十多年来,混沌控制的研究得到了蓬勃的发展,这一方向迅速成为混沌和控制学科交叉研究的热点,其间,人们提出了各种混沌控制方法,其中优化控制是一种在系统控制中应用最为广泛的手段,通常给定性能指标,或称目标函数泛函,寻找一容许控制,使目标泛函沿系统所有可能的状态轨迹取最小值。 目前,国内外学者已提出许多不同的混沌最优控制方法,并且问题最后都归结为求解动态规划中所涉及的偏微分方程。实际上,在许多情况下,动态规划中的偏微分方程的解是不存在或不惟一的。因此,求解动态规划中的偏微分方程是获得非线性系统最优控制的主要障碍。 本文针对Lorenz系统提出了一种最优控制方法,将该混沌系统控制到任意所期望的状态。基于哈密顿-雅可比-贝尔曼方程将构建最优控制器问题归结为解偏微分方程问题,通过巧妙构造Lyapunov函数从而得到最优控制器,同时找出了哈密顿-雅可比-贝尔曼方程的解。仿真结果表明该方法的有效性。 (二)哈密顿-雅可比-贝尔曼方程 设一个连续的非线性动力系统方程为: *()()(),()0x t f x g x u f x =+=& (1) 式中n x R ∈是状态变量,m u R ∈是控制器,():n n f x R R →和 ():n n m g x R R ×→是连续函数,驱使系统从任意初始值到任意 确定点* x 的最优控制方案是,使目标函数 [][()]T J u q x u Ru dt ∞ =+∫ (2) 取得最小值,式中()q x 是连续、可微且正定的函数,根据动态规划,最优控制归结为Hamilton-Jacobi-Bellman 偏微分方程: min 0u U u u dS dS dt dt ωω∈=????+=+=???????? (3) 式中()T q x u Ru ω=+,(())min [()]T t u U S x t q x u Ru dt ∞ ∈=+∫ ,U 为所有 控制器的集合。0u 为最优控制 (三)Lorenz系统的最优控制 Lorenz 系统的数学模型为: 121212133123 ()x a x x x bx x x x x x x cx =??? =????=??&&& (4) 当参数10a =、28b =、83c =时,系统是混沌的,图1显 示了系统的混沌吸引子。下面把该混沌系统从任意初始点稳 定到任意给定的目标点****123(,,)T x x x x =。 x (3) 图1 Lorenz 系统的混沌吸引子 控制器分为前馈控制****123(,,) T u u u u =和反馈控制123(,,)T u u u u =两部分,那么系统(4)变为: * 12111 * 2121322* 312333 ()x a x x u u x bx x x x u u x x x cx u u ?=?++?=??++??=?++?&&& (5) 取前馈控制为: ***1122 ******* 212133113******31212213 2u ax ax ax u bx x x x x x x x u x x x x x x cx ?=?+?=?+++???=??+? (6) 则受控系统(5)变为: 【收稿日期】2010-01-29 【作者简介】周俊冬,南通广播电视大学机械工程系教师;马明,南通广播电视大学机械工程系教师。

最优控制理论与系统胡寿松版课后习题答案

2-5 求通过(0)1x =,(1)2x =,使下列性能泛函为极值的极值曲线* ()x t : 2(1)f t t J x dt =+?& 解:由题可知,始端和终端均固定, 被积函数2 1L x =+&,0L x ?=?,2L x x ?=?&&, 2d L x dt x ??=?&&& 代入欧拉方程0L d L x dt x ??-?=??&,可得20x =&&,即0x =& & 故1x c =& 其通解为:12x c t c =+ 代入边界条件(0)1x =,(1)2x =,求出11c =,21c = 极值曲线为* ()1x t t =+ 2-6 已知状态的初值和终值为 (1)4x =,()4f x t = 式中f t 自由且f t >1,试求使下列性能泛函达到极小值的极值轨线* ()x t : 2 1 1[2()()]2 f t J x t x t dt =+ ?& 解:由题可知,2 122L x x =+ &,()4f t ψ=,()14x =,()4f x t = 欧拉方程: L 0d L x dt x ??-=??& 横截条件:()00t x =x ,()() f f x t t ψ=,( )0f T t L L x x ψ ?? ?+-= ??? ? &&& 易得到 2dx dt =& 故12x t c =+& 其通解为:()2 12x t t c t c =++ 根据横截条件可得:()()()122 121114424 f f f f f x c c x t t c t c x t t c ?=++=??=++=??=+=??& 解以上方程组得:12569f t c c =??=-??=? 还有一组解??? ??===1212 1c c t f (舍去,不符合题意f t >1)

最优控制及应用

最优控制及应用 摘要:最优控制是最优化方法的一个应用。最优控制,又称动态最优化,是现代控制理论的最基本,最核心的部分。它所研究的中心问题是:如何根据受控系统的动态特性,去选择控制规律,才能使得系统按照一定的技术要求进行运转,并使得描述系统性能或品质的某个“指标”在一定的意义下达到最优值。最优控制问题有四个关键点:受控对象为动态系统;初始与终端条件(时间和状态);性能指标以及容许控制。 最优化一般可以分为最优设计、最优计划、最优管理和最优控制四个方面。而最优控制理论是研究和解决从一切可能的控制方案中寻找最优解的一门学科,解决最优控制问题的主要方法有古典变分法、极大值原理和动态规划。最优控制理论已被应用于综合和设计最速控制系统、最省燃料控制系统、最小能耗控制系统、线性调节器等。同时本文也介绍了最优控制理论的新进展,即在线优化方法(局部参数最优化和整体最优化设计方法、预测控制中的滚动优化算法、稳态阶梯控制、系统优化和参数估计的集成研究方法)和智能优化方法(神经网络优化方法、遗传算法、模糊优化方法)。 关键词:最优化;最优控制;遗传算法 Optimum Control and Applications Abstract: The optimum control is an application of optimization methods and is also called dynamic optimization, being the most fundamental and the most central part of the modern control theory. Its studied central problem is how to decide the control law on the basis of dynamic characteristics of the controlled system so that the system operates according to technical requirements and a certain indicator, which describes the system performance or quality, is optimized in a certain sense. The four key points of optimum control are the dynamic systems as the controlled plant, initial condition and terminal condition (time and state) and performance index and admissible control. The optimization consists of optimal design, optimal plan, optimal management and optimal control. The optimal control theory is a subject of studying and finding the optimal solution from all possible control plans. The main solutions of solving optimal control problems include the classical variation methods, maximum principles as well as dynamic planning. The optimal control theory has been applied to comprehensive and designed time optimal control systems, minimum fuel control systems, minimum energy-control systems, linear regulators and so on. Besides, the paper also introduces the new development of optimal control theory, that is, on-line optimization methods, (which includes optimal design methods of local parameters and the overall parameters, rolling optimizing methods of predictive control, steady stair-like control and integration methods of system optimization and parameter estimation) and intelligent optimization methods, which covers neural network optimization methods, genetic algorithm and fuzzy optimal methods. Key Words: Optimization, Optimum control, Genetic algorithm

最优控制理论的发展与展望

最优控制理论的发展与展望 摘要:回顾最优控制的基本思想、常用方法及其应用,并对其今后的发展方向和面临的困难提出一些看法。 关键词:最优控制:最优化技术;遗传算法;预测控制 Abstract: The basic idea, method and application of optimal control are reviewed, and the direction of its development and possible difficulties are predicted. Keywords: optimal control;optimal Technology;Genetic Algorithm;Predictive Control 1引言 最优控制理论是本世纪60年代迅速发展的现代控制理论中的主要内容之一,它研究和解决如何从一切可能的方案中寻找一个最优的方案。1948年维纳等人发表《控制论一关于动物和机器中控制与通信的科学》论文,引进信息、反馈和控制等概念,为最优控制理论诞生和发展奠定了基础。我国著名学者钱学森在1954年编著的《工程控制论》直接促进了最优控制理论的发展与形成。在最优控制理论的形成和发展过程中,具有开创性的研究成果和开辟求解最优控制问题新途径的工作,主要是美国著名学者贝尔曼的“动态规划”和原苏联著名学者庞特里亚金的“最大值原理”。此外,构成最优控制理论及现代最优化技术理论基础的代表性工作,还有库恩和图克共同推导的关于不等式约束条件下的非线性最优必要条件(库恩一图克定理)及卡尔曼的关于随机控制系统最优滤波器等口 2最优控制理论的几个重要内容 2.1最优控制理论的基本思想 最优控制理论是现代控制理论中的核心内容之一。其主要实质是:在满足一定约束条件下,寻求最优控制规律(或控制策略),使得系统在规定的性能指标(目标函数)下具有最优值,即寻找一个容许的控制规律使动态系统(受控对象、从初始状态转移到某种要求的终端状态,保证所规足的性能指标达到最小(大)值。 2.2最优控制问题的常用方法 ·变分法 ·最小值原理 ·动态规划 2.3最优化技术概述及基本方法 一般最优化方法解决实际工程问题可分为三步: ①据所提出的最优化问题,建立数学模型,确定变量,列出约束条件和目标函数;②对所建立的数学模型进行具体分析和研究,选择最优化求解方法;③根据最

相关文档
最新文档