论文中的设备选择及参数计算

论文中的设备选择及参数计算
论文中的设备选择及参数计算

一. 设备选择

1.电液比例方向阀:4WRE6V16-2X/G24型直动式电液比例方向阀;

表1 4WRE6V16-2X/G24型直动式电液比例方向阀参数表

2.比例放大器:与阀配套的VT –VRPA2–1–1X/V0/T1;

表2 VT-MRPA2-1模块化模拟式比例放大器参数表

3.液压马达:宁波中意液压马达有限公司的BM3-80摆线液压马达

表3 BM3-80摆线式液压马达参数表

2阀控液压马达系统数学建模

为了对阀控液压马达系统进行动态分析,需要建立阀控液压马达的数学模型。 2.1 电液比例方向阀数学建模

系统采用博世力士乐4WRE6V16-2X/G24型直动式电液比例方向阀,阀芯运动直接由比例电磁铁产生的电磁力驱动,在电磁力的作用下产生位移输出;根据电液比例方向阀的节流特性,产生与放大器输入控制电压相对应的流量输出。因此本节根据比例放大器的特性方程,比例电磁铁的稳态控制特性,阀芯的力平衡方程,阀的线性化流量方程。建立电液比例方向阀的数学模型。 1) 比例放大器

比例放大器将系统输入的电压转变成电流输出,以驱动比例电磁铁动作。系统采用的阀配套的VT-MRPA2-1型模块化模拟比例放大器,其频带比液压固有频率宽很多,可视为一阶比例环节,即

)()(s s I U K e a = (1) 式中

K

a

----比例放大器增益;

)(s I ----比例放大器输出电流;

U

e

----系统输入的偏差电压。

2) 比例电磁铁稳态控制方程

比例电磁铁输出的轴向驱动力

F

d

与电流I 成正比,即:

)()(s I s K F

I d

= (2)

式中

K

I

----比例电磁铁的电流-力增益

3) 阀芯的力平衡方程

比例电磁铁产生的电磁力需要克服的负载力包括滑阀组件的的惯性力,滑阀阀芯的阻尼力及弹簧的弹性力等,则阀芯的力平衡方程为:

)()()()(2

2

t dt t d d t m t x K x B t

x

d F v

SF

v

p

v d

++=

对上式进行拉普拉斯变换得:

)()()()(2

s s s s m s X K X B X

s

F v SF v p v

d ++= (3)

式中

m----滑阀阀芯组件的质量;

X

v

----阀芯位移; B

p

----阀的阻尼系数; K

SF

----弹簧刚度。

根据式(1)(2)(3)可以得到电液比例方向阀的负载流量Q

L

与输入偏差电压

U

e

的传递

函数:

1

2)()

()(2

2

++=

=

s s s s v

v

v

q e

v

v

s

K U

X G ω

ξ

ω (4)

其中

m

K

SF

v

=

ω

K

B SF

p

v

m 2

=

ξ

ωv ----阀的等效无阻尼自振频率; ξv

----阀的阻尼系数;

s----拉普拉斯算子。

2.2 阀控液压马达数学建模

系统采用BM3-80摆线液压马达。阀控液压马达系统通常通过输入负载流量的大小控制液压马达的转速。因此本节根据液压马达的力矩平衡方程,液压马达的连续流量方程及阀的线性化流量方程建立液压马达输出角速度对负载流量,外负载转矩的传递函数。 1) 阀的线性化流量方程

将阀的节流阀口的流量方程在工作点附近展开成泰勒级数,即可得到电液比例方向阀的线性化流量方程:

)()()(s s s P K X K Q

L c v q L

-= (5)

式中

K q

----稳态工作点附近的流量增益;

K c ----阀的流量-压力系数;

P

L

----负载压力。

2)液压马达的流量连续方程:

()())(4)(s s s s s P V

P

C D Q L e

m L

tm

m

L

β

ω++= (6)

式中

ω----液压马达输出的角速度

D

m

----液压马达的排量 C

tm

----液压马达总的泄漏系数

V

m

----液压马达油腔的总容积

β

e

----油液弹性模量

3)液压马达的力矩平衡方程

)()()

()()(s s s

s G s s s T B J P D L m t L m +++

=ωωω (7) 式中

J

t

----液压马达和负载折算到液压马达转轴上的转动惯量

G----负载的扭转弹簧刚度

B m

----负载和液压马达的黏性阻尼系数

T

L

----负载力矩

为了更好的研究阀控液压马达传动特性,根据式(5)(6)(7)建立阀控液压马达数学模型时忽略弹性负载及压力流量系数与粘性阻尼系数的乘积并通过简化可以得到液压马达的输出角速度对负载流量和负载力矩的传递函数:

1

2

1

)

()

()(22++

=

=

s s s s h

h

h

m v

X s

D

G ω

ξω

ω (8)

12)

4

1()

()

()(22

2

+++

-

==

s s s s s h

h

h

ce

e m

m

ce L

T s K V

D K

T

G ω

ξωβω (9)

其中

C K K

tm c ce

+= J

V

D

m

m

e

h 24β

ω=

J

V

D

B V

J

D

K

t

e

m

m

m m

t

e

m

ce h

ββξ

4+

=

式中

K

ce

----总的压力流量系数

ωh ----液压马达固有频率 ξh

----液压马达阻尼比系数

根据式(4)(8)(9)得到液压马达的传递函数方块图如图1所示:

2.3 开环传递函数

由图1可知,系统的输出转速反馈电压与偏差电压开环传递函数为:

)

12)(12()()()(2222

++

++==s s s s s h

h

h

v

v

v

m

m

q

e

f

f

s

s D K

K U G

ω

ξ

ωω

ξω (10)

2.4 系统传递函数参数

三.参数计算

1. 稳态工作点附近流量增益

K

q

从所选的4WER6V16-2XG24型电液比例方向阀的控制行程与流量特性曲线可以得出阀的压

降bar p 10=?时,阀的额定流量

min /16L q

v

=。

设空载时阀的额定流量

q

v 1

,供油压力7MPa ,则可得

s p

m p

q

q

s

v

v /706.03

3

1

10

-?=?=

又知阀的控制电压V U 10±=

V s U

m q

K v q ??==

-/706.03

4

1

10

2.阀的等效无阻尼自振频率

从厂家提供的电液比例方向阀电子样本中的对数伯德图中可以看出阀的折转频率为18.9Hz

s rad Hz f v

/646.1692722=?==ππω

3.阀的阻尼系数 根据二阶相角公式

])

(12[tan 2

1v

v

v

ωωωωξφ--=-

取Hz

43=ωo 135-=φ可知道790.48234280=ξv

工程上一般取0.7-0.9之间,所以取 4. 液压马达排量

由表3知BM3-80摆线液压马达的排量为

min /5.80ml D

m

=

rad m m

D m /1.281225.803

5

-3

6

10

10?=?=-π

5. 总的流量-压力系数

)/(7.95

11

10

m N m c K K tm c ce ??=+=-

6.负载力矩

设液压马达0.1s 加速到810r/min

m kg s

s m J T t L ?=????-=

=-3237.40999.51.060/2)0810(2

310πβ

7. 液压马达油腔的总容积

根据BM3-80摆线液压马达的性能说明书中P (A ,B )的进出油口的大小为G1/2(15)或M22X1.5需要用胶管内径为12.5mm 的胶管配合所以选用d=12.5mm ,L=2000mm 的软管

m d L

V 3

4

2

10

45437.24

-?==

π

马达工作腔容积为D

m

=80.5ml=m

3

4

10805.0-?

所以:

m D V m m V 3

4

10

25937.3-?=+=

8. 油液弹性模量βe

不同的实验方法和实验装置所得的k 值各不相同,一般石油型液压油的k 值平均为(1.2-2)

?103Mpa,但实际应用中,由于液体不可避免的混入空气等使k 值显著下降,因此建议选用(0.7-1.4)?103Mpa ,弹性模量较小对系统性能有较好的影响。 所以

pa e

108

7?=β

9. 液压马达无阻尼固有频率

ω

h

rad/s 01194.008142==

J

V D t

m

m

e h β

ω

10. 马达及负载转动惯量

J

t

马达转轴直径D=Φ32mm ,马达质量为m=9.8kg

m J kg D m m 2

32102544.1)2

(21??=??=-

槽轮选用6槽铸铝

kg m c

35281

.0= m J kg D m c 2

32101334.0)2

(21??=??=-

m J J J kg c m t 2

3103878.1??=+=-

2BJQ-9播种施肥机的参数

计算中行距取L=8*600mm=4.8m

施肥器个数18个

所以转动惯量J=18*Jc=2.4012x10-3 J L =1.4443x10-3

Jt=(2.4012+1.4443+1.2544)*10-3=5.0999*10-3 11. 阀的流量-压力系数K c

电液比例方向阀的控制行程与流量特性曲线可以得出

s N m K c ??=-/4.75

11

10

(阀芯为V 时) X=[1 2 3 5 10]*106 即[10 20 30 50 100]bar

Y=[0.26667 0.41667 0.53333 0.7 0.96667]*10-3 即流量为[16 25 32 42 58]L/min

s N m K c ??=-/47.65

11

10

(阀芯为E ,W 时)

X=[1 2 3 5 10]*106 即[10 20 30 50 100]bar

Y=[0.2667 0.3667 0.4667 0.6 0.8667]*10-3 即流量为[16 22 28 36 52]L/min 通过Excel 拟合出的函数公式,斜率就是

K

c

12. 总泄漏系数

泄漏系数:取容积效率为79% 供油压力为7Mpa 时,输入流量为10-65L/min 时 泄漏系数为)/(25.35.05

1110s N m ??

--。泄漏系数越小马达的低速平稳性越好,所以取)/(5.05

11

10

s N m

c tm ??=-)/(5.05

11

10

s N m ??-

供油压力:7Mpa 13. 液压马达阻尼比

34485

.03448526713.00082206713.0336632.04≈=+=+

=

J

V

D

B V

J

D

K t

e

m

m

m m

t

e

m

ce h

ββξ

14. 转速-电压反馈系数

rad s V K m

/181473.0?=

15负载和液压马达的黏性阻尼系数

rad s m N B

m

/023.0??=

取自“在液压驱动中大功率轮式变速装置研究”

四.系统特性分析

将表1参数带入式(4)(8)(9)(10)得 1.阀的传递函数

1

646

.1694823.02)646.169(706.01

2)()

()(22

4

210

+?+?=

++

=

=-s s s s s s s

K

U

X

G v

v

v

q e

v

v

ω

ξ

ω

2.液压马达输出角速度对位移的传递函数

1108422.61098417.08264

.780511

01194

.100834485

.02)01194.1008(102812.11

1

2

1

)

()

()(426222

22+?+?=

+?+?=++

=

=

--s s s s s s s s s h

h

h

m v

X s

D

X

G ω

ξω

ω 3. 液压马达输出角速度对负载力矩的传递函数

101194.100834485

.02)

01194.1008()10473508.11(481275.012)

4

1()

()

()(2

232

2

+?+?+?=

+++

-

==

-s s s s s s s s h

h

h

ce

e m

m

ce L

T s K V

D K T

G ω

ξωβω

4.系统开环传递函数

)101194

.100834485

.02)01194.1008()(1646.1694823.02)646.169((00015

.1)

12)(12()()()(2222

222

2

+?++?+=

++

++==s s s s s s s s s

s

s D K K U G

h

h

h

v

v

v

m

m

q

e

f

f

ω

ξ

ω

ω

ξω

系统

开环增益

00.1000.11815

.0*505.510

2812.11815.010706.05

4≈==???==

--D

K K m

m

q

K

五.参考文献

[1]许益民.电液比例控制系统分析与设计[M].北京:机械工业出版设,2005,10.

[2]张利平.液压传递设计指南[M].北京:化学工业出版设,2009,07.

[3]王守城,段俊勇.液压元件及选用[M].北京:机械工业出版设,2007,1.

[4]蔡廷文.液压系统现代建模方法[M].北京:中国标准出版设,2002,12.

[5]高钦,马长林.液压系统动态特性建模仿真技术及应用[M].北京:电子工业出版设,2013,9.

[6]韩桂华,王景峰,乔玉晶.液压系统设计技巧与禁忌[M].北京:化学工业出版设,2011,2.

[7]宋锦春,陈建文.液压伺服与比例控制[J].北京:高等教育出版社.2013.7

[8]关景泰,温济全.机电液控制技术[M].上海:同济大学出版社,2003.2

机械加工的切削参数

教师姓名授课形式讲授授课时数1授课日期年月日授课班级 授课项目及任务名称 第四章切削加工基础 第二节机械加工的切削参数 教学目标知识目 标 掌握切削用量的三要素。 掌握切削用量的选择原则。技能目 标 学会正确的选用切削用量。 教学重点切削运动三要素、切削用量的选择原则教学难点三要素的含义、选择原则 教学方法教学手段 借助于多媒体课件和相关动画及视频,详细教授切削运动三要素、切削用量的选择原则等基础知识。教师先通过PPT课件进行理论知识讲解,再利用相关动画和视频进行演示,让学生能够将理论知识转化成实践经验。同时学生根据所学内容,完成知识的积累,为以后的实践实训打下基础。 学时安排1.切削三要素约30分钟; 2.切削用量选择约15分钟; 教学条件多媒体设备、多媒体课件。 课外作业查阅、收集切削用量的相关资料。 检查方法随堂提问,按效果计平时成绩。 教学后记 授课主要内容

第二节机械加工的切削参数 机械加工的切削是切削进程中不可缺少的因素。主要是指切削用量要素。切削用量要素主要包括:切削速度vc、进给量f 和切削深度ap. 一、切削用量要素 切削用量要素一般是指切削用量三要素:切削速度vc、进给量f 和切削深度ap. 在切削加工时,首先选取尽可能大的切削深度,其次是尽可能大的进给量,最后确定切削速度。 1.切削速度vc 含义:是切削加工时刀具切削刃上的某一点相对于待加工表面在主运动方向上的瞬时速度。 计算: vc=πdn/1000 Vc:切削速度(m/min) d:工件待加工表面的直径(最大直径,mm) n:工件的转速(r/min) 主运动为直线时,则为直线运动速度(如刨削) 2.进给量 f 在工件或刀具的每一转或每一往复行程的时间内,刀具与工件之间沿进给运动方向的相对位移。通常用表示,单位为mm/r或mm/行程 3.背吃刀量(切削深度)ap 含义:工件待加工表面与已加工表面的垂直距离 计算 ap=(dw-dm)/2 ap:背吃刀量(mm) dw:工件待加工表面直径(mm) dm:工件已加工表面直径(mm) 二、切削用量的选择 切削三要素中影响刀具耐用度最大的是切削速度,其次是进给量,最小的是切削深度,所在,在选择切削用量时,首先选择最大的切削深度,其次是选用较大的进给量,最后是选定合理的切削速度。 另外,在选择切削用量时,应注意考虑以下因素: (1)根据零件直径、加工余量和机床、刀具精度等来选择切削用量。 (2)根据刀具材料、焊接质量和机床、刀具的刃磨条件来选择切削用量。 (3)根据各类毛坯的硬度。 任务小结 回顾本次任务所学知识,强调本节课的重点与难点,本课主要讲解切削运动三要素、切削用量的选择原则等基础知识。 学习评价 以学习过程当中学生的现场任务完成情况为基础,结合学生的课堂学习接收能力,作为计入平时成绩依据。 课后作业

SATWE参数选取原则第三版

SATWE参数选取原则(第三版) SATWE 2010版(2013年10月版本) 一、总信息: 1. 水平力与整体坐标夹角:取0度;(如周期计算结果中显示最大地震力方向与主坐标夹角大于15°,应在斜交抗侧力构件中输入角度,此处不必改动) 2. 混凝土容重:框架、框架-剪力墙取26;剪力墙及框筒结构取27;计算地下室底板配筋时取0; 3. 钢材容重:78; 4. 裙房层数:按实际计算层数输入(应计入地下室的层数); 5. 转换层所在层号:此参数为针对“部分框支剪力墙结构”及“底层带托柱转换层的筒体”而设置。对于部分构件的局部转换,只需要在特殊构件定义中设置转换构件即可,不必在此设置转换层号;此层号为PMCAD中的自然层号,包括地下室;(转换层自动默认为薄弱层). 6. 嵌固端层号:若嵌固端在基础上就为“1”,若嵌固端为地下室顶板则为“地下室层数+1”。 7. 地下室层数:除了对风荷载作用、地震作用及内力调整有关系外,该参数对高位转换的判别影响很大,应准确输入该参数(应注意地下室层数的判断);8. 对所有楼层采用刚性楼板假定:除内力及配筋计算以外,均勾选“是”;

注:进行内力和配筋计算时,部分特殊的结构应在特殊构件定义中修改弹性板的类型,如板柱结构应定义弹性板6、厚板结构应定义弹性板3、楼面开大洞时应定义弹性膜。 9. 地下室强制采用刚性楼板假定;地下室有跃层构件或开大洞时,可取消勾选; 10.墙梁跨中节点作为刚性楼板从节点:一般勾选,若连梁抗剪超限,可不勾选进行计算; 11.计算墙倾覆力矩时只考虑腹板和有效翼缘:一般应勾选;(砼规中9.4.3条有相关承载力计算内容,程序参照此条考虑到倾覆力矩上,此条对倾覆力矩比有轻微影响) 12.弹性板与梁变性协调:替代上个版本的“强制刚性楼板假定时保留楼板平面外刚度”,应勾选; 13.结构材料信息:按实际类型填写; 14.结构体系:按实际填写;仅设置少量剪力墙的框架结构应按框架结构填写,底层带托柱转换层的筒体仍按框筒或筒中筒结构输入,选砌体结构和底框结构无效; 15.恒活荷载计算信息:一般采用模拟施工加载3,如遇到有转换层、跃层柱、长悬挑或吊柱等情况时,应注意修改加载的次序和层数。有吊柱的结构、钢结构及体育场馆等应采用模拟施工加载1。计算基础时,尤其是框剪、框筒结构时,采用模拟施工加载2;(如有特殊结构,勾选“自定义施工顺序”进行人工排序)16.风荷载计算信息:一般结构选择“计算水平风荷载”即可,对于一些空旷建筑、体育馆及轻钢屋面等结构选择“计算特殊风荷载”; 17.地震作用计算信息:一般建筑“计算水平地震作用”即可。对于规范规定的需要考虑竖向地震的建筑按以下原则选择:多层建筑选择“计算水平和规范简化方法竖向地震”,高层建筑选择“计算水平和反应谱方法竖向地震”; 18.特征值求解方式:在选择“计算水平和反应谱方法竖向地震”时此项方可激活,一般情况不需考虑。“整体求解”考虑三向振动的耦联,但有效质量系数不易达到90%,应增加振型数;“独立求解”不能体现耦联关系,但易满足有效质量系数的要求; 19.“规定水平力”的确定方式:一般工程均选择“楼层剪力差方法”; 结构所在地区:按项目所在地区填写,分为全国、上海和广东;20. 二、风荷载信息: 1. 地面粗糙度:根据项目的具体地点选择,一般城市市区选C,郊区选B,湖边、海边取A,慎选D; 2. 修正后的基本风压:一般按《建筑结构荷载规范》GB50009-2012附表E.5中50年一遇的风压取值。如表中无相关数据,应与甲方了解当地的取值。对于山区、远海海面和海岛的建筑应依据荷载规范8.2条采用相应的修正系数,门式刚架也应乘以1.05的修正系数后填入; 3. X向、Y向结构基本周期:先按照“0.1x层数”输入初始值,待SATWE计算出准确的结构自振周期后,将新的周期值代入重新计算;

PKPM参数选择

规范PM参数 1.电算时,荷载不应任意放大.内力放大系数,配筋放大系数,如果不是计算模型确实存在系统误差,一般取1.0,不必放大.对薄弱部位,重点部位应适当加强。 2.地基设计时应采用荷载效应标准组合最大轴力NMAX情况下的荷载(由JCCAD---基础人机交互输入----荷载输入-----目标组合(标准组合)--------读取荷载(SATWE数据荷载,不考虑地震荷载)输出)。 3.基础设计时应采用荷载效应的基本组合荷载.当有永久荷载效应控制时.可取上述标准组合荷载的1.35倍。 4.总信息栏: 结构体系:按实际工程选择 结构主材:按结构形式选择 结构重要性系数:一般填1.0(砼结构设计规范GB50010-2002第3.23条选用) 地下室层数:一般选0(但当地下室层参与结构整体分析时按实际情况填写,程序会对地下层特殊处理.) 与基础相连的下部楼层数:一般填1 梁混凝土保护层厚度:25(大于C25室内正常环境) 30(小于C25室内潮湿,露天环境) 框架梁端负弯矩调整系数0.85 5.材料信息栏 混凝土容重26KN/m3 (考虑粉刷重量) 钢材容重78.5KN/m3 钢构件钢材:Q235 钢截面净毛面积比值:1.0(表示截面被开洞后的削弱情况,可填0.5~1.0). 墙主筋类别:HRB335 主要墙体材料:砌体结构如实填写 砌体容重:18,包含0.7的粉刷重量 墙体水平分布筋间距一般悬200 墙体水平分布筋类别HPB235 墙竖向分布配筋率:一~三级抗震等级不应小于0.25%,四级抗震等级不应小于0.2%;框支剪力墙结构的剪力墙底部加强部位,配筋不应小于0.3%,间距不应大于200梁.柱箍筋类别HPB235 6.地震信息栏: 地震分组:按《建筑抗震设计规范》GB5001-2001附录A选用,对本省内均取第一组》 地震烈度:杭州选6(0.05)否则按《建筑抗震设计规范》GB5001-2001附录A选用 场地类别:按工程地质勘测报告 框架抗震等级:按《建筑抗震设计规范》表6.1.2 7.风荷载信息栏 杭州0.45,60米以上0.50.地面粗糙度选B类体型分段系数一般不分,选1. 高层主要控制轴压比,剪重比刚度比,位移比,周期比,刚重比 电梯机房的荷载就两个 一个是集中力(8人组的基本就是1000Kg合10KN,加上轿箱和缆绳基本也就3000Kg合30KN)加载在固定缆绳的梁上

模板荷载计算

本方案是以木模板、钢管脚手排架的模板支撑系统为研究对象,在泵送、预拌商品混凝土、机械振捣的施工工艺条件下,对施工荷载进行了计算,并应用了统计学原理,获得不同截面梁、板的施工荷载值,不仅减化了计算工作量,并能方便查找应用。 关键词:模板钢管支撑混凝土施工荷载分项系数侧压力荷载组合1施工荷载计算的计算依据 施工荷载的计算方法应符合《建筑结构荷载规范》GB50009-2001的规定。本文仅适用于木模板、钢管脚手排架、钢管顶撑、支撑托的模板支撑系统;采用泵送、预拌商品混凝土,机械振捣的施工工艺,并依据原《混凝土结构工程施工验收规范》GB50204-92,附录中有关“普通模板及其支架荷载标准值及分项系数”的取值标准。 2模板支撑系统及其新浇钢筋混凝土自重的计算参数: 模板及其支架的自重标准值应根据模板设计图确定,新浇混凝土自重标准值可根据实际重力密度确定,钢筋自重标准值可根据设计图纸确定,也可以按下表采用:钢筋混凝土和模板及其支架自重标准值和设计值统计表 材料名称单位标准值分项系数设计值备注 平板的模板KM/m2 0.3 1.2 0.36 包括小楞 梁的模板KN/m2 0.5 1.2 0.6 展开面积 普通混凝土KN/m3 24 1.2 28.8 楼板的钢筋KN 1.1 1.2 1.32 每立方米混 凝土的含量 梁的钢筋KN 1.5 1.2 1.8 模板及支架KN/m2 0.75 1.2 0.9 层高≤4m 3施工人员及设备荷载的取值标准: 施工活荷载的取值标准应根据不同的验算对象,对照下表选取,对于大型设备如上料平台、混凝土输送泵、配料机、集料斗等的施工荷载,应根据实际情况计算,并在大型设备的布置点,采取有针对性的加固措施。 施工活荷载标准值和设计值统计表 序号计算构件名 称 荷载类型单位标准值分项系数设计值备注

切削用量的合理选择

切削用量的合理选择 切削用量不仅是在机床调整前必须确定的重要参数,而且其数值合理与否对加工质量、加工效率、生产成本等有着非常重要的影响。在确定了刀具几何参数后,还需选定合理的切削用量参数才能进行切削加工。所谓“合理的”切削用量是指充分利用刀具切削性能和机床动力性能(功率、转矩),在保证质量的前提下,获得高的生产率和低的加工成本的切削用量。选择合理的切削用量时,必须考虑合理的刀具寿命。 切削用量的选择原则 切削用量与刀具使用寿命有密切关系。在制定切削用量时,应首先选择合理的刀具使用寿命,而合理的刀具使用寿命则应根据优化的目标而定。一般分最高生产率刀具使用寿命和最低成本刀具使用寿命两种,前者根据单件工时最少的目标确定,后者根据工序成本最低的目标确定。 粗车切削用量的选择 对于粗加工,在保证刀具一定使用寿命前提下,要尽可能提高在单位时间内的金属切除量。在切削加工中,金属切除率与切削用量三要素绝保持线性关系,即其中任一参数增大一倍。都可使生产率提高一倍。然而由于刀具使用寿命的制约,当任一参数增大时,其他二参数必须减少。因此,在制定切削用量时,三要素的最佳组合,此时的高生产率才是合理的。由刀具寿命经验公式知,切削用量各因素对刀具使用寿命的影响程度不同,切削速度对使用寿命的影响最大,进给量次之,被吃刀量影响最小。所以在选择粗加工切削用量时,当确定刀具使用寿命合理数值后,应首先考虑增大被吃刀量,其次增大进给量,然后根据使用寿命、被吃刀量和进给量的值计算出切削速度,这样既能保持刀具使用寿命,发挥刀具切削性能,又能减少切削时间,提高生产率。被吃刀量应根据加工余量和加工系统的刚性确定。 精加工切削用量的选择 选择精加工或半精加工切削用量的原则是在保证加工质量的前提下,兼顾必要的生产率。进给量根据工件表面粗糙度的要求来确定。精加工时的切削速度应避开积屑瘤区,一般硬质合金车刀采用高速切削。 大件精加工时,为保证至少完成一次走刀,避免在切削时中途换刀,刀具使用寿命应按零件精度和表面粗糙度来确定。 切削用量制定 目前许多工厂是通过切削用量手册、

荷载计算及计算公式 小知识

荷载计算及计算公式小知识 1、脚手架参数 立杆横距(m): 0.6; 立杆纵距(m): 0.6; 横杆步距(m): 0.6; 板底支撑材料: 方木; 板底支撑间距(mm) : 600; 模板支架立杆伸出顶层横向水平杆中心线至模板支撑点长度(m):0.2; 模板支架计算高度(m): 1.7; 采用的钢管(mm): Ф48×3.5; 扣件抗滑力系数(KN): 8; 2、荷载参数 模板自重(kN/m2): 0.5; 钢筋自重(kN/m3) : 1.28; 混凝土自重(kN/m3): 25; 施工均布荷载标准值(kN/m2): 1; 振捣荷载标准值(kN/m2): 2 3、楼板参数 钢筋级别: 二级钢HRB 335(20MnSi); 楼板混凝土强度等级: C30; 楼板的计算宽度(m): 12.65; 楼板的计算跨度(m): 7.25; 楼板的计算厚度(mm): 700; 施工平均温度(℃): 25; 4、材料参数 模板类型:600mm×1500mm×55mm钢模板; 模板弹性模量E(N/mm2):210000; 模板抗弯强度设计值fm(N/mm2):205; 木材品种:柏木; 木材弹性模量E(N/mm2):9000; 木材抗弯强度设计值fm(N/mm2):13; 木材抗剪强度设计值fv(N/mm2):1.3; Φ48×3.5mm钢管、扣件、碗扣式立杆、横杆、立杆座垫、顶托。 16a槽钢。 锤子、打眼电钻、活动板手、手锯、水平尺、线坠、撬棒、吊装索具等。 脱模剂:水质脱模剂。 辅助材料:双面胶纸、海绵等。 1)荷载计算: (1)钢筋混凝土板自重(kN/m):q1=(25+1.28)×0.6×0.7=11.04kN/m; (2)模板的自重线荷载(kN/m):q2=0.5×0.6=0.3kN/m ; (3)活荷载为施工荷载标准值(kN):q3=(1+2)×0.6 =1.8kN;

高速铣削刀具及切削参数的选择

高速铣削刀具及切削参数的选择 摘要:通过等效类比的方法研究了高速铣削刀具选择的一般原则。推导了球头铣刀的有效直径和有效线速度的计算公式,以此进一步确定转速,通过试验的方法测定了径向铣削深度和每 齿进给量对表面粗糙度的影响。 关键词:高速铣削刀具;有效直径;有效线速度;切削参数;表面粗糙度 作者:宋志国,宋艳,常州信息职业技术学院 0 引言 传统意义上的高速切削是以切削速度的高低来进行分类的,而铣削机床则是以转速的高低进行分类。如果从切削变形的机理来看高速切削,则前一种分类比较合适;但是若从切削工艺的角度出发,则后一种更恰 当。 这是因为随着主轴转速的提高,机床的结构、刀具结构、刀具装夹和机床特性都有本质上的改变。高转速意味着高离心力,传统的7∶24锥柄,弹簧夹头、液压夹头在离心力的作用下,难以提供足够的夹持力; 同时为避免切削振动要求刀具系统具有更高的动平衡精度。 高速切削的最大优势并不在于速度、进给速度提高所导致的效率提高;而是由于采用了更高的切削速度和进给速度,允许采用较小的切削用量进行切削加工。由于切削用量的降低,切削力和切削热随之下降,工 艺系统变形减小,可以避免铣削颤振。 1 刀具的选择 通常选用图1所示的3种立铣刀进行铣削加工,在高速铣削中一般不推荐使用平底立铣刀。平底立铣刀在切削时刀尖部位由于流屑干涉,切屑变形大,同时有效切削刃长度最短,导致刀尖受力大、切削温度高,导致快速磨损。在工艺允许的条件下,尽量采用刀尖圆弧半径较大的刀具进行高速铣削。 图1 立铣刀示意图 随着立铣刀刀尖圆弧半径的增加,平均切削厚度和主偏角均下降,同时刀具轴向受力增加可以充分利用机 床的轴向刚度,减小刀具变形和切削振动(图2)。

荷载及计算参数(已修改)

荷载及计算参数选择 主讲人王卫忠 一.荷载 1.墙体荷载 注:1. 门窗洞口面积>30%时应扣除洞口面积的墙重; 2. 计算梁上线荷应扣除梁高; 3.墙体线荷已包括面层,但若有外挂石材则应另考虑; 4. 当墙直接布置在楼板上,整体计算时,双向板可把墙均匀布于板跨,单向板可布置虚梁导荷;计算楼板 时应按《全国民用建筑工程设计技术措施》第2.7.1~2.7.3条(P18),分不同情况分别计算。 顶棚可统一按0.35 KN/m2,如考虑抹灰可按0.5 KN/m2. 2.消防车荷载(双向板)(KN/m2) 当符合《荷载规范》4.4.1条的条件时,双向板按表中荷载取值,当有覆土时,按表2-1取值,同时应按表2-2考虑动力系数。(计算梁时,宜考虑折减)。

(按满载总重为300KN车辆考虑) 3.施工荷载 地下室顶板室外部分宜考虑10KN/m2、室内(一般指住宅楼平面范围内)部分宜考虑5KN/m2的施工荷载。其与覆土、消防车活荷及人防荷载不同时考虑,且应在施工图中注明相关要求。当室内部分考虑施工荷载时,室内隔墙可不考虑。 4.屋顶荷载 一般屋面顶花园、地下室顶板为景观绿化时,其活荷载取3 KN/m2,其覆土容重宜按18KN/m3计算。当有大型构筑物、景观小品或树木时,可再另外计算,一般树木可按3 KN/m2。考虑。裙房屋顶宜考虑4KN/m2的施工荷载。屋面找坡时,找坡填料应在图中注明(一般按陶粒混凝土容重计算,如另有做法,单独核算)。

二.计算参数 PKPM程序现在有很多计算参数是由设计人员来填写。程序放开这些参数有两个原因,首先就是要让设计人员真正的掌握工程的设计过程,能够尽可能的控制设计过程。其次就是要把一些关键的责任交由设计人员来负,程序只能起到设计工具的作用,不能代替设计。所以就需要我们的结构设计人员充分的理解程序的适用范围、条件和校对结果的合理性、可靠性。《高层建筑混凝土结构技术规程》的5.1.16条要求“对结构分析软件的计算结果,应进行分析结果判断,确认其合理、有效后方可作为工程设计的依据”。PKPM 说明书也特别声明:使用者必须了解程序的假定并必须独立地核查结果。 SATWE设计参数 设计参数的合理确定至关重要。 SATWE前处理----接PM生成SATWE数据菜单共13项,重点是1、2两项。 (一)、SATWE前处理——接PMCAD生成SATWE数据 分析与设计参数定义 总信息 1、水平力与整体坐标夹角(度):一般取0o和>15o的斜交方向。如体型复杂,可改变此数,使之按最大受力方向,近似可按地震力最大作用方向取(在WZQ.OUT中,逆时针为正。)。必须注意的是:风荷载体型系数也应相应修改。 2、混凝土容重:隐含值25。构件自重计算梁板、梁柱重叠部分都未扣除,框架结构可行,剪力墙、板柱结构偏小。按公司规定一般取27。在自重荷载有利的情况下,宜取24。 3、钢材容重:隐含值78。可行。 4、裙房层数:按实际情况。(不含地下室) 高规及抗规规定:与主楼连为整体的裙楼的抗震等级不应低于主楼的抗震等级,主楼结构在裙房顶部上下各一层应适当加强抗震构造措施。包括剪力墙底部加强部位等。 5、转换层所在层号:按自然层号填输,(含地下室的层数)。该指定为程序决定底部加强部位及转换层上下刚度比的计算和内力调整提供信息,同时,当转换层号大于等于

车削用量的合理选择及其意义

车削用量的合理选择及其意义 摘要:车削加工,是金属切削的基础加工。对其切削用量进行合理的选择,将能充分发挥机床和刀具的性能,对产品的加工质量、效率、成本与安全具有重要作用。要合理的选择车削用量,必须对金属切削过程的现象和基本规律,工件材料的切削加工性,切削机床、刀具、夹具、切削液等切削条件,工件的加工技术要求,以及安全操作技术等等,进行深入而认真的理解与灵活运用。 关键词:车削用量意义选择 一、前言 车削加工,是金属切削加工的基础。在分析金属切削过程中的切削变形、切屑形成、切削力、切削热、切屑瘤、刀具磨损与刀具耐用度、冷却与润滑、表面质量等等的定性定量参数时,也都是以车削为基础阐述的。车削用量的合理选用与否,不仅对车削加工的质量、效率、加工成本、刀具磨损与刀具耐用度产生影响,而且也对钻削、镗削、铰削、拉削、铣削产生影响。只有合理的选择切削用量,才能有效的发挥机床和刀具材料的性能,才能优质、高效、低成本的完成工件的加工。特别是当今,科学技术的飞速发展,对产品的性能要求提高了,许多高性能难切削材料得到了广泛应用。为了使这些难切削材料加工出合格工件,在合理选择刀具材料、刀具几何参数和切削液的同时,合理选择切削用量具也具有重要的意义。 二、车削用量的合理选择与意义 1、意义。 合理选择切削用量,可以充分发挥机床的功率(Km)、机床的运动参数(n、f、Vf)、冷却润滑系统、操作系统的功能,可以充分发挥刀具的硬度、耐磨性、耐热性、强度及刀具的几何参数等切削性能,可以提高产品的加工质量、效率,降低加工成本,确保生产操作安全。 ①质量。切削用量中的切削速度,直接影响切削温度。当切削塑性材料时,切削温度在300℃,切屑瘤的高度最大,由于它的产生、长大、脱落,这一过程不断的循环,影响刀刃的形状不断变化,增大了已加工表面的粗糙度。用一般刀具,如果进给量增大,已加工表面残留面积高度就会增大,也会使已加工表面粗糙度增大。所以,在精车一般钢材时,为了避免切屑瘤的产生,降低工件表面粗糙度,切削速度应小于5m/min,大于100m/min,并选用相宜的进给量,来提高工件表面质量。 ②效率。切削用量三要素(Vc、ap、f)中,任何之一增大一倍,加工时的机动时间将减少一半,其效率就将近提高一倍。但是切削速度不能无限制的提高,它还受到刀具材料的硬度和耐热性及工件材料的导热系数的制约。进给量主要受表面粗糙度要求的制约。 ③成本。只有合理的选择切削用量,才能达到最为经济的加工。若Vc太高,刀具耐用度就要降低,刀具费就要增大,成本就增加了;若Vc太低,效率就低,成本同样会增加。 ④安全。安全是保证生产顺利、正常进行的首要条件。Vc对离心力和切削力的影响很大。Vc高,离心力和切削力就大,如果工件和刀具的刚性差,就会危及安全,因此必须限制Vc。切削深度ap对切削力和夹具的夹紧力有影响。ap增大,要求夹紧力也相应的增大,

切削参数的选取因素分享

切削参数的选取因素分享 作者:夹具侠 在编程或者加工产品时通常有几个重要的参数:转速、进给、切深,这些参数的选取直接影响着成品。要使刀具达到最佳的切削状态,三个参数需要相互配合。为此上周末夹具侠特别联合了一位资深的工程师,直播分享关于切削参数的选取因素,下面我们就来为大家做一下整合与回顾。 先看结论,转速、进给、切深的影响因素概览如图1。这是经过从加工组成三个主要部分:零件、刀具、机床做具体分析后得出的,我们往下继续看详解。 图1 切削参数的影响因素分析概览图 一、零件 1.零件材料(金属材料)——决定的主要切削参数:线速度Vc(夹具侠) 国际上把金属材料划分了六大类,各材质的加难易程度,如下参考图:

图2 金属材料的加工难易性 P-钢件 M-不锈钢 K-铸铁 N-有色金属 S-高温合金 H-淬火钢 我们衡量零件的切削性能,一个关键指标:零件材质的硬度,如HRC (洛氏硬度)、HB(布氏硬度)。材料硬度高,在保证零件合格的前提下,原则上加工参数尽量低,尤其是线速度Vc。 2.毛坯余量(工艺安排的粗精加工)——决定的主要切削参数:切深Ap 比如车削D100的尺寸,毛坯是D110 ,单边余量5,你如何去分走刀,精加工留多少余量等。 3.零件粗糙度——决定的主要切削参数:进给F 进给量直接决定了零件粗糙度,当然零件粗糙度还和其它很多因素有关,(如Vc,如刀具圆角)。经验公式:Ra=(f*f**50)/re,进给量越大,刀尖圆角越小,获得的表面粗糙度值越大。(夹具侠) 二、刀具 1.刀具材质——决定的主要切削参数:线速度Vc。

图3 刀具材料韧性与硬度 衡量刀具也有两个重要指标:硬度和韧性 硬——决定了切削参数中的线速度Vc,硬度高,Vc相对就高; 韧性——决定了切削参数中的Ap,韧性好(抗冲击),Ap相对就大。 2. 刀具的锋利与否----决定的主要切削参数:切深Ap 锋利——切深Ap 值小,这是因为锋利刀具不耐冲击; 不锋利——切深Ap 值可以增大,这样刀具能抗冲击,适合大的切深Ap。 3.刀具悬深----决定的主要切削参数:切深Ap(夹具侠) 悬的长,震动越大。震动大,零件会出现振纹,刀具容易蹦刃。所以尽量减低切削参数,尤其是切深Ap,切深大,切削抗力大,震动趋势就会加大。 三、机床 1.机床刚性------决定的主要切削参数:切深Ap 2.机床功率 车削来说:

切削参数的选择(精)

切削参数选择原则: 切削用量不仅是在机床调整前必须确定的重要参数,而且其数值合理与否对加工质量、加工效率、生产成本等有着非常重要的影响。所谓“ 合理的” 切削用量是指充分利用刀具切削性能和机床动力性能 (功率、扭矩 ,在保证质量的前提下,获得高的生产率和低的加工成本的切削用量。 一制订切削用量时考虑的因素 切削加工生产率 在切削加工中,金属切除率与切削用量三要素 ap 、 f 、 v 均保持线性关系, 即其中任一参数增大一倍, 都可使生产率提高一倍。然而由于刀具寿命的制约, 当任一参数增大时,其它二参数必须减小。因此,在制订切削用量时,三要素获得最佳组合,此时的高生产率才是合理的。 刀具寿命 切削用量三要素对刀具寿命影响的大小,按顺序为 v 、 f 、 ap 。因此,从保证合理的刀具寿命出发, 在确定切削用量时, 首先应采用尽可能大的背吃刀量; 然后再选用大的进给量;最后求出切削速度。 加工表面粗糙度 精加工时,增大进给量将增大加工表面粗糙度值。因此,它是精加工时抑制生产率提高的主要因素。 二刀具寿命的选择原则 切削用量与刀具寿命有密切关系。在制定切削用量时,应首先选择合理的刀具寿命, 而合理的刀具寿命则应根据优化的目标而定。一般分最高生产率刀具寿命和

最低成本刀具寿命两种,前者根据单件工时最少的目标确定,后者根据工序成本最低的目标确定。选择刀具寿命时可考虑如下几点: 根据刀具复杂程度、制造和磨刀成本来选择。复杂和精度高的刀具寿命应选得比单刃刀具高些。 对于机夹可转位刀具,由于换刀时间短,为了充分发挥其切削性能,提高 生产效率,刀具寿命可选得低些,一般取 15-30min 。 对于装刀、换刀和调刀比较复杂的多刀机床、组合机床与自动化加工刀具, 刀具寿命应选得高些,尤应保证刀具可靠性。 车间内某一工序的生产率限制了整个车间的生产率的提高时,该工序的刀具寿命要选得低些;当某工序单位时间内所分担到的全厂开支 M 较大时,刀具寿命也应选得低些。 大件精加工时,为保证至少完成一次走刀,避免切削时中途换刀,刀具寿命应按零件精度和表面粗糙度来确定。 三切削用量制定的步骤 背吃刀量的选择 进给量的选择 切削速度的确定 校验机床功率 四提高切削用量的途径 采用切削性能更好的新型刀具材料; 在保证工件机械性能的前提下,改善工件材料加工性;

结构计算中几个重要参数的合理选取

结构计算中几个重要参数的合理选取 在不断的结构设计研究与实践中,人们积累了大量有益的经验,并体现为设计规范、设计手册、标准图集等等。随着计算机技术和计算方法的发展,计算机及其结构程序在结构工程中得到大量地应用。 《抗震规范》第3.6.6.4条指出,所有的计算机计算结果,应经分析判断确认其合理、有效后方可用于工程设计。通常情况下,计算机的计算结果主要是结构的自振周期、楼层地震剪力系数、楼层弹性层间位移(包括最大位移与平均位移比)和弹塑性变形验算时楼层的弹塑性层间位移、楼层的侧向刚度比、振型参与质量系数、墙和柱的轴压比及墙、柱、梁和板的配筋、底层墙和柱底部截面的内力设计值、框架--抗震墙结构抗震墙承受的地震倾覆力矩与总地震倾覆力矩的比值、超筋超限信息等等。 为了分析判断计算机计算结果是否合理,结构设计计算时,除了有合理的结构方案、正确的结构计算简图外,正确填写抗震设防烈度和场地类别,合理选取电算程序总信息中的其他各项参数也是十分重要的。 1.结构的抗震等级 《抗震规范》规定建筑应根据其使用功能的重要性分为甲类、乙类、丙类、丁类四个抗震设防类别。 甲类建筑应属于重大建筑工程和地震时可能发生严重次生灾害的建筑,地震作用应高于本地区抗震设防烈度的要求,其值应按批准的地震安全性评价结果确定。抗震措施,当抗震设防烈度为6~8度时,应符合本地区抗震设防烈度提高一度的要求,当为9度时,应符合比9度抗震设防更高的要求。 乙类建筑应属于地震时使用功能不能中断或需尽快恢复的建筑,地震作用应高于本地区抗震设防烈度的要求。抗震措施,一般情况下,当抗震设防烈度

为6~8度时,应5符合本地区抗震设防烈度提高一度的要求,当为9度时,应符合比9度抗震设防更高的要求;地基基础的抗震措施,应符合有关规定。对较小的乙类建筑,当其结构改用抗震性能较好的结构类型时,应允许仍按本地区抗震设防烈度的要求采取抗震措施。 丙类建筑应属于除甲、乙、丁类以外的一般建筑,地震作用和抗震措施均应符合本地区抗震设防烈度的要求。 丁类建筑应属于抗震次要建筑。一般情况下,地震作用仍应符合本地区抗震设防烈度的要求;抗震措施应允许比本地区抗震设防烈度的要求适当降低,但抗震设防烈度为6度时不应降低。 抗震设防烈度为6度时,除规范有具体规定外,对乙、丙、丁类建筑可不进行地震作用计算。 2.地震力的振型组合数 地震力的振型组合数,对高层建筑,当不考扭转耦联计算时,至少应取3;当振型数多于3时,宜取3 的倍数,但不应多于层数;当房屋层数≤2时,振型数可取层数。对于不规则的结构,当考虑扭转耦联时,对高层建筑,振型数应取≥9;结构层数较多或结构刚度突变较大,振型数应多取,如结构有转换层、顶部有小塔楼、多塔结构等,振型数应取≥12或更多,但不能多于房屋层数的3倍;只有当定义弹性楼板,且采用总刚分析,必要时,振型数才可以取的更多。《抗震规范》指出,合适的振型个数一般可以取振型参与质量达到总质量的90%所需的振型数。SATWE等电算程序已有这种功能,可以很方便地输出这种参与质量的比值。有些设计人员不大重视电算程序使用手册的应用,选取振型数时比较随意,这是应当改进。此外,由耦联计算的地震剪力通常小于非耦联计算,仅当结构存在明显示扭转时才采用耦联计算,但在必要时应补充非耦联计算。

荷载、计算参数选取

结构设计统一技术措施 项目名称万科蓝山东地块项目 专业结构设计号设计阶段施工图 1.屋面和楼面均布活荷载标准值、组合值系数、频遇值系数及准永久值系数: 序 号 类别 活荷载 标准值 (kN/m2) 组合值系 数 频遇值 系数 准永久值 系数 1不上人屋面(雪)0.60.70.50.0 2上人屋面2.00.70.50.4 3屋顶花园3.00.70.60.5 4住宅起居、卧室、普通卫生 2.00.70.50.4间 5公共卫生间2.50.70.60.5 6住宅厨房2.00.70.60.5 7住宅阳台,入户花园,架空 层 2.50.70.60.5 8户内楼梯、走道2.00.70.50.4 9消防疏散楼梯、公共楼梯3.50.70.50.3 10停车库、车道(室内)4.00.70.70.6 11室外消防车道35.00.70.70.6 12地下室顶板(花园)4.00.70.60.5 13商铺3.50.70.60.5 14空调机房、电梯机房、洗衣 房 7.00.90.90.8 15发电机房、水泵房、变配电 房 10.00.90.90.8 16其它设备用房5.00.90.90.8 注:1、活荷载分项系数为1.4 2、水箱间、设备荷载、平台花园环境树木、游泳池等按实际荷载作用。 3、室外车道考虑消防车,按汽车-超20级即总重力300kN 核算。 4、地下室顶板覆土及建筑保温防水等按平均1200(架空层内为900)考虑,室外活荷载按 2 5kN/m 考虑,室内(即架空层)按2.5kN/m 2 考虑。 5、地下外墙设计承受室外地面标准荷载为10kN/m2。 6、室外消防车道有覆土时,计算梁板荷载时根据覆土厚度取应力扩散后的等效荷载。

切削参数的选择

切削参数选择原则: 切削用量不仅是在机床调整前必须确定的重要参数,而且其数值合理与否对加工质量、加工效率、生产成本等有着非常重要的影响。所谓“合理的”切削用量是指充分利用刀具切削性能和机床动力性能(功率、扭矩),在保证质量的前提下,获得高的生产率和低的加工成本的切削用量。 一制订切削用量时考虑的因素 切削加工生产率 在切削加工中,金属切除率与切削用量三要素ap、f、v均保持线性关系,即其中任一参数增大一倍,都可使生产率提高一倍。然而由于刀具寿命的制约, 当任一参数增大时,其它二参数必须减小。因此,在制订切削用量时,三要素获得最佳组合,此时的高生产率才是合理的。 刀具寿命 切削用量三要素对刀具寿命影响的大小,按顺序为v、f、ap。因此,从保证合理的刀具寿命出发,在确定切削用量时,首先应采用尽可能大的背吃刀量;然后再选用大的进给量;最后求出切削速度。 加工表面粗糙度 精加工时,增大进给量将增大加工表面粗糙度值。因此,它是精加工时抑制生产率提高的主要因素。 二刀具寿命的选择原则 切削用量与刀具寿命有密切关系。在制定切削用量时,应首先选择合理的刀具寿命,而合理的刀具寿命则应根据优化的目标而定。一般分最高生产率刀具寿命和最低成本刀具寿命两种,前者根据单件工时最少的目标确定,后者根据工序成本最低的目标确定。选择刀具寿命时可考虑如下几点:根据刀具复杂程度、制造和磨刀成本来选择。复杂和精度高的刀具寿命应选得比单刃刀具高些。 对于机夹可转位刀具,由于换刀时间短,为了充分发挥其切削性能,提高

生产效率,刀具寿命可选得低些,一般取15-30min。 对于装刀、换刀和调刀比较复杂的多刀机床、组合机床与自动化加工刀具,刀具寿命应选得高些,尤应保证刀具可靠性。 车间内某一工序的生产率限制了整个车间的生产率的提高时,该工序的刀具寿命要选得低些;当某工序单位时间内所分担到的全厂开支M较大时,刀具寿命也应选得低些。 大件精加工时,为保证至少完成一次走刀,避免切削时中途换刀,刀具寿命应按零件精度和表面粗糙度来确定。 三切削用量制定的步骤 背吃刀量的选择 进给量的选择 切削速度的确定 校验机床功率 四提高切削用量的途径 采用切削性能更好的新型刀具材料; 在保证工件机械性能的前提下,改善工件材料加工性; 改善冷却润滑条件; 改进刀具结构,提高刀具制造质量。 其中:ap背吃刀量,f进给量,Vc切削速度 Vc=πdn/1000(单位为m/min); d——工件或刀具上某一点的回转直径(mm) n——工件或刀具的转速(r/min) 由于切削刃上各点相对于工件的旋转半径不同,因而刀刃上各点的切削速度也不同,在计算时应取最大的切削速度。 外圆车削时计算待加工表面上的速度,内孔车削时计算已加工表面上的速度,钻削时计算钻头外径处的速度。 t1=(L÷nf)×(A÷ap)=L×A×π×d/(1000×v×f×ap) t1:切削工时 L:每次进给的行程长度(mm)

结构模型参数的选取对梁计算配筋的变化比较

模型参数的选取对梁计算配筋的变化比较 (以普通地下室中跨为例) 结论:地下室顶板考虑“弹性板6”,不勾选“地下室楼板强制采用刚性楼板假定”,选“平面导荷”,勾选“矩形混凝土梁按T 形梁配筋,注意错标高处不符合T型梁假定”,考虑“活荷载不利布置”,保守起见暂不考虑“弹性板与梁协调时考虑梁向下相对偏移” 1 、弹性板与梁协调时考虑梁向下相对偏移 以前弹性板与梁变形协调时,计算模型是以梁的中和轴和板的中和轴相连的方式计算的,由于一般梁与楼板在梁顶部平齐,实际上梁的中和轴和板中和轴存在竖向的偏差,勾选此参数后软件将在计算中考虑到这种实际的偏差,将在板和梁之间设置一个竖向的偏心刚域,该偏心刚域的长度就是梁的中和轴和板中和轴的实际距离。 在生成数据后的计算简图中可以看到用粉色表示的弹性板和梁之间的竖向短线,就是它们之间的偏心刚域。这种计算模型比按照中和轴互相连接的模型得出的梁的负弯矩更小,正弯矩加大并承受一定的拉力,这些因素在梁的配筋计算中都会考虑。 勾选的计算结果: 2、地下室楼板强制采用刚性楼板假定——无变化

对于带地下室工程,软件以弹簧模拟地下室侧土约束并施加在地下室楼板上。对于有分块刚性板的地下室结构,勾选该项,将按一整块刚性板处理;否则将弹簧施加在各块刚性板上。 勾选的计算结果: ( 无变化) 3 、弹性板荷载计算方式(均选择弹性板6)——无变化 该参数用来控制指定为弹性板属性的楼板,其板上荷载的导荷方式,分两种方式: (1)平面导荷:传统方式,作用在各房间楼板上恒活面荷载被导算到了房间周边的梁或者墙上,在上部结构的考虑弹性板的计算中,弹性板上已经没有作用竖向荷载,起作用的仅是弹性板的面内刚度和面外刚度。 (2)有限元计算:在上部结构计算时,恒活面荷载直接作用在弹性楼板上,不被导算到周边的梁墙上。有限元方式适用于无梁楼盖、厚板转换层等结构,可在上部结构计算结果中同时得出板的配筋,在等值线菜单下查看弹性板的各种内力和配筋结果。注意为了查看等值线结果,在计算参数的结构总体信息中还应勾选“生成绘等值线用数据”。 有限元方式仅适用于定义为弹性板3 或者弹性板 6 的楼板,不适合弹性膜或者刚性板的计算。 勾选有限元计算: 勾选平面导荷: 4、三种弹性楼板的基本假定、计算单元和适用范围。 (1)弹性膜假定楼板平面内具有膜元的刚度,但忽略了楼板平面外刚度,即假定楼板平

别墅结构统一措施荷载整理及计算参数取值

荷载统计 (一) 面荷载: 恒载: 1. 100mm厚混凝土板: m2 120mm厚混凝土板: m2 150mm厚混凝土板: m2 160mm厚混凝土板: m2 180mm厚混凝土板: m2 200mm厚混凝土板: m2 2. 建筑面层: m2(客厅、餐厅、电梯厅取m2) 3. 板底粉刷吊顶: m2 4. 设备管道:(仅用于地下室一层、顶板) m2 5. 地下室顶板覆土: 厚覆土 * = kN/m^2 厚砂浆 * = kN/m^2 防水 kN/m^2 厚细石混凝土 * = kN/m^2 -------------------------------------------------------------------- kN/m^2 地下室顶板: 厚砂浆及面层 * = kN/m^2 防水 kN/m^2 厚细石混凝土 * = kN/m^2 -------------------------------------------------------------------- kN/m^2 6. 上人屋面作法(露台): m^2

(坡屋面按实际折算恒荷载) 7. 楼梯荷载: 梯段估算取m^2 8. 卫生间采用水泥炉渣回填350mm厚 14*= kN/m^2 活载: 1. 客厅、餐厅、卧室、厨房、书房 kN/m^2 2.卫生间 (带浴缸) ()kN/m^2 3. 阳台(露台)()kN/m^2 4. (住宅)电梯厅、走道、门厅 kN/m^2 5. 入户花园 kN/m^2 地下室顶板部分(非车道):()kN/m^2 屋面部分: 1. 电梯机房 kN/m^2 2. 上人屋面 kN/m^2 3. 非上人屋面 kN/m^2 (二) 线荷载: 1.砖墙部分:空心砖(KF-2型)砌体容重取12KN/m3 多孔砖(M型)砌体容重取17KN/m3 200mm厚页岩空心砖 *12+*20*2+=m2(外墙) 200mm厚页岩空心砖 *12+*20=m2(内墙) 100mm厚页岩多孔砖 *17+*20=m2(厨卫处隔墙) 玻璃门窗 m2 推拉门取 m 女儿墙 0.6m高200mm厚页岩空心砖 *=m

卧式数控车床刀具及切削参数选择

卧式数控车床刀具及切削参数选择 目录 一机卡车刀的选用 (1)

二孔加工刀具的选用 (9) 三切断和切槽刀 (12) 四螺纹车刀 (13) 五刀具材料 (16) 六刀具厂商 (17) 七刀具干涉图 (18) 八刀具允许的最大转动惯量 (19)

数控车床刀具系统比卧车复杂。要求安装数量多,安装可靠,自动换刀,装卸方便迅速还要求切削时间短以提高生产率。因此普遍采用机卡车刀。 机卡车刀是把压制有合理的几何参数,在一定的切削用量范畴内保证卷屑,断屑并有几个刀刃的刀片,用机械卡固方式装卡在标准刀体上的一种新型刀具。它避免了硬质合金刀片在焊接中产生的种种不良后果,因此能充分发挥刀片材料原有的切削性能,提高了车刀的耐用度和切削加工的生产率.另外刀体可重复使用,能节约大量制造刀体的钢材.还便于使刀具标准化和集中生产,同一型号刀片的几何形状较一致切削效果稳定.有利于提高零件加工质量,简化了刀具的管理工作.使用时,当刀刃磨损后,只需松开卡紧机构将刀片转一个角度,不必重磨,大大缩短了换刀.磨刀.装刀的辅助时间,而且可以避免刀片由于重磨而造成的缺陷.因此机卡车刀也叫不重磨车刀或可转位车刀。 除不可避免的情况外,为用户选用的都应该是机卡车刀。 一机卡车刀的选用 侧重外表面车刀的选用。内孔车刀大体相同,其特殊性问题另做叙述。 ISO对外表面车刀型号是如下表示的,它是国内外刀具厂商的统一标准。 选刀工作也就是确定型号中的各项内容,按选刀时考虑问题的大体顺序分叙如下: (一)刀片形状的选择:外内表面车刀刀片形状关系车刀类型,它取决于加工部位的形状,是选刀的最重要内容。它主要涉及刀具的主偏角,刀尖角和有效刃数等。一般来讲刀尖角愈大刀尖强度愈高,应尽量采用。但刀尖角小干涉现象少,适用于复杂型面,开挖沟槽及下坡的型面。 刀片形状甚多,某些厂家列出十几种,本厂实际只用过图1所示七种,也正是ISO规定的七种基本类型。

(完整版)结构计算中几个重要参数的合理选取

结构计算中几个重要参数的合理选取 《抗震规范》第3.6.6.4条指出,所有的计算机计算结果,应经分析判断确认其合理、有效后方可用于工程设计。通常情况下,计算机的计算结果主要是结构的自振周期、楼层地震剪力系数、楼层弹性层间位移(包括最大位移与平均位移比)和弹塑性变形验算时楼层的弹塑性层间位移、楼层的侧向刚度比、振型参与质量系数、墙和柱的轴压比及墙、柱、梁和板的配筋、底层墙和柱底部截面的内力设计值、框架--抗震墙结构抗震墙承受的地震倾覆力矩与总地震倾覆力矩的比值、超筋超限信息等等。 为了分析判断计算机计算结果是否合理,结构设计计算时,除了有合理的结构方案、正确的结构计算简图外,正确填写抗震设防烈度和场地类别,合理选取电算程序总信息中的其他各项参数也是十分重要的。 1.结构的抗震等级 《抗震规范》规定建筑应根据其使用功能的重要性分为甲类、乙类、丙类、丁类四个抗震设防类别。 甲类建筑应属于重大建筑工程和地震时可能发生严重次生灾害的建筑,地震作用应高于本地区抗震设防烈度的要求,其值应按批准的地震安全性评价结果确定。抗震措施,当抗震设防烈度为6~8度时,应符合本地区抗震设防烈度提高一度的要求,当为9度时,应符合比9度抗震设防更高的要求。 乙类建筑应属于地震时使用功能不能中断或需尽快恢复的建筑,地震作用应高于本地区抗震设防烈度的要求。抗震措施,一般情况下,当抗震设防烈度为6~8度时,应5符合本地区抗震设防烈度提高一度的要求,当为9度时,应符合比9度抗震设防更高的要求;地基基础的抗震措施,应符合有关规定。对较小的乙类建筑,当其结构改用抗震性能较好的结构类型时,应允许仍按本地区抗震设防烈度的要求采取抗震措施。 丙类建筑应属于除甲、乙、丁类以外的一般建筑,地震作用和抗震措施均应符合本地区抗震设防烈度的要求。 丁类建筑应属于抗震次要建筑。一般情况下,地震作用仍应符合本地区抗震设防烈度的要求;抗震措施应允许比本地区抗震设防烈度的要求适当降低,但抗震设防烈度为6度时不应降低。 抗震设防烈度为6度时,除规范有具体规定外,对乙、丙、丁类建筑可不进行地震作用计算。 2.地震力的振型组合数 地震力的振型组合数,对高层建筑,当不考扭转耦联计算时,至少应取3;当振型数多于3时,宜取3 的倍数,但不应多于层数;当房屋层数≤2时,振型数可取层数。对于不规则的结构,当考虑扭转耦联时,对高层建筑,振型数应取≥9;结构层数较多或结构刚度突变较大,振型数应多取,如结构有转换层、顶部有小塔楼、多塔结构等,振型数应取≥12或更多,但不能多于房屋层数的3倍;只有当定义弹性楼板,且采用总刚分析,必要时,振型数才可以取的更多。《抗震规范》指出,合适的振型个数一般可以取振型参与质量达到总质量的90%所需的振型数。SATWE等电算程序已有这种功能,可以很方便地输出这种参与质量的比值。有些设计人员不大重视电算程序使用手册的应用,选取振型数时比较随意,这是应当改进。此外,由耦联计算的地震剪力通常小于非耦联计算,仅当结构存在明显示扭转时才采用耦联计算,但在必要时应补充非耦联计算。 3.结构周期折减系数 框架结构及框架--抗震墙等结构,由于填充墙的存在,使结构的实际刚度大于计算刚度,计算周期大于实际周期,因此,算出的地震剪力偏小,使结构偏于不安全,因而对结构的计算周期进行折减是必要的,但对框架结构的计算周期不折减或折减系数取得过大都是不妥当的。对框架结构,采用砌体填充墙时,周期折减系数可取0.6~0.7;砌体填充墙较少或采用轻质砌块时,可取0.7~0.8;完全采用轻质墙体板材

相关文档
最新文档