半导体泵浦激光原理实验

半导体泵浦激光原理实验
半导体泵浦激光原理实验

半导体泵浦激光原理实验

理工学院光信息2班贺扬10329064 合作人:余传祥

【实验目的】

1、了解与掌握半导体泵浦激光原理及调节光路方法。

2、掌握腔内倍频技术,并了解倍频技术的意义。

3、掌握测量阈值、相位匹配等基本参数的方法。

【实验仪器】

808nm半导体激光器、半导体激光器可调电源、晶体、KTP倍频晶体、输出镜(前腔片)、光功率指示仪

【实验原理】

激光的产生主要依赖受激辐射过程。

处于激发态的原子,在外的光子的影响下,从高能态向低能态跃迁,并在两个状态的能量差以辐射光子的形式发出去。只有外来光子的能量正好为激发态与基态的能级差时,才能引起受激辐射,且受激辐射发出的光子与外来光子的频率、发射方向、偏振态和相位完全相同。

激光器主要有:工作物质、谐振腔、泵浦源组成。工作物质主要提供粒子数反转。

泵浦过程使粒子从基态抽运到激发态,上的粒子通过无辐射跃迁,迅速转移到亚稳态。是一个寿命较长的能级,这样处于的粒子不断累积,上的粒子又由于抽运过程而减少,从而实现与能级间的粒子数反转。

激光产生必须有能提供光学正反馈的谐振腔。处于激发态的粒子由于不稳定性而自发辐射到基态,自发辐射产生的光子各个方向都有,只有沿轴向的光子,部分通过输出镜输出,

部分被反射回工作物质,在两个反射镜间往返多次被放大,形成受激辐射的光放大即产生激光。

激光倍频是将频率为的光,通过晶体中的非线性作用,产生频率为的光。

当外界光场的电场强度足够大时(如激光),物质对光场的响应与场强具有非线性关系:

式中均为与物质有关的系数,且逐次减小。

当E很大时,电场的平方项不能忽略。

,直流项称为光学整流,当激光以一定角度入射到倍频晶体时,在晶体产生倍频光,产生倍频光的入射角称为匹配角。

倍频光的转换效率为倍频光与基频光的光强比,通过非线性光学理论可以得到:

式中L为晶体长度,、分别为入射的基频光、输出的倍频光光强。

在正常色散情况下,倍频光的折射率总是大于基频光的折射率,所以相位失配,双折射晶体中的o光和e光折射率不同,且e光的折射率随着其传播方向与光轴间夹角的变化而改变,可以利用双折射晶体中o光、e光间的折射率差来补偿介质对不同波长光的正常色散,实现相位匹配。

【实验装置】

图2 实验装置示意图

实验使用808nm LD泵浦晶体得到1.064近红外激光,再利用KTP晶体进行腔内倍频得到0.53的绿激光,长度为3x3x1mm掺杂浓度3at% 轴向切割晶体作为工作介质,入射到内部的光约95%被吸收,采用类相位匹配2x2x5mmKTP晶体作为倍频晶体,它的通光面同时对1.064高透,采用端面泵浦以提高空间耦合效率,用等焦距为3mm的梯度折射率透镜收集808LD激光聚焦成0.1的细光束,使光束束腰在

,谐振腔为平凹型,后腔片受热后弯曲。输出镜用K9玻璃,R为50mm,对808.5,1.604高反,0.53增透。用632.8nmHe-Ne激光器作为准直光源。

【操作步骤】

1、将808nmLD固定在二维调节架,将He-Ne 632.nm红光通过白屏小孔聚到折射率梯度透

镜上。让He-Ne激光和小孔及808nmLD在同一轴线上。

2、将晶体安装在二维调节架,将红光通过晶体并将返回的光点通过小孔。

3、将输出镜固定在四维调节架上。调节输出镜使返回光点通过小孔。对于有一定曲率的输

出镜,会有几个光斑,应区分从球心返回的光斑。

4、在和输出镜之间插入KTP晶体,接通电源,调节多圈电位器。

5、产生532nm倍频绿激光。调节输出镜,LD调节架,使532nm绿光功率最大。

【实验数据及处理】

1.808nmLD源电流与光功率关系:

P /m w

I/mA

图3.808nmLD 源电流与光功率曲线

根据激光原理,驱动电流低于阈值电流时,输出功率趋于0,只有当驱动电流高于阈值电流 时,激光器可产生激光。

观察得,此激光器的阈值电流大概在70mA 处。

在做此部分实验时,一切正常,很顺利。应该和808LD 源与接受器相离很近有关,相对 与下一个实验,光的损耗很小(几乎全被接受器接受到)。 2.激励源电流与532nm 绿光激光光功率关系:

P /m w

I/mA

图4激励源电流与532nm 绿光激光光功率曲线

表3激励源电流与532nm 绿光激光光功率转化率

B

I/mA

图5. 激励源电流与532nm 绿光激光光功率转化率曲线

由图3可得,随着电流增大,转化效率整体呈上升趋势。此次实验所得转换效率远小于一般LD 泵浦激光器的转换效率。造成偏低的原因可能有:

(1)光路调节不准直,主要器件的光轴不在同一条水平线上。 (2)光功率计示数上下波动,读数时会有误差。 (3)透镜或出射窗有污渍影响光强输出。 此部分实验分为两个部分:1用上一组同学调好的仪器测量激励源电流与532nm 绿光激光光功率;2自己重新搭建仪器。 [实验过程中遇到的问题]:

1.当I=0时,P 为0.017*10^-3mw 。 分析原因:1.在测量前未调0.

2. 实验室内日光灯的影响,因为当关闭日光灯后,示数明显减小。 由于0.017*10^-3很小,当打到2mw 档时,可忽略不计。

2.在第一次测量时,150mA —180mA ,280mA —300mA.有不正常变化(经查资料得,正常应为线性),第二次测量亦然。第三次150mA —180mA 处恢复正常。

分析原因:1在示数未稳定时,但是前两次测量等了一段时间,但示数仍上下波动。 2,280mA —300mA ,可能和温度有关。由激光原理可知:工作物质一定时,

LD 输出激光频率与谐振腔长度和激励源强度有关,即输出频率取决于PN 结温度和注入电流大小。

3.重新组装调整完仪器后,出现绿光,但功率很小,后来黄老师过来进行调整,重新准直后绿光再未出现。

分析原因:1.由于此次实验仪器808LD光头据说是斜的,所以调整准直等没用,可以说越调越斜。

2.可能在调整仪器是,不小心调动了KTP倍频晶体的角度。但由于不知正确

角度无法判断。(为找到正确角度,又拿出两个备用的KTP倍频晶体。三个

角度均不同)

3.仪器坏了。很有可能是KTP倍频晶体,因为可以检查出有红光射到滤光片

上,但不管怎样移动KTP倍频晶体,绿光就是不出现。

半导体泵浦激光原理实验

半导体泵浦激光原理实验 理工学院光信息2班贺扬10329064 合作人:余传祥 【实验目的】 1、了解与掌握半导体泵浦激光原理及调节光路方法。 2、掌握腔内倍频技术,并了解倍频技术的意义。 3、掌握测量阈值、相位匹配等基本参数的方法。 【实验仪器】 808nm半导体激光器、半导体激光器可调电源、晶体、KTP倍频晶体、输出镜(前腔片)、光功率指示仪 【实验原理】 激光的产生主要依赖受激辐射过程。 处于激发态的原子,在外的光子的影响下,从高能态向低能态跃迁,并在两个状态的能量差以辐射光子的形式发出去。只有外来光子的能量正好为激发态与基态的能级差时,才能引起受激辐射,且受激辐射发出的光子与外来光子的频率、发射方向、偏振态和相位完全相同。 激光器主要有:工作物质、谐振腔、泵浦源组成。工作物质主要提供粒子数反转。 泵浦过程使粒子从基态抽运到激发态,上的粒子通过无辐射跃迁,迅速转移到亚稳态。是一个寿命较长的能级,这样处于的粒子不断累积,上的粒子又由于抽运过程而减少,从而实现与能级间的粒子数反转。 激光产生必须有能提供光学正反馈的谐振腔。处于激发态的粒子由于不稳定性而自发辐射到基态,自发辐射产生的光子各个方向都有,只有沿轴向的光子,部分通过输出镜输出,

部分被反射回工作物质,在两个反射镜间往返多次被放大,形成受激辐射的光放大即产生激光。 激光倍频是将频率为的光,通过晶体中的非线性作用,产生频率为的光。 当外界光场的电场强度足够大时(如激光),物质对光场的响应与场强具有非线性关系: 式中均为与物质有关的系数,且逐次减小。 当E很大时,电场的平方项不能忽略。 ,直流项称为光学整流,当激光以一定角度入射到倍频晶体时,在晶体产生倍频光,产生倍频光的入射角称为匹配角。 倍频光的转换效率为倍频光与基频光的光强比,通过非线性光学理论可以得到: 式中L为晶体长度,、分别为入射的基频光、输出的倍频光光强。 在正常色散情况下,倍频光的折射率总是大于基频光的折射率,所以相位失配,双折射晶体中的o光和e光折射率不同,且e光的折射率随着其传播方向与光轴间夹角的变化而改变,可以利用双折射晶体中o光、e光间的折射率差来补偿介质对不同波长光的正常色散,实现相位匹配。 【实验装置】 图2 实验装置示意图

激光原理考试复习资料

1.激光原理(概念,产生):激光的意思是“光的受激辐射放大”或“受激发射光放大”,它包含了激光产生的由来。刺激、激发,散发、发射,辐射 2.激光特性:(1)方向性好(2)亮度高(3)单色性好(4)相干性好: 3.激光雷达:激光雷达,是激光探测及测距系统的简称。工作在红外和可见光波段的雷达称为激光雷达。 4.激光的回波机制:激光雷达的探测对象分为两大类,即软目标与硬目标。软目标是指大气和水体(包括其中所包含的气溶胶等物质)等探测对象,而硬目标则是指陆地、地物以及空间飞行物等宏观实体探测对象。 软目标的回波机制: (1)Mie散射是一种散射粒子的直径与入射激光波长相当或比之更大的一种散射机制。Mie散射的散射光波长与入射光波长相当,散射时光与物质之间没有能量交换发生。因此是一种弹性散射。 (2)Rayleigh散射(瑞利散射):指散射光波长等于入射光波长,而且散射粒子远远小于入射光波长,没有频率位移(无能量变化,波长相同)的弹性光散射。 (3)Raman散射(拉曼散射):拉曼散射是激光与大气和水体中各种分子之间的一种非弹性相互作用过程,其最大特点是散射光的波长和入射光不同,产生了向长波或短波方向的移动。而且散射光波长移动的数值与散射分子的种类密切相关。 (4)共振荧光:原子、分子在吸收入射光后再发射的光称为荧光.当入射激光的波长与原子或分子内能级之间的能量差相等时,激光与原子或分子的相互作用过程变为共振荧光。 (5)吸收:吸收是指当入射激光的波长被调整到与原子分子的基态与某个激发态之间的能量差相等时,该原子、分子对入射激光产生明显吸收的现象。 硬目标的回波机制:激光与由宏观实体构成的硬目标作用机制反射、吸收和透射。当一束激光射向硬目标物体时,一部分激光能量从物体表面反射、一部分激光能量被物体吸收、而剩下的激光能量则将穿透该物体。硬目标对激光能量的反射机制最为重要。 硬目标回波机制包括:镜面反射、漫反射,方向反射 1.机载激光雷达系统组成:机载LiDAR系统由测量激光发射点到被测点间距离的激光扫描仪、测量扫描装置主光轴的空间姿态参数的高精度惯性导航系统(IMU)、用于确定扫描投影中心的空间位置的动态差分全球导航定位系统(DGPS)、确保所有部分之间的时间同步的同步控制装置、搭载平台等部分组成。另外,还配备有数据记录设备及数据处理软件等 2.机载激光雷达定位原理:机载LiDAR系统采用极坐标定位原理,其确定地面点三维坐标的数学本质是:对一空间向量,已知其模和其在物方坐标空间中的方向,如果知道向量起

实验报告-半导体泵浦激光原理

激光器主要有:工作物质、谐振腔、泵浦源组成。工作物质主要提供粒子数反转。 泵浦过程使粒子从基态E1抽运到激发态E3,E3上的粒子通过无辐射跃迁(该过程粒子从高能级跃迁到低能级时能量转变为热能或晶格振动能,但不辐射光子),迅速转移到亚稳态E2。E2是一个寿命较长的能级,这样处于E2的粒子不断累积,E1上的粒子又由于抽运过程而减少,从而实现E2与E1能级间的粒子数反转。 激光产生必须有能提供光学正反馈的谐振腔。处于激发态的粒子由于不稳定性而自发辐射到基态,自发辐射产生的光子各个方向都有,偏

离轴向的光子很快逸出腔外,只有沿轴向的光子,部分通过输出镜输出,部分被反射回工作物质,在两个反射镜间往返多次被放大,形成受激辐射的光放大即产生激光。 光的倍频是一种最常用的扩展波段的非线性光学方法。激光倍频是将频率为ω的光,通过晶体中的非线性作用,产生频率为2ω的光。 当光与物质相互作用时,物质中的原子会因感应而产生电偶极矩。单位体积内的感应电偶极矩叠加起来,形成电极化强度矢量。电极化强度产生的极化场发射出次级电磁辐射。当外加光场的电场强度比物质原子的内场强小得多时,物质感生的电极化强度与外界电场强度成正比。 P=ε0χE 在激光没有出现前,当有几种不同频率的光波同时与该物质作用时,各种频率的光都线性独立地反射、折射和散射,满足波的叠加原理,不会产生新的频率。 当外界光场的电场强度足够大时(如激光),物质对光场的响应与场强具有非线性关系: P=αE+βE2+γE3+?

式中α,β,γ,…均为与物质有关的系数,且逐次减小。 考虑电场的平方项 E=E0cosωt P(2)=βE2=βE02cos2ωt=βE02 (1+cos2ωt) 出现直流项和二倍频项cos2ωt,直流项称为光学整流,当激光以一定角度入射到倍频晶体时,在晶体产生倍频光,产生倍频光的入射角称为匹配角。 倍频光的转换效率为倍频光与基频光的光强比,通过非线性光学理论可以得到: η=I2ω ω ∝βL2Iω sin2(Δkl/2) 式中L为晶体长度,Iω、I2ω分别为入射的基频光、输出的倍频光光强。 在正常色散情况下,倍频光的折射率n2ω总是大于基频光的折射率,所以相位失配,双折射晶体中的o光和e光折射率不同,且e光的折射率随着其传播方向与光轴间夹角的变化而改变,可以利用双折射晶体中o光、e光间的折射率差来补偿介质对不同波长光的正常色散,实现相位

激光原理实验

激光技术及应用实验 Lasers Experiments 一、实验课简介 本课程是面向应用物理学专业学生开设的一门学科基础课程,在第五学期开设。本实验是在本科生接受了大学物理等系统实验方法和实验技能训练的基础上开设的,主要与理论课程《激光技术与应用》同步,训练学生的自主设计能力。该课程具有丰富的实验思想、方法、手段,同时能提供综合性很强的基本实验技能训练,是培养学生科学实验能力、提高科学素质的重要基础。它在培养学生严谨的治学态度、活跃的创新意识、理论联系实际和适应科技发展的综合应用能力等方面具有其他实践类课程不可替代的作用。 二、实验课目标 进一步加强学生的基本科学实验技能的培养,提高学生的科学实验基本素质,并与理论课程的教学融汇贯通,加深对理论课程学习的理解。通过本课程的学习,要使学生熟悉激光器的基本工作原理、激光振荡及放大的条件、高斯光束的变换,熟练使用几种常用激光器,如氦氖激光器、半导体激光器、脉冲激光器和可调谐燃料激光器。使学生通过实际动手操作,掌握激光器的一般构造,加深对激光特性的理解,了解激光在精密测量中的使用。 培养学生的科学思维和创新意识,使学生掌握实验研究的基本方法,提高学生的分析能力和创新能力。提高学生的科学素养,培养学生积极主动的探索精神,遵守纪律,团结协作的优良品德。 三、实验课内容 实验项目一:气体激光器(3学时) 1. 实验属性:综合性实验。 2. 开设要求:必开。 3. 教学目标: (1)掌握气体激光器的主要结构和原理; (2)掌握气体激光器的调节方法; (2)了解激光输出的特性及其测量; (3)了解高斯光束的传播规律,掌握光束基本特性的测量。 4. 主要实验仪器设备:游标卡尺、开放式He-Ne激光器等。 5. 实验内容(至少做两个子项目): (1)调节He-Ne激光器的谐振腔镜,获得激光稳定输出; (2)测量激光光束的发散角和束腰半径(选作); (3)测量激光激励电压与激光输出功率之间的相互关系(选作); (4)进行简单的高斯光束变换(选作)。 实验项目二:固体连续激光器(3学时) 1. 实验属性:综合性实验。 2. 开设要求:必开。 3. 教学目标:

不得不看的激光原理试题考试必备

激光原理复习题(页码是按第五版书标注的,黄色底纹的页码是按第六版书标注的) 填空 6424''?= 简答 6636''?= 计算 121527'''+= 论述 11313''?= 1.什么是光波模式和光子态?什么是相格?Page5 答:光波模式(page5):在一个有边界条件限制的空间V 内,只能存在一系列独立的具有特定波矢k 的平面单色驻波。这种能够存在于腔内的驻波(以某一波矢k 为标志)称为光波模式。 光子态(page6):光子在由坐标与动量所支撑的相空间中所处的状态,在相空间中,光子的状态对应于一个相格。 相格(page6):在三维运动情况下,测不准关系为3x y z x y z P P P h ??????≈,故在六位相空间中,一个光子态对应(或 占有)的相空间体积元为3x y z x y z P P P h ??????≈,上述相空间体积元称为相格。 2.如何理解光的相干性?何谓相干时间、相干长度、相干面积和相干体积?Page7 答:光的相干性(page7):在不同的空间点上、在不同的时刻的光波场的某些特性的相关性。 相干时间(page7):光沿传播方向通过相干长度c L 所需的时间,称为相干时间。 相干长度:相干光能产生干涉效应的最大光程差,等于光源发出的光波的波列长度。 ?相干面积: 相干体积(page7):如果在空间体积c V 内各点的光波场都具有明显的相干性,则c V 称为相干体积。 3.何谓光子简并度,有几种相同的含义?激光源的光子简并度与它的相干性什么联系?Page9 答:光子简并度(page9):处于同一光子态的光子数称为光子简并度。 光子简并度有以下几种相同含义(page9):同态光子数、同一模式内的光子数、处于相干体积内的光子数、处于同一相格内的光子数。 联系:激光源的光子简并度决定着激光的相干性,光子简并度越高,激光源的相干性越好。 4.什么是黑体辐射?写出Planck 公式,并说明它的物理意义。Page10 答:黑体辐射(page10):当黑体处于某一温度T 的热平衡情况下,它所吸收的辐射能量应等于发出的辐射能量,即黑体与辐射场之间应处于能量(热)平衡状态,这种平衡必然导致空腔内存在完全确定的辐射场,这种辐射场称为黑体辐射或平衡辐射。 Planck 公式(page10):3 3 811 b h k T h c e ννπνρ= - 物理意义(page10):在单位体积内,频率处于ν附近的单位频率间隔中黑体的电磁辐射能量。 5.描述能级的光学跃迁的三大过程,并写出它们的特征和跃迁几率。Page10 答:(1)自发辐射 过程描述(page10):处于高能级2E 的一个原子自发的向1E 跃迁,并发射一个能量为h ν的光子,这种过程称为自发跃迁,由原子自发跃迁发出的光波称为自发辐射。 特征:a) 自发辐射是一种只与原子本身性质有关而与辐射场νρ无关的自发过程,无需外来光。b) 每个发生辐射的原子都可看作是一个独立的发射单元,原子之间毫无联系而且各个原子开始发光的时间参差不一,所以各列光波频率虽然相同,均为ν,各列光波之间没有固定的相位关系,各有不同的偏振方向,而且各个原子所发的光将向空间各个方向传播,即大量原子的自发辐射过程是杂乱无章的随机过程,所以自发辐射的光是非相干光。 自发跃迁爱因斯坦系数:211 s A τ= (2)受激吸收 过程描述(page12)处于低能态1E 的一个原子,在频率为ν的辐射场作用(激励)下,吸收一个能量为h ν的光子并向2E 能态跃迁,这种过程称为受激吸收跃迁。 特征:a) 只有外来光子能量21h E E ν=-时,才能引起受激辐射。b)跃迁概率不仅与原子性质有关,还与辐射场的νρ有关。 受激吸收跃迁概率(page12):1212v W B ρ=(12B 为受激吸收跃迁爱因斯坦系数,v ρ为辐射场) (3)受激辐射 过程描述(page12):处于上能级2E 的原子在频率为ν的辐射场作用下,跃迁至低能态1E 并辐射一个能量为h ν的光子。受激辐射跃迁发出的光波称为受激辐射。 特征:a) 只有外来光子能量21h E E ν=-时,才能引起受激辐射;b) 受激辐射所发出的光子与外来光子的频率、传播方向、偏振方向、相位等性质完全相同。 受激辐射跃迁概率:2121v W B ρ=(21B 为受激辐射跃迁爱因斯坦系数,v ρ为辐射场) 6.Einstein 系数有哪些?它们之间的关系是什么?Page13 答:系数(page11-12):自发跃迁爱因斯坦系数21A ,受激吸收跃迁爱因斯坦系数12B ,受激辐射跃迁爱因斯坦系数21B

实验四 连续半导体泵浦固体激光器静态输出特性和声光调Q实验

实验四连续半导体泵浦固体激光器静态输出特性 和声光调Q实验 实验目的 1.了解固体激光器的输出特性和阈值特性,掌握激光器输出特性斜率效率的计 算; 2.掌握激光器设计中最佳透过率的概念,巩固最佳透过率选取原则; 3.掌握声光调Q的基本原理和布拉格衍射的特征及布拉格衍射角的概念,了解 激光器在连续和调Q脉冲工作状态下的激光功率输出特性, 4.了解不同调Q频率下,激光功率变化的原因,巩固最佳调Q频率选取的原则。 实验原理 1. 固体Nd:YAG激光器工作原理 固体激光器通常由三个基本部分组成,即固体激光工作物质、泵浦源和光学谐振腔。 激光工作物质是激光器的心脏,产生激光的是激活离子,激光器的输出特性在很大程度上由激活离子的能级结构决定。目前,常用的固体激光工作物质有红宝石晶体、钕玻璃和掺钕钇铝石榴石(即Nd3+:YAG)晶体。由于Nd3+:YAG晶体具有荧光谱线窄、量子效率高等特点,它的增益高、阈值低、激光输出效率高,故在中小功率的脉冲器件中,以及在高重复率的脉冲激光器中得到广泛应用。本实验中即采用Nd3+:YAG作为激光工作物质,该工作物质的激活离子为Nd3+,属四能级系统,发射激光波长为1.06μm,工作于连续方式。Nd3+:YAG产生受激辐射的能级如图4-1所示。激活粒子(Nd3+:离子)在这些能级之间的跃迁特性为:在光泵浦作用下,处于基态能级E1上的粒子被激发到高能级E4上,由于E4能级寿命很短,处在该能级上的粒子很快以无辐射跃迁方式迅速转移到较低的激发态能级E3上,E3为亚稳态,在E3能级上的粒子有较长的寿命(10-3~10-4s),因而易于实现粒子数积累。当粒子数由E3向E2跃迁时,产生激光辐射,粒子到达能级E2后,再以无辐射跃迁迅速地返回到基态E1。基于这种状态以及由于热平衡情况,使得粒子不易在E2能级上积聚,因此,在外界激励下,E3和E2之间较易形成粒子数反转,从而实现受激辐射。

激光原理实验(山科大)

实验一 He-Ne 激光器模式分析 (一)实验目的与要求 目的:使学生了解激光器模式的形成及特点,加深对其物理概念的理解;通过测试分析,掌握模式分析的基本方法。对本实验使用的重要分光仪器——共焦球面扫描干涉仪,了解其原理,性能,学会正确使用。 要求:用共焦球面扫描干涉仪测量He-Ne 激光器的相邻纵横模间隔,判别高阶横模的阶次;观察激光器的频率漂移记跳模现象,了解其影响因素;观察激光器输出的横向光场分布花样,体会谐振腔的调整对它的影响。 (二)实验原理 1.激光器模的形成 我们知道,激光器的三个基本组成部分是增益介质、谐振腔和激励能源。如果用某种激励方式,在介质的某一对能级间形成粒子数反转分布,由于自发辐射和受激辐射的作用, 将有一定频率的光波产生,在腔内传播, 并被增益介质逐渐增强、放大,如图1-1所示。实际上,由于能级总有一定的宽度以及其它因素的影响,增益介质的增益有一个频率分布,如图1-2所示,图中)(νG 为光的增益系数。只有频率落在这个范围 内的光在介质中传播时,光强才能获得不同程度的放大。但只有单程放大,还不足以产生激光,要产生激光还需要有谐振腔对其进行光学反馈,使光在多次往返传播中 图 1-1 粒子数反转分布 形成稳定、持续的振荡。形成持续 振荡的条件是,光在谐振腔内往返一周的光程差应是波长的整数倍,即 q q L λμ=2 (1-1) 式中,μ为折射率,对气体μ≈1;L 为腔长;q 为正整数。这正是光波相干的极大条件,满足此条件的光将获得极大增强。每一个q 对应纵向一种稳定的电磁场分布,叫作一个纵模,q 称作纵模序数。q 是一个很大

的数,通常我们不需要知道它的数值,而关心的是有几个不同的q 值,即激光器有几个不同的纵模。从(2-1)式中,我们还看出,这也是驻波形成的条件,腔内的纵模是以驻波形式 存在的, q 值反映的恰是驻波波腹的 图 1-2 光的增益曲线 数目,纵模的频率为 L c q q μν2= (1-2) 同样,一般我们不去求它,而关心的是相邻两个纵模的频率间隔 L c L c q 221≈ = ?=?μν (1-3) 从(2-3)式中看出,相邻纵模频率间隔和激光器的腔长成反比,即腔越长,相邻纵模频率间隔越小,满足振荡条件的纵模个数越多;相反,腔越短,相邻纵模频率间隔越大,在同样的增益曲线范围内,纵模个数就越少。因而用缩短腔长的办法是获得单纵模运行激光器的方法之一。 光波在腔内往返振荡时,一方面有增益,使光不断增强;另一方面也存在着多种损耗, 使光强减弱,如介质的吸收损耗、散射损耗、 镜面的透射损耗、放电毛细管的衍射损耗等。所以,不仅要满足谐振条件,还需要增益大于各种损耗的总和,才能形成持续振荡,有激光输出。如图2-3所示,有五个纵模满足谐振条件,其中有两个纵模的增益小于损耗,所以,有三个纵模形成持续振荡。对于纵模的观测,由于q 值很大,相邻纵模频率差异很小,一般的分光仪器无法分辨,必须使用 精度较高的检测仪器才能观测到。 谐振腔对光多次反馈,在纵向形成不同的场分布,那么对横向是否也会产 生影响呢?回答是肯定的,这是因为光每经过放电毛细管反馈一次,就相当于一次 图 1-3 纵模和纵模间隔 衍射,多次反复衍射,就在横向形成了一个或多个稳定的衍射光斑。每一个衍射光斑对应一种稳定的横向电磁场分布,称为一个横模。图2-4中,给出了几种常见的基本横模光斑图样。我们所看到的复杂的光斑则是这些基本

《激光原理》本科期末考试试卷及答案

系、班 姓 名 座 号 ………………密……………封……………线……………密……………封……………线………………… 华中科技大学2012年《激光原理》期末试题(A) 题 号 一 二 三 四 总分 复核人 得 分 评卷人 一. 填空: (每孔1分,共17分) 1. 通常三能级激光器的泵浦阈值比四能级激光器泵浦阈值 高 。 2. Nd:Y AG 激光器可发射以下三条激光谱线 946 nm 、 1319 nm 、 1064 nm 。其 中哪两条谱线属于四能级结构 1319 nm 、 1064 nm 。 3. 红宝石激光器属于 3 几能级激光器。He-Ne 激光器属于 4 能级激光器。 4. 激光具有四大特性,即单色性好、亮度高、方向性好和 相干性好 5. 激光器的基本组成部分 激活物质、 激光谐振腔 、 泵浦源 。 6. 激光器稳态运转时,腔内增益系数为 阈值 增益系数,此时腔内损耗激光光子的速率和生成激光的光子速率 相等. 7. 调Q 技术产生激光脉冲主要有 锁模 、 调Q 两种方法。 二、解释概念:(共15分,每小题5分)(选作3题) 题 号 一 二 三 合计 得 分 1. 基模高斯光束光斑半径: 激光光强下降为中心光强21 e 点所对应的光斑半径. 2. 光束衍射倍率因子 光束衍射倍率因子= 角 基膜高斯光束远场发散基膜高斯光束束腰半径实际光束远场发散角 实际光束束腰半径?? 3. 一般稳定球面腔与共焦腔的等价关系: 一般稳定球面腔与共焦腔的等价性:任何一个共焦腔与无穷多个稳定球面腔等价; 任何一个稳定球面腔唯一地等价于一个共焦腔。 三、问答题:(共32分,每小题8分) 题 号 一 二 三 四 合计 得 分 1. 画出四能级系统的能级简图并写出其速率方程组 ()()()() Rl l l l l N N n f f n dt dN n n n n n A n W n s n dt dn S n S A n N n f f n dt dn A S n W n dt dn τυννσυννσ-???? ??-==++++-=++-???? ??--=+-=02111220321303001010 3232121202111 222313230303 ,, W 03 A 03 S 03 S 32 S 21 A 21 W 21 W 12 E 3 E 2 E 1 E 0

实验一-半导体激光器系列实验

实验一-半导体激光器系列实验

实验一半导体激光器系列 实验

一、实验设备介绍 2.配套仪器的使用 WGD-6光学多道分析器的使用参考WGD-6光学多道分析器的使用说明书。 3.激光器概述 光电子器件和技术是当今和未来高技术的基础,引起世界各国的极大关注。其中半导体激光器的生产和应用发展特别迅猛,它已经成功地用于光通讯和光学唱片系统;还可以作为红外高分辨率光谱仪光源,用于大气测污和同位素分离等;同时半导体激光器可以成为雷达,测距,全息照相和再现、射击模拟器、红外夜视仪、报警器等的光源。半导体激光器,调频器,放大器集成在一起的集成光路将进一步促进光通 - 1 -

讯,光计算机的发展。 激光器一般包括三个部分: (1)激光工作介质 激光的产生必须选择合适的工作介质,可以是气体、液体、固体或半导体。在这种介质中可以实现粒子数反转,以制造获得激光的必要条件。显然亚稳态能级的存在,对实现粒子数反转是非常有利的。现有工作介质近千种,可产生的激光波长包括从真空紫外到远红外,非常广泛。 (2)激励源 为了使工作介质中出现粒子数反转,必须用一定的方法去激励原子体系,使处于上能级的粒子数增加。一般可以用气体放电的办法来利用具有动能的电子去激发介质原子,称为电激励;也可用脉冲光源来照射工作介质,称为光激励;还有热激励、化学激励等。各种激励方式被形象化地称为泵浦或抽运。为了不断得到激光输出,必须不断地“泵浦”以维持处于上能级的粒子数比下能级多。 (3)谐振腔 有了合适的工作物质和激励源后,可实现粒子数反转,但这样产生的受激辐射强度很弱,无法实际应用。于是人们就想到了用光学谐振腔进行放大。所谓光学谐振腔,实际是在激光器两端,面对面装上两块反射率很高的镜。一块几乎全反射,一块大部分反射、 - 2 -

激光原理实验

激光原理实验 指导老师陈钢 1实验目的:加深对激光原理理论概念的认识和理解,培养实验动手能力。 2实验内容: (1)谐振腔参数认识、调节,调节外腔式He-Ne激光器,使其激光输出,并达到最大值,记录相关实验结果,包括工作电流和激光功率; (2)光学谐振腔的稳定范围; (3)激光输出功率随激光管在腔内位置变化的关系; (4)波长选择,通过选频元件,调出可能的5条谱线,记录波长和相对功率; (5)横模特征观测与判断。 此5个内容,第一个大家都要做一遍,其余四个选两个做,但最好分配好,把每个内容 都做到。 3实验原理: 实验从调整基本装置开始,这部分内容老师讲解。只要调整好基本装置,就可以开始下面的各项实验。 3.1光学稳定性 He-Ne激光器的光学谐振腔是根据激活介质Ne以及所要求的光束质量而设计的。 稳定性的目标就是要获得尽可能好的光束输出,也就是基模高斯光束TEM 00模式。 一般来说,要获得高功率输出和较好的光束质量是两个相矛盾的要求,因为高功率输出需要较大的激活体积,而基模运转时的激活体积却被限制在他所要求的模体积之内。这也 就说明了为什么平凹腔对He-Ne激光器是最佳的结构。 3.2光学谐振腔的稳定范围; 实验可以这样进行,在激光稳定运转过程中,通过改变球面镜的位置,直到激光不能产生为止。球面镜位置改变的具体方法为:把球面镜调节支架上的固定螺丝轻微松动,同时又 使得它能够在轨道上保持静止不动。位置改变过程尽量保持不要破坏激光的振荡。重新固定 调节支架到新的位置,并且通过调节球面镜的垂直和水平调节螺丝,使得激光功率重新达到 最大值。重复这些过程,直到达到一个不能获得激光震荡的新位置为止。测量此时两面镜子 的距离,并与由稳定性条件给出的最大距离L进行比较。 0乞g l乜2乞1 g i =1and g2 =1 丄 R i R2 12 实验的测量方法如下,松开激光管支架的固定螺丝,使得它的位置可以在轨道上改变。第一步准直已经调节好了,在这个实验中要保证激光管支架的机械轴要和准直光给出的光轴

半导体泵浦激光原理实验(精)

hv E 2 E 1 (a) 2 1 (b) E 2 E 1 (c) 光与物质作用的吸收过程 半导体泵浦激光原理实验 【实验目的】 1. 了解激光特别是半导体激光器工作原理 2. 调节激光器光路,观察倍频现象,测量阈值、相位匹配等基本参数,加深对激光技 术理解。 【实验仪器】 808nm 半导体激光器、半导体激光器可调电源、Nd:YVO4晶体、KTP 倍频晶体、输出镜(前腔片)、光功率指示仪 【实验原理】 1. 激光产生原理 光与物质的相互作用可以归结为光与原子的相互作用,有三种过程:吸收、自发辐射和受激辐射。 如果一个原子,开始处于基态,在没有外来光子,它将保持不变,如果一个能量为hv 21 的光子接近,则它吸收这个光子,处于激发态E 2。在此过程中不是所有的光子都能被原子吸收,只有当光子的能量正好等于原子的能级间隔E 1-E 2时才能被吸收。 激发态寿命很短,在不受外界影响时,它们会自发地返回到基态,并放出光子。自发辐 射过程与外界作用无关,由于各个原子的辐射都是自发的、独立进行的,因而不同原子发出来的光子的发射方向和初相位是不相同的。

处于激发态的原子,在外的光子的影响下,会从高能态向低能态跃迁,并两个状态间的 能量差以辐射光子的形式发射出去。只有外来光子的能量正好为激发态与基态的能级差时,才能引起受激辐射,且受激辐射发出的光子与外来光子的频率、发射方向、偏振态和相位完全相同。激光的产生主要依赖受激辐射过程。激光器主要有:工作物质、谐振腔、泵浦源组成。工作物质主要提供粒子数反转。 泵浦过程使粒子从基态E 1抽运到激发态E 3,E 3上的粒子通过无辐射跃迁(该过程粒子从高能级跃迁到低能级时能量转变为热能或晶格振动能,但不辐射光子),迅速转移到亚稳态E 2。E 2是一个寿命较长的能级,这样处于E 2上的粒子不断积累,E 1上的粒子 又由于抽运过程而减少,从而实现E 2与E 1能级间的粒子数反转。激光产生必须有能提供光学正反馈的谐振腔。处于激发态的粒子由于不稳定性而自发辐射到基态,自发辐射产生的光子各个方向都有,偏离轴向的光子很快逸出腔外,只有沿轴向的光子,部分通过输出镜输出,部分被反射回工作物质,在两个反射镜间往返多次被放大,形成受激辐射的光放大即产生激光。 2. 光学倍频 光的倍频是一种最常用的扩展波段的非线性光学方法。激光倍频是将频率为ω的光,通过晶体中的非线性作用,产生频率为2ω的光。 考虑电场的平方项 t E E ωcos 0= )2cos 1(2 cos 20 2 20 2 ) 2(t E t E E P ωβωββ+=== hv 21 2 E 1 (a) E 2 E 1 (b) hv 21 hv 21 光与物质作用的受激辐射过程 E 1 E 3 E 2 三能级系统示意图

激光原理考试

激光原理考试

————————————————————————————————作者:————————————————————————————————日期:

广东工业大学考试试卷( A ) 课程名称: 激光原理与技术 试卷满分100 分 考试时间: 2007年6月18日 (第16周 星期 一) 一、选择题(每题3分,共30分) 1.世界上第一台激光器是 ( ) (A)氦氖激光器. (B)二氧化碳激光器. (C)钕玻璃激光器. (D)红宝石激光器. (E)砷化镓结型激光器. 2.按照原子的量子理论,原子可以通过自发辐射和受激辐射的方式发光,它们所产生的光的特点是:( ) (A)两个原子自发辐射的同频率的光是相干的,原子受激辐射的光与入射光是 不相干的. (B)两个原子自发辐射的同频率的光是不相干的,原子受激辐射的光与入射光 是相干的. (C)两个原子自发辐射的同频率的光是不相干的,原子受激辐射的光与入射光 是不相干的. (D)两个原子自发辐射的同频率的光是相干的,原子受激辐射的光与入射光是 相干的. 3.氦-氖激光器属于典型的( )系统 (A )二能级(B )三能级(C )四能级(D )多能级 4.体积3 cm 1=V ,线宽nm 10=?λ,中心波长60nm ,模式数目为( ) 20 201012104 (D) 102 (C) 104 (B) 102 )A (???? 5.多普勒加宽发生在( )介质中 6.半共心腔在稳定图上的坐标为(d ) (A )(-1,-1) (B ) (0,0) (C )(1,1) (D )(0,1) 7.对于均匀增宽介质,中心频率处小信号增益系数为)00 (v G ,当s I I =时 , 饱和显著,非小信号中心频率增益系数为:(c ) (A ) )00 (v G (B ) )00 (2v G (C ) )00(21v G (D ) )00 (31v G 8..一平凹腔,其凹面镜的半径R 等于腔长L,它是(b ) (A )稳定腔 (B )临界腔 (C )非稳腔 9.能够完善解释黑体辐射实验曲线的是( c ) (A )瑞利-金斯公式 (B )维恩公式 (C )普朗克公式 (D )爱因斯坦公式 10.腔长为0.5米,μ=1.5,纵模间隔为b( )

实验1NdYAG固体激光器实验

hv 2 1 (a) 2 1 (b) 2 E 1 (c) 图1、光与物质作用的吸收过程 Nd :YAG 固体激光器实验 一、 实验内容与器件 1、了解半导体激光器的工作原理和光电特性 2、掌握半导体泵浦固体激光器的工作原理和调试方法 二、 实验原理概述 1. 激光产生原理 光与物质的相互作用可以归结为光与原子的相互作用,有三种过程:吸收、自发辐射和受激辐射。 如果一个原子,开始处于基态,在没有外来光子,它将保持不变,如果一个能量为hv 21的光子接近,则它吸收这个光子,处于激发态E 2。在此过程中不是所有的光子都能被原子吸收,只有当光子的能量正好等于原子的能级间隔 E 1-E 2时才能被吸收。 激发态寿命很短,在不受外界影响时,它们会自发地返回到基态,并放出光子。自发辐射过程与外界作用无关,由于各个原子的辐射都是自发的、独立进行的,因而不同原子发出来的光子的发射方向和初相位是不相同的。 处于激发态的原子, 在外的光子的影响下,会从高能态向低能态跃迁,并两个状态间的能量差以辐射光子的形式发射出去。只有外来光子的能量正好为激发态与基态的能级差时,才能引起受激辐射,且受激辐射发出的光子与外来光子的频率、发射方向、偏振态和相位完 全相同。激光的产生主要依赖受激辐射过程。激光器主要有:工作物质、谐振腔、泵浦源组成。工作物质主要提供粒子数反转。 hv 21 2 E 1 (a) E 2 E 1 (b) hv 21 hv 21 图2、光与物质作用的受激辐射过程

泵浦过程使粒子从基态E 1抽运到激发态E 3,E 3上的粒子通过无辐射跃迁(该过程粒子从高能级跃迁到低能级时能量转变为热能或晶格振动能,但不辐射光子),迅速转移到亚稳态E 2。E 2是一个寿命较长的能级,这样处于E 2上的粒子不断积累,E 1上的粒子 又由于抽运过程而减少,从而实现E 2与E 1能级间的粒子数反转。激光产生必须有能提供光学正反馈的谐振腔。处于激发态的粒子由于不稳定性而自发辐射到基态,自发辐射产生的光子各个方向都有,偏离轴向的光子很快逸出腔外,只有沿轴向的光子,部分通过输出镜输出,部分被反射回工作物质,在两个反射镜间往返多次被放大,形成受激辐射的光放大即产生激光。 2 YAG 固体激光器 固体激光器基本都是由工作物质、泵浦系统、谐振腔和冷却、滤光系统构成。固体激光器工作物质是固体激光器的核心。影响固体激光器工作特性的关键是固体激光工作物质的物理和光谱性质,这主要是指吸收带、荧光谱线、热导率等。实验中,我们采用掺钕钇铝石 榴石(Nd:YAG)作为工作物质,它的激活离子是钕离子(Nd 3+),其吸收谱线如图4所示,在可 见光和红外区域有几个较强的吸收带,我们关注的是808nm 附近的吸收谱线。在本实验中,半导体激光器是用来做固体激光器的泵浦光源。我们采用了输出波长为808nm, InGaAlAs/GaAs 量子阱结构设计、光斑预整形、输出功率大于2W 的多模半导体激光器,工作电流可调,采用半导体制冷片对其进行温度控制。 图4 3:Nd YAG +晶体的吸收光谱(300K ) YAG 中3Nd +与激光产生有关系的能级结构如图5所示。它属于四能级系统。其激光上 能级3E 为33/2F ,激光下能级2E 为43/2I I ,43/2II I ,其荧光谱线波长分别为1.35m μ和1.06m μ,49/2 I 相应于1E 。由于1.06m μ比1.35m μ波长的荧光强约4 倍,在本实验中,我们通过腔镜镀膜,E 1 E 3 E 2 图3、三能级系统示意图

激光原理与技术试题答案

2006-2007学年 第1学期 《激光原理与技术》B 卷 试题答案 1. 填空题(每题4分)[20] 激光的相干时间τc 和表征单色性的频谱宽度Δν之间的关系为___1c υτ?= 一台激光器的单色性为5x10-10,其无源谐振腔的Q 值是_2x109 如果某工作物质的某一跃迁波长为100nm 的远紫外光,自发跃迁几率A 10等于105 S -1,该跃迁的受激辐射爱因斯坦系数B 10等于_____6x1010 m 3s -2J -1 设圆形镜共焦腔腔长L=1m ,若振荡阈值以上的增益线宽为80 MHz ,判断可能存在_两_个振荡频率。 对称共焦腔的 =+)(2 1 D A _-1_,就稳定性而言,对称共焦腔是___稳定_____腔。 2. 问答题(选做4小题,每小题5分)[20] 何谓有源腔和无源腔如何理解激光线宽极限和频率牵引效应 有源腔:腔内有激活工作物质的谐振腔。无源腔:腔内没有激活工作物质的谐振腔。 激光线宽极限:无源腔的线宽极限与腔内光子寿命和损耗有关:122' c R c L δ υπτπ?= = ;有源腔由于受到自发辐射影响,净损耗不等于零,自发辐射的随机相位造成输出激光的线宽极限 220 2()t c s t out n h n P πυυυ?= ?。 频率牵引效应:激光器工作物质的折射率随频率变化造成色散效应,使得振荡模的谐振频率总是偏离无源腔相应的模的频率,并且较后者更靠近激活介质原子跃迁的中心频率。这种现象称为频率牵引效应。 写出三能级和四能级系统的激光上能级阈值粒子数密度,假设总粒子数密度为n ,阈值反转粒子数密度为 n t. 三能级系统的上能级阈值粒子数密度22 t t n n n += ;四能级系统的上能级阈值粒子数密度2t t n n ≈。 产生多普勒加宽的物理机制是什么 多普勒加宽的物理机制是热运动的原子(分子)对所发出(或吸收)的辐射的多普勒频移。 均匀加宽介质和非均匀加宽介质中的增益饱和有什么不同分别对形成的激光振荡模式有何影响 均匀加宽介质:随光强的增加增益曲线会展宽。每个粒子对不同频率处的增益都有贡献,入射的强光不仅使自身的增益系数下降,也使其他频率的弱光增益系数下降。满足阀值条件的纵模

1-实验四 半导体泵浦固体激光器综合实验

实验四半导体泵浦固体激光器综合实验半导体泵浦固体激光器(Diode-Pumped solid-state Laser,DPL),是以激光二极管(LD)代替闪光灯泵浦固体激光介质的固体激光器,具有效率高、体积小、寿命长等一系列优点,在光通信、激光雷达、激光医学、激光加工等方面有巨大应用前景,是未来固体激光器的发展方向。本实验的目的是熟悉半导体泵浦固体激光器的基本原理和调试技术,以及倍频的原理和技术。 一、实验目的 1.掌握半导体泵浦固体激光器的工作原理和调试方法; 2.了解固体激光器倍频的基本原理; 3.掌握固体激光器被动调Q的工作原理,进行调Q脉冲的测量。(选做) 二、实验原理 1.半导体激光泵浦固体激光器工作原理: 上世纪80年代起,生长半导体激光器(LD)技术得到了蓬勃发展,使得LD的功率和效率有了极大的提高,也极大地促进了DPSL技术的发展。与闪光灯泵浦的固体激光器相比,DPSL 的效率大大提高,体积大大减小。在使用中,由于泵浦源LD的光束发散角较大,为使其聚焦在增益介质上,必须对泵浦光束进行光束变换(耦合)。泵浦耦合方式主要有端面泵浦和侧面泵浦两种,其中端面泵浦方式适用于中小功率固体激光器,具有体积小、结构简单、空间模式匹配好等优点。侧面泵浦方式主要应用于大功率激光器。本实验采用端面泵浦方式。端面泵浦耦合通常有直接耦合和间接耦合两种方式。 直接耦合:将半导体激光器的发光面紧贴增益介质,使泵浦光束在尚未发散开之前便被增益介质吸收,泵浦源和增益介质之间无光学系统,这种耦合方式称为直接耦合方式。 直接耦合方式结构紧凑,但是在实际应用中较难实现,并且容易对LD造成损伤。 间接耦合:指先将LD输出的光束进行准直、整形,再进行端面泵浦。常见的方法有:组合透镜系统聚光:用球面透镜组合或者柱面透镜组合进行耦合。 自聚焦透镜耦合:由自聚焦透镜取代组合透镜进行耦合,优点是结构简单,准直光斑的大小取决于自聚焦透镜的数值孔径。 光纤耦合:指用带尾纤输出的LD进行泵浦耦合。优点是结构灵活。 本实验先用光纤柱透镜对半导体激光器进行快轴准直,压缩发散角,然后采用组合透镜对泵浦光束进行整形变换,各透镜表面均镀对泵浦光的增透膜,耦合效率高。本实验的压缩和耦合如图 2所示。

激光原理考试基本概念

第一章 1、激光与普通光源相比有三个主要特点:方向性好,相干性好,亮度高。 2、激光主要是光的受激辐射,普通光源主要光的自发辐射。 3、光的一个基本性质就是具有波粒二象性。光波是一种电磁波,是一种横波。 4、常用电磁波在可见光或接近可见光的范围,波长为~30μm,其相应频率为10^15~10^13。 5、具有单一频率的平面波叫作单色平面波,如果频率宽度Δν<

d、ΔS=0,即跃迁时S不能发生改变。 10、大量原子所组成的系统在热平衡状态下,原子数按能级分布服从玻耳兹曼定律。 11、处于高能态的粒子数总是小于处在低能态的粒子数,这是热平衡情况的一般规律。 12、因发射或吸收光子从而使原子造成能级间跃迁的现象叫作辐射跃迁,必须满足辐射跃迁选择定则。 13、光与物质的相互作用有三种不同的基本过程:自发辐射,受激辐射,和受激吸收。 14、普通光源中自发辐射起主要作用,激光工作过程中受激辐射起主要作用。 15、与外界无关的、自发进行的辐射称为自发辐射。自发辐射的光是非相干光。 16、能级平均寿命等于自发跃迁几率的倒数。 17、受激辐射的特点是: a、只有外来光子的能量hv=E2-E1时,才能引起受激辐射。 b、受激辐射所发出的的光子与外来光子的特性完全相同(频率相同,相位相同,偏振方向相同,传播方向相同)。 18、受激辐射光子与入射(激励)光子属于同一光子态;受激辐射与入辐射场具有相同的频率、相位、波矢(传播方向)和偏振,是相干的。 19、自发辐射跃迁几率就是自发辐射系数本身,而受激辐射的跃迁几

实验三、半导体泵浦固体激光器综合实验

半导体泵浦固体激光器综合实验 半导体泵浦固体激光器(Diode-Pumped solid-state Laser,DPL),是以激光二极管(LD)代替闪光灯泵浦固体激光介质的固体激光器,具有效率高、体积小、寿命长等一系列优点,在光通信、激光雷达、激光医学、激光加工等方面有巨大应用前景,是未来固体激光器的发展方向。本实验的目的是熟悉半导体泵浦固体激光器的基本原理和调试技术,以及其调Q 和倍频的原理和技术。 【实验目的】 1.掌握半导体泵浦固体激光器的工作原理和调试方法; 2.掌握固体激光器被动调Q的工作原理,进行调Q脉冲的测量; 3.了解固体激光器倍频的基本原理。 【实验原理与装置】 1.半导体激光泵浦固体激光器工作原理: 上世纪80年代起,生长半导体激光器(LD)技术得到了蓬勃发展,使得LD的功率和效率有了极大的提高,也极大地促进了DPSL技术的发展。与闪光灯泵浦的固体激光器相比,DPSL的效率大大提高,体积大大减小。在使用中,由于泵浦源LD的光束发散角较大,为使其聚焦在增益介质上,必须对泵浦光束进行光束变换(耦合)。泵浦耦合方式主要有端面泵浦和侧面泵浦两种,其中端面泵浦方式适用于中小功率固体激光器,具有体积小、结构简单、空间模式匹配好等优点。侧面泵浦方式主要应用于大功率激光器。本实验采用端面泵浦方式。端面泵浦耦合通常有直接耦合和间接耦合两种方式。 ①直接耦合:将半导体激光器的发光面紧贴增益介质,使泵浦光束在尚未发散开之前便被增益介质吸收,泵浦源和增益介质之间无光学系统,这种耦合方式称为直接耦合方式。直接耦合方式结构紧凑,但是在实际应用中较难实现,并且容易对LD造成损伤。 ②间接耦合:指先将LD输出的光束进行准直、整形,再进行端面泵浦。常见的方法有: 组合透镜系统聚光:用球面透镜组合或者柱面透镜组合进行耦合。 自聚焦透镜耦合:由自聚焦透镜取代组合透镜进行耦合,优点是结构简单,准直光斑的大小取决于自聚焦透镜的数值孔径。 光纤耦合:指用带尾纤输出的LD进行泵浦耦合。优点是结构灵活。 本实验先用光纤柱透镜对半导体激光器进行快轴准直,压缩发散角,然后采用组合透镜对泵浦光束进行整形变换,各透镜表面均镀对泵浦光的增透膜,耦合效率高。本实验的压缩和耦合如图 2所示。

相关文档
最新文档