函数导数压轴题隐零点的处理技巧

函数导数压轴题隐零点的处理技巧
函数导数压轴题隐零点的处理技巧

函数导数压轴题隐零点的处理技巧

些年高考压轴题中,用导数研究函数的单调性、极值、最值及不等式问题成为命题趋势。用导数解决函数综合问题,最终都会归结于函数的单调性的判断,而函数的单调性又与导函数的零点有着密切的联系,可以说函数的零点的求解或估算是函数综合问题的核心。函数的零点是高中数学中的一个极其重要的概念,经常借助于方程、函数的图象等加以解决。根据函数的零点在数值上是否可以准确求出,我们把它分为两类:一类是在数值上可以准确求出的,不妨称之为显性零点;另一类是依据有关理论(如函数零点的存在性定理)或函数的图象,能够判断出零点确实存在,但是无法直接求出,不妨称之为隐性零点。

本专题通过几个具体的例题来体会隐性零点的处理步骤和思想方法。

一、隐性零点问题示例及简要分析:

1.求参数的最值或取值范围

例1(2012年全国I卷)设函数f(x)=e x﹣ax﹣2.

(1)求f(x)的单调区间;

(2)若a=1,k为整数,且当x>0时,(x﹣k)f′(x)+x+1>0,求k的最大值.

解析:(1)(略解)若a≤0,则f′(x)>0,f(x)在R上单调递增;

若a>0,则f(x)的单调减区间是(﹣∞,ln a),增区间是(ln a,+∞).

(2)由于a=1,所以(x﹣k)f′(x)+x+1=(x﹣k)(e x﹣1)+x+1.

故当x>0时,(x﹣k)f′(x)+x+1>0等价于k<

1

1

x

x

e

+

-

+x(x>0)(*),

令g(x)=

1

1

x

x

e

+

-

+x,则g′(x)=

2

(2)

(1)

x x

x

e e x

e

--

-

而函数f(x)=e x﹣x﹣2在(0,+∞)上单调递增,①f(1)<0,f(2)>0,

所以f(x)在(0,+∞)存在唯一的零点.故g′(x)在(0,+∞)存在唯一的零点.

设此零点为a,则a∈(1,2).当x∈(0,a)时,g′(x)<0;当x∈(a,+∞)时,g′(x)>0.所以g(x)在(0,+∞)的最小值为g(a).

③所以g(a)=a+1∈(2,3).由于(*)式等价于k<g(a),故整数k的最大值为2.

点评:从第2问解答过程可以看出,处理函数隐性零点三个步骤:

①确定零点的存在范围(本题是由零点的存在性定理及单调性确定);

②根据零点的意义进行代数式的替换;

③结合前两步,确定目标式的范围。

2.不等式的证明

例2.(湖南部分重点高中联考试题)已知函数f (x )=2

ln ()x x a +,其中a 为常数. 若a =﹣1,设函数f (x )在(0,1)上的极值点为x 0,求证:f (x 0)<﹣2.

解析 证明:a =﹣1,则f (x )=2ln (1)x x -导数为f ′(x )=3112ln (1)x x x ---,

①设函数f (x )在(0,1)上的极值点为x 0,②可得00112ln 0x x --

=,即有0012ln 1x x =-,要证f (x 0)<﹣2,即020ln (1)x x -+2<0,由于0201

12(1)x x --+2=0012(1)x x -+2=2000(12)2(1)x x x --,由于x 0∈(0,1),且x 0=12

,2ln x 0=1﹣01x 不成立, ③则02

0ln 20(1)x x +<-,故f (x 0)<﹣2成立. 点评:处理函数隐性零点的三个步骤清晰可见。

3.对极值的估算

例3.(2017年全国课标1)已知函数f (x )=ax 2﹣ax ﹣x ln x ,且f (x )≥0.

(1)求a ;

(2)证明:f (x )存在唯一的极大值点x 0,且e ﹣2<f(x 0)<2﹣2.

解析(1)因为f (x )=ax 2﹣ax ﹣x ln x =x (ax ﹣a ﹣ln x )(x >0),则f (x )≥0等价于

h (x )=ax ﹣a ﹣ln x ≥0,求导可知h ′(x )=a ﹣1x

.则当a ≤0时h ′(x )<0,即y =h (x )在(0,+∞)上单调递减,所以当x 0>1时,h (x 0)<h (1)=0,矛盾,故a >0. 因为

当0<x <1a 时h ′(x )<0,当x >1a 时h ′(x )>0,所以h (x )min =h (1a ),又因为h (1)=a ﹣a ﹣ln1=0,所以1a =1,解得a =1;

(另解:因为f (1)=0,所以f (x )≥0等价于f (x )在x >0时的最小值为f (1),

所以等价于f (x )在x =1处是极小值,所以解得a =1;)

(2)证明:由(1)可知f (x )=x 2﹣x ﹣x ln x ,f ′(x )=2x ﹣2﹣ln x ,

令f ′(x )=0,可得2x ﹣2﹣ln x =0,记t (x )=2x ﹣2﹣ln x ,则t ′(x )=2﹣

1x

, 令t ′(x )=0,解得:x =12,所以t (x )在区间(0,12)上单调递减,在(12,+∞)上单调递增,所以t (x )min =t (12)=ln2﹣1<0,从而t (x )=0有解,即f ′(x )=0存在两根x 0,x 2,且不妨设f ′(x )在(0,x 0)上为正、在(x 0,x 2)上为负、在(x 2,+∞)上为正,

所以f (x )必存在唯一极大值点x 0,且2x 0﹣2﹣ln x 0=0,所以f (x 0)=20x ﹣0x ﹣00ln x x =20x ﹣0x ﹣00(22)x x -=

﹣20x +0x ,由x 0<

12可知f (x 0)<200max 2111()224x x -+=-+=;由f ′(1e )<0可知x 0<1e <12

, 所以f (x )在(0,x 0)上单调递增,在(x 0,1e )上单调递减,所以f (x 0)>f (1e )=21e ; 综上所述,f (x )存在唯一的极大值点x 0,且e ﹣2<f (x 0)<2﹣

2.

点评:本题处理函数的隐性零点的三步亦清晰可见,请你标一标。

简要分析:通过上面三个典型案例,不难发现处理隐性零点的三个步骤;这里需要强调的是: 第一个步骤中确定隐性零点范围的方式是多种多样的,可以由零点的存在性定理确定,也可以由函数的图象特征得到,甚至可以由题设直接得到,等等;至于隐性零点的范围精确到多少,由所求解问题决定,因此必要时尽可能缩小其范围;

第二个步骤中进行代数式的替换过程中,尽可能将目标式变形为整式或分式,那么就需要尽可能将指、对数函数式用有理式替换,这是能否继续深入的关键; 第三个步骤实质就是求函数的值域或最值。

最后值得说明的是,隐性零点代换实际上是一种明修栈道,暗渡陈仓的策略,也是数学中“设而不求”思想的体现。

导数压轴题之隐零点问题专辑含答案纯word版

导数压轴题之隐零点问题 导数压轴题之隐零点问题(共13题) 1.已知函数f(x)=(ae x﹣a﹣x)e x(a≥0,e=2.718…,e为自然对数的底数),若f(x)≥0对于x∈R恒成立. (1)求实数a的值; (2)证明:f(x)存在唯一极大值点x0,且. 【解答】(1)解:f(x)=e x(ae x﹣a﹣x)≥0,因为e x>0,所以ae x﹣a﹣x≥0恒成立, 即a(e x﹣1)≥x恒成立, x=0时,显然成立, x>0时,e x﹣1>0, 故只需a≥在(0,+∞)恒成立, 令h(x)=,(x>0), h′(x)=<0, 故h(x)在(0,+∞)递减, 而==1, 故a≥1, x<0时,e x﹣1<0, 故只需a≤在(﹣∞,0)恒成立, 令g(x)=,(x<0), g′(x)=>0, 故h(x)在(﹣∞,0)递增,

而==1, 故a≤1, 综上:a=1; (2)证明:由(1)f(x)=e x(e x﹣x﹣1), 故f'(x)=e x(2e x﹣x﹣2),令h(x)=2e x﹣x﹣2,h'(x)=2e x﹣1, 所以h(x)在(﹣∞,ln)单调递减,在(ln,+∞)单调递增, h(0)=0,h(ln)=2eln﹣ln﹣2=ln2﹣1<0,h(﹣2)=2e﹣2﹣(﹣2)﹣2=>0, ∵h(﹣2)h(ln)<0由零点存在定理及h(x)的单调性知, 方程h(x)=0在(﹣2,ln)有唯一根, 设为x0且2e x0﹣x0﹣2=0,从而h(x)有两个零点x0和0, 所以f(x)在(﹣∞,x0)单调递增,在(x0,0)单调递减,在(0,+∞)单调递增, 从而f(x)存在唯一的极大值点x0即证, 由2e x0﹣x0﹣2=0得e x0=,x0≠﹣1, ∴f(x0)=e x0(e x0﹣x0﹣1)=(﹣x0﹣1)=(﹣x0)(2+x0)≤() 2=, 取等不成立,所以f(x0)<得证, 又∵﹣2<x0<ln,f(x)在(﹣∞,x0)单调递增 所以f(x0)>f(﹣2)=e﹣2[e﹣2﹣(﹣2)﹣1]=e﹣4+e﹣2>e﹣2>0得证, 从而0<f(x0)<成立. 2.已知函数f(x)=ax+xlnx(a∈R) (1)若函数f(x)在区间[e,+∞)上为增函数,求a的取值范围; (2)当a=1且k∈Z时,不等式k(x﹣1)<f(x)在x∈(1,+∞)上恒成立,

函数导数压轴题隐零点的处理技巧

函数导数压轴题隐零点的处理技巧 些年高考压轴题中,用导数研究函数的单调性、极值、最值及不等式问题成为命题趋势。用导数解决函数综合问题,最终都会归结于函数的单调性的判断,而函数的单调性又与导函数的零点有着密切的联系,可以说函数的零点的求解或估算是函数综合问题的核心。函数的零点是高中数学中的一个极其重要的概念,经常借助于方程、函数的图象等加以解决。根据函数的零点在数值上是否可以准确求出,我们把它分为两类:一类是在数值上可以准确求出的,不妨称之为显性零点;另一类是依据有关理论(如函数零点的存在性定理)或函数的图象,能够判断出零点确实存在,但是无法直接求出,不妨称之为隐性零点。 本专题通过几个具体的例题来体会隐性零点的处理步骤和思想方法。 一、隐性零点问题示例及简要分析: 1.求参数的最值或取值范围 例1(2012年全国I卷)设函数f(x)=e x﹣ax﹣2. (1)求f(x)的单调区间; (2)若a=1,k为整数,且当x>0时,(x﹣k)f′(x)+x+1>0,求k的最大值. 解析:(1)(略解)若a≤0,则f′(x)>0,f(x)在R上单调递增; 若a>0,则f(x)的单调减区间是(﹣∞,ln a),增区间是(ln a,+∞). (2)由于a=1,所以(x﹣k)f′(x)+x+1=(x﹣k)(e x﹣1)+x+1. 故当x>0时,(x﹣k)f′(x)+x+1>0等价于k< 1 1 x x e + - +x(x>0)(*), 令g(x)= 1 1 x x e + - +x,则g′(x)= 2 (2) (1) x x x e e x e -- - , 而函数f(x)=e x﹣x﹣2在(0,+∞)上单调递增,①f(1)<0,f(2)>0, 所以f(x)在(0,+∞)存在唯一的零点.故g′(x)在(0,+∞)存在唯一的零点. 设此零点为a,则a∈(1,2).当x∈(0,a)时,g′(x)<0;当x∈(a,+∞)时,g′(x)>0.所以g(x)在(0,+∞)的最小值为g(a). ③所以g(a)=a+1∈(2,3).由于(*)式等价于k<g(a),故整数k的最大值为2. 点评:从第2问解答过程可以看出,处理函数隐性零点三个步骤: ①确定零点的存在范围(本题是由零点的存在性定理及单调性确定); ②根据零点的意义进行代数式的替换; ③结合前两步,确定目标式的范围。

导数与函数的切线及函数零点问题专题

导数与函数的切线及函数零点问题 高考定位 高考对本内容的考查主要有:(1)导数的几何意义是考查热点,要求是B 级,理解导数的几何意义是曲线上在某点处的切线的斜率,能够解决与曲线的切线有关的问题;(2)在高考试题导数压轴题中涉及函数的零点问题是高考命题的另一热点. 真 题 感 悟 (2016·江苏卷)已知函数f (x )=a x +b x (a >0,b >0,a ≠1,b ≠1). (1)设a =2,b =1 2. ①求方程f (x )=2的根; ②若对任意x ∈R ,不等式f (2x )≥mf (x )-6恒成立,求实数m 的最大值; (2)若0<a <1,b >1,函数g (x )=f (x )-2有且只有1个零点,求ab 的值. 解 (1)①由已知可得2x +? ?? ??12x =2, 即2x +1 2 x =2.∴(2x )2-2·2x +1=0, 解得2x =1,∴x =0. ②f (x )=2x +? ?? ??12x =2x +2-x , 令t =2x +2-x ,则t ≥2. 又f (2x )=22x +2-2x =t 2-2, 故f (2x )≥mf (x )-6可化为t 2-2≥mt -6, 即m ≤t +4t ,又t ≥2,t +4 t ≥2 t ·4 t =4(当且仅当t =2时等号成立), ∴m ≤? ? ???t +4t min =4,即m 的最大值为4. (2)∵0<a <1,b >1,∴ln a <0,ln b >0. g (x )=f (x )-2=a x +b x -2,

g′(x)=a x ln a+b x ln b且g′(x)为单调递增,值域为R的函数.∴g′(x)一定存在唯一的变号零点, ∴g(x)为先减后增且有唯一极值点. 由题意g(x)有且仅有一个零点, 则g(x)的极值一定为0, 而g(0)=a0+b0-2=0,故极值点为0. ∴g′(0)=0,即ln a+ln b=0,∴ab=1. 考点整合 1.求曲线y=f (x)的切线方程的三种类型及方法 (1)已知切点P(x0,y0),求y=f (x)过点P的切线方程:求出切线的斜率 f ′(x ),由点斜式写出方程. (2)已知切线的斜率为k,求y=f (x)的切线方程:设切点P(x0,y0),通过方程k=f ′(x )解得x0,再由点斜式写出方程. (3)已知切线上一点(非切点),求y=f (x)的切线方程:设切点P(x0,y0),利用导数求得切线斜率f ′(x0),再由斜率公式求得切线斜率,列方程(组)解得x ,再由点斜式或两点式写出方程. 2.三次函数的零点分布 三次函数在存在两个极值点的情况下,由于当x→∞时,函数值也趋向∞,只要按照极值与零的大小关系确定其零点的个数即可.存在两个极值点x1,x2且x1<x2的函数f (x)=ax3+bx2+cx+d(a≠0)的零点分布情况如下: 3.(1)研究函数零点问题或方程根问题的思路和方法 研究函数图象的交点、方程的根、函数的零点,归根到底还是研究函数的图

专题03 导数与函数零点(精讲篇)-用思维导图突破导数压轴题

用思维导图突破导数压轴题 专题3 导数与函数零点 () f x() f x() f x () f x y h x =()y g x =() 求函数f(x)的零点 :求导判断f(x)的单调性,适当选取区间,确定端点函数值异号 :a=g(x)或h(x)=q(x)判断相应函数单调性、值域,确定零点个数或范围 结合具体问题运用分析法和相关性质确定端点(一般不唯一,见例2等)结合图象确定零点范围(见例3、例6),有时还需证明(见例1)

()sin (1) f x x ln x =-+() f x '() f x ()f x '(1,) 2 π -() f x 思路点拨 第(1)题:若1 ()cos 1f x x x '=- +在区间(1,)2 π -的极大值点x 0,则在x 0左边,() f x '递增,在x 0右边()f x '递减.这需要考虑()f x ''在x 0左边为正,右边为负,也就是说x 0是() f x '的零点,从而()f x '在0(1,)x -上单调递增;在0(x ,)2 π 上()f x ''<0,可得()f x '单调递减. 第(2)结论等价于方程sinx=ln(1+x)有且仅有两个不等的实数根.在同一坐标系中分别作出图象可知一根为0,另 一根介于(2]2 π ,之间. 从图象可以看出当(1,0)x ∈-和 (0,)2 π 时,sin ln(1)0x x -+>,即()0f x >;当[2,)x ∈+∞,()0f x <. 这就需要考虑f ′(x )在(?1,0)、 (0,π 2]、(π 2,2]、(2,+∞)单调性以及端点值的正负.由于x 0位于(0,x 0)和(x 0,π 2),还有对这两个区间作相应讨论. 第(2)的思维导图: f '(x) -1 y x π2 x 0 2y =ln(1+x ) y =sin x -1y x 0π2 已知f (x )=sin x -ln(1+x ) 结论: f (x )有且仅有2个零点 sinx=ln(1+x)有两个不等实数根 数形结合:一根为0,一根在 当和时, f (x )>0;当 x ∈?2,+∞)时,f (x )<0 当 x ∈?2,+∞)时, f (x )<0 等价转化

数学高考导数难题导数零点问题导数整理2017

含参导函数零点问题的几种处理方法方法一:直接求出,代入应用对于导函数为二次函数问题,可以用二次函数零点的基本方法来求。 1)因式分解求零点(1123)?Rx?1(?(a?)x)f(x?a?2ax 例1 讨论函数的单调区间232)?2?1)(x?1)x?2?(axf'(x)?ax?(2a)(xf'可以因式分的符号问 题。由解析:即求 方法二:猜出特值,证明唯一对于有些复杂的函数,有些零点可能是很难用方程求解的方法求出的,这时我们可以考虑用特殊值去猜出零点,再证明该函数的单调性而验证其唯一性。 112x3ax1)x??x(a?f(x)?(x?a?1)e?R?a,讨论函数,的极值情况例4 23x2x)1e?x?a?(x?a)(?(x?a)ex?(a?1)x?f'(x)?a)f'(x其它的零点就的一个零点为,解析:,只能解 出x0?1?e?x的根,不能解。是 2Ra?x?a)ln x,f(x)?(例5(2011高考浙江理科)设函数a?ex)xy?f(的极值点,求实数(Ⅰ)若为2exf()?4ea],3e(0,x?为自然对数),(Ⅱ)求实数恒有的取值范围,使得对任意的成立(注:方法三:锁定区间,设而不求对于例5,也可以直接设函数来求,2e)?0?4f(xa e1?1?x?30?x 有实时,对于任意的数题,恒有意,首②当先①当,由立成a e22e22,?e?a) 4e ln(3e)f(3e)?(3)1???a)(2ln xf'(x)?(x?e?e?3?a3,但这时解得由 x)e3ln(ln(3e)a??12ln x ax?0?'(x)f=0外还有会发现的解除了的解,显然无法用特殊值猜出。 xa??(x)2ln x?1h h(1)?1?a?0h(a)?2ln a?0,,令,注意到x2e?3e ln(3e)1a)f02(ln3e?h(3e)?2ln(3e?2ln(3e)?1?)?1?且。= e33e)e3ln(3f'(x)?0(1,a)h(x)h(x)(1,3e]内,及(13e在)至少还有一个零点,又在故+∞)内 单调递增,所以函数0在(,x1?x?a。,则有唯一零点,但此时无法求出此零点怎么办。我们 可以采取设而不求的方法,记此零点为从 00x?(x,a)(0,x))x?x(0,)x f x)0f()x f0f,x)f'(x f a?(a??)'('(f在时,;当而,当时,,即;当时, 000?2e?x(1,3)xa(ef?)(x4)a(??,恒成立,只要内单调递增,在对内单调递增。所以要使内单调递减,在0,. 22?f(x)?(x?a)ln x?4e,(1)?000成 立。?22f(3e)?(3e?a)ln(3e)?4e,(2)??a2320??2ln x?1?)h(xx f1a?2ln x?xe ln4xx?4,注意到函1)得, 又(,知3)将(3)代入(0000000x0231p x?exx ln2x ln x?x在(1.+ +∞)。再由()内单调递增,故数3)以及函数内单调递增,可得在[1,+∞02e2e2e?a?3e??a?3e3e3e??e13p a?。所以的取值范围为)解得,综上,a。由(2ln(3e)ln(3e)ln(3e23ea??3?。

导数压轴题处理专题讲解

导数压轴题处理专题讲解(上) 专题一双变量同构式(含拉格朗日中值定理)..................................................... - 2 -专题二分离参数与分类讨论处理恒成立(含洛必达法则).................................... - 4 -专题三导数与零点问题(如何取点) .................................................................. - 7 -专题四隐零点问题整体代换.............................................................................. - 13 -专题五极值点偏移 ........................................................................................... - 18 -专题六导数处理数列求和不等式....................................................................... - 25 -

专题一 双变量同构式(含拉格朗日中值定理) 例1. 已知(1)讨论的单调性 (2)设,求证:例2. 已知函数,。(1)讨论函数的单调性;w.w.w.k.s.5.u.c.o.m (2)证明:若,则对任意x ,x ,x x ,有 。 例3. 设函数. (1)当(为自然对数的底数)时,求的最小值; (2)讨论函数零点的个数; (3)若对任意恒成立,求的取值范围. ()()21ln 1f x a x ax =+++()f x 2a ≤-()()()121212 ,0,,4x x f x f x x x ?∈+∞-≥-()2 1(1)ln 2 f x x ax a x = -+-1a >()f x 5a <12∈(0,)+∞1≠21212 ()() 1f x f x x x ->--()ln ,m f x x m R x =+ ∈m e =e ()f x ()'()3 x g x f x = -()() 0, 1f b f a b a b a ->><-m

导数与函数零点问题解题方法归纳

导函数零点问题 一.方法综述 导数是研究函数性质的有力工具,其核心又是由导数值的正、负确定函数的单调性.应用导数研究函数的性质或研究不等式问题时,绕不开研究()f x 的单调性,往往需要解方程()0f x '=.若该方程不易求解时,如何继续解题呢?在前面专题中介绍的“分离参数法”、“构造函数法”等常见方法的基础上,本专题举例说明“三招”妙解导函数零点问题. 二.解题策略 类型一 察“言”观“色”,“猜”出零点 【例1】【2020·福建南平期末】已知函数()() 2 1e x f x x ax =++. (1)讨论()f x 的单调性; (2)若函数()() 2 1e 1x g x x mx =+--在[)1,-+∞有两个零点,求m 的取值范围. 【分析】(1)首先求出函数的导函数因式分解为()()()11e x f x a x x =++'+,再对参数a 分类讨论可得; (2)依题意可得()()2 1e x g x m x =+'-,当0m …函数在定义域上单调递增,不满足条件; 当0m >时,由(1)得()g x '在[)1,-+∞为增函数,因为()01g m '=-,()00g =.再对1m =,1m >, 01m <<三种情况讨论可得. 【解析】(1)因为()() 2 1x f x x ax e =++,所以()()221e x f x x a x a ??=+++??'+, 即()()()11e x f x a x x =++'+. 由()0f x '=,得()11x a =-+,21x =-. ①当0a =时,()()2 1e 0x f x x =+'…,当且仅当1x =-时,等号成立. 故()f x 在(),-∞+∞为增函数. ②当0a >时,()11a -+<-, 由()0f x >′得()1x a <-+或1x >-,由()0f x <′得()11a x -+<<-; 所以()f x 在()() ,1a -∞-+,()1,-+∞为增函数,在()() 1,1a -+-为减函数.

函数与导数压轴题中零点问题

导数压轴题零点问题练习题 一、解答题 1.(2020·省高三考试)设函数()()2 1f x x bx b R =-+∈,()()() ,0,0f x x F x f x x ?>? =? ->??. (1)如果()10f =,求()F x 的解析式; (2)若()f x 为偶函数,且()()g x f x kx =-有零点,数k 的取值围. 【答案】(1)()2221,0 21,0 x x x F x x x x ?-+>=?-+-=?-+-

利用导数解决函数零点问题

利用导数解决函数零点问题(第二轮大题) 这是一类利用导数解决函数零点的问题,解决这类问题的一般步骤是:转化为所构造函数的零点问题(1)求导分解定义域(2)导数为零列表去,(先在草稿纸进行)(3)含参可能要分类 (4)一对草图定大局(零点判定定理水上水下,找端点与极值点函数值符号) 目标:确保1分,争取2分,突破3分. (一)课前测试 1.(2015年全国Ⅰ卷,21)设函数x a e x f x ln )(2-=. (1)讨论)(x f 的导函数)(x f '零点的个数; (二)典型例题 2.(2017年全国Ⅰ卷,21)已知函数 e a ae x f x x -+=)2()(2(2)若0>a 且)(x f 有两个零点,求a 的取值范围. 注: ①求导分解定义域,这1分必拿, )0)(2(1 )(2>-= 'x a xe x x f x ②草稿纸上令0)(='x f ,构造函数)0(2)(>-=x a xe x g x ,重复上面步骤, 042)(22>+='x x xe e x g , )(x g 在),0(+∞递增 ③草图 a g -=)0(, +∞→+∞→)(x g x 时。 一定要用零点判定定理确定零点个数 ④综上所述送1分. )(x f ' )(x f

(三)强化巩固 3.(2017年全国Ⅱ卷,21)(2)证明:x x x x x f ln )(2 --=存在唯一 的极大值点0x ,且202 2)(--<

导数方法与技巧一(隐零点问题)

高三数学一轮复习第二十讲:导数的方法与技巧一(隐零点问题) 1.已知函数 ()()()ln ,f x x h x ax a R ==∈(1)若函数与的图像无公共点,试求实数的取值范围; ()f x ()g x a (2)是否存在实数,使得对任意的,都有函数的图像在的图像m 1,2x ??∈+∞ ??? ()m y f x x =+()x e g x x =的下方?若存在,求出最大整数的值;若不存在,请说明理由. m (参考数据:) ln 20.6931,ln 3 1.3956≈≈≈≈ 2.已知函数,其中,为自然对数的底数. ()()222 x a f x x e x =--a R ∈e (1)函数的图象能否与轴相切?若能求出实数的值;否则,说明理由. ()f x x a (2)若函数在上单调递增,求实数能取到的最大整数值. ()2y f x x =+R a

3.设函数. ()()ln ,21x f x x x g x x e x =-=?--(1)关于的方程在区间上有解,求实数的取值范围; x ()2103 f x x x m =-+[]1,3m (2)证明:当时,. 0x >()()g x f x ≥ 4.已知函数,若恒成立,求实数的取值范围. ()()()2 23,x f x e x a a R =--+∈()0,0x f x ≥≥a

5.已知函数. ()ln 1f x ax x =++(1)讨论函数零点的个数; ()f x (2)对任意的恒成立,求实数的取值范围. ()20,x x f x xe >≤a 6.已知函数. ()2 x f x e x ax =--(1)若函数在R 上单调递增,求实数的取值范围. ()f x a (2)若,证明:当时,. 1a =0x >()2 ln 2ln 2122f x ??>-- ??? (参考数据:) 2.71828,ln 20.69e ≈≈

导数和函数零点问题

导数和函数零点问题 Prepared on 24 November 2020

导数和函数零点 1、已知函数3()31,0f x x a x a =--≠ (1)求()f x 的单调区间; (2)若()f x 在1x =-处取得极值,直线y=m 与()y f x =的图象有三个不同的交 点, 求m 的取值范围。 2、设a 为实数,函数a x x x f ++-=3)(3 (1)求)(x f 的极值; (2)若方程0)(=x f 有3个实数根,求a 的取值范围; (3)若0)(=x f 恰有两个实数根,求a 的值。 3、已知函数)(ln 2)(2R a x ax x f ∈-= (1)讨论)(x f 的单调性; (2)是否存在a 的值,使得方程3)(=x f 有两个不等的实数根 若存在,求出a 的取值范围;若不存在,说明理由。 4、已知函数a ax x a x x f ---+=232 131)(,x R ∈,其中0>a 。 (1)求函数)(x f 的单调区间; (2)若函数)(x f 在区间)0,2(-内恰有两个零点,求a 的取值范围; 5、已知函数)0()23()(2 3>+--++=a d x b a c bx ax x f 的图象如图所示. (1)求c ,d 的值; (2)若函数,01132)(=-+=y x x x f 处的切线方程 在求函数)(x f 的解析式; (3)在(2)的条件下,函数m x x f y x f y ++= =5)(3 1)('与的图象有三个不同的交点, 求m 的取值范围; 6、已知定义域为R 的奇函数)(x f ,当0>x 时,)(1ln )(R a ax x x f ∈+-=

(完整版)导数压轴题分类(6)---函数的隐零点问题(含答案)

导数压轴分类(6)---函数的隐零点问题 任务一、完成下面问题,总结隐零点问题的解题方法。 例1. [2013湖北理10] 已知a 为常数,函数)(ln )(ax x x x f -=有两个极值点21x x ,,且21x x <,则( ) A.)(1x f >0,)(2x f >21- B. )(1x f <0,)(2x f <2 1- C. )(1x f >0,)(2x f <21- D . )(1x f <0,)(2x f >21- 例2. [2012全国文21] 设函数2)(--=ax e x f x . (1)求函数)(x f 的单调区间; (2)若1=a ,k 为整数,且当x >0时,1)(')(++-x x f k x >0,求k 的最大值。 k 的最大值=2 任务二、完成下面问题,体验隐零点问题的解题方法的应用。 2.1 [2015北京海淀二模理18] 设函数2ln 1)(x x x f -=. (Ⅰ)求函数)(x f 的零点及单调区间; (Ⅱ)求证:曲线x x y ln = 存在斜率为6的切线,且切点的纵坐标0y <1- 提示解析:(Ⅰ)函数)(x f 的零点为x e =,单调减区间32(0,)e ;单调增区间32(,)e +∞; (Ⅱ)x x y ln =存在斜率为6的切线即存在点000ln (,)x x x 处导数为6,于是020 1ln 6x x -=,即2001ln 60x x --=,令2()1ln 6f x x x =--为增函数,易判断所以01(,1)2x ∈,所以20000000 ln 1616x x y x x x x -===-为减函数,所以0001 2|231x y y =<=-=-

利用导数解决函数零点问题

1 利用导数解决函数零点问题(第二轮大题) 这是一类利用导数解决函数零点的问题,解决这类问题的一般步骤是:转化为所构造函数的零点问题(1)求导分解定义域(2)导数为零列表去,(先在草稿纸进行)(3)含参可能要分类 (4)一对草图定大局(零点判定定理水上水下,找端点与极值点函数值符号) 目标:确保1分,争取2分,突破3分. (一)课前测试 1.(2015年全国Ⅰ卷,21)设函数x a e x f x ln )(2-=. (1)讨论)(x f 的导函数)(x f '零点的个数; (二)典型例题 2.(2017年全国Ⅰ卷,21)已知函数 e a ae x f x x -+=)2()(2(2)若0>a 且)(x f 有两个零点,求a 的取值范围. 注: ①求导分解定义域,这1分必拿, )0)(2(1 )(2>-= 'x a xe x x f x ②草稿纸上令0)(='x f ,构造函数)0(2)(>-=x a xe x g x ,重复上 面步骤, 042)(22>+='x x xe e x g , )(x g 在),0(+∞递增 ③草图 a g -=)0(, +∞→+∞→)(x g x 时。 一定要用零点判定定理确定零点个数 )(x f ' )(x f

2 (三)强化巩固 3.(2017年全国Ⅱ卷,21)(2)证明:x x x x x f ln )(2--=存在唯一 的极大值点0x ,且2022)(--<

高考导数压轴题零点问题

导数压轴题之零点问题 1.已知函数f(x)=(ae x﹣a﹣x)e x(a≥0,e=2.718…,e为自然对数的底数),若f(x)≥0对于x∈R恒成立. (1)求实数a的值; (2)证明:f(x)存在唯一极大值点x0,且. 【解答】(1)解:f(x)=e x(ae x﹣a﹣x)≥0,因为e x>0,所以ae x﹣a﹣x≥0恒成立, 即a(e x﹣1)≥x恒成立, x=0时,显然成立, x>0时,e x﹣1>0, 故只需a≥在(0,+∞)恒成立, 令h(x)=,(x>0), h′(x)=<0, 故h(x)在(0,+∞)递减, 而==1, 故a≥1, x<0时,e x﹣1<0, 故只需a≤在(﹣∞,0)恒成立, 令g(x)=,(x<0), g′(x)=>0, 故h(x)在(﹣∞,0)递增, 而==1, 故a≤1,

综上:a=1; (2)证明:由(1)f(x)=e x(e x﹣x﹣1), 故f'(x)=e x(2e x﹣x﹣2),令h(x)=2e x﹣x﹣2,h'(x)=2e x﹣1, 所以h(x)在(﹣∞,ln)单调递减,在(ln,+∞)单调递增, h(0)=0,h(ln)=2eln﹣ln﹣2=ln2﹣1<0,h(﹣2)=2e﹣2﹣(﹣2)﹣2=>0, ∵h(﹣2)h(ln)<0由零点存在定理及h(x)的单调性知, 方程h(x)=0在(﹣2,ln)有唯一根, 设为x0且2e x0﹣x0﹣2=0,从而h(x)有两个零点x0和0, 所以f(x)在(﹣∞,x0)单调递增,在(x0,0)单调递减,在(0,+∞)单调递增, 从而f(x)存在唯一的极大值点x0即证, 由2e x0﹣x0﹣2=0得e x0=,x0≠﹣1, ∴f(x0)=e x0(e x0﹣x0﹣1)=(﹣x0﹣1)=(﹣x0)(2+x0)≤()2=, 取等不成立,所以f(x0)<得证, 又∵﹣2<x0<ln,f(x)在(﹣∞,x0)单调递增 所以f(x0)>f(﹣2)=e﹣2[e﹣2﹣(﹣2)﹣1]=e﹣4+e﹣2>e﹣2>0得证, 从而0<f(x0)<成立. 2.已知函数f(x)=ax+xlnx(a∈R) (1)若函数f(x)在区间[e,+∞)上为增函数,求a的取值范围; (2)当a=1且k∈Z时,不等式k(x﹣1)<f(x)在x∈(1,+∞)上恒成立,求k的最大值. 【解答】解:(1)∵函数f(x)在区间[e,+∞)上为增函数, ∴f′(x)=a+lnx+1≥0在区间[e,+∞)上恒成立,∴a≥(﹣lnx﹣1)max=﹣2.

第16讲-导数与函数的零点(解析版)

第16讲-导数与函数的零点 一、 经典例题 考点一 判断零点的个数 【例1】已知二次函数f (x )的最小值为-4,且关于x 的不等式f (x )≤0的解集为{x |-1≤x ≤3,x ∈R }. (1)求函数f (x )的解析式; (2)求函数g (x )=f (x )x -4ln x 的零点个数. 解 (1)∵ f (x )是二次函数,且关于x 的不等式f (x )≤0的解集为{x |-1≤x ≤3,x ∈R }, ∴设f (x )=a (x +1)(x -3)=ax 2-2ax -3a ,且a >0. ∴f (x )min =f (1)=-4a =-4,a =1. 故函数f (x )的解析式为f (x )=x 2-2x -3. (2)由(1)知g (x )=x 2-2x -3x -4ln x =x -3x -4ln x -2, ∴g (x )的定义域为(0,+∞),g ′(x )=1+3x 2-4x =(x -1)(x -3)x 2 ,令g ′(x )=0,得x 1=1,x 2=3. 当x 变化时,g ′(x ),g (x )的取值变化情况如下表: X (0,1) 1 (1,3) 3 (3,+∞) g ′(x ) + 0 - 0 + g (x ) 极大值 极小值 当03时,g (e 5)=e 5-3e 5-20-2>25-1-22=9>0. 又因为g (x )在(3,+∞)上单调递增, 因而g (x )在(3,+∞)上只有1个零点, 故g (x )仅有1个零点. 规律方法 利用导数确定函数零点或方程根个数的常用方法 (1)构建函数g (x )(要求g ′(x )易求,g ′(x )=0可解),转化确定g (x )的零点个数问题求解,利用导数研究该函数的单调性、极值,并确定定义区间端点值的符号(或变化趋势)等,画出g (x )的图象草图,数形结合求解函数零点的个数.

函数与导数经典例题--高考压轴题(含答案)

函数与导数经典例题-高考压轴 1. 已知函数32()4361,f x x tx tx t x R =+-+-∈,其中t R ∈. (Ⅰ)当1t =时,求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)当0t ≠时,求()f x 的单调区间; (Ⅲ)证明:对任意的(0,),()t f x ∈+∞在区间(0,1)内均存在零点. 2. 已知函数21 ()32 f x x = +,()h x = (Ⅰ)设函数F (x )=18f (x )-x 2[h (x )]2,求F (x )的单调区间与极值; (Ⅱ)设a ∈R ,解关于x 的方程33 lg[(1)]2lg ()2lg (4)24 f x h a x h x --=---; (Ⅲ)设*n ∈N ,证明:1 ()()[(1)(2)()]6 f n h n h h h n -+++≥ . 3. 设函数ax x x a x f +-=2 2ln )(,0>a (Ⅰ)求)(x f 的单调区间; (Ⅱ)求所有实数a ,使2 )(1e x f e ≤≤-对],1[e x ∈恒成立. 注:e 为自然对数的底数. 4. 设2 1)(ax e x f x +=,其中a 为正实数. (Ⅰ)当3 4 = a 时,求()f x 的极值点;(Ⅱ)若()f x 为R 上的单调函数,求a 的取值范围. 5. 已知a , b 为常数,且a ≠0,函数f (x )=-ax+b+axlnx ,f (e )=2(e=2.71828…是自然对数 的底数)。 (I )求实数b 的值; (II )求函数f (x )的单调区间; (III )当a=1时,是否同时存在实数m 和M (m

专题05 挖掘“隐零点”,破解导数压轴题-2019年高考数学压轴题之函数零点问题(解析版)

专题五挖掘“隐零点”,破解导数压轴题 函数方程思想是一种重要的数学思想方法,函数问题可以利用方程求解,方程解的情况可借助于函数的图象和性质求解.高考命题常常以基本初等函数为载体,主要考查以下三个方面:(1)零点所在区间——零点存在性定理;(2)二次方程根的分布问题;(3)判断零点的个数问题;(4)根据零点的情况确定参数的值或范围;(5)根据零点的情况讨论函数的性质或证明不等式等.本专题围绕利用函数的“隐零点”,破解导数压轴问题,例题说法,高效训练. 【典型例题】 类型一挖掘“隐零点”,求参数的最值或取值范围 例1.【浙江省杭州第十四中学2019届高三12月月考】设函数,曲线y=f(x)在x=1处的切线与直线y=3x平行. (1)判断函数f(x)在区间和上的单调性,并说明理由; (2)当时,恒成立,求的取值范围. 【答案】(1)区间单调递增;(2) 【解析】 (1).∵f'(1)=1+b=3,∴b=2,则f'(x)=ln x+4x-1. 因为在单调递增,所以当时 即函数f(x)在区间单调递减;当时 即函数f(x)在区间单调递增; (2)因为,而在(0,1)上递增 存在使得

,当 时单调递减; 当时 单调递增 所以 又因为时则 所以则 类型二 挖掘“隐零点”,证明不等式 例2. 设函数2()ln x f x e a x =-,设()2 0,2a e ∈求证:当(]0,1x ∈时,2()2ln f x a a a ≥+ 【答案】见解析 【解析】()f x 的定义域为(]0,1,222'()2x x a xe a f x e x x -=-= 设2()2x x xe a ?=-,()22()242x x x xe x e ?'==+, 当(]0,1x ∈,()0x ?'>,即()x ?在区间(]0,1为增函数, (2(),2x a e a ??∈--? 又因为( )2 0,2a e ∈,所以2 (0)0,(1)20a e a ??=-<=-> 由零点存在定理可知'()f x 在(]0,1的唯一零点为0x 当0(0,)x x ∈时,'()0f x <,当(]0,1x x ∈,'()0f x > 故()f x 在0(0,)x 单调递减,在(]0,1x 单调递增, 所以当0x x =时,()f x 取得最小值,最小值为0200()ln x f x e a x =-, 由0 2020x x e a -=,即0 202x a e x = ,两边去对数得00ln ln 22 a x x =- 由于,所以00000222()2ln 22ln 2ln 22a a f x ax a ax a a a x a x a a = ++≥?=+

导数与函数的零点讲义

【题型一】函数的零点个数 【解题技巧】用导数来判断函数的零点个数,常通过研究函数的单调性、极值后,描绘出函数的图象,再借助图象加以判断。 【例1】已知函数3 ()31,0f x x ax a =--≠ ()I 求()f x 的单调区间; ()II 若()f x 在1x =-处取得极值,直线y=m 与()y f x =的图象有三个不同的交点,求m 的取值范围。 变式:已知定义在R 上的奇函数,满足,且在区间[0,2]上是增函数,若方程 ()(0)f x m m =>在区间[8,8]-上有四个不同的根,则 【答案】 -8 【解析】因为定义在R 上的奇函数,满足,所以,所以, 由为奇函数,所以函数图象关于直线对称且,由知,所以函数是以8为周期的周期函数,又因为在区间[0,2]上 是增函数,所以在区间[-2,0]上也是增函数.如图所示,那么方程f(x)=m(m>0) 在区间上有四个不同的根,不妨设,由对称性知,.所以 . 【题型二】复合函数的零点个数 复合函数是由内层函数与外层函数复合而成的,在处理其零点个数问题时,应分清内层和外层函数与零点的关系。 【解题技巧】函数()(())h x f f x c =-的零点个数的判断方法可借助换元法解方程的思想 分两步进行。即令()f x d =,则()()h x f d c =- 第一步:先判断()f d c =的零点个数情况 第二步:再判断()f x d =的零点个数情况

【例2】已知函数3()3f x x x =- 设()(())h x f f x c =-,其中[22]c ∈-,,求函数()y h x =的零点个数 1.(江苏省连云港市2013届高三上学期摸底考试(数学)已知函数 322()39(0)f x x ax a x a =--≠.若方程'2()12169f x nx ax a a =---在[l,2]恰好有两 个相异的实根,求实数a 的取值范围(注:1n2≈: 【题型三】如何运用导数求证函数“存在、有且只有一个”零点 【解题技巧】(1)要求证一个函数存在零点,只须要用“函数零点的存在性定理”即可证明。即: 如果函数()f x 在区间[]a b ,上是一条连续不断曲线,并且()()0f a f b ?<,则函数()f x 在区间()a b ,上至少有一个零点。即存在一点()0x a b ∈,,使得0()0f x =,这个0x 也就是方程()0f x =的根. (2)要求证一个函数“有且只有一个”零点,先要证明函数为单调函数,即存在零点;再用“函数零点的存在性定理”求证函数零点的唯一性。其依据为: 如果函数()f x 在区间[]a b ,上是单调函数,并且()()0f a f b ?<,则函数()f x 在区间 ()a b ,上至多有一个零点。 【例3】设函数3 2 9()62 f x x x x a =- +-. (1)对于任意实数x ,()f x m '≥恒成立,求m 的最大值; (2)若方程()0f x =有且仅有一个实根,求a 的取值范围.

第3讲 导数与函数的切线及函数零点问题

第3讲 导数与函数的切线及函数零点问题 高考定位 高考对本内容的考查主要有:(1)导数的几何意义是考查热点,要求是B 级,理解导数的几何意义是曲线上在某点处的切线的斜率,能够解决与曲线的切线有关的问题;(2)在高考试题导数压轴题中涉及函数的零点问题是高考命题的另一热点. 真 题 感 悟 (2016·江苏卷)已知函数f (x )=a x +b x (a >0,b >0,a ≠1,b ≠1). (1)设a =2,b =12. ①求方程f (x )=2的根; ②若对任意x ∈R ,不等式f (2x )≥mf (x )-6恒成立,求实数m 的最大值; (2)若0<a <1,b >1,函数g (x )=f (x )-2有且只有1个零点,求ab 的值. 解 (1)①由已知可得2x +? ?? ??12x =2, 即2x +1 2x =2.∴(2x )2-2·2x +1=0, 解得2x =1,∴x =0. ②f (x )=2x +? ?? ??12x =2x +2-x , 令t =2x +2-x ,则t ≥2. 又f (2x )=22x +2-2x =t 2-2, 故f (2x )≥mf (x )-6可化为t 2-2≥mt -6, 即m ≤t +4t ,又t ≥2,t +4 t ≥2 t · 4t =4(当且仅当t =2时等号成立), ∴m ≤? ????t +4t min =4,即m 的最大值为4. (2)∵0<a <1,b >1,∴ln a <0,ln b >0. g (x )=f (x )-2=a x +b x -2, g ′(x )=a x ln a +b x ln b 且g ′(x )为单调递增,值域为R 的函数.∴g ′(x )一定存在唯一的

相关文档
最新文档