无穷级数内容小结讲课讲稿

无穷级数内容小结讲课讲稿
无穷级数内容小结讲课讲稿

无穷级数内容小结

1.数项级数:∑∞=1n n u ,称∑==n

i k n u s 1为前n 项部分和。

若存在常数 s,使n n s s ∞

→=lim ,则称级数收敛,s 为该级数的和;否则级数发散。 2.数项级数性质:1)∑∞

=1n n Cu =C ∑∞=1n n u ;2)若级数∑∞=1n n u ,∑∞=1n n v 收敛于σ,s ,则级数∑∞

=±1n n n v u 收敛于

σ±s ;3)级数中去掉,增加或改变有限项,敛散性不变;4)收敛级数任意加括号所得的级数仍收敛,且其和不变。5)若级数∑∞=1n n u 收敛,必有0lim =∞

→n n u

3.两个重要级数:1)几何级数:∑∞

=-11n n aq = +++++-12n aq aq aq a (0≠a ) 若,1

q

a -1,若,1≥q 级数发散。 2)p 级数:∑∞=11n p n = +++++p p p n 131211(p>0) 若p>1,级数收敛;若1≤p ,级数发散;当p=1时,调和级数∑

∞=11n n 发散。

4.正项级数审敛法:对一切自然数n,都有0≥n u ,称级数∑∞

=1

n n u 为正项级数

方法:1)比较审敛法:设∑∞=1

n n u 和∑∞=1n n v 都是正项级数,且n n v u ≤(n=1,2,…)若级数∑∞

=1n n v 收敛,

则级数∑∞=1n n u 收敛;若级数∑∞=1n n u 发散,则∑∞

=1

n n v 发散。2)比较审敛法的极限形式:若

l v u n n n =∞→lim )0(+∞<p )lim (1∞=+∞→n

n n u u 包括,级数发散;当p=1时, 级数可能收敛,也可能发散。4根值审敛法:若ρ=∞

→n n n u lim ,则若p<1,级数收敛;若1>p )lim (∞=∞

→n n n u 包括,级数发散;当p=1时,级数可能收敛,也可能发散。

5.交错级数的莱布尼茨审敛法:设∑∞

=--11)1(n n n u 为交错级数,若1)对一切N 有n n u u ≤+1;2)

0lim =∞→n n u ,则级数∑∞

=--11)1(n n n u 收敛,且其和1u s ≤. 6.级数的绝对收敛和条件收敛:若∑∞=1n n u 收敛,则级数∑∞=1n n u 绝对收敛;若∑∞=1n n u 收敛,而∑∞=1

n n u 发

散,则级数∑∞

=1n n u 条件收敛。

7.幂级数n

n n x a ∑∞=0的收敛半径 收敛区间:对任意一个幂级数n n n x a ∑∞

=0,都存在一个R,,0+∞≤≤R 使对一切R x <都有级数n n n x a ∑∞

=0绝对收敛,而当R x >时级数发散。称R 为该幂级数

的收敛半径,(-R,R )为收敛区间。当幂级数只在x=0一点收敛时,R=0;当对一切x 幂级数都收敛时+∞=R

8.收敛半径、区间的求法:对幂级数n n n x a ∑∞

=0,若ρ=+∞→n n n a a 1lim

,则当ρ为非零正数时,ρ1=R ;当

0=ρ时,+∞=R ;当+∞=ρ时,R=0

9.幂级数的性质:1)(和函数连续性)设幂级数的收敛半径为R(+∞≤

内连续。若它在x=R(或-R)处收敛,则s(x)在][)),,(R R R

R --(或上连续。2)(逐项积分)?=x

dt t s 0)(dt t a n x n n )(00?∑∞==dt t a n

n x n ∑?∞=00=101

+∞

=∑+n n n x n a ,且前后收敛半径相同 3)逐项可导:)(x s '=)(0'∑∞=n n n x a =)(0'∑∞

=n

n n x a =10-∞=∑n n n x na ,且前后收敛半径相同 10.函数的幂级数展开式:f(x)在点0x x =附近有任意阶导数,称幂级数

无穷级数内容小结讲课讲稿

无穷级数内容小结

1.数项级数:∑∞=1n n u ,称∑==n i k n u s 1为前n 项部分和。 若存在常数 s,使n n s s ∞ →=lim ,则称级数收敛,s 为该级数的和;否则级数发散。 2.数项级数性质:1)∑∞ =1n n Cu =C ∑∞=1n n u ;2)若级数∑∞=1n n u ,∑∞=1n n v 收敛于σ,s ,则级数∑∞ =±1n n n v u 收敛于 σ±s ;3)级数中去掉,增加或改变有限项,敛散性不变;4)收敛级数任意加括号所得的级数仍收敛,且其和不变。5)若级数∑∞=1n n u 收敛,必有0lim =∞ →n n u 3.两个重要级数:1)几何级数:∑∞ =-11n n aq = +++++-12n aq aq aq a (0≠a ) 若,10) 若p>1,级数收敛;若1≤p ,级数发散;当p=1时,调和级数∑ ∞=11n n 发散。 4.正项级数审敛法:对一切自然数n,都有0≥n u ,称级数∑∞ =1 n n u 为正项级数 方法:1)比较审敛法:设∑∞=1 n n u 和∑∞=1n n v 都是正项级数,且n n v u ≤(n=1,2,…)若级数∑∞ =1n n v 收敛, 则级数∑∞=1n n u 收敛;若级数∑∞=1n n u 发散,则∑∞ =1 n n v 发散。2)比较审敛法的极限形式:若 l v u n n n =∞→lim )0(+∞<p )lim (1∞=+∞→n n n u u 包括,级数发散;当p=1时, 级数可能收敛,也可能发散。4根值审敛法:若ρ=∞ →n n n u lim ,则若p<1,级数收敛;若1>p )lim (∞=∞ →n n n u 包括,级数发散;当p=1时,级数可能收敛,也可能发散。

第十章无穷级数

第10章 无穷级数 【学习目标】 1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件。 2.掌握几何级数与P 级数的收敛与发散的条件。 3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法。 4.掌握交错级数的莱布尼茨判别法。 5.了解任意项级数绝对收敛与条件收敛的概念,以及绝对收敛与条件收敛的关系。 6.了解函数项级数的收敛域及和函数的概念。 7.理解幂级数收敛半径的概念,并掌握幂级数的收敛半径、收敛区间及收敛域的求法。 8.了解幂级数在其收敛区间内的一些基本性质(和函数的连续性、逐项微分和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些常数项级数的和。 9.了解函数展开为泰勒级数的充分必要条件。 10.掌握,sin ,cos x e x x ,ln(1)x +和(1)a α+的麦克劳林展开式,会用它们将一些简单函数间接展开成幂级数。 【能力目标】 【教学重点】 1、级数的基本性质及收敛的必要条件。 2、正项级数收敛性的比较判别法、比值判别法和根值判别; 3、交错级数的莱布尼茨判别法; 4、幂级数的收敛半径、收敛区间及收敛域; 5、,sin ,cos x e x x ,ln(1)x +和(1)a α+的麦克劳林展开式; 【教学难点】 1、 比较判别法的极限形式; 2、 莱布尼茨判别法;

3、 任意项级数的绝对收敛与条件收敛; 4、 函数项级数的收敛域及和函数; 5、 泰勒级数; 【教学方法】 启发式、引导式 【教学课时分配】 (18学时) 第1 次课 §1 第2 次课 §2 第3 次课 §3 第4 次课 §4 第5次课 §5 第6次课 §6 第7次课 §7 第8次课 §8 第9次课 习题课 10. 1 常数项级数的概念和性质 一、无穷级数的概念 定义10.1 设有无穷序列 123,,, ,, n u u u u ??????, 则由此序列构成的表达式 123 n u u u u +++???++???称为无穷级数, 简称级数, 记为∑∞ =1 n n u , 即 3211 ???++???+++=∑∞ =n n n u u u u u , 其中第n 项n u 叫做级数的一般项. 如果(1,2,...)n u n =都为常数,则称该级数为常数项级数,简称数项级数;如果 (1,2,...)n u n =为变量x 的函数()n u x ,则称该级数为函数项级数. 二、数项级数的敛散性概念 级数的部分和: 作级数∑∞ =1n n u 的前n 项和

数项级数敛散性判别法。(总结)

华北水利水电学院 数项级数敛散性判别法。(总结) 课程名称:高等数学(下) 专业班级: 成员组成 联系方式: 2012年5月18日

摘要:在学习数项级数的时候,对于单一的方法所出的例题,大家都知道用何种方法去解决。但是等到所有的方法学完之后,再给出题目,大家似乎一头雾水,不知道用哪一种方法。有些同学甚至挨个拭每一种方法,虽然也可行。但是对于同一个级数,用不同的方法判断敛散性的难易程度不同,如果选用合适的方式,可以到到事半功倍的效果,但是如果悬选择了错误的方法,可能费了九牛二虎之力之后,得出的结果还是错误的。所以我们有必要总结一下判断敛散性的方法,了解它们的特性,才能更好地运用它们。 关键词:数项级数,敛散性,判断,方法。 英文题目 Abstract:Single out examples to learn a number of series,we all know which way to go.But wait until all of the methods after completing their studies are given topics,everyone seems confused and do not know what kind of way. Some students even one by one swab of each method, although it is also feasible.But for one series,using different methods to determine the convergence and divergence of the degree of difficulty, if the appropriate choice of the way to a multiplier effect,but if the hanging has chosen the wrong way,may have spent nine cattle tigers after the power, the result is wrong.So we need to sum up to determine the convergence and divergence,and to understand their characteristics,in order to make better use of them. Key words:A number of series,convergence and divergence of judgment. 引言:以下介绍书中所提到的判断数项级数敛散性的定理,并通过一些例题,讲解它们各自的适用范围。并总结出判断敛散性的一般思维过程。

第10章 无穷级数习题详解

第十章 无穷级数 习题10-1 3. 判定下列级数的敛散性: (1)∑∞ =- +1)1(n n n ; (2)∑ ∞ =+-1 ) 12)(12(1 n n n ; (3) ++++?+?) 1(13212 11n n ; (4) ++++6 πsin 6 π2sin 6 πsin n ; (5)∑∞ =+ +-+1 )122(n n n n ; (6) ++ + + 4 3 3 1 3 1 3 13 1; (7)2 2 111111()()()323 2 3 2 n n -+-++- + ; (8) ++-+++++1 2129 77 55 33 1n n ; (9))(1 21 12-∞ =+- ∑n n n a a (0a >); (10) ++ + ++ + + ++ n n ) 11(1) 311(1) 211(11 1113 2 . 解(1)因为 11)1()34()23()12(-+= - +++- +- +-=n n n S n 当 ∞→n 时,∞→n S ,故级数发散. (2)因为 )1211 21 ( 21 )12)(12(1 +- -= +-n n n n ) 12)(12(1 7 515 313 11 +-+ +?+ ?+?= n n S n )]1 211 21 ( )5 131()3 11[(2 1+- -+- +-=n n ]1 21 1[2 1+- = n , 当∞→n 时,2 1→n S ,故级数收敛. (3) 因为 1 11) 1(1+-= +n n n n , ) 1(14 313 212 11++ +?+ ?+?= n n S n

无穷级数总结

无穷级数总结 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

无穷级数总结 一、概念与性质 1. 定义:对数列12,, ,n u u u ,1 n n u ∞ =∑称为无穷级数,n u 称为一般项;若部分 和 数列{}n S 有极限S ,即lim n n S S →∞ =,称级数收敛,否则称为发散. 2. 性质 ①设常数0≠c ,则∑∞ =1 n n u 与∑∞ =1 n n cu 有相同的敛散性; ②设有两个级数∑∞=1 n n u 与∑∞=1 n n v ,若∑∞==1 n n s u ,σ=∑∞=1 n n v ,则∑∞ =±=±1 )(n n n s v u σ; 若∑∞=1n n u 收敛,∑∞=1 n n v 发散,则∑∞ =±1 )(n n n v u 发散; 若∑∞ =1 n n u ,∑∞=1 n n v 均发散,则∑∞ =±1 )(n n n v u 敛散性不确定; ③添加或去掉有限项不影响一个级数的敛散性; ④设级数∑∞ =1n n u 收敛,则对其各项任意加括号后所得新级数仍收敛于原级数的 和. 注:①一个级数加括号后所得新级数发散,则原级数发散; ②一个级数加括号后收敛,原级数敛散性不确定. ⑤级数∑∞ =1n n u 收敛的必要条件:0lim =∞ →n n u ; 注:①级数收敛的必要条件,常用判别级数发散; ②若0lim =∞ →n n u ,则∑∞ =1n n u 未必收敛; ③若∑∞ =1 n n u 发散,则0lim =∞ →n n u 未必成立.

二、常数项级数审敛法 1. 正项级数及其审敛法 ① 定义:若0n u ≥,则∑∞ =1n n u 称为正项级数. ② 审敛法: (i ) 充要条件:正项级数∑∞ =1n n u 收敛的充分必要条件是其部分和数列有界. (ii ) 比较审敛法:设∑∞=1 n n u ①与∑∞ =1 n n v ②都是正项级数,且 (1,2,)n n u v n ≤=,则若②收敛则①收敛;若①发散则②发散. A. 若②收敛,且存在自然数N ,使得当n N ≥时有(0)n n u kv k ≤>成立,则①收敛;若②发散,且存在自然数N ,使得当n N ≥时有(0)n n u kv k ≥>成立,则①发散; B. 设∑∞ =1n n u 为正项级数,若有1p >使得1 (1,2,)n p u n n ≤=,则∑∞ =1 n n u 收敛;若 1 (1,2,)n u n n ≥=,则∑∞ =1 n n u 发散. C. 极限形式:设∑∞ =1 n n u ①与∑∞ =1 n n v ②都是正项级数,若lim (0)n n n u l l v →∞=<<+∞,则 ∑∞ =1 n n u 与∑∞ =1 n n v 有相同的敛散性. 注:常用的比较级数: ①几何级数:∑∞ =-?? ???≥<-=11 1 11n n r r r a ar 发散; ②-p 级数:∑ ∞ =???≤>1 111n p p p n 时 发散 时收敛;

无穷级数总结

无穷级数总结 一、概念与性质 1. 定义:对数列 u 1,u 2,L ,u n L , u n 称为无穷级数, u n 称为一般项;若部分和 n1 数列{&}有极限S ,即limS n S ,称级数收敛,否则称为发散. n 2. 性质 ① 设常数 c 0 ,则 u n 与 cu n 有相同的敛散性; n1 n1 ② 设有两个级数 u n 与 v n ,若 u n s , v n ,则 (u n v n ) s ; n1 n1 n1 n1 n1 若 u n 收敛, v n 发散,则 (u n v n ) 发散; n1 n1 n1 若 u n , v n 均发散,则 (u n v n ) 敛散性不确定; n1 n1 n1 ③ 添加或去掉有限项不影响一个级数的敛散性; ④ 设级数 u n 收敛,则对其各项任意加括号后所得新级数仍收敛于原级数的和. n1 注:①一个级数加括号后所得新级数发散,则原级数发散; ②一个级数加括号后收敛,原级数敛散性不确定. ⑤ 级数 u n 收敛的必要条件: lim u n 0 ; n1 n 注:①级数收敛的必要条件,常用判别级数发散; ③若 u n 发散,则 lim u n 0 未必成立. n1 n 二、常数项级数审敛法 1. 正项级数及其审敛法 ① 定义:若 u n 0 ,则 u n 称为正项级数 . n1 ② 审敛法: i ) 充要条件:正项级数 u n 收敛的充分必要条件是其部分和数列有界 ②若 lim u n 0 ,则 u n 未必收敛; n1

(ii ) 比较审敛法:设U n①与V n②都是正项级数,且U n %(n 1,2丄),则若② n 1 n 1 收敛则①收敛;若①发散则②发散? A.若②收敛,且存在自然数N,使得当n N时有u n kv n(k 0)成立,则①收敛;若② 发散,且存在自然数N,使得当n N时有u n kv n(k 0)成立,则①发散; 1 B.设U n为正项级数,若有p 1使得u n—p (n 1,2丄),贝U U n收敛;若 n 1 n n 1 1 U n (n 1,2,L ),贝U U n 发散? n n 1 C.极限形式:设U n①与v n②都是正项级数,若lim l(0 l ),则 n 1 n 1 n V n U n与V n有相同的敛散性 n 1 n 1 注:常用的比较级数: a ①几何级数:ar n1 1 r r 1 n 1 发散r| 1 ②p级数:[收敛P 1时. n 1 n p发冃攵P 1时, ③调和级数:丄1 1 1 发散. n 1 n 2 n (iii )比值判别法(达郎贝尔判别法)设a n是正项级数,若 n 1 ①lim也r 1,则a n收敛;②lim也r 1,则a.发散. n a n n 1 n a n n 1 注:若lim 也1,或lim :恳1,推不出级数的敛散.例1 与2,虽然佃乩1,n a n n n 1 n n 1 n n a. lim n a n 1,但丄发散,而 $收敛? n' n 1 n n 1 n a n是正项级数,lim , a n ,若1,级数收敛, n (iv )根值判别法(柯西判别法)设

级数知识点总结

第十二章 无穷级数 一、 常数项级数 1、 常数项级数: 1) 定义和概念:无穷级数: +++++=∑ ∞ =n n n u u u u u 3211 部分和:n n k k n u u u u u S ++++== ∑= 3211 正项级数:∑∞ =1 n n u ,0≥n u 级数收敛:若S S n n =∞ →lim 存在,则称级数 ∑∞ =1 n n u 收敛,否则称级数 ∑∞ =1 n n u 发散 2) 性质: 改变有限项不影响级数的收敛性;如级数收敛,各项同乘同一常数仍收敛. 两个收敛级数的和差仍收敛.,级数 ∑∞=1 n n a , ∑∞ =1 n n b 收敛,则 ∑∞ =±1 )(n n n b a 收敛;注:一敛、一散之和必发散;两散和、差必发散. 去掉、加上或改变级数有限项,不改变其收敛性级数 ∑∞ =1 n n a 收敛,则任意加括号后仍然收敛; 若级数收敛,则对这级数的任意项加括号后所成的级数仍收敛,其和不变,且加括号后所成的级数发散,则原来级数也发散.注:收敛级数去括号后未必收敛. 注意:不是充分条件!唯一判断发散条件) 3) 审敛法:(条件:均为正项级数 表达式: ∑∞ =1 n n u ,0≥n u )S S n n =∞ →lim 前n 项和存在极限则收敛; ∑∞ =1 n n u 收敛? {}n S 有界; 比较审敛法:且),3,2,1( =≤n v u n n ,若∑∞ =1 n n v 收敛,则∑∞ =1 n n u 收敛;若∑∞ =1 n n u 发散,则∑∞ =1 n n v 发散. 比较法的极限形式: )0( l lim +∞<≤=∞→l v u n n n ,而∑∞n v 收敛,则∑∞n u 收敛;若0lim >∞→n n n v u 或+∞=∞→n n n v u lim ,而∑∞n v 发散,则∑∞ n u 发散. 2、 交错级数: 莱布尼茨审敛法:交错级数: ∑∞ =-1 )1(n n n u ,0≥n u 满足:),3,2,1( 1 =≤+n u u n n ,且0lim =∞ →n n u ,则级数∑∞ =-1 )1(n n n u 收敛。 条件收敛: ∑ ∞ =1 n n u 收敛,而 ∑ ∞ =1 n n u 发散;绝对收敛: ∑ ∞ =1 n n u 收敛。 ∑∞ =1 n n u 绝对收敛,则∑∞ =1 n n u 收敛。 其他级数:; 二、 函数项级数(幂级数: ∑∞ =0 n n n x a ) 1、 2、 和函数)(x s 的性质:在收敛域I 上连续;在收敛域),(R R -内可导,且可逐项求导;和函数)(x s 在收敛域I 上可积分,且可逐项 积分.(R 不变,收敛域可能变化).

第十章 无穷级数

第十章 无穷级数 1.判断下列级数的敛散性: (1)Λ Λ++++?+?)2(1421311n n (2)Λ Λ++++++)31 21()3121()3121(22n n (3) Λ Λ++++++2cos 5cos 4cos 3 cos n π π π π 解:(1)由 )211(21+-=n n u n ,所以43)2111211(21→ +-+-+=n n S n (∞→n ) 故原级数收敛,且其和为43 。 (2)由 ΛΛ+++++++)31 21()3121()3 121(22n n ∑∞ =+=1) 3121(n n n 而级数∑∞=121n n 及∑∞ =131n n 均收敛,故原级数收敛。 (3)由0 12 cos ≠→+=n u n π ,(∞→n ),故原级数发散。 注:应用(1)中的技巧,可得对任何自然数p ,有: )1211(1)(1 p p p n n +++= +∑Λ。 2.判别下列级数的敛散性。 (1))1ln(1∑∞ =+n n π (2)∑∞ =?11 n n n n (3)∑∞ =-+12)1(2n n n (4))1sin (10∑?∞ =+n n dx x x π (5)∑∞ =1!n n n n (6)∑∞=+++12)1()1)(1(n n n x x x x Λ(0≥x ) (7)n n n a b ∑∞ =1)(,其中a a n →,a b a n ,,皆为正数,0≠a 。 解:(1)由 n n u n π π~)1ln(+= (∞→n ),又 ∑∞ =1n n π 发散,故由比较判别法知, 原级数发散。 (2)由 1111 →=?n n n n n n (∞→n ),又 ∑∞ =11 n n 发散,故由比较判别法的极限形式 可知,原级数发散。 (3)法1: n n n n n u )21(2 12)1(21 -+=-+= -,而∑∞ =-1121 n n 及 n n ∑∞ =-1)21 (均收敛,故原级数

考研数学数项级数敛散性判定解题思路总结

2016考研数学数项级数敛散性判定解题思路总结 数项级数敛散性判定是考研数学一数三考试的重点题型,而且是考试的难点,为了便于同学们解题,文都考研高端数学老师帮大家总结了此种题型的解题思路和常用结论,希望对大家的学习有帮助。 1.解题思路 若有两个收敛,则第三个收敛; 若其中一个收敛,另一个发散,则第三个发散;

若有两个发散,则第三个敛散性不确定; 若有两个绝对收敛,则第三个绝对收敛; 若其中一个绝对收敛,另一个条件收敛,则第三个条件收敛; 若有两个条件收敛,则第三个收敛,但不能判断它是绝对收敛还是条件收敛。

1.林黛玉:三生石畔,灵河岸边,甘露延未绝,得汝日日倾泽。离恨天外,芙蓉潇湘,稿焚情不断,报汝夜夜苦泪。 2.薛宝钗:原以为金玉良缘已成,只待良辰,奈何君只念木石前盟,纵然艳冠群芳牡丹姿,一心只怜芙蓉雪。 3.贾元春:贤孝才德,雍容大度,一朝宫墙春不再,一夕省亲泪婆娑。昙花瞬息,红颜无罪,到底无常。 4.贾探春:虽为女流,大将之风,文采诗华,见之荡俗。诗社杏花蕉下客,末世悲剧挽狂澜,抱负未展已远嫁。 5.史湘云:醉酒卧石,坦荡若英豪,私情若风絮,嫁与夫婿博长安,终是烟销和云散,海棠花眠乐中悲。 6.妙玉:剔透玲珑心,奈何落泥淖,青灯古佛苦修行,高洁厌俗袅亭亭。可惜不测之风云,玉碎冰裂,不瓦全。 7.贾迎春:沉默良善,见之可亲,深宅冷暖,累遭人欺,腹中无诗情风骚,膺内缺气概魄力。空得金黄迎春名,可怜一载赴黄泉。 8.贾惜春:高墙白曼陀,冷水伴空门。孤寒寂立一如霜,如何能得自全法?狠心舍弃近身人。侯门金簪冰雪埋,海灯僻冷长弃世。 9.王熙凤:毒酒甘醇,罂粟灿艳,锦绣华衣桃花眼,眼明刀锋吊梢眉。何幸七窍玲珑心,只惜冷硬霜凝集。千机算尽,反误性命。

第十章无穷级数

第十章 无穷级数 【考试要求】 1.理解级数收敛、发散的概念.掌握级数收敛的必要条件,了解级数的基本性质. 2.掌握正项级数的比值审敛法.会用正项级数的比较审敛法. 3.掌握几何级数、调和级数与 p 级数的敛散性. 4.了解级数绝对收敛与条件收敛的概念,会使用莱布尼茨判别法. 5.了解幂级数的概念,收敛半径,收敛区间. 6.了解幂级数在其收敛区间内的基本性质(和、差、逐项求导与逐项积分). 7.掌握求幂级数的收敛半径、收敛区间的方法. 【考试内容】 一、常数项级数的相关概念 1.常数项级数的定义 一般地,如果给定一个数列 1u ,2u ,L ,n u ,L ,则由这数列构成的表达式 123n u u u u +++++L L 叫做常数项无穷级数,简称常数项级数或级数,记为 1 n n u ∞ =∑,即 1231 n n n u u u u u ∞ ==+++++∑L L ,其中第n 项n u 叫做级数的一般项. 2.常数项级数收敛、发散的概念 作常数项级数 1 n n u ∞ =∑的前n 项和121 n n n i i s u u u u ==+++=∑L ,n s 称为级数 1 n n u ∞ =∑的部分和,当n 依次取1,2,3,L 时,它们构成一个新的数列 11s u =,212s u u =+,3123s u u u =++,L , 12n n s u u u =+++L ,L .

如果级数 1 n n u ∞ =∑的部分和数列{}n s 有极限s ,即lim n n s s →∞ =,则称无穷级数1 n n u ∞ =∑收敛,这时极限s 叫做这级数的和,并写成 123n s u u u u =+++++L L 或者 1 n n u s ∞ ==∑;如果{}n s 没有极限,则称无穷级数1 n n u ∞ =∑发散. 3.收敛级数的基本性质 (1)如果级数 1 n n u ∞ =∑收敛于和s ,则级数 1 n n ku ∞ =∑也收敛,且其和为ks .一般地,级数 的每一项同乘一个不为零的常数后,它的收敛性不变. (2)如果级数 1 n n u ∞=∑、1 n n v ∞ =∑分别收敛于和s 、σ,则级数 1 ()n n n u v ∞ =±∑也收敛,且 其和为s σ±. (3)在级数 1n n u ∞ =∑中去掉、加上或改变有限项,不会改变级数的收敛性. (4)如果级数 1n n u ∞=∑收敛,则对这级数的项任意加括号后所成的级数仍收敛,且其和不变. (5)如果级数 1 n n u ∞ =∑收敛,则它的一般项n u 趋于零,即lim 0n n u →∞ =. 说明:此条件称为级数收敛的必要条件.由原命题成立逆否命题一定成立可得,如果lim n n u →∞ 不为零,则级数 1 n n u ∞ =∑一定发散. 4.几个重要的常数项级数 (1)等比级数 级数 2 1 n n n q q q q ∞ ==++++∑L L 或 20 1n n n q q q q ∞ ==+++++∑L L 称为等比级数或几何级数,其中q 叫做级数的公比.其收敛性为:当1q <时,级数收敛; 当 1q ≥时级数发散. (2)调和级数

级数知识点总结

级数知识点总结 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

第十二章无穷级数 一、 常数项级数 1、 常数项级数: 1) 定义和概念:无穷级数: +++++=∑ ∞ =n n n u u u u u 3211 部分和:n n k k n u u u u u S ++++== ∑ = 3211 正项级数: ∑∞ =1 n n u ,0≥n u 级数收敛:若S S n n =∞ →lim 存在,则称级数 ∑∞ =1 n n u 收敛,否则称级数∑∞ =1 n n u 发散 2) 性质: ? 改变有限项不影响级数的收敛性;如级数收敛,各项同乘同一常数仍收敛 ? 两个收敛级数的和差仍收敛,级数 ∑∞=1 n n a , ∑∞ =1 n n b 收敛,则 ∑∞ =±1 )(n n n b a 收敛;注:一敛、一散之和必发散;两散和、差必发散. ? 去掉、加上或改变级数有限项不改变其收敛性级数 ∑∞ =1 n n a 收敛,则任意加括号后仍然收敛; ? 若级数收敛则对这级数的任意项加括号后所成的级数仍收敛,其和不变,且加括号后所成的级数发散则原来级数也发散注:收敛级数 去括号后未必收敛. ? 注意:不是充分条件!唯一判断发散条件) 3) 审敛法:(条件:均为正项级数表达式: ∑∞ =1 n n u ,0≥n u )S S n n =∞ →lim 前n 项和存在极限则收敛; ∑∞ =1 n n u 收敛? {}n S 有 界; ? 比较审敛法:且),3,2,1( =≤n v u n n ,若∑∞ =1 n n v 收敛,则∑∞=1 n n u 收敛;若∑∞=1 n n u 发散,则∑∞ =1 n n v 发散. ? 比较法的极限形式: )0( l lim +∞<≤=∞→l v u n n n ,而∑∞=1n n v 收敛,则∑∞=1n n u 收敛;若0lim >∞→n n n v u 或+∞=∞→n n n v u lim ,而∑∞ =1n n v 发散,则∑∞ =1 n n u 发散. ? ,当:1l 时,级数∞=1 n n u 发散;1=l 时,级数∞ =1 n n u 可能收敛也可能发散. 2、 交错级数: 莱布尼茨审敛法:交错级数: ∑ ∞ =-1 )1(n n n u ,0≥n u 满足:),3,2,1( 1 =≤+n u u n n ,且0lim =∞ →n n u ,则级数∑∞ =-1 )1(n n n u 收敛。 条件收敛: ∑ ∞=1 n n u 收敛,而∑∞ =1 n n u 发散;绝对收敛:∑∞ =1 n n u 收敛。 ∑∞ =1 n n u 绝对收敛,则 ∑∞ =1 n n u 收敛。 其他级数:二、 函数项级数(幂级数: ∑∞ =0 n n n x a )

无穷级数总结

. . 无穷级数总结 一、概念与性质 1. 定义:对数列12,, ,n u u u ,1 n n u ∞ =∑称为无穷级数,n u 称为一般项;若部分和 数列{}n S 有极限S ,即lim n n S S →∞ =,称级数收敛,否则称为发散. 2. 性质 ①设常数0≠c ,则∑∞ =1 n n u 与∑∞ =1 n n cu 有相同的敛散性; ②设有两个级数∑∞=1 n n u 与∑∞=1 n n v ,若∑∞==1 n n s u ,σ=∑∞=1 n n v ,则∑∞ =±=±1 )(n n n s v u σ; 若∑∞=1n n u 收敛,∑∞=1 n n v 发散,则∑∞ =±1 )(n n n v u 发散; 若∑∞ =1 n n u ,∑∞=1 n n v 均发散,则∑∞ =±1 )(n n n v u 敛散性不确定; ③添加或去掉有限项不影响一个级数的敛散性; ④设级数∑∞ =1n n u 收敛,则对其各项任意加括号后所得新级数仍收敛于原级数的和. 注:①一个级数加括号后所得新级数发散,则原级数发散; ②一个级数加括号后收敛,原级数敛散性不确定. ⑤级数∑∞ =1n n u 收敛的必要条件:0lim =∞ →n n u ; 注:①级数收敛的必要条件,常用判别级数发散; ②若0lim =∞ →n n u ,则∑∞ =1n n u 未必收敛; ③若∑∞ =1 n n u 发散,则0lim =∞ →n n u 未必成立. 二、常数项级数审敛法 1. 正项级数及其审敛法 ① 定义:若0n u ≥,则∑∞ =1n n u 称为正项级数. ② 审敛法:

. . (i ) 充要条件:正项级数∑∞ =1 n n u 收敛的充分必要条件是其部分和数列有界. (ii ) 比较审敛法:设∑∞=1 n n u ①与∑∞ =1 n n v ②都是正项级数,且(1,2,)n n u v n ≤=, 则若②收敛则①收敛;若①发散则②发散. A. 若②收敛,且存在自然数N ,使得当n N ≥时有(0)n n u kv k ≤>成立,则①收敛;若②发散,且存在自然数N ,使得当n N ≥时有(0)n n u kv k ≥>成立,则①发散; B. 设∑∞ =1n n u 为正项级数,若有1p >使得1 (1,2,)n p u n n ≤=,则∑∞ =1 n n u 收敛;若 1 (1,2,)n u n n ≥=,则∑∞ =1 n n u 发散. C. 极限形式:设∑∞ =1 n n u ①与∑∞ =1 n n v ②都是正项级数,若lim (0)n n n u l l v →∞=<<+∞,则 ∑∞ =1 n n u 与∑∞ =1 n n v 有相同的敛散性. 注:常用的比较级数: ①几何级数:∑∞ =-?? ???≥<-=11 1 11n n r r r a ar 发散; ②-p 级数:∑ ∞ =???≤>1 111n p p p n 时 发散 时收敛; ③ 调和级数:∑∞ =++++ =1 1 2111n n n 发散. (iii )比值判别法(达郎贝尔判别法)设∑+∞ =1 n n a 是正项级数,若 ①1lim 1<=++∞→r a a n n n ,则∑+∞=1n n a 收敛;②1lim 1 >=++∞→r a a n n n ,则∑ +∞ =1 n n a 发散. 注:若1lim 1 =++∞→n n n a a ,或lim 1n =,推不出级数的敛散.例∑ +∞ =1 1n n 与∑+∞ =1 2 1 n n ,虽然

无穷级数

教学目的: 1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件。 2.掌握几何级数与P 级数的收敛与发散的条件。 3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法。 4.掌握交错级数的莱布尼茨判别法。 5.了解任意项级数绝对收敛与条件收敛的概念,以及绝对收敛与条件收敛的关系。 6.了解函数项级数的收敛域及和函数的概念。 7.理解幂级数收敛半径的概念,并掌握幂级数的收敛半径、收敛区间及收敛域的求法。 8.了解幂级数在其收敛区间内的一些基本性质(和函数的连续性、逐项微分和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些常数项级数的和。 9.了解函数展开为泰勒级数的充分必要条件。 10.掌握,sin ,cos x e x x ,ln(1)x +和(1)x α+的麦克劳林展开式,会用它们将一些简单函数间接展开成幂级数。 11. 了解傅里叶级数的概念和函数展开为傅里叶级数的狄利克雷定理,会将定义在[-l ,l]上的函数展开为傅里叶级数,会将定义在[0,l]上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和的表达式。 教学难点: 1、 比较判别法的极限形式; 2、 莱布尼茨判别法; 3、 任意项级数的绝对收敛与条件收敛; 4、 函数项级数的收敛域及和函数; 5、 泰勒级数; 6、 傅里叶级数的狄利克雷定理。 第一节 常数项级数的概念和性质 一、 概念 常数项级数: 给定一个数列 u 1, u 2, u 3, ? ? ?, u n , ? ? ?, 则由这数列构成的表达式u 1 + u 2 + u 3 + ? ? ?+ u n + ? ? 叫做常数项)无穷级数, 简称常数项)级数, 记为∑∞ =1n n u , 即 3211???++???+++=∑∞ =n n n u u u u u , 其中第n 项 u n 叫做级数的一般项. 级数的部分和: 作级数∑∞=1 n n u 的前n 项和n n i i n u u u u u s +???+++==∑= 3211 称为级数∑∞ =1 n n u 的部分和. 级数敛散性定义: 如果级数∑∞=1 n n u 的部分和数列}{n s 有极限s , 即s s n n =∞ →lim , 则称无穷级数∑∞ =1 n n u 收 敛, 这时极限s 叫做这级数的和, 并写成 3211 ???++???+++==∑∞ =n n n u u u u u s 如果}{n s 没有极限, 则称

常数项级数敛散性判别法总结

常数项级数敛散性判别法总结 摘要:本文简要阐述了常数项级数敛散性判别法。由于常数项级数敛散性判别法较多,学生判定级数选择判别法时比较困难,作者结合级数判别法的使用条件及特点对判别法进行分析,使学生更好的掌握级数判别法。 关键词:常数项级数;级数敛散性判别法;判别法使用条件及特点 无穷级数是微积分学的一个重要组成部分,它是表示函数、研究函数性质以及进行数值计算的一种非常有用的数学工具。无穷级数的中心内容是收敛性理论,因而级数敛散性的判别在级数研究中极其重要。在学习常数项级数敛散性判别法时,学生按照指定的判别法很容易判定级数的敛散性,但是学习多种判别法后,选择判别法时比较困难。主要原因是学生对所学判别法的使用条件及特点不够熟悉,本文针对这种情况对常数项级数敛散性判别法加以归纳总结。 1 级数收敛的概念 给定一个数列{un},称 u1+u2+...+un+ (1) 为常数项无穷级数,简称常数项级数,记为.级数(1)的前n项之和记为Sn,即Sn=u1+u2+…+un,称它为级数(1)的部分和。若部分和数列{Sn}有极限S,即,则称级数(1)收敛。若部分和数列{Sn}没有极限,则称级数(1)发散。 注意:研究级数的收敛性就是研究其部分和数列是否存在极限,因此级数的收敛性问题是一种特殊形式的极限问题。极限是微积分学的基础概念,也是学生比较熟系的概念,因此在研究级数收敛性时,联系极限概念,学生易于理解。 借助级数的性质与几何级数,调和级数的敛散性可以判别级数的敛散性。例如,由性质(1)和当|q|0时,01,则发散。 当级数含有阶乘、n次幂或分子、分母含多个因子连乘除时,选用比值判别法。比值判别法不需要与已知的基本级数进行比较,在实用上更为方便。 例2:判别级数的敛散性。 解:因为 由比值判别法知级数收敛。 2.3 根植判别法

第十章 无穷级数

第十章 无穷级数 一、概念 1.定义 无穷数列}{n u 中:∑∞ == ++++1 21......n n n u u u u 无穷数列}{n u 的各项之和 ∑∞ =1 n n u 叫无穷级数, 简称级数。n u 叫 ∑∞ =1 n n u 的一般项(通项); ......21++++n u u u 为展开式。 【例】 ① ∑∞ =++++?+?=+1 ...)1(1 ...321211)1(1n n n n n ② ...ln ...3ln 2ln 1ln ln 1+++++=∑∞ =n n n ③ (323) 2 1++++=∑∞ =n n n ne e e e ne ④......32321++++=∑ ∞ =n x x x x n x n n n 2.级数的分类 ???? ? ?? ? ?=∑∞=),1x u u u n n n n (其中函数项级数:(数项级数)是具体数字常数项级数:每一项都 ①两个特殊的数项级数 ??? ???? ≥?-≥∑∑∞ =∞ =0,1011 n n n n n n n u u u u )(交错级数:中,正项级数: ②一个特殊的函数项级数 ∑∞ =1 )(n n x u 中,n n n x a x u ?=)((常数乘以x 的 幂级数),即 ∑∞ =1 n n n x a 称为幂级数。 3.级数 ∑∞ =1 n n u 的收敛与发散 前n 项和n n u u u S +++= (21) 数列}{n S 叫∑∞ =1 n n u 的部分和数列。 敛散性: ?? ? ?? ?? ? ??? =→∑∑∑∑∞ =→∞ ∞ =∞=∞ =→∞ →∞发散不存在,则若分和数列的极限)要求级数的和,即求部的和,记为叫收敛,则存在(若11 11 lim ()lim lim n n n n n n n n n n n n n n u S S u u S u S S S 【例】① ∑∞ =+1) 1(1n n n 1 11)111(...)3121()211() 1(1 ...321211+- =+-++-+-=+++?+?= n n n n n S n 1lim =∞ →n n S ,∑ ∞ =+∴1) 1(1 n n n 收敛 ② ∑∞ =1 ln n n !ln ln ...2ln 1ln n n S n =+++= +∞=∞ →n n S lim ,∑∞ =∴1 ln n n 发散 4.几何级数与-p 级数 (1) ∑∞ =-1 1 n n aq 几何级数,首项a ,公比q q q a aq aq a S n n n --=++=-1)1( (1) ∞→n 时:

张卓奎《高等数学(第3版)》第十章无穷级数-本章提要

第10章 无穷级数 一、常数项级数的概念 常数项级数 设给定一个数列12,,,, n u u u ,表达式 1 n n u ∞ =∑称为常数项无穷级 数.121n n s u u u u =+++ +称为该级数的(前n 项)部分和. 级数收敛 如果部分和数列{}n s 有极限,即若lim n n s s →∞ =,则称该级数收敛,s 为其和,并记为 1 n n u s ∞ ==∑,否则,称级数发散. 二、常数项级数性质 (1)如果级数 1n n u ∞ =∑收敛于s ,则级数 1 n n ku ∞ =∑(k 为常数)也收敛,且收敛于ks ; (2)如果级数 1 1 , n n n n u v ∞ ∞ ==∑∑分别收敛于s 和σ,a 和b 为任意实数,则 1 ()n n n au bv ∞ =+∑也 收敛,且收敛于as b σ+; (3) 在级数中去掉(加上或改变有限项),级数敛散性不变; (4) 收敛级数加括号后仍然收敛,且收敛于原来的和; (5) 级数 1 n n u ∞ =∑收敛的必要条件是:0lim =∞ →n n u . 三、常数项级数的审敛法 1.正项级数 收敛充要条件 数列{}n s 有上界 1 n n u ∞ =∑收敛。 比较审敛法 n n v u ≤(1,2, n =),当 1 n n v ∞ =∑收敛时? 1 n n u ∞ =∑收敛; 当 ∑∞ =1 n n u 发散时? ∑∞ =1n n v 也发散。 (极限形式) lim n n n u l v →∞=,当0l <<+∞时, 1n n u ∞ =∑与 ∑∞=1 n n v 同时收敛或发散; 当0l =时,若 1 n n v ∞ =∑收敛? 1 n n u ∞=∑必收敛; 当l =+∞时,若 1 n n u ∞ =∑发散? 1 n n v ∞ =∑必发散。

级数知识点总结

第十二章无穷级数 一、 常数项级数 1、 常数项级数: 1) 定义和概念:无穷级数:ΛΛ+++++=∑ ∞ =n n n u u u u u 3211 部分和:n n k k n u u u u u S ++++== ∑ =Λ3211 正项级数: ∑∞ =1 n n u ,0≥n u 级数收敛:若S S n n =∞ →lim 存在,则称级数 ∑∞ =1 n n u 收敛,否则称级数∑∞ =1 n n u 发散 2) 性质: ? 改变有限项不影响级数的收敛性;如级数收敛,各项同乘同一常数仍收敛? ? 两个收敛级数的和差仍收敛?,级数 ∑∞=1 n n a , ∑∞ =1 n n b 收敛,则 ∑∞ =±1 )(n n n b a 收敛;注:一敛、一散之和必发散;两散和、差必发散. ? 去掉、加上或改变级数有限项?不改变其收敛性级数 ∑∞ =1 n n a 收敛,则任意加括号后仍然收敛; ? 若级数收敛?则对这级数的任意项加括号后所成的级数仍收敛,其和不变,且加括号后所成的级数发散?则原来级数也发散?注:收敛级数去括号后未必收敛. ? 注意:不是充分条件!唯一判断发散条件) 3) 审敛法:(条件:均为正项级数表达式: ∑∞ =1 n n u ,0≥n u )S S n n =∞ →lim 前n 项和存在极限则收敛; ∑∞ =1 n n u 收敛? {}n S 有界; ? 比较审敛法:且),3,2,1( Λ=≤n v u n n ,若∑∞ =1 n n v 收敛,则∑∞ =1 n n u 收敛;若∑∞ =1 n n u 发散,则∑∞ =1 n n v 发散. ? 比较法的极限形式: )0( l lim +∞<≤=∞→l v u n n n ,而∑∞n v 收敛,则∑∞n u 收敛;若0lim >∞→n n n v u 或+∞=∞→n n n v u lim ,而∑∞n v 发散,则∑∞ n u 发散. 2、 交错级数: 莱布尼茨审敛法:交错级数: ∑ ∞ =-1 )1(n n n u ,0≥n u 满足:),3,2,1( 1Λ=≤+n u u n n ,且0lim =∞ →n n u ,则级数∑∞ =-1 )1(n n n u 收敛。 条件收敛: ∑ ∞ =1 n n u 收敛,而 ∑ ∞ =1 n n u 发散;绝对收敛 : ∑ ∞ =1 n n u 收敛。 ∑∞ =1 n n u 绝对收敛,则∑∞ =1 n n u 收敛。 其他级数:二、 函数项级数(幂级数: ∑∞ =0 n n n x a ) 1、 2、 和函数)(x s 的性质:在收敛域I 上连续;在收敛域),(R R -内可导,且可逐项求导;和函数)(x s 在收敛域I 上可积分,且可逐项

相关文档
最新文档