浅谈基于UG凸轮机构的运动仿真

浅谈基于UG凸轮机构的运动仿真
浅谈基于UG凸轮机构的运动仿真

浅谈基于UG凸轮机构的运动仿真

Xxx

(xx大学 xx学院江苏xx xxxxx)

摘要:介绍如何利用UG软件来完成凸轮机构设计和运动仿真。应用UG 的表达式工具和规律曲线功能, 精确、快速地生成凸轮实体, 应用UG的运动仿真功能, 再现凸轮机构的运动过程, 检验机构的运动结果是否与设计相一致, 以保证设计的准确性。[1]

关键词: UG ;凸轮;机构;运动仿真;参数化

Discussion on the dynamic simulation of cam mechanism

based on UG

xxxxx

(UGS College, Yancheng Institute of Technology, Yancheng, Jiangsu 224051) Abstract: This article introduces how fulfills the design of the cam mechanism and the motion simulation by UG software. Using the expression tool and the law curve of UG software, the cam entity can be produced precisely and fast. Using the motion simulation of UG software, the whole process of the cam mechanism can reappeared. Whether the result of the movement is consistent with the design can be examined.

Key words: UG; Cam ;mechanism;Motion simulation;Parametric

0 引言

凸轮机构因具有结构简单、运动准确可靠等优点,在机械和自动控制系统中被广泛应用。凸轮机构设计的关键在于凸轮轮廓曲线的设计,通常的方法是根据从动件的运动规律,应用图解法或解析法来设计凸轮轮廓曲线。图解法直观、简便,但精度不高,解析法精确但计算繁杂,也不能满足现代设计的需要。UG 是大型的CAD/CAE/CAM 三维软件,可利用其建模模块的表达式工具和规律曲线等功能,结合解析法进行凸轮机构的三维设计,还可在运动仿真模块中进行运动仿真和运动分析。[2]

1 UG 运动仿真模块介绍

运动仿真模块是CAE应用软件,用于建立运动机构模型,分析其运功规律运动方针。运动仿真模块可以进行机构的干涉分析。跟踪零件的运动轨迹,分析机构中零件的速度、加速度、作

用力、反作用力、和力矩等。根据这些分析结果可以指导修改零件的结果设计或调整零件的材料。 分析结果可以用来指导零件结构的设计优化。UG 运动仿真和分析分3 个阶段进行:

(1)前处理阶段: 创建分析方案, 通过分析方案得到的信息生成内部的ADAMS 输入数据文件, 再传送到ADAMS 解算器。

(2)求解阶段: ADAMS 解算器处理输入数据, 并生成内部的ADAMS 输出数据文件, 再传送到运动分析模块中。

(3)后处理阶段: 运动分析模块解释ADAMS 的输出数据文件, 并转化成动画、图表及报表文件。

2 凸轮运动规律分析及轮廓曲线方程

2.1 运动规律分析

已知从动件的运动规律为: 当凸轮转过Φ=600时,从动件以等加速等减速运动规律上升 h=10mm ;凸轮再转过Φ'=1200,从动件停止不动;当凸轮再转过Φ=600时,从动件以等加速等减速运动规律下降h=10mm ;其余Φs '=1200,从动件静止不动。 已知基圆r b =50mm ,滚子半径r=10mm ,凸轮厚度10mm 。凸轮以等角速度顺时针转动,试设计凸轮机构,并输出从动件运动规律。[4]

(1)推程阶段

等加速部分:

等减速部分:

(2)远休止阶段 rb=50mm S3 = h

(3)回程阶段

(4)近休止阶段 rb=50mm S6=0

2.2建立表达式方程

222246010*210210??-=Φ-=h s 222216010*22??=Φ=h s 0300→由?22222)60(6010*210)(2??--=-ΦΦ-=h h s 0

06030→由?22

225)60(6010*2)(2??-=-ΦΦ=h s ??

cos )(sin )(s r y s r x b B b B +=+=

图1 表达式方程

2.3绘制凸轮理论轮廓曲线

执行“规律曲线”命令,选择“根据方程”方式,分别定义各段曲线的坐标x, y, z,最后形成的凸轮理论轮廓曲线。[3]

如图:

图2 凸轮理论轮廓曲线

S3 = h

3 用UG 进行凸轮机构运动仿真和运动分析

3.1 创建连杆(Links) 和运动副(Joints)

进入UG 运动模块, 新建运动分析方案。为此方案创建2个连杆: L001(凸轮)、L002(尖顶从动件) 和3个运动副: 凸轮与地固定的旋转副J001, 尖顶对轮廓曲线的点在线上副J002,尖顶从动件对于凸轮的滑动副J003。[7]

3.2 定义运动驱动(Motion Driver)

运动驱动驱动机构运动, 为旋转副J001,选择恒定驱动( Constant Drive), 并设定驱动参数, 使凸轮以36度/秒的速度匀速转动。

3.3 运动仿真

选择运动仿真( Animation) 图标即启动运动仿真分析过程。在分析选项对话框中选择机构运动学/机构动力学分析,时间设为10s(凸轮旋转1周), 步数为360步, 即凸轮每转1b 分析模型的运动状况。启动ADAMS 解算器, 进行运动分析。运动分析完成, 运动仿真对话框自动弹出, 可以选择全程或单步的方式来进行运动仿真, 即以动画来表现机构的运动过程。仿真的结果也可以以图表( Graphing) 的形式绘出, 它反映了滑动副J003, 即尖顶从动件位移、速度、加速度的信息。动画比较直观, 而图表则量化了运动过程。[5]

从动画和图表可判断机构的运动结果与设计是一致的, 从而保证了凸轮机构设计的准确性。滑动副J003即尖顶从动件运动线图。[8]

2

22216010*22??=Φ=h s 22

222)60(6010*210)(2??--=-ΦΦ-=h h s 222246010*210210??-=Φ-=h s 22

225)60(6010*2)(2??-=-ΦΦ=h s

图3 凸轮的运动仿真

4 导出位移和速度曲线

图4 速度曲线

该图为杆002的速度随时间的变化曲线,从中我们可以看到其运动规律。

图5 位移曲线

该图为杆002的位移随时间变化规律。可见杆002做上下有规律的循环运动。

5 结语

利用UG 的仿真分析,不仅可以考察从动件的运动规律是否满足工作要求,而且可以通过克隆仿真方案,修改凸轮的曲线参数来改变从动件的运动规律。[6]

当从动件的运动规律满足工作要时,再通过导出机构,更新装配主模型,从而对机构进行优化设计。当对一些复杂的机构,很难用解析法求其某一点的运动规律时,利用UG 的仿真分析,不失为一种快捷而有效的方法。[9]

参考文献:

[1] 盛晓敏,邓朝晖.先进制造技术[M].北京:机械工业出版社,2010.

[2] 金杰,张安阳.快速成型技术及其应用[J].浙江工业大学学报,2009,33(5):592~595.

[3] 杨叔子.先进制造技术发展与展望[J].机械制造与自动化.2008(2)

[4] 李敏贤.面向21世纪的先进制造技术[J].机械工业自动化,2009(4).

[5] 李亨昭,邱敬之.先进制造技术的发展趋势与战略设想[J].电子机械工程,2010(4).

[6] 孙大涌.先进制造技术[M].北京:机械工业出版社,2010.

[7] 马晓春.我国现代机械制造技术的发展趋势[J].森林工程,2009(3).

[8] 王世敬,温筠.现代机械制造技术及其发展趋势[J].石油机械.2009,(11).

[9] 武永利.机械制造技术新发展及其在我国的研究和应用[J].机械制造与自动化,2008,(1).

[10] Duffie N.Trends in Green Manufacting[J].CASA/SME Technology Trends,2009(12).

浅谈基于UG凸轮机构的运动仿真

浅谈基于UG凸轮机构的运动仿真 Xxx (xx大学 xx学院江苏xx xxxxx) 摘要:介绍如何利用UG软件来完成凸轮机构设计和运动仿真。应用UG 的表达式工具和规律曲线功能, 精确、快速地生成凸轮实体, 应用UG的运动仿真功能, 再现凸轮机构的运动过程, 检验机构的运动结果是否与设计相一致, 以保证设计的准确性。[1] 关键词: UG ;凸轮;机构;运动仿真;参数化 Discussion on the dynamic simulation of cam mechanism based on UG xxxxx (UGS College, Yancheng Institute of Technology, Yancheng, Jiangsu 224051) Abstract: This article introduces how fulfills the design of the cam mechanism and the motion simulation by UG software. Using the expression tool and the law curve of UG software, the cam entity can be produced precisely and fast. Using the motion simulation of UG software, the whole process of the cam mechanism can reappeared. Whether the result of the movement is consistent with the design can be examined. Key words: UG; Cam ;mechanism;Motion simulation;Parametric 0 引言 凸轮机构因具有结构简单、运动准确可靠等优点,在机械和自动控制系统中被广泛应用。凸轮机构设计的关键在于凸轮轮廓曲线的设计,通常的方法是根据从动件的运动规律,应用图解法或解析法来设计凸轮轮廓曲线。图解法直观、简便,但精度不高,解析法精确但计算繁杂,也不能满足现代设计的需要。UG 是大型的CAD/CAE/CAM 三维软件,可利用其建模模块的表达式工具和规律曲线等功能,结合解析法进行凸轮机构的三维设计,还可在运动仿真模块中进行运动仿真和运动分析。[2] 1 UG 运动仿真模块介绍 运动仿真模块是CAE应用软件,用于建立运动机构模型,分析其运功规律运动方针。运动仿真模块可以进行机构的干涉分析。跟踪零件的运动轨迹,分析机构中零件的速度、加速度、作

用ADAMS进行凸轮机构模拟仿真示例

例: 尖顶直动从动件盘形凸轮机构的凸轮基圆半径mm r 600 =,已知:从动件行程mm h 40=,推程运动角为 1500=δ,远休止角 60=s δ,回程运动角 1200='δ,近休止角为 30='s δ;从动件推程、回程分别采用余弦加速度和正弦加速度运动规律。对该凸轮机构进行模拟仿真。 解: 1. 从动件推程运动方程 推程段采用余弦加速度运动规律,故将已知条件mm h 406/51500 ===、。πδ代入余弦加速度运动 规律的推程段方程式中,推演得到 ???? ?????=≤≤=-=δωπδδωδ56cos 8.28)6/50( 56sin 24)56cos 1(202a v s 2. 从动件远休程运动方程 在远休程s δ段,即6/76/5πδπ ≤≤时, 0,0,===a v h s 。 3. 从动件回程运动方程 因回程段采用正弦加速度运动规律,将已知条件mm h v 403/21200===' 、πδ 代入正弦加速度运 动规律的回程段方程式中,推演得到 []???? ?????--=≤≤---=??????-+-?=)5.33sin(180)6/116/7( )5.33cos(160)5.33sin(212375.2402πδωππδππδωππδπδπa v s 4. 从动件近休程运动方程 在近休程s 'δ段,即πδπ 26/11≤≤时, 0,0,0===a v s 。 创建过程 1、 启动ADAMS 双击桌面上ADAMS/View 的快捷图标,打开ADAMS/View 。在欢迎对话框中选择“Create a new model ”,在模型名称(Model name )栏中输入:tuluen ;在重力名称(Gravity )栏中选择“Earth Normal (-Global Y)”;在单位名称(Units )栏中选择“MMKS –mm,kg,N,s,deg ”。如图1-1所示。 图1-1 欢迎对话框

第9章凸轮机构及其设计(有答案)

1.图示凸轮机构从动件推程运动线图是由哪两种常用的基本运动规律组合而成?并指出有无冲击。如果有冲击,哪些位置上有何种冲击?从动件运动形式为停-升-停。 (1) 由等速运动规律和等加速等减速运动规律组合而成。 (2) 有冲击。 (3) ABCD 处有柔性冲击。 2. 有一对心直动尖顶从动件盘形凸轮机构,为改善从动件尖端的磨损情况,将其尖端改为滚子,仍使用原来的凸轮,这时该凸轮机构中从动件的运动规律有无变化?简述理 由。 (1) 运动规律发生了变化。 (见下图 ) (2)采用尖顶从动件时,图示位置从动件的速度v O P 2111=ω,采用滚子从动件时,图示位置的速度 '='v O P 2111ω,由于O P O P v v 1111 22≠'≠',;故其运动规律发生改变。

3. 在图示的凸轮机构中,画出凸轮从图示位置转过60?时从动件的位置及从动件的位移s。 总分5分。(1)3 分;(2)2 分 (1) 找出转过60?的位置。 (2) 标出位移s。

4. 画出图示凸轮机构从动件升到最高时的位置,标出从动件行程h ,说明推程运动角和回程运动角的大小。 总分5分。(1)2 分;(2)1 分;(3)1 分;(4)1 分 (1) 从动件升到最高点位置如图示。 (2) 行程h 如图示。 (3)Φ=δ0-θ (4)Φ'=δ' 0+θ

5.图示直动尖顶从动件盘形凸轮机构,凸轮等角速转动,凸轮轮廓在推程运动角Φ=? 从动件行程h=30 mm,要求: (1)画出推程时从动件的位移线图s-?; (2)分析推程时有无冲击,发生在何处?是哪种冲击? - 总分10分。(1)6 分;(2)4 分 (1)因推程时凸轮轮廓是渐开线,其从动件速度为常数v=r0?ω,其位移为直线, 如图示。

VC++凸轮机构运动仿真编程示例

VC++凸轮机构运动仿真编程示例 一. 机构运动原理 1. 推杆从动件的运动规律(仅列出常用的四种运动规律) 表1-1 从动件的运动方程式 2. 偏置直动尖顶推杆盘形凸轮机构 如图所示,凸轮逆时针方向转动,导路偏置于凸轮转动中心A ,导路距转轴A 的垂直距离为偏距e 。以偏距e 为半径作的圆为偏距圆。当凸轮转动时,凸轮上的偏距圆也随之转动,但其始终与导路轴线相切。凸轮转动时不便求解其上的廓线方程,故采用反转法。反转法是建立在推杆与凸轮的相对运动与参考系无关这一原理上的。所谓反转法,即给整个机构一个与凸轮转向相反的角速度-ω1,则凸轮静止不动,而从动件随机架反转且沿凸轮廓线相对运动,导路的反转角?即凸轮的转角。如图所示,此时导路由B K 00转到BK 。由于AK B K 000⊥,AK BK ⊥,所以∠=K AK 0?,此时导路BK 与基圆和凸轮廓线的交点''B B 间的长度,即从动件 的位移s BB =''。由几何关系知??B K A B KA 00='',所以s 0=''=B K ) ( r e b 22 1 2 -。选取坐标

系xAy ,B 0点为凸轮廓线起始点。当凸轮转过?角,由反转法知此时从动件位于BK 。则B 点的坐标为 )()( X s s e Y s s e =++=+-?? ???00sin cos cos sin ?? ?? (1-1) 式(1-1)即为尖顶推杆凸轮廓线的方程式,也称为理论廓线方程。 3. 偏置直动滚子推杆盘形凸轮机构 大多数推杆在尖顶B 处装有滚子,以提高推杆的使用寿命。显然,只要使滚子中心B 沿理论廓线曲线上运动,即可保证推杆预期的运动规律。如图所示,此时凸轮的轮廓曲线不是理论廓线,而是处处与滚子相切的另一条曲线,这条曲线称为凸轮的实际廓线。因为实际廓线与理论廓线在法线方向的距离处处相等,且等于滚子半径r r ,故当已知廓线上任一点B )(x y ,时,只要沿理论廓线在该点法线方向取距离为r r ,即得实际廓线上的相应点)('''B x y ,。由此可见,理论廓线上作一系列滚子圆的包络线即实际廓线。因此实际廓线是理论廓线的等距曲线。该等距曲线有两条,即内等距曲线和外等距曲线。 盘状槽形凸轮的廓线即该两条等距曲线。由高等数学知识可求得理论廓线B 点处法线n -n 的斜率(与切线斜率互为负倒数)应为 ()() tan θ??=- =-d d d d d d x y x y (1-2) 式(1-2)中的dx/dy 与dy/dx 可根据式(1-1)求出,代入式(1-2)后有 ()()()()tan sin cos sin cos θ?? ?? = -+++--d d s e s s s s s e 00 (1-3) 式(8-10)中的θ角可在0360 ~变化,其值要根据分子、分母的正负号所决定的tan θ所在象限来计算。求出θ角后,可计算()'''B x y ,的坐标值:

proe运动仿真

proe5.0装配体运动仿真 基础与重定义主体 基础是在运动分析中被设定为不参与运动的主体。 创建新组件时,装配(或创建)的第一个元件自动成为基础。 元件使用约束连接(“元件放置”窗口中“放置”页面)与基础发生关系,则此元件也成为基础的一部份。 如果机构不能以预期的方式移动,或者因两个零件在同一主体中而不能创建连接,就可以使用“重定义主体”来确认主体之间的约束关系及删除某些约束。 进入“机构”模块后,“编辑”—>“重定义主体”进入主体重定义窗口,选定一个主体,将在窗口里显示这个主体所受到的约束(仅约束连接及“刚体”接头所用的约束)。可以选定一个约束,将其删除。如果删除所有约束,元件将被封装。、、 特殊连接:凸轮连接 凸轮连接,就是用凸轮的轮廓去控制从动件的运动规律。PROE里的凸轮连接,使用的是平面凸轮。但为了形象,创建凸轮后,都会让凸轮显示出一定的厚度(深度)。 凸轮连接只需要指定两个主体上的各一个(或一组)曲面或曲线就可以了。定义窗口里的“凸轮1”“凸轮2”分别是两个主体中任何一个,并非从动件就是“凸轮2”。 如果选择曲面,可将“自动选取”复选框勾上,这样,系统将自动把与所选曲面的邻接曲面选中,如果不用“自动选取”,需要选多个相邻面时要按住Ctrl。 如果选择曲线/边,“自动选取”是无效的。如果所选边是直边或基准曲线,则还要指定工作平面(即所定义的二维平面凸轮在哪一个平面上)。 凸轮一般是从动件沿凸轮件的表面运动,在PROE里定义凸轮时,还要确定运动的实际接触面。选取了曲面或曲线后,将会出线一个箭头,这个箭头指示出所选曲面或曲线的法向,箭头指向哪侧,也就是运动时接触点将在哪侧。如果系统指示出的方向与想定义的方向不同,可反向。 关于“启用升离”,打开这个选项,凸轮运转时,从动件可离开主动件,不使用此选项时,从动件始终与主动件接触。启用升离后才能定义“恢复系数”,即“启用升离”复选框下方的那个“e”。 因为是二维凸轮,只要确定了凸轮轮廓和工作平面,这个凸轮的形状与位置也就算定义完整了。为了形象,系统会给这个二维凸轮显示出一个厚度(即深度)。通常我们可不必去修改它,使用“自动”就可以了。也可自已定义这个显示深度,但对分析结果没有影响。 需要注意: A.所选曲面只能是单向弯曲曲面(如拉伸曲面),不能是多向弯曲曲面(如旋转出来的鼓形曲面)。 B.所选曲面或曲线中,可以有平面和直边,但应避免在两个主体上同时出现。 C.系统不会自动处理曲面(曲线)中的尖角/拐点/不连续,如果存在这样的问题,应在定义凸轮前适当处理。

如何用solidworks2016进行凸轮的运动仿真分析

如何用Solidworks2016进行凸轮的运动分析 李犹胜(上海200000) 0、摘要 凸轮机构是机械设计中常用的结构,它的运动仿真模拟是凸轮设计过程中不可缺少的步骤。很多专业人士都对其做了研究,但是过程趋于复杂。较多的年轻工程师很难理解,本文通过一个简单的例子通过SolidWorks2016软件来说明凸轮机构仿真模拟的方法和步骤,浅显易懂。 1、关键词 凸轮机构、运动仿真、运动分析 2、概述 凸轮机构一般是由凸轮、从动件和机架三个构件组成的高副机构。凸轮通常作连续等速转动,从动件根据使用要求设计使它获得一定规律的运动。凸轮机构能实现复杂的运动要求,广泛用于各种自动化和半自动化机械装置中,几乎所有任意动作均可经由此一机构产生[1]。在设计凸轮机构时,凸轮机构的模拟运动分析将是一项必要而不可缺少的工作。它也是进行凸轮外形设计的辅助手段。 本文介绍了使用solidworks2016软件进行凸轮运动分析的基本步骤和使用技巧。 3、零件建模及装配 3.1、先用solidworks2016 将凸轮机构的零件建 模好,作为本文的一个例子,作者建立了下列零 件数模。 3.2 将上述零件导入到solidworks 2016装配体中, 具体操作为:步骤1、文件、新建、选择装配图模板,进入装配体模式 步骤2、导入凸轮轴 (1)选择插入部件 (2)在插入零部件窗口中选择“浏览”按钮。 (3)选择要插入的文件,按“打开”按钮; (4)将图形放在屏幕的任意位置,将其固定(如图2)。

步骤3、导入“凸轮” (1)重复按照步骤2的方法,将凸轮导入到装配体中。 (2)添加“同心”约束,添加后如图(3)添加“距离”约束添加后的结果如下 步骤4 、导入“滚轮” (1)重复按照步骤2的方法,将滚轮导入到装配体中。 (2)添加一个“机械约束”中的“凸轮配合”约束

PROE绘制凸轮的基本方程

PROE绘制凸轮的基本方程 h number=20 "Enter h:" rb number=50 "Enter rb:" rr number=10 "Enter the roller radius:" r0 number=12.5 "Enter the cam hole radius:" width number=30 "Enter the cam width:" fai1 number=60 "Enter fai1:" fai2 number=120 "Enter fai2:" fai3 number=60 "Enter fai3:" fai4 number=120 "Enter fai4:" a1=0 /*起始角,角度,单位为degree b1=fai1/2 /*终止角,角度,单位为degree fai=a1*(1-t)+b1*t /*中间角变量,角度,单位为degree s1=2*h*fai*fai/(fai1*fai1) /*升程变量,长度,单位为mm x=(rb+s1)*sin(fai) /*理论轮廓曲线x坐标值,长度,单位为mm y=(rb+s1)*cos(fai) /*理论轮廓曲线y坐标值,长度,单位为mm a2=fai1/2 /*起始角,角度,单位为degree b2=fai1 /*终止角,角度,单位为degree fai=a2*(1-t)+b2*t /*中间角变量,角度,单位为degree je=fai1-fai /*中间角变量,角度,单位为degree s2=h-2*h*je*je/(fai1*fai1) /*升程变量,长度,单位为mm x=(rb+s2)*sin(fai) /*理论轮廓曲线x坐标值,长度,单位为mm y=(rb+s2)*cos(fai) /*理论轮廓曲线y坐标值,长度,单位为mm

凸轮机构设计及运动分析

凸轮机构设计及运动分析 问题描述: 如图1所示为以对心直动尖顶盘形凸轮机构。从动杆位移s随时间变化曲线如图2所示。要求设计凸轮机构并分析从动件速度v,加速度a随时间变化的规律,及应力、应变随时间变化的规律。 任务与要求 1.设计满图2运动规律的凸轮机构;(要有设计计算步骤) 2.对所设计的机构运用ansys软件分析从动件速度、加速度随时间变化的规律; 3.查阅资料、了解所给机构的在生产、生活中的应用,说明其工作原理,并附相应的图片或视频。 凸轮机构设计及运动分析指导书

一、设计的目的 通过设计,训练学生机构设计的能力,掌握运用ANSYS Workbench进行瞬态动力学分析的方法、步骤和过程,提高学生解决实际问题的能力。 二、设计报告的主要要求 设计报告包括设计报告书Word文档和Powerpoint演示文稿两部分。 1.设计报告书内容包括目录、任务书、正文、参考文献、组员工作内容表。 (1)文档格式严格遵守设计书文档规范要求。 (2)目录必须层次清楚,并标有页码数。 (3)正文按章节编写,按照任务书要求合理安排内容,并附有参考文献。 2.Powerpoint演示文稿要求内容简洁,重点突出。 三、人员要求:1人 四、时间安排 1.布置任务、准备、查阅资料:2天; 2.机构设计及动画:6天; 3.Ansys分析:6天; 4.编写报告书、Powerpint演示文稿、验收:2天。 5.答辩。 五、成绩形成: 设计报告书:50分;答辩:50分 组内成员按实际完成工作量评定每位学生最终成绩;不参加答辩的学生没有答辩成绩。 六、参考资料:机械原理的平面机构,ansys机械工程应用精华59例

凸轮运动Matlab仿真-Matlab课程设计

Matlab 课程设计 李俊机自091 设计题目一:凸轮机构设计 已知轮廓为圆形的凸轮(圆的半径为100mm、偏心距为20mm),推杆与凸轮运动中心的距离20mm,滚子半径为10mm,请利用matlab仿真出凸轮推杆的运动轨迹和运动特性(速度,加速度),并利用动画演示出相关轨迹和运动特性。 %总程序代码 clc; clf; clear; p=figure('position',[100 100 1200 600]); for i=1:360 %画圆形凸轮 R=100; %圆形凸轮半径 A=0:0.006:2*pi; B=i*pi/180; e=20; %偏心距 a=e*cos(B);

b=e*sin(B); x=R*cos(A)+a; y=R*sin(A)+b; subplot(1,2,1) plot(x,y,'b','LineWidth',3); %填充 fill(x,y,'y') axis([-R-e,R+e,-R-e,R+e+100]); set(gca,'Xlim',[-R-e,R+e]) set(gca,'Ylim',[-R-e,R+e+100]) axis equal; axis manual; axis off; hold on; plot(a,b,'og') plot(e,0,'or') plot(0,0,'or','LineWidth',3)

%画滚子 gcx=0; %滚子中心X坐标r=10; %滚子半径 gcy=sqrt((R+r)^2-a^2)+b; %滚子中心Y坐标 gx=r*cos(A)+gcx; %滚子X坐标 gy=r*sin(A)+gcy; %滚子Y坐标 plot(gx,gy,'b','LineWidth',2); %画其它部分 plot([0 a],[0 b],'k','LineWidth',4) plot([3 3],[170 190],'m','LineWidth',4) plot([-3 -3],[170 190],'m','LineWidth',4) %画顶杆 gc=120; dgx=[0 0]; dgy=[gcy gcy+gc]; plot(dgx,dgy,'LineWidth',4); hold off

基于Proe与Adams凸轮机构虚拟样机仿真分析研究-2

基于Pro/E和Adams的凸轮机构虚拟样机仿真分析研究 张悦刊1,肖林京1,杨俊茹1,李瑞川2 (1.山东科技大学机电学院,山东青岛266590;2.山东五征集团,山东日照262306) 摘要:构建了虚拟样机系统框架,通过Pro/E软件建立了凸轮机构的虚拟样机数字化模型,导入Adams进行模拟仿真分析,将仿真结果数据读入到matlab进行处理,结果完全一致。基于Pro/E和Adams的虚拟样机仿真方法及仿真结构为凸轮的优化设计提供了可靠依据。 关键词:Pro/E,Adams,凸轮,虚拟样机 1引言 虚拟样机技术已经逐渐成为复杂产品开发的重要手段,它提供了虚拟化产品的开发模式,能够很好地解决由于物理样机开发模式带来的种种弊端[1]。本文用Pro/E软件对凸轮机构进行三维建模,用Adams 软件对凸轮机构进行了动力学仿真分析,得到了凸轮机构的位移、速度、加速度、接触力等曲线,为凸轮机构优化设计提供了理论指导。 Adams[2]是世界上著名的以计算多体系统动力学仿真软件,但是对于复杂模型,比较专业的CAD软件来说,其建模能力就明显不足。众所周知,Proe/E的建模能力十分强大,通过与Adams的数据接口,能够方便地将Proe/E模型转换到ADAMS中,从而实现两者之间的数据传输,进行联合仿真,充分发挥两个软件的专长,实现机械产品的高效仿真。 2 凸轮机构虚拟样机系统 图1虚拟样机系统结构框图 为了实现虚拟样机的功能要求,构建如图1所示的虚拟样机系统。该系统是在三维数字化建模平台上,由静力学仿真、动力学仿真、运动学仿真三大模块组成。本文采用Proe/Engineering Wildfire5.0 [3]软件对凸轮机构进行三维建模,然后导入ADAMS,通过对构件编辑材料属性,添加约束,施加驱动和载荷,对凸轮机构进行动力学仿真分析,对产品开发中的结构进行验证,同时发现缺陷,避免设计中存在的失误。 凸轮机构的装配模型可以看作由凸轮、滚子、导轨、推杆等零部件组成。装配后的三维数字模型如图2所示。

凸轮机构的运动学仿真实验_02

机构与零部件设计(Ⅰ)实验报告姓名 凸轮机构运动学仿真班号 成绩 凸轮机构的运动学仿真 一、实验目的: 1.理解凸轮轮廓线与从动件运动之间的相互关系,巩固凸轮机构设计及运动分析的理论知识。 2.用虚拟样机技术模拟仿真凸轮机构的设计。 二、实验内容: 1.凸轮轮廓线的构建; 2.凸轮机构的三维建模; 3.凸轮机构的运动学仿真。 具体要求:设计对心直动滚子从动件凸轮机构 已知从动件的运动规律为:当凸轮转过Φ=600时,从动件以等加速等减速运动规律上升h=10mm;凸轮再转过Φ'=1200,从动件停止不动;当凸轮再转过Φ=600时,从动件以等加速等减速运动规律下降h=10mm;其余Φs'=1200,从动件静止不动。 已知基圆r b=50mm,滚子半径r=10mm,凸轮厚度10mm。凸轮以等角速度顺时针转动,试设计凸轮机构,并输出从动件运动规律。 实验步骤:

三、实验报告: 将所建立的凸轮廓线、凸轮机构的三维模型、凸轮机构的从运件运动规律附在实验报告中。 机构与零部件设计(Ⅰ)实验报告 凸轮机构运动学仿真

对设计结果进行分析 思考题: 1.在构建凸轮轮廓线的曲线应注意哪些事项?在建立凸轮机构的三维建模时又应注意哪些事项? 建凸轮轮廓曲线时首先该凸轮轮廓曲线分为四段推程阶段(等加速、等减速)、远休止阶段、回程阶段、近休止阶段。建立表达式时较复杂,例如要将上诉规律分为六小段,即b1=30,b2=60,b3=180,b4=210,b5=240,b6=360且a1=0,a2=b1,a3=b2,a4=b3,a5=b4,a6=b5(单位皆为度)。 另知 在最后插入曲线时要将输入的x1、y1等相互对应,且将Z 值变为0. 还要根据设计任务的要求选择凸轮的类型和从动件运动规律 确定凸轮的基圆半径,确定凸轮的轮廓 在建立三维模型,表达式的建立时,要注意参数化曲线的建立以及连杆,运动副的定义,特别注意高副的定义。 2.凸轮轮廓线与从动件运动规律之间有什么内在联系? 答:凸轮轮廓曲线由从动件的运动规律来决定,要根据从动件的运动规律来设计凸轮轮廓的曲线。 ? ?cos )(sin )(s r y s r x b B b B +=+=

参数化圆柱凸轮的proe做法

4.1 参数化设计原理 采用Pro/ENGINEER 进行参数化设计,所谓参数化设计就是用数学运算方式建立模型各尺寸参数间的关系式,使之成为可任意调整的参数。当改变某个尺寸参数值时,将自动改变所有与它相关的尺寸,实现了通过调整参数来修改和控制零件几何形状的功能。采用参数化造型的优点在于它彻底克服了自由建模的无约束状态,几何形状均以尺寸参数的形式被有效的控制,再需要修改零件形状的时候,只需要修改与该形状相关的尺寸参数值,零件的形状会根据尺寸的变化自动进行相应的改变 【17】 。参数化设计不同于传统的设计, 它储存了设计的整个过程,能设计出一族而非单一的形状和功能上具有相似性的产品模型。参数化为产品模型的可变性、可重用性、并行设计等提供了手段,使用户可以利用以前的模型方便地重建模型,并可以在遵循原设计意图的情况下方便地改动模型,生成系列产品 【18】 。 4.2 建立滚轮中心轨迹曲线方程 圆柱凸轮最小外径为: min 2m D r B =?+ (37) 由式(37)、(7)、(31)得:

4 1m in 4 1 4100095.161080003224tan cos 100095.1610800032tan cos 2000 95.1610380002tan cos m h Ft h D r B h Ft h h Ft h D D ρα α ραα α α ---????+ ? ??=?+=? + ????+ ? ??= + ????+ ? ??= + (38) 圆柱周长L 4 200095.1610380002tan cos h Ft h D D L D ππαα-??????+ ? ??? ?==+ ? ??? (39) 单个滚轮中心轨迹按周长展开,如图10所示: 图10 单个滚轮中心轨迹按周长展开

基于Adams的凸轮机构运动仿真教程

基于adams的凸轮机构运动仿真 摘要:虚拟样机技术是一种崭新的产品开发技术,其中ADAMS软件是目前最著名的虚拟样机分析软件之一。本文阐述了虚拟样机技术和ADAMS软件的特点及其应用,以凸轮机构为研究对象,对其进行动力学分析。主要运用我们学习过的机械原理等理论知识对机构进行运动学和动力学的相关理论计算;利用ADAMS软件在图形显示方面的优势,采用其基本模块ADAMS/View(界面模块)进行一系列建模、运动分析和动态模拟仿真工作,验证模型的正确性,并对机构在整个周期内的可行性进行计算分析,记录相应信息,输出所需要的位置、速度、加速度等曲线与理论结果比较,充分展现虚拟样机技术的优越性,为虚拟样机技术的深入研究打下基础。 关键词:ADAMS;凸轮机构;运动学分析;仿真 引言 凸轮机构的应用十分广泛,在生产机械中应用凸轮机构可以较容易的实现不同的工作要求。特别是实现间歇式的运动过程!但是,目前对于该类模型的动态仿真很少。本例主要就推程、回程等要求进行预设。力图通过adams实现对该凸轮机构的构建以及后续的仿真,并尝试进行一定的机构优化。 1.研究内容 这里,我主要研究内容为理论凸轮设计在adams中的设计及其动态仿真。后续,根据输出的相应的速度、加速度曲线等将进行一定的设计优化。力图真实还原凸轮机构在设计中的真实过程。 2.工作原理 凸轮机构是由凸轮,从动件和机架三个基本构件组成的高副机构。凸轮是一个具有曲线轮廓或凹槽的构件,一般为主动件,作等速回转运动或往复直线运动。通过对凸轮轮廓进行不同的设计,可以实现从动件不同形式的运动。以此来满足机械设计中对于运动的精细控制过程。 3.动力学建模 (1)建模前期准备 情景设想:某公司需要设计一凸轮机构实现对物料的间歇夹紧过程。其给出相应数据如下。 注:其他的暂 不作要求。 (2)设计

凸轮机构设计及其动态仿真

凸轮机构设计及其动态仿真 [摘要]根据所要求的从动件运动曲线类型和相关基本参数得到对应的凸轮轮廓曲线,利用得到曲线在Solidworks中用插入坐标点曲线功能,快速生成凸轮实体,应用COSMOSMotion的运动仿真功能,再现了凸轮机构的运动过程,用图形输出的运动仿真结果与输入曲线的对比,可以检验机构的运动特性是否符合设计要求。 【关键词】凸轮设计;运动仿真;COSMOSMotion 凸轮机构由凸轮、从动件和机架组成。其主要优点是结构简单、工作可靠,能够使从动件按任意复杂给定的规律运动,在工程实践中得到广泛的应用[1]。对凸轮机构进行运动分析的目的是当已知各构件尺寸参数、位置参数和原动件运动规律时,研究机构其余构件上各点的轨迹、位移、速度、加速度,构件的位置、角位移、角速度和角加速度等运动参数,从而评价机构是否满足工作性能要求,机构是否发生运动干涉。 传统的凸轮机构的运动分析方法有图解法、解析法。图解法形象直观,但作图较烦琐;解析法需要建立复杂的数学关系式,计算工作量大。本文通过Solidworks建立凸轮机构的装配模型,利用COSMOSMotion模块建立其运动仿真模型,然后进行运动学分析,仿真凸轮机构的运动状况,最后将所设置的构件的位移、速度、加速度的变化情况以图表的形式输出[2-3]。 一、滚子从动件盘型凸轮机构分析 为便于分析,首先设定坐标系。(1)凸轮机构坐标系XOY:原点为凸轮坐标轴中心,X轴、Y轴固结于机架上。该坐标轴为整个凸轮机构的总体坐标系。(2)从动件坐标系XfOfYf:原点为从动件回转中心,Xf 二、凸轮轮廓的三维建模 将凸轮回转一个周期分为400份,最后得到的400个点,利用这400个点来进行凸轮轮廓曲线的绘制的。根据建模的需要,将在Matlab中得到的曲线“导入”Soli dworks中。 打开Solidworks进入绘制,选择“插入”—“曲线”—“通过X、Y、Z点的曲线”,打开曲线文件对话框,选择对应的txt文件并打开,将数据传递到Solidworks中,以直动从动件滚子凸轮为例,如图1所示,点击“确定”便可以看到生成的轮廓曲线。选择前基准面作为基准面绘制草图,单击已经生成的凸轮轮廓曲线,选择“转换实体引用”命令,便可以得到凸轮轮廓草图,通过对该草图的拉伸操作便可以得到滚子从动件盘型凸轮的基本三维模型,如图2、图3所示。 三、基于COSMOSMotion的凸轮机构运动仿真

用ADAMS进行凸轮机构模拟仿真示例讲课教案

用A D A M S进行凸轮机构模拟仿真示例

例: 尖顶直动从动件盘形凸轮机构的凸轮基圆半径mm r 600 =,已知:从动件行程mm h 40=,推程运动角为ο1500=δ,远休止角ο60=s δ,回程运动角ο1200='δ,近休止角为ο30='s δ;从动件推程、回程分别采用余弦加速度和正弦加速度运动规律。对该凸轮机构进行模拟仿真。 解: 1. 从动件推程运动方程 推程段采用余弦加速度运动规律,故将已知条件mm h 406/51500 ===、。πδ代入余弦加速度运动 规律的推程段方程式中,推演得到 ???? ?????=≤≤=-=δωπδδωδ56cos 8.28)6/50( 56sin 24)56cos 1(202a v s 2. 从动件远休程运动方程 在远休程s δ段,即6/76/5πδπ≤≤时, 0,0,===a v h s 。 3. 从动件回程运动方程 因回程段采用正弦加速度运动规律,将已知条件mm h v 403/21200===' 、πδο代入正弦加速度运动规律的回程段方程式中,推演得到 []???? ?????--=≤≤---=??????-+-?=)5.33sin(180)6/116/7( )5.33cos(160)5.33sin(212375.2402πδωππδππδωππδπδπa v s 4. 从动件近休程运动方程 在近休程s 'δ段,即πδπ 26/11≤≤时, 0,0,0===a v s 。 创建过程 1、 启动ADAMS 双击桌面上ADAMS/View 的快捷图标,打开ADAMS/View 。在欢迎对话框中选择“Create a new model ”,在模型名称(Model name )栏中输入:tuluen ;在重力名称(Gravity )栏中选择“Earth Normal (-Global Y)”;在单位名称(Units )栏中选择“MMKS –mm,kg,N,s,deg ”。如图1-1所示。

proe机构运动仿真教程

proe机构运动仿真教程 典型效果图 1.1机构模块简介 在进行机械设计时,建立模型后设计者往往需要通过虚拟的手段,在电脑上模拟所设计的机构,来达到在虚拟的环境中模拟现实机构运动的目的。对于提高设计效率降低成本有很大的作用。Pro/ engineer中“机构”模块是专门用来进行运动仿真和动态分析的模块。 PROE的运动仿真与动态分析功能集成在“机构”模块中,包括Mechanism design(机械设计)和Mechanism dynamics (机械动态)两个方面的分析功能。 使用“机械设计”分析功能相当于进行机械运动仿真,使用“机械设计”分析功能来创建某种机构,定义特定运动副,创建能使其运动起来的伺服电动机,来实现机构的运动模拟。并可以观察并记录分析,可以测量诸如位置、速度、加速度等运动特征,可以通过图形直观的显示这些测量量。也可创建轨迹曲线和运动包络,用物理方法描述运动。 使用“机械动态”分析功能可在机构上定义重力,力和力矩,弹簧,阻尼等等特征。可以设置机构的材料,密度等特征,使其更加接近现实中的结构,到达真实的模拟现实的目的。

如果单纯的研究机构的运动,而不涉及质量,重力等参数,只需要使用“机械设计”分析功能即可,即进行运动分析,如果还需要更进一步分析机构受重力,外界输入的力和力矩,阻尼等等的影响,则必须使用“机械设计”来进行静态分析,动态分析等等。 1.2总体界面及使用环境 在装配环境下定义机构的连接方式后,单击菜单栏菜单“应用程序”→“机构”,如图1-1所示。系统进入机构模块环境,呈现图1-2所示的机构模块主界面:菜单栏增加如图1-3所示的“机构”下拉菜单,模型树增加了如图1-4所示“机构”一项内容,窗口右边出现如图1-5所示的工具栏图标。下拉菜单的每一个选项与工具栏每一个图标相对应。用户既可以通过菜单选择进行相关操作。也可以直接点击快捷工具栏图标进行操作。 图1-1 由装配环境进入机构环境图 图1-2 机构模块下的主界面图 图1-3 机构菜单图1-4 模型树菜单图1-5 工具栏图标图1-5所示的“机构”工具栏图标和图1-3中下拉菜单各选项功能解释如下:

基于proe的凸轮机构设计与仿真

目录 中文摘要 ................................................................. I 英文摘要 ................................................................ II 第1章任务与课题条件 . (1) 1.1任务 (1) 1.2课题条件 (1) 第2章凸轮机构及PRO/E简介 (2) 2.1凸轮机构简介 (2) 2.2 PRO/E简介 (7) 第3章盘形凸轮创建过程 (10) 3.1新建零件 (10) 3.2创建拉伸特征 (10) 3.3创建方程曲线 (10) 3.4创建图形特征 (11) 3.5创建可变剖面扫描特征 (12) 3.6创建孔特征 (12) 第4章其余零件设计 (14) 4.1从动杆设计 (14) 4.2连杆设计 (14) 4.3滑块设计 (15) 第5章装配 (16) 第6章机构仿真 (17) 6.1定义凸轮从动连接机构. (17) 6.2添加驱动器 (17) 第7章运动分析及结果分析 (20) 7.1运行分析 (20) 7.2结果回放 (21) 7.3结果分析 (22) 结论 (25) 参考文献 (26) 致谢 (27)

摘要 机械产品的运动分析和仿真在机械产品的设计中是不可缺少的重要环节。在各类机械的传动结构中,凸轮结构有着广泛的应用,根据凸轮机构的设计原理,提出了在pro/e 中实现凸轮设计及实体造型的方法,并主要利用Pro/e Wildfire的运动学分析模块Mechanism对凸轮机构进行了运动学分析和仿真,这对凸轮机构的优化设计将提供较大的帮助。本文通过对对心直动尖顶盘型凸轮机构进行运动仿真分析,更加明确了该机构的优缺点,对于该机构的优化设计以及该机构以后的用途将提供指导作用。 关键词:凸轮机构 Pro/E 运动仿真运动分析

ProE齿轮机构仿真

Pro/E齿轮机构仿真 时间:2013-3-26 15:24:44 作者:未知来源:网络文摘查看:252 评论:0 本次设计用pro/e三维造型软件进行建模,各零件建好后,进行装配,进而实现模拟仿真运动分析。 1建立机构模型 经装配后,得到跑步机的仿真模型。 图1 仿真实体 2运动仿真 2.1进入机械设计环境 单击菜单栏中的【应用程序】【机构】命令,进入机械设计环境。 单击菜单栏中的【编辑】【连接】命令,弹出【连接组件】对话框。单击该对话框的【运行】,检查装配的连接情况。若连接成功,系统弹出【确认】对话框。单击该对话框中的【是】按钮,确认检查情况。 2.2定义圆锥齿轮连接 单击【模型】工具【齿轮】,弹出【齿轮副定义】对话框,如图2所示。接受默认名称和传动类型标准,选择如图2所示的大齿轮的连接作为连接轴;系统将会自动选择齿轮的主体和托架,输入节圆直径45,如图7-2所示。 单击【齿轮副定义】对话框中的【齿轮2】选项卡,选取如图3所示的小齿轮的连接作为连接轴;系统将会自动选择齿轮的主体和托埽输入节圆直径18,如图3所示;单击该对话框中的【确定】按钮,此时,在齿轮机构中将显示齿轮副连接的标志,如图4所示。

图2 【齿轮副定义】对话框 图3 齿轮2的定义

图4 齿轮副连接标志 2.3 创建驱动器 单击【模型】工具栏【伺服电动机】按钮,弹出【伺服电动机定义】对话框,如图5所示。接受默认名称,在绘图区选择如图5所示的连接轴作为伺服电动机的驱动对象,并单击【反向】按钮。 图5【伺服电动机定义】对话框 在如图5所示的对话框中单击【轮廓】面板,在如图6所示的【规范】选项组下拉列表中选择【速度】选项。其余均接受对话框中当前项的选择,默认当前轴的位置为零位置。在【模】选项组下拉列表中选择【常数】选项,表示驱动器以常数形式运行。在【A】,文本框中输

沟槽凸轮机构的设计运动仿真

摘要 在当今经济全球化、市场竞争日趋激烈的时代,新产品的开发时间成为企业能否在激烈的市场竞争中取胜的关键因素。传统的产品设计过程中重复计算、重复建模等工作量很大,一直困扰着产品开发人员,严重影响了产品的设计质量和效率。这种现象在凸轮的设计中尤为突显。针对这一问题,本课题利用Pro/E软件中的运动仿真模块对凸轮机构运动进行模拟仿真。 本论文的主要研究内容有: 1、沟槽凸轮设计 2、沟槽凸轮机构的零部件的实体建模 3、沟槽凸轮机构的运动仿真 关键词:沟槽凸轮实体建模运动仿真

ABSTRACT In the competitive era of economic globalization and increasingly markets, the development time for new product become a key factor to win in the fierce competition market. The traditional product design process of double counting, such as repeated heavy workload and modeling have troubled the product development staff, a serious impact on product design quality and efficienct. This phenomenon is particularly on the design of cam highlights. Address with this problem, the subject of using the movement simulation module of Pro / E software on the cam movement simulation. In this paper, the main research contents are as follows: 1. Designing the groove cam 2. Modeling the mechanism parts of groove cam 3. Motion simulating of the groove cam mechanism Key Words: Cam groove, Modeling, Motion Simulation

PROE机构仿真分析基础知识

机构仿真分析基础知识 机构仿真之运动分析基础教程 机构仿真是PROE的功能模块之一。PROE能做的仿真内容还算比较好,不过用好的兄弟不多。当然真正专做仿真分析的兄弟,估计都用Ansys去了。但是,Ansys研究起来可比PROE麻烦多了。所以,学会PROE的仿真,在很多时候还是有用的。我再发一份学习笔记,并整理一下,当个基础教程吧。希望能对学习 仿真的兄弟有所帮助。 术语 创建机构前,应熟悉下列术语在PROE中的定义:主体(Body) - 一个元件或彼此无相对运动的一组元件,主体内DOF=0。 连接(Connections) - 定义并约束相对运动的主体之间的关系。 自由度(Degrees of Freedom) - 允许的机械系统运动。连接的作用是约束主体之间的相对运动,减少系统可能的总自由度。 拖动(Dragging) - 在屏幕上用鼠标拾取并移动机构。 动态(Dynamics) - 研究机构在受力后的运动。 执行电动机(Force Motor) - 作用于旋转轴或平移轴上(引起运动)的力。 齿轮副连接(Gear Pair Connection) - 应用到两连接轴的速度约束。 基础(Ground) - 不移动的主体。其它主体相对于基础运动。 机构(Joints) - 特定的连接类型(例如销钉机构、滑块机构和球机构)。 运动(Kinematics) - 研究机构的运动,而不考虑移动机构所需的力。 环连接(Loop Connection) - 添加到运动环中的最后一个连接。 运动(Motion) - 主体受电动机或负荷作用时的移动方式。 放置约束(Placement Constraint) - 组件中放置元件并限制该元件在组件中运动 的图元。 回放(Playback) - 记录并重放分析运行的结果。 伺服电动机(Servo Motor) - 定义一个主体相对于另一个主体运动的方式。可在机构或几何图元上放置电动机,并可指定主体间的位置、速度或加速度运动。LCS - 与主体相关的局部坐标系。LCS 是与主体中定义的第一个零件相关的缺 省坐标系。 UCS - 用户坐标系。 WCS - 全局坐标系。组件的全局坐标系,它包括用于组件及该组件内所有主体 的全局坐标系。 运动分析的定义 在满足伺服电动机轮廓和机构连接、凸轮从动机构、槽从动机构或齿轮副连接的要求的情况下,模拟机构的运动。运动分析不考虑受力,它模拟除质量和力之外

相关文档
最新文档