基于半导体集成电路辐射效应的空间辐射环境探测器

基于半导体集成电路辐射效应的空间辐射环境探测器
基于半导体集成电路辐射效应的空间辐射环境探测器

 第22卷 第4期核电子学与探测技术

V o l

.22 N o .4 2002年 7月

N uclear E lectron ics &D etecti on T echno logy

July 2002 

基于半导体集成电路辐射效应的空间

辐射环境探测器

张庆祥,侯明东,甄红楼

(中国科学院近代物理研究所,甘肃兰州 730000)

摘要:空间辐射环境能够引起半导体集成电路发生的总剂量效应、单粒子效应等辐射效应,可以被

用来进行空间辐射环境监测。在一定条件下,基于此原理的探测器具有常规的面垒型探测器以及P I N 型探测器等所不具备的优点。尤其适合航天器舱内带电离子探测和用于航天医学的个人辐射剂量探测。介绍了三种基于半导体器件辐射效应的探测器。

关键词:半导体器件;辐射效应;总剂量效应;单粒子效应;空间环境探测

中图分类号: TL 814 文献标识码: A 文章编号: 025820934(2002)0420374203

收稿日期:2001205208

基金项目:国家自然科学基金(19775058,

10075064);中国科学院“九五”重大课题(KJ 9522S I 2423)

作者简介:张庆祥(19712),男,硕士,中国科学院近代物理研究所博士生,研究方向:空间辐射效应。

空间辐射环境对宇航员和空间电子学系统构成严重威胁,因此辐射环境的探测对保证宇航员的安全和电子学系统的正常工作至关重要。太阳质子事件以及南大西洋地磁异常区强辐射环境的探测对空间环境及其效应研究、卫星抗辐射加固设计、卫星故障分析等方面具有重要作用。空间环境中的重离子、质子以及电子通过电离辐射在半导体器件中产生电子2空穴对,在外加或内部电场的作用下电荷的运动引起各种有害的辐射效应,如总剂量效应、单粒子效应以及充放电效应等。辐射效应是航天器故障和失效的重要诱因,因此辐射效应的研究引起了国际上广泛的重视。研究表明,半导体集成电路的辐射效应可被利用进行辐射环境的探测,例如M O S 晶体管的某些参数的改变在一定范围内与吸收的总剂量成正比;存储器器件发生单粒子翻转的数量与L ET 值大于某一阈值的高能离子成正比,前者可以被用来进行航

天器内部复合的电离辐射环境以及宇航员个人剂量的监测,后者可以用来探测高能离子。

目前,常用的G M 计数管、气体积分电离室、热释光剂量仪、固体径迹探测器以及面垒型探测器、P I N 型探测器等都已成功应用于航天飞机、空间站、深空宇宙探测器以及各种卫星。半导体探测器具有能量分辨率高、线性响应好以及工作可靠等优点。因此具有很好的应用前景。面垒型探测器、P I N 型探测器获取的原始信号是辐射在敏感区产生的电荷,为了对电荷进行有效的收集,要求加很高的电压。另外这种探测器的有效面积的直径在c m 量级,能够测量强度很弱的背景辐射,但是容易受到辐射损伤的影响,受后续电子学线路分辨率的影响,容易形成堆积,不适合于强辐射环境的监测。

基于辐射效应的探测器与传统探测器最大的区别是通过电离辐射产生的效应间接测量辐射环境,虽然不能获得能谱,而且一般不适合进行弱辐射环境的监测,但是具有以下优点:活动

面积很小,适合测量大于10Gy (Si )强辐射环境;不需要加高电压,电子学线路简单;读出方便,可以做成“主动”式,尤其适合于舱内高能带电离子探测和航天医学的个人辐射剂量监测。更主要的是利用现成的集成电路制造工艺,制作简单。由于目前集成电路的单元电路尺寸与

人体细胞相当的水平,因此这种类型的探测器在生物辐射效应以及医学中也有广泛的应用。

在辐射防护、放射生物学以及电子器件的辐射效应等领域中,需要采用微剂量学方法来确定在微小尺寸中能量沉积模式。现代集成电路技术可以制作大量相同尺寸为几个Λm的二极管。M c N u lty首先提出采用反向偏置的SiP2 N结阵列来测量航天器和飞行器内部的辐射环境,其基本结构是PN结后接能谱系统,用多道分析器(M CA)来记录辐射产生的电荷,值得一提的是在微剂量、SEU以及生物细胞死亡之间存在紧密的联系。这种基于Si二极管阵列的微剂量仪[1]已经在医学辐射剂量领域以及单粒子翻转领域得到了广泛的应用。由于在普通的PN结中除了漂移,还有扩散和漏斗效应等电荷收集机制,因此PN结的灵敏体积难以确定,近年来利用SO I结构来减小扩散和漏斗效应。这种机制的探测器虽然利用集成电路,但仍属于传统的半导体探测器。下面介绍三种典型的基于集成电路的辐射效应的探测器。

1 基于M O S集成电路总剂量效应的探测器

电离辐射在M O S晶体管栅极的氧化层中产生电子2空穴对,电子是可移动的,很容易离开氧化层,而空穴被俘获在Si Si O2界面上,导致M O S晶体管阈值电压V T的正漂移,研究表明,在100Gy(Si)以下,阈值电压的漂移?V T与氧化层吸收的剂量D成正比,因此,通过测量?V T就可以得到吸收剂量,这类探测器的特点是:

1)M O SFET剂量仪既可以用于被动式,也可以用于主动式,测量结果实时读出;

2)适合测量在薄层屏蔽后的累积剂量;

3)活动面积小于1Λm,适合测量某一点的剂量,这对于材料科学、航天器充电效应、原子氧(AO)实验以及电子器件的辐射效应研究非常重要。

需要指出的是温度对V T影响很大,因此在具体应用中应考虑根据环境温度对数据进行修正。美国海军实验室(N RL)从70年代末就开始研制用于空间环境的高剂量M O SFET剂量仪。在M I R空间站以及俄罗斯的生物卫星B I ON210(1992)和B I ON211(1996)上进行的M O SFET剂量仪技术可行性飞行试验[2],将该探测器放置在空间站的宇航员休息舱以及卫星外部薄屏蔽层里。测量到的剂量率可以低到0.3 m Gy d[3],首次在空间应用中将M O SFET用于低剂量的测量。结果表明这种探测器可以替代曾经在各种载人航天器(M I R.ST S’)以及多颗实验卫星上使用的热释光探测器TLD,用于宇航员个人剂量的监测。此外,英国国防评估和研究机构(D ERA)的地球转移轨道实验卫星STRV21上采用4个双M O SFET用作剂量深度探测器[3]。

2 基于可擦除浮栅工艺的剂量仪[4]

浮栅雪崩注入型金属2氧化物2硅(FAM O S)晶体管阵列构成的UV PROM是一种紫外擦除的非易失型存储器,与其他非易失型存储器如EEPROM类似,只不过擦除的方式不同。其结构如图1所示,浮栅上的电荷代表存储的信息。写入信息时,在强电场作用下,热电子通过绝缘层输运到浮栅极,当浮栅极上存储电荷产生的电场与注入电场相当时达到饱和。此时浮栅极对沟道加负偏压,使FET截断,在控制极上加相应的正电压,可使FET打开。因此控制栅极上所加的可使沟道打开的电压反应了浮栅极上电子的数量。电离辐射导致浮栅极上电荷逐渐减少。浮栅上剩余电荷是吸收剂量的函数,而通过控制极上打开沟道所需电压就可以得到吸收剂量

图1 FAM O S晶体管,浮栅极存储的电荷在电源关断后仍保持,电离辐射效应使浮栅极上的电荷损失这种方法利用商业级的数字UV PROM 作为模拟剂量仪,测量时保证存储的数据和探测器不受损伤,而且在读出剂量时仅需要加电源即可。其分辨率取决于UV PROM的单元数。包含65536个FAM O S晶体管的AM D27C64UV PROM在1997年发射的搭载有微电子和光电器件实验平台(M PTB)实验中作为剂量探测器已进行了可行性试验。结果其

分辨率达到了0.1Gy(Si)。目前正在两个方面进行研究,一是提高其灵敏度,以便用于个人剂量监测和在SEE研究作为微剂量仪;二是扩展量程,以便长期测量和用于极端恶劣环境。

3 基于静态存储器(SRAM)单粒子翻转的高能离子探测器[5]

静态存储单元存储的信息会因为单个高能离子的入射而改变,即单粒子翻转。发生翻转的数量与满足一定L ET值的离子数之间存在正比关系,因此可以利用对SRAM作为存储器件有害的SEU来探测高能离子的流强(F lux)。这种类型的探测器在测量太阳耀斑和南大西洋地磁异常区高能离子方面具有良好的应用前景。当然前提是保持工作电源稳定,而且不发生另外一种可导致器件烧毁的破坏性单粒子效应2单粒子闭锁SEL。该类型探测器具有以下特点:

1)灵敏区面积小,例如1.2Λm C M O S工艺制造的4k SRAM的敏感区只有0.0017c m2,小于直径为c m量级的P I N二极管和金硅面垒探测器,因此适于强辐射环境。

2)具有5个数量级的动态量程,通过屏蔽层过滤只有落入能量探测窗口的离子才能引起SEU。SRAM单元的敏感度2临界电荷可以通过调节单元的偏置电压来调节,因此通过改变电压V d可以改变探测的离子是重离子还是轻离子。

3)对电子以及Χ射线不敏感,抗干扰能力强。

在1994年1月25日发射的C lem en tine Sp acecraft上搭载的一个RR ELA X辐射监测芯片上包括一个4k字节的粒子谱仪,经历了4月21日太阳耀斑,穿越了地球俘获带,发现该谱仪仅仅对质子敏感,而对电子不敏感。英国国防评估和研究机构(D ERA)的地球转移轨道实验卫星STRV21上采用了一套由256k DRAM 以及抗辐照能力很强的54HC电路构成读写I O电路的质子探测器,是类似机制探测器在空间环境又一个应用[3]。

4 结论

目前国际上正在研究各种基于辐射效应探测器,预计航天实践的发展,人类在太空活动日益频繁,基于半导体集成电路辐射效应的探测器不但在空间环境,而且在地面核物理实验以及医疗设备中也具有良好的应用前景。

参考文献:

[1]B radley PD,et al.Charge co llecti on and radiati on

hardness of a SO I m icrodo si m eter fo r m edical and

space app licati ons[J].IEEE T rans N ucl Sci,

1998,N S45:2700.

[2]M ackay GF,et al.A pp licati ons of M O SFET

do si m eters on M I R and BO I N satellites[[J].IEEE

T rans N ucl Sci,1997,N S44:2048.

[3]T hom son I,et al.Do se2dep th and SEU monito rs

fo r the STRV21c satellite[J].IEEE T rans N ucl Sci,1998,N S45:2765.

[4]Scheick L Z,et al.Do si m etry based on the erasure

of floating gates in the natural radiati on environ2 m ents in space[J].IEEE T rans N ucl Sci,1998,

N S45:2681.

[5]Bueh ler M G,et al.C lem entine RR ELA X SRAM

particle spectrom eter[J].IEEE T rans N ucl Sci,

1994,N S41:2404.

D osi m eters ba sed on rad i a tion effects of Si I Cs

ZHAN G Q ing2x iang,HOU M ing2dong,ZH EN Hong2lou

(Institute of M odern Physics,Ch inese A cadem y of Science,L anzhou of Gansu P rov.730000,Ch ina) Abstract R adiati on effects in Si I C s,such as to tal do se effect,single event effect,et al.,can be uti2 lized to m easure space radiati on environm ent.D etecto rs based on these effects have som e advantages compared w ith conventi onal sem iconducto r detecto rs(barrier detecto r and P2I2N di ode)as do se dep th monito r in spacecraft and"sk in"do si m eter fo r personnel.T h ree of these k inds of detecto rs and their uses in space are introduced in th is paper.

Key words:sem iconducto r detecto rs;radiati on effects;to tal do se effect;single event effect;space radi2 ati on environm ent

辐射环境监测方案

编号:SY-AQ-04068 ( 安全管理) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 辐射环境监测方案 Radiation environmental monitoring program

辐射环境监测方案 导语:进行安全管理的目的是预防、消灭事故,防止或消除事故伤害,保护劳动者的安全与健康。在安全管 理的四项主要内容中,虽然都是为了达到安全管理的目的,但是对生产因素状态的控制,与安全管理目的关 系更直接,显得更为突出。 为了确保放射源周围环境的安全,了解放射源拟用位置周围环境的辐射现状,特制订本计划。 一、委托山西省辐射环境监督站承担放射源拟用位置周围环境辐射剂量的监测。 二、对于放射源周围辐射环境背景值监测,按GB/T14583《环境地表γ剂量率测定规范》进行,对于放射源安装后周围辐射环境的监测,按HJ/T61-2001《辐射环境监测技术规范》进行。监测数据认真记录,妥善保存,并报环境保护主管部门。 三、检测内容:放射源运行期间,监测的内容主要是周围环境γ辐射剂量率的监测。 四、监测频次: 1、放射源正常运行时,每年进行两次监测,数据存档备案; 2、放射源进行维修前后,应分别进行一次监测;

3、事故发生后,在事故处理前后对其周围环境分别进行一次监测; 4、放射源退役时,应进行一次退役监测。 五、监测点的位置: 1、放射源正常运行和维修前后的监测点位置为:铅罐表面、距源罐表面1米处; 2、发生事故时监测点的位置为:可能受到放射性污染的区域。 3、放射源退役时的监测点位置为:铅罐表面、距源罐表面1米处、过去安装或存放场所。 这里填写您的公司名字 Fill In Your Business Name Here

光伏探测器的应用与发展

海军工程大学 毕业设计(论文)报告书题目光伏探测器的应用与发展 专业光机电一体化工程 班级07-2051 ___姓名王庆_指导老师刘照世_ 2011 年3月5日 精品文档

摘要 1830年,L.诺比利利用当时新发现的温差电效应(也称塞贝克效应),制成了一种以半金属铋和锑为温差电偶的热敏型探测器,也是第一个探测器的诞生,继后其他功能的探测器相继发展。探测器主要用于测量检查, 控制跟踪, 图像测量和分析等方面。光伏探测器是利用半导体光伏效应制作的器件。这类器件品种众多,但它们的原理都是相同的,所以在性质上有许多相近的地方。本论文内容着重分析光伏探测器的原理和性能参数及光电池、光电二极管、光电三极管的结构和应用,介绍光伏探测器的发展前景。本论文还对光伏探测器的偏置电路有一定的介绍。 关键词:光伏探测器性质应用发展偏置电路 精品文档

Abstract In 1830, l .debbi Billy using the new found at temperature electric effect (also called plug baker effect), make a with half a metal bismuth and antimony temperature electric dipoles for the thermal type, and the first to detector probe after the birth of the other functions, following the detector successively development. The probe is mainly used for measuring inspection, control tracking, image measurement and analysis, etc. Photovoltaic detector is made using photovoltaic effects of semiconductor devices . This kind of device many kinds, but their principle is the same, so in nature have many similar place .This thesis focuses on analyzing the principle and performance photovoltaic detector test parameters and photoelectric triode, photoelectric diode, introduced the structure and application, the development prospect. This paper also on photovoltaic probe offset circuit has certain introduction. Key words: Photovoltaic detector properties application development Offset circuit 精品文档

辐射探测器

工作原理:辐射探测器的工作原理基于粒子与物质的相互作用。当粒子通过某种物质时,这种物质就吸收其全部或部分能量而产生电离或激发作用。 如果粒子是带电的,其电磁场与物质中原子的轨道电子直接相互作用。(库仑力) 如果是γ射线或X射线,则先经过一些中间过程,发生光电效应、康普顿效应或产生电子对,把部分或全部能量传给物质的轨道电子(二次电子),再产生电离或激发。 对于不带电的中性粒子,例如中子,则是通过核反应产生带电粒子,然后造成电离或激发。 辐射探测器就是用适当的探测介质作为与粒子作用的物质,将粒子在探测介质中产生的电离或激发,转变为各种形式的直接或间接可为人们感官所能接受的信息。探测器接收到入射粒子后,立即给出相应的电信号,经过电子线路放大、处理,就可以进行记录和分析。 工作过程: 入射粒子射入探测器,与探测器中的介质作用致使其激发或电离,在这个过程中入射粒子的能量发生损耗,这部分能量称为沉积能量,探测器通过某种机制将沉积能量转化为输出信号,从而反映辐射信息。 如果入射粒子不带电(如γ射线、X射线、中子),则利用其与探测介质作用产生二级电子或重带电粒子,从而实现能量的沉积。

入射带电粒子与物质原子的轨道电子发生库仑相互作用而损失能量,轨道电子获得能量。 ? 电离:电离的结果形成一对正离子和自由电子。若内壳层电子被电离后,该壳层留 下空穴,外层电子跃迁来填补,同时放出特征x 射线或俄歇电子。 ? 激发:当电子获得能量较少,不足以克服原子核的束缚成为自由电子,将跃迁到较 高的能级。处于激发态的原子不稳定,作短暂停留后,将从激发态跃迁回到基态,退激时,释放的能量以荧光的形式发射出来。 利用电离或激发效应来记录入射粒子是绝大多数探测器的物理基础。它们的差别在于记录方式不同,大致分为: (1) 收集电离电荷的探测器主要收集电离效应产生的大量正负离子,记录它们 的电荷所形成的电压或电流脉冲。这类探测器必须加上适当的工作电压,形成电场以有效收集电荷。如气体探测器、半导体探测器。 (2) 收集荧光的探测器被带电粒子激发的原子退激时发出荧光。由于荧光很弱, 需要通过一定的转换放大,即把光脉冲转换成较大的电脉冲——光电倍增管。如闪烁计数器等。 γ射线探测基本原理: γ射线与物质的相互作用主要有三个过程:光电效应、康普顿散射和电子对效应。在三种效应中,每个γ光子都是在一次作用中就损失其全部能量或相当大部分能量,并发射出电子。正是这些电子使得探测γ射线成为可能。 中子探测基本原理: 中子与物质相互作用主要是中子与原子核的强相互作用,即核反应。探测中子就是探测中子与原子核核反应产生的次级粒子。 ? 核反冲法是记录中子与原子核弹性散射后的反冲核。反冲核具有电荷,可以作为带 电粒子记录。记录了反冲核,就探测到中子。该方法主要用于探测快中子。 反冲核越小获得的能量越,实际中测量沿入射中子束方向张角为±10度的反冲质子,此时探测器接收到的质子数较多,反冲质子的能量粗略地等于入射中子能量。 核反冲法探测中子时应选择轻核物质做靶材料。 ? 核反应法主要用于测量慢中子通量。 a(入射粒子)+A(靶核)→b(出射粒子)+B(剩余核) 都是放热反应,反应放出的能量变成次级粒子的动能。σ0是热中子的反应截面,都 很大。实际应用最广的是反应。因为硼材料比较容易得到,气态可选用BF 3气体,固态有氧化硼、碳化硼等。天然硼中10B 含量较高,易浓缩。 ? 核裂变法就是通过记录中子与重核作用产生的裂变碎片来探测中子的方法。裂变放 出能量200MeV ,两个裂变碎片带走170MeV 的能量。入射中子能量远小于它,故该法不能测量中子能量,主要测中子通量。 224cos ()n n n m M E E m M ?=+反冲2224cos cos (1)n n A E E E A ?α?∴==+反冲333300.764532710(,)n He p T MeV He n p T σ+→++±,=靶, 636304.7809414,)n Li T MeV Li n T ασα+→++=±,靶, (10710702.79238379,)n B Li MeV B n Li ασα+→++±,=靶, (107(,)B n Li α

基于半导体集成电路辐射效应的空间辐射环境探测器

第22卷 第4期核电子学与探测技术 V o l .22 N o .4 2002年 7月 N uclear E lectron ics &D etecti on T echno logy July 2002  基于半导体集成电路辐射效应的空间 辐射环境探测器 张庆祥,侯明东,甄红楼 (中国科学院近代物理研究所,甘肃兰州 730000) 摘要:空间辐射环境能够引起半导体集成电路发生的总剂量效应、单粒子效应等辐射效应,可以被 用来进行空间辐射环境监测。在一定条件下,基于此原理的探测器具有常规的面垒型探测器以及P I N 型探测器等所不具备的优点。尤其适合航天器舱内带电离子探测和用于航天医学的个人辐射剂量探测。介绍了三种基于半导体器件辐射效应的探测器。 关键词:半导体器件;辐射效应;总剂量效应;单粒子效应;空间环境探测 中图分类号: TL 814 文献标识码: A 文章编号: 025820934(2002)0420374203 收稿日期:2001205208 基金项目:国家自然科学基金(19775058, 10075064);中国科学院“九五”重大课题(KJ 9522S I 2423) 作者简介:张庆祥(19712),男,硕士,中国科学院近代物理研究所博士生,研究方向:空间辐射效应。 空间辐射环境对宇航员和空间电子学系统构成严重威胁,因此辐射环境的探测对保证宇航员的安全和电子学系统的正常工作至关重要。太阳质子事件以及南大西洋地磁异常区强辐射环境的探测对空间环境及其效应研究、卫星抗辐射加固设计、卫星故障分析等方面具有重要作用。空间环境中的重离子、质子以及电子通过电离辐射在半导体器件中产生电子2空穴对,在外加或内部电场的作用下电荷的运动引起各种有害的辐射效应,如总剂量效应、单粒子效应以及充放电效应等。辐射效应是航天器故障和失效的重要诱因,因此辐射效应的研究引起了国际上广泛的重视。研究表明,半导体集成电路的辐射效应可被利用进行辐射环境的探测,例如M O S 晶体管的某些参数的改变在一定范围内与吸收的总剂量成正比;存储器器件发生单粒子翻转的数量与L ET 值大于某一阈值的高能离子成正比,前者可以被用来进行航 天器内部复合的电离辐射环境以及宇航员个人剂量的监测,后者可以用来探测高能离子。 目前,常用的G M 计数管、气体积分电离室、热释光剂量仪、固体径迹探测器以及面垒型探测器、P I N 型探测器等都已成功应用于航天飞机、空间站、深空宇宙探测器以及各种卫星。半导体探测器具有能量分辨率高、线性响应好以及工作可靠等优点。因此具有很好的应用前景。面垒型探测器、P I N 型探测器获取的原始信号是辐射在敏感区产生的电荷,为了对电荷进行有效的收集,要求加很高的电压。另外这种探测器的有效面积的直径在c m 量级,能够测量强度很弱的背景辐射,但是容易受到辐射损伤的影响,受后续电子学线路分辨率的影响,容易形成堆积,不适合于强辐射环境的监测。 基于辐射效应的探测器与传统探测器最大的区别是通过电离辐射产生的效应间接测量辐射环境,虽然不能获得能谱,而且一般不适合进行弱辐射环境的监测,但是具有以下优点:活动 面积很小,适合测量大于10Gy (Si )强辐射环境;不需要加高电压,电子学线路简单;读出方便,可以做成“主动”式,尤其适合于舱内高能带电离子探测和航天医学的个人辐射剂量监测。更主要的是利用现成的集成电路制造工艺,制作简单。由于目前集成电路的单元电路尺寸与

辐射探测器应用及发展

辐射探测器应用及其发展 摘要:本文详细的描述了辐射探测器的发展史,简单的介绍了探测器的分类和区别,最后重点阐述了GaN探测器的发展现状。 关键词:辐射探测器;GaN探测器 Application and Development of Radiation Detector Chen heng(SF1606018) Abstract:In this paper, the history of radiation detectors is described in detail, and the classification and difference ofdetectors are introduced. Finally, the development of GaN detectors is discussed. Key words:Radiation detector;GaN detectors 1.引言 在当代社会中,由于社会发展的要求,对核物理实验与核科学的研究起到了巨大的推动作用,也是由以上科学的发展,导致了核辐射探测技术的进一步发展壮大,不管是就核科学技术研究来说,还是出于对公共安全的考虑,我们都必须对核辐射探测技术领域的发展提出更高的要求标准。作为实现核辐射探测的关键,核辐射探测器的研制就显得尤为重要[1]。 相信我们仍然对2011年发生的日本福岛核电站事件记忆犹新,在那个事件中,日本福岛的第一核电站其中的1号反应堆发生爆炸。这场爆炸立刻吸引了全世界的注意,人们对此都表现除了强烈的担忧,因为这不禁让人联想起另一个与之相类似的事件。那就是在1986年,发生在前苏联的切尔诺比利的核电站出现的泄漏事故,那场事故所造成的深远影响至今仍没有消散。因而,对核能的安全利用问题的讨论,使得辐射探测技术这一问题,再一次成为了国内外研究的一个热点。 众所周知,核能是由原子核的质量转变而成的能量,由爱因斯坦经典的质能方程E=mc2,方程中的E是代表的是能量,c代表的是光速,m代表的是质量。在原子核的质量转变为能量的过程中会释放出巨大的能量。同时,在核反应产生能量的过程中还有大量的射线被释放出来,这些射线会对人类和环境产生巨大的伤害。射线主要有三种,分别为α,β和γ三种射线,其中α射线是He核,一

辐射生物效应复习题 (1)

《辐射生物效应》复习题 一、名词解释(每题3分) 生活史:植物在一生中所经历的发育和繁殖阶段,前后相继,有规律地循环的全部过程。 组织:在个体发育中,具有相同来源的同一类型,或不同类型的细胞组成的结构和功能单位 硝化作用:氨基酸脱下来的氨,在有氧的条件下,经过亚硝化细菌和硝化细菌的作用转化为硝酸的过程。 灭菌:通过超高温或其他物理、化学手段将所有微生物的营养细胞和所有芽孢和孢子全部杀死。 新陈代谢——微生物从外界环境中不断摄取营养物质,经过一系列生物化学反应,转变成细胞组分,同时产生废物并排泄到体外的过程。 菌株(strain):从自然界中分离得到的任何一种微生物的纯培养物都可以称为微生物的一个菌株。 生物固氮:常温常压下,固氮生物在体内固氮酶的催化作用下将大气中的分子态N2还原成为NH4+的过程。生活史:植物在一生中所经历的发育和繁殖阶段,前后相继,有规律地循环的全部过程。 原始生殖细胞: 产生雄性和雌性生殖细胞的早期细胞。 辐射诱变育种:生物的种类、形态、性状,均受其自身的遗传信息所控制。辐射育种(radioactive breeding techniques)是利用射线处理动植物及微生物,使生物体的主要遗传物质—脱氧核糖核酸(DNA)产生基因突变或染色体畸变,导致生物体有关性状的变异,然后通过人工选择和培育使有利的变异遗传下去,使作物(或其它生物)品种得到改良并培育出新品种。这种利用射线诱发生物遗传性的改变,经人工选择培育新的优良品种的技术就称为辐射育种。 相对生物效应RBE:由于各种辐射的品质不同,在相同吸收剂量下,不同辐射的生物效应是不同的,反映这种差异的量称为相对生物效应(relative biological

辐射环评登记表和辐射安全许可证

辐射环评登记表和辐射安全许可证 现场核查要点 一、Ⅳ、Ⅴ类放射源 1、放射源编码是否与放射源一一对应; 2、电离辐射防护标志是否符合规定 (各市局现场核查时,应对电离辐射辐射防护标志设置情况进行拍照,并将照片电子版随预审意见一并上报); 3、是否有防盗装置(贮存场所必须有); 4、是否配备了便携式辐射监测仪、个人剂量计和个人剂量报警仪; 5、是否配置了应急处理工具,如长柄夹具等; 6、各项管理制度是否齐全、各类档案是否完善; 7、辐射工作人员是否持证上岗(未经过培训的,应有近期参加培训的计划); 8、是否存在尚未得到妥善解决的辐射环境信访。 二、Ⅲ类射线装置 1、非医用Ⅲ类射线装置 1.1 是否有屏蔽、隔离防护设施; 1.2 是否设置了符合规定的电离辐射防护标志(各市局现场核查时,应对电离辐射辐射防护标志设置情况进行拍

照,并将照片电子版随预审意见一并上报); 1.3 是否有机器工作状态显示; 1.4 是否配备了个人剂量计和个人剂量报警仪(或便携式辐射监测仪);生产单位必须配备辐射监测仪。 1.5 各项管理制度是否齐全、各类档案是否完善; 1.6 辐射工作人员是否持证上岗(未经过培训的,应有近期参加培训的计划); 1.7 是否存在尚未得到妥善解决的辐射环境信访。 2、医用Ⅲ类射线装置 2.1 是否隔室操作或有防护屏; 2.2 门、窗(包括观察窗)是否满足防护要求; 2.3 出入口处是否有符合规定的电离辐射防护标志(各市局现场核查时,应对电离辐射辐射防护标志设置情况进行拍照,并将照片电子版随预审意见一并上报); 2.4 出入口处是否有机器工作状态显示; 2.5 是否配备了个人剂量计和个人剂量报警仪(或便携式辐射监测仪)。 2.6 各项管理制度是否齐全、各类档案是否完善; 2.7 辐射工作人员是否持证上岗(未经过培训的,应有近期参加培训的计划); 2.8 是否存在尚未得到妥善解决的辐射环境信访。 二○○九年十月十日

医院辐射工作场所辐射环境自行监测办法[1]

百色市妇幼保健院辐射工作场所辐射环境自行监测办法 第一条为加强本院辐射工作场所的安全和防护管理,规范辐射工作场所辐射环境自行监测行为,根据国家《放射性同位素与射线装置安全和防护管理办法》的有关规定,制定本办法。 第二条本办法适用于在本院范围内使用放射性同位素与射线装置单位辐射工作场所辐射 环境自行监测。 第三条本办法所称的辐射环境自行监测,是指辐射工作单位自行组织的对其辐射工作场所及其周边环境、流出物等进行的监测活动。 第四条辐射工作单位应根据辐射工作场所的辐射活动类型和水平,按照《电离辐射防护与辐射源安全基本标准》、《辐射环境监测技术规范》等标准规范,制定本单位辐射环境监测制度、监测方案和监测计划,对本单位辐射工作场所辐射环境定期开展自行监测,并对监测数据的真实性、可靠性负责。 第五条本单位不具备专业的辐射环境监测能力,且自行监测应有与所从事辐射活动相适应的辐射监测专业技术人员、监测仪器和质量管理制度。监测人员要通过辐射安全与防护培训,监测仪器要按规定定期检定。 第六条本单位不具备辐射环境监测能力,委托具有国家、百色市《资质认定计量认证证书》(CMA)或《中国合格评定国家认可委员会实验室认可证书》(CNAS)资质的辐射环境监测机构进行监测,所需经费由本院承担。 第七条开放型辐射工作场所的监测,还应包括场所内地面、操作台、设备和物品的表面污染监测。有流出物的场所还应对流出物及其周边环境影响进行监测。 第八条监测记录或报告应记载监测数据、测量条件、测量方法和仪器、测量时间和测量人员等信息。 第九条如发现监测结果异常,应立即停止辐射活动,迅速查明原因,采取有效措施,及时消除辐射安全隐患。 第十条辐射安全防护建立辐射环境自行监测记录或报告档案,并妥善保存,接受环境保护行政主管部门的监督检查。 第十一条辐射环境自行监测记录或报告,应随本单位辐射安全和防护年度评估报告一并提交辐射安全许可证发证机关。

各类探探测器优劣比较

三大类探测器比较(闪烁体、半导体、电离室) (闪烁体)碘化钠探头:他的激活剂是(TI),对γ射线,当能量大于150keV时响应是线性的;对质子和电子,线性响应范围很宽,光输出和能量的关系接近通过原点的直线,仅在能量低于几百keV(对电子)和(1~2)MeV(对质子)时才偏离直线;对α粒子,能量大于4~5MeV后近似线性,但其直线部分延长不过原点。因此测量α粒子(或其他重粒子)时,比须进行能量校准。NaI(TI)烁体的主要优点是密度大,原子序数高,因而对γ射线探测效率高。另外它的发光效率高,因而能量分辨率也较好。它的缺点是容易潮解,因此使用必须密封。 碘化铯探头:CsI(TI)碘化铯是另一种碱金属卤化物,作为闪烁体材料常用铊或纳作激活剂。铊的能量线性与碘化钠的接近,能量分辨率比碘化钠的差一些。碘化铯的密度和平均原子序数比碘化钠更大,因此对γ射线的探测效率也更高。与碘化钠相比,碘化铯的机械强度大,易于加工成薄片或做成极薄的蒸发薄膜。此外,它不易潮解,也不易氧化。但若暴露在水或高湿度环境中它也会变质。碘化铯的主要缺点是光输出比较低,原材料价格较贵。 锗酸铋探头:与碘化钠(TI)同体积时,探测效率比碘化钠的高的多。对0.511MeV γ光子,与NaI(TI)、CsF、和Ge半导体、塑料闪烁体相比,锗酸铋(BGO)有最大的效率和最好的信噪比。BGO主要用于探测低能x射线、高能γ射线以及高能电子。在低能区(<<0.5MeV)的能量分辨率比碘化钠的差,例如对于0.511MeV的γ射线,BGO的时间分辨为1.9ns,而碘化钠NaI(TI)的的为0.75ns。BGO的主要缺点是折射率较高,尺寸大的BGO难以将光输出去。价格高。 硫化锌:ZnS(Ag)它对α粒子的发光效率高,而对γ射线和电子不灵敏,很适合在强β、γ本底下探测重带点粒子如α、核裂片等,探测效率可达100%。

辐射检测仪有哪些种类

核辐射检测仪又名辐射检测仪。市场上有辐射报警仪,辐射仪是不带剂量显示的仪器,只能提示佩戴人员当前所在场地射线是不是超标,至于辐射剂量具体是多少,不好确定。辐射剂量检测仪,这种仪器不仅可以报警,也可以清晰显示当前所在场地的辐射剂量值。 目前按照给出信息的方式,辐射探测器主要分为两类: 一类是粒子入射到探测器后,经过一定的处置才给出为人们感官所能接受的信息。例如,各种粒子径迹探测器,一般经过照相、显影或辐射监测仪化学腐蚀等过程。还有热释光探测器、光致发光探测器,则经过热或光激发才能给出与被照射量有关的光输出。这一类探测器基本上不属于核电子学的研究范围。 另一类探测器接收到入射粒子后,立即给出相应的电信号,经过电子线路放大、处理,就可以进行记录和分析。这一类称为电探测器。

电探测器是应用最广泛的辐射探测器。这一类探测器的问世,导致了核电子学这一新的分支学科的出现和发展。能给出电信号的辐射探测器已不下百余种。最常用的主要有气体电离探测器、半导体探测器和闪烁探测器三大类。 早在1908年,气体电离探测器就已问世。但直到1931年脉冲计数器出现后才解决了快速计数问题。1947年,闪烁计数器的出现,由于其密度远大于气体而大大提高了对粒子的探测效率。最显著的是碘化钠(铊)闪烁体,对γ射线还具有较高的能量分辨本领。60年代初,半导体探测器的研制成功,使能谱测量技术有了新的发展。现代用于高能物理、核物理和其他科学技术领域的各种类型探测器件和装置,都是基于上述三种类型探测器件经过不断改进创新而发展起来的。 一般来说购买核辐射检测仪的客户可大概分为4类:

1.安全组织, 譬如警察局和消防队、紧急反应组织、环保组织、危险物料处置、金属回收公司、矿山等,他们接触到各种放射性的机率较高。 2.港口、码头、机场等,这些地方因为人员及各类进出口货物流量大,特别涉及到出入境人员受放射线污染的机率较高。 3.五金厂、陶瓷厂、医院、研究机构、实验室、药监局、大学等,他们接触到各种低强度或泄漏放射线的机率较高。 4.关注居住环境质量及个人安全的私人个体, 比如某人想在家,食物、水中等寻找周围的环境污染(各种突发事故或恐怖分子攻击等)。 而杭州旭辐检测技术有限公司实力雄厚,资源配置齐备,可以为客户提供各种工程辐射检测服务。 更多详情请拨打联系电话或登录杭州旭辐检测技术有限公司https://www.360docs.net/doc/035548092.html,咨询。

14. 辐射环境监测

第十四章辐射环境监测 第一节辐射环境监测的概述 一、监测概念 我国现标准GB18871-2002采用了IAEA机构的定义, ——为评价或控制辐射或放射性物质的照射,对剂量或污染所进行的测量及对测量结果的解释。这段简短的定义包含多层意思, (1)监测目的——评价或控制辐射或放射性物质的照射。这里的“辐射”是贯穿辐射,放射性物质指各种放射性核素,“照射”包括对人员的内照射和外照射。(2)监测内容——贯穿辐射和放射性物质对人产生的辐射剂量,和/或放射性物质对环境介质造成的污染程度或水平。 (3)监测手段——测量和分析。 (4)监测结果——不仅仅是提供监测的数据,还有给出对监测结果的分析和解释。 二、辐射环境监测分类 按监测对象分, (1)针对较大区域内的一般环境质量监测。(2)针对特定核与辐射设施的监测。 按监测的属性分, (1)按计划开展的常规监测。(2)应对突发情况的应急监测。 针对核与辐射设施运行时间顺序,环境监测可分为, (1)核与辐射设施运行前本底调查。(2)核与辐射设施运行期间的监测。(3)核与辐射设施退役终态监测。 针对核与辐射设施监测的实施主体,环境监测可分为, (1)由企业组织的监测。 (2)由政府组织的监督性监测。

三、辐射环境监测的作用 辐射环境监测的主要作用包括, (1)验证核与辐射设施对环境的实际影响是否处在所控制的范围之内。(2)发现核与辐射设施的异常排放。 (3)严重事故时可以判定污染的范围和水平。(4)改善公共关系。 四、辐射环境监测的特点 监测具有一定的特点, (1)环境中辐射及放射性核素种类繁多,辐射环境监测时它们有时彼此相互干扰。(2)环境介质复杂,对不同的环境介质需采用不同的监测(取样)方法。(3)辐射环境监测往往是在很高的环境背景值下去探查一个附加的小增量,辐射环境监测受环境放射性背景值及其他因素的影响较大,只有在良好的质量保证下,才能取得准确的监测结果。 第二节环境中放射性的背景情况 环境放射性监测是在较高的放射性背景情况之下去探查一个小的附加增量,环境中较高的放射性背景值主要是天然放射性的贡献。 一、天然放射性的来源与水平 天然放射性按其来源可分为, (1)地球上生来就有的。 (2)宇宙射线以及宇宙射线与大气层相互作用产生的。陆生放射性核素主要有钍232系、铀238系和铀235系三个衰变系列。 钍232系,又称4n系,钍232经过7次α衰变和4次β衰变形成稳定核素,钍232半衰期为1.405×1010a,钍232系的放射性衰变产物包括10个核素。 铀238系,又称4n+2系,铀238经过9次α衰变和7次β衰变形成稳定核素,钍232半衰期为4.468×109a,铀238系的放射性衰变产物包括14个核素。 铀235系,又称4n+3系,铀238经过9次α衰变和6次β衰变形成稳定核素,

上海科学院辐射装置环评报告书

中国科学院上海辐照中心18.5PBq钴源辐照装置 环境影响报告书简本 上海原子核研究所 辐射技术中试研究基地 二零零六年十月

目 录 1.项目概况 (1) 2.环境质量现状调查 (2) 2.1辐射环境现状调查 (2) 2.2大气环境质量现状调查 (2) 3.评价内容 (2) 4.评价重点和评价因子 (4) 5.环境影响分析 (5) 5.1辐射影响 (5) 5.1.1辐射泄漏对环境影响 (5) 5.1.2放射性废水的影响 (5) 5.1.3放射性固体废物的影响 (6) 5.2非辐射影响 (6) 5.2.1气态污染物排放对大气环境的影响 (6) 5.2.2噪声的影响 (7) 5.2.3生活污水和生活垃圾 (8) 5.3安全措施影响分析 (8) 5.3.1安全联锁和技术安全措施分析 (8) 5.3.2安全管理措施 (10) 5.3.3防氢爆措施 (14) 6.环境影响评价结论 (14) 7.建议 (16) 附:环境保护公众参与调查表 (19)

中国科学院上海辐照中心18.5PBq钴源辐照装置 环境影响报告书简本 1. 项目概况 上海辐照中心全称:上海原子核研究所辐射技术中试研究基地,隶属于中国科学院上海应用物理研究所(原上海原子核研究所),始建于1984年,系专业从事辐射加工和相关新产品新技术开发和服务的国有高新技术企业。中心位于上海市普陀区曹杨路1605号(原1467号),占地面积8000m2(12亩),建筑面积5000 m2,现有职工70人,60%为科技人员,其中高级职称科技人员12名。 上海辐照中心建有18.5PBq(50万Ci)钴源连续辐照装置一座(1985年建成,1986年投入运行,其使用的Co-60源属于Ⅰ类放射源,目前该钴源的源装量为7.58×1015Bq),主要用于辐照箱装、桶装或袋装的各种产品。辐照场及辅助用房建筑面积3970 m2,总投资315万元。中心还建有辐照剂量实验室、微生物实验室、材料制备和试验实验室。辐照装置和相应实验室设备均由我国权威机构第七检查或校验。 二十余年来,本中心秉承“客户至上,服务至诚,品质至高”的质量方针,严格贯彻执行国家的各项技术及质量标准。依托中国科学院上海应用物理研究所雄厚的科研技术力量,不断创新、勇于开拓,在辐射技术研究和辐射加工方面取得了丰硕的成果。曾获得多项市级和

环境核辐射监规定(GB1237990)

环境核辐射监测规定(GB12379-90) 1 主题内容与适用范围 本标准规定了环境核辐射监测的一般性准则。 本标准适用于在中华人民共和国境内进行的一切环境核辐射监测。 2 引用标准 GB 8703 辐射防护规定 3 术语 3.1 源项单位 从事伴有核辐射或放射性物质向环境中释放并且其辐射源的活度或放射性物质的操作量大于从事伴有核辐射或放射性物质向环境中释放并且其辐射源的活度或放射性物质的操作量大于GB 8703规定的豁免限值的一切单位。 3.2 环境保护监督管理部门 国家和各省、自治区、直辖市及国家有关部门负责环境保护的行政监督管理部门。 3.3 核设施 从铀钍矿开采冶炼、核燃料元件制造、核能利用到核燃料后处理和放射性废物处置等所有必须考虑核安全和(或)辐射安全的核工程设施及高能加速器。 3.4 同位素应用 利用放射性同位素和辐射源进行科研。生产、医学检查、治疗以及辐照、示踪等实践。 3.5 环境本底调查 源项单位运行前对其周围环境中已存在的辐射水平、环境介质中放射性核素的含量,以及为评价公众剂量所须的环境参数、社会状况等所进行的调查。 3.6 常规环境监测

源项单位在正常运行期间对其周围环境中的辐射水平以及环境介质中放射性核素的含量所进行的定期测量。 3.7 监督性环境监测 环境保护监督管理部门为管理目的对各核设施及放射性同位素应用单位对环境造成的影响所进行的定期或不定期测量。 3.8 质量保证 为使监测结果足够可信,在整个监测过程中所进行的全部有计划有系统的活动。 3.9 质量控制 为实现质量保证所采取的各种措施。 3.10 代表性样品 采集到的样品与在取样期间的样品源具有相同的性质。 3.11 准确度 表示一组监测结果的平均值或一次监测结果与对应的正确值之间差别程度的量。 3.12 精密度 在数据处理中,用来表达一组数据相对于它们平均值偏高程度的量。 4 环境核辐射监测机构和职责 4.1 一切源项单位都必须设立或聘用环境核辐射监测机构来执行环境核辐射监测。核设施必须设立独立的环境核辐射监测机构。其他伴有核辐射的单位可以聘用有资格的单位代行环境核辐射监测。 4.1.1 源项单位的核辐射监测机构的规模依据其向环境排放放射性核素的性质、活度、总量、排放方式以及潜在危险而定。 4.1.2 源项单位的环境核辐射监测机构负责本单位的环境核辐射监测,包括运行前环境

光子探测器的应用及行业发展

光子计数探测器的应用 混合像素探测器,为您的实验室精心准备 PILATUS混合像素探测器的设计从理论到现实均达到最佳的数据质量X射线检测。他们带来了两项关键技术,单光子计数和混合像素技术相结合,同步到您的实验室。单光子计数消除所有探测器噪声,并提供卓越的数据。在收集数据时,读数无噪音和暗电流的消失特别具有优势:在实验室中的X射线光源比同步加速时要弱很多,需要更长的曝光时间,并导致较弱的信号。由于没有了暗电流和读数噪音, PILATUS探测器更加适合在实验室使用。混合像素技术可以直接检测X射线,与其他任何探测器技术相比实现了更清晰,更好地解决信号传输问题。加上读取时间短和连续采集的特点,PILATUS探测器可以高效提供优质数据。低功耗和冷却需求,给你一个无忧的、维护量极小探测器系统,。PILATUS探测器系列是专为您在实验室中的需求定制,并提供同步加速器的技术,有无与伦比的价值。利用PILATUS独特的功能,可以从你的最具挑战性的样品获得最佳的数据。 针对您的需求 PILATUS探测器成功推动和同步加速器光束线。PILATUS的独特功能在实验室和相关产业的优势也很明显。根据您在实验室的需求,现在PILATUS的产品阵容,辅以一系列的PILATUS探测器,。固定能量校准和简化的读数电子器件完美匹配了实验室相关要求而且PILATUS完全符合您的预算。混合像素技术和单光子计数,关键的技术,优质的数据和高效率,完全无障碍实施是PILATUS探测器的优势。越来越多的实验室和工业应用的仪器可配备或升级了PILATUS探测器。根据自己的设置或利益自由整合PILATUS,可以从一个现成的仪器变成一个PILATUS OEM合作伙伴

辐射生物学效应分类和影响因素

第四节辐射生物学效应分类和影响因素 、辐射生物学效应分类 机体受辐射作用时,根据照射剂量、照射方式以及效应表现的情况,在实际工作中常将生物效应分类表述 (一)按照射方式分 1.外照射与内照射(external and internal irradiation):辐射源由体外照射人体称外照射。γ线、中子、X线等穿透力强的射线,外照射的生物学效应强。放射性物质通过各 途径进入机体,以其辐射能产生生物学效应者称内照射。内照射的作用主要发生在放射性物质通过途径和沉积部位的组织器官,但其效应可波及全身。内照射的效应以射程短、电离强的α、β射线作用主。 2.局部照射和全身照射(local and total body irradiation) 当外照射的射线照射身体某一部位,引起局部细胞的反应者称局部照射。局部照射时身体各部位的辐射敏感性依次为腹部>胸部>头部>四肢。 当全身均匀地或非均匀地受到照射而产生全身效应时称全身照射。如照射剂量较小者为小剂量效应,如照射剂量较者(>1Gy)则发展为急性放射病。大面积的胸腹部局部照射也可发生全身效应,甚至急性放射病。根据照射剂量大小和不同敏感组织的反应程度,辐射所致全身损伤分为骨髓型(bone marrow type)、肠型(gastro- intestinal type)和脑型(central nervous system type)三种类型。 (二)按照射剂量率分 1.急性效应(acute radiation effect):高剂量率照射,短时间内达到较大剂量,效应迅速表现。 2.慢性效应(chronic radiation effect):低剂量率长期照射,随着照射剂量增加,效应逐渐积累,经历较长时间表现出来。 (三)按效应出现时间分 1.早期效应(early effect):照射后立即或小时后出现的变化。

空间辐射环境中的辐射效应

空间辐射环境中的辐射效应摘要天然空间辐射环境与辐射效应基本机制是空间飞行器抗辐射加固研究中的两个关键问题,本文总结了天然空间辐射环境的总体性质, 并对辐射效应基本机制进行了简要的分析,指出了目前空间飞行器抗辐射加固研究的重点。关键词辐射环境,抗辐射加固,辐射效应R a d i a t i o n E f f e c t s i n t h e S p a c e R a d i a t i o n E n v i r o n m e n t Abstract T he nat ur al space ra dia tio n enviro nment and the basic mechanisms of r adiatio n effect s a re tw o most im po rt ant issues r ela ting t o the resear ch of r adiatio n har dening t echo no lo gy of spacecr afts . In t his paper, so me o f the g en eral pro per ties of natur al space r adiation env ir onment ar e summer ized, the basic mechanisms of r adiatio n effect s ar eanylized br iefly , and the emphasis o f present r esearch r ela t i n g t o t h e r a d i a t i o n h a r d e n i n g t e c h o n o l o g y o f s p a c e c r a f t s i s p o i n t e d o u t. K e y w o r d s r a d i a t i o n e n v i r o n m e n t,r a d i a t i o n h a r d e n e d,r a d i a t i o n e f f e c t s 应用于卫星或空间飞行器的电子学系统, 在天然空间辐射环境中往往因经受空间辐射而导致性能减低或失灵, 甚至最终导致卫星或空间飞行器的灾难性的后果[ 1] 。美国1971 至1986 年发射的卫星中共发生了1589 次异常现象, 其中与空间粒子辐射有关的占70% , 由空间辐射对电子学系统的辐射破坏造成的占38. 1% 。空间辐射对电子学系统的辐射破坏主要有三种方式: 1) 总剂量电离损伤; 2) 单粒子效应; 3) 位移损伤。质子产生总剂量电离损伤, 单粒子效应和位移损伤, 电子主要产生总剂量电离损伤, 而高能重离子主要产生单粒子效应。 1天然空间辐射环境 地球轨道天然空间辐射粒子包括地磁场俘获辐射带( Van Allen 带) 粒子和宇宙射线( 包括太阳宇宙射线和银河宇宙射线)。 1.1地磁场俘获辐射带粒子地磁场俘获辐射带粒子主要是电子、质子以及少量的重离子。地磁场俘获辐射带通常又分为内辐射带( 1. 5R e 至 2. 8Re , Re= 6380km 为地球半径) 和外辐射带( 2. 8R e 至12R e) , 内辐射带以质子为主, 而外辐射带以电子为主。地磁场俘获辐射带中质子能量可达500M eV。能量大于10M eV 的质子主要分布在 3. 8R e 以下, 能量大于30M eV 的质子主要分布在1. 5Re 以下[ 2] , 而典型的卫星壳体能屏蔽能量小于10M eV 的质子。因此对于低轨道卫星来说, 质子对内部电子学元器件的辐射破坏尤为严重。在外辐射带中电子具有较高的能量和较大的通量( 约为内辐射带的10 倍) , 在外辐射带中电子的最高能量达7M eV, 而在内辐射带中电子的最高能量为5M eV , 能量大于 1 MeV 的电子的通量峰值在3Re 至4R e 之间。 1.2宇宙射线宇宙射线有两种来源, 即来自于太阳耀斑爆发的太阳宇宙射线和来自于太阳系以外的银河宇宙射线。太阳系以外的银河宇宙射线通常认为是稳定的, 而地球轨道上的银河宇宙射线的通量受太阳活动的调制, 在太阳活动频繁期, 地球轨道上的银河宇宙射线通量相对减少, 而在太阳活动不频繁期, 银河宇宙射线通量相对稳定。宙射线通量相对稳定。银河宇宙射线主要有质子( 85% ) 、氦离子( 14% ) 和高能重离子( 1% ) 组成。离子通量随原子质量[ 3]数分布见图1。可以看出, 高能重离子( 如Fe) 的通量与质子通量相比差几个数量级, 但是这并不是说高能重离子的辐射效应可以忽视。由于高能重离子在穿入材料时在单位距离上产生很高的电离密度, 尤其在考虑半导体器件的单粒子效应时, 高能重离子产生的效应不容忽视。图2 为银河宇宙射线中各种离子[ 4]对应的粒子能量为 2. 4GeV , 质子和氦离子的最高能量可达10GeV / Nu。对于如此高能的粒子,卫星壳体已经无法阻止它们进入舱体内。

辐射工作场所和环境辐射水平监测方案

辐射工作场所和环境辐射水平监测方案 辐射工作场所监测 一、一切伴有辐射的实践或设施,都应根据具体情况,按辐射防护最优化原则制定出相应的辐射监测计划,开展辐射监测。监测结果应定期向辐射防护和环境保护部门报告,发现异常情况时应随时报告。辐射防护和环境保护部门也应对这些辐射工作单位进行抽样性的监测。 二、个人监测 1、辐射工作单位必须对第一类工作条件下的工作人员进行个人监测。工作人员可能受到、x、高能射线或中子照射时,应佩带相应的个人剂量计。当内照射可能较大时,应定期进行内照射监测。个人监测结果要逐个记录、存档,其保存时间不少于停止辐射工作后30年。 2、在事故或应急情况下,根据情况可对有关人员以及少数有代表性的公众成员进行个人监测。 3、工作人员离开开放型放射源工作场所时,应该进行体表放射性污染检查。 三、工作场所监测 1、为检验工作环境在连续操作时是否符合辐射安全要求,鉴别是否有异常或紧急情况发生,工作场所应进行常规监测。依据辐射源的特点和操作方式,常规监测应对工作场所中的辐射水平、空气中放射性核素的浓度以及表面污染水平等进行监测。在

可能出现高水平照射或事故照射的场合,必须配置可以自动报警的连续监测装置。测量结果,连同测量条件、测量方法和仪器、测量时间等一同记录并妥状况保存。 2、在实践或设施的运行过程中,会使工作人员所在环境的剂量当量率发生较大改变的岗位,应进行操作监测。 3、当工作环境安全控制的资料不够充分,或操作过程可能出现异常时,应进行特殊监测。 四、辐射工作人员的健康管理 1、对辐射工作人员的医学监督根据一般职业医学原则进行。其目的是:评价职工健康情况;提供原始健康状况的资料;以及确保职工的健康情况在开始从业时和从业期间都能适应他们的工作。 2、对第一类工作条件下的工作人员必须进行常规医学监督。 3、从事辐射工作前的健康检查内容包括医学史的询问,特别是先前的辐射照射史和各种毒物接触史的调查:一般医学检查;末梢血化验检查;以及根据工作和健康情况,由负责医师提出的其他有关检查。 4、辐射工作从业期间的定期医学检查,内容根据其受照类型的程度,以及工作人员健康状况确定,除一般健康检查项目外,尚可追加对辐射照射敏感的检查指标。 5、定期医学检查频率一般为一年一次,如辐射照射情况和

相关文档
最新文档