数学分析考题2

数学分析考题2
数学分析考题2

《数学分析》考试试题

一、叙述题

1叙述闭区间套定理;

2用肯定的形式叙述函数)(x f 在数集D 上无上阶;

3叙述Rolle 微分中值定理;

二、计算题

1 求极限x x x x )1

1(lim -+∞→ ; 2 求摆线???-=-=t

y t t x cos 1sin π20≤≤t , 在π=t 处的二阶导数22dx y d 的值; 3 设x e x f =)(2,求不定积分?dx x x f )

( ;

4 求不定积分?-+dx e e

x x 1arctan 2 ;

三、讨论题 1讨论函数=)(x f ?????≤0 ,

00 , 1sin x x x x 在0=x 点处的左、右导数; 2设221)(x

n nx x f n += ,[]A e x .∈ ,)0(+∞ A e 2 1 )、、( =n ,讨论)(x f n 在[]A e .上的单调性的最大值点;

四、证明题

1用定义证明21121lim

=-+∞→x x x ; 2证明:方程033=+-c x x ,(其中c 为常数)在[]1,0上可能有两个不同的实根;

3若数列{}n x 收敛于a (有限数),它的任何子列{}

k n x 也收敛于a 。

(十一) 一年级《数学分析》考试题 一( 满分 1 0 分,每小题 2 分)判断题:

1 设数列}{n a 递增且 (有限). 则有}sup{n a a =. ( )

2 设函数)(x f 在点0x 的某邻域)(0x U 内有定义. 若对)(0x U x n ∈?,当

0x x n →时, 数列)}({n x f 都收敛于同一极限. 则函数)(x f 在点0x 连续. ( )

3 设函数)(x f y =在点0x 的某邻域内有定义. 若存在实数A ,使0→?x 时,

),()()(00x x A x f x x f ?=?--?+ 则)(0x f '存在且A x f =')(0. ( )

4 若),(0)( ,0)()(2121x f x f x f x f ''<<''='='则有).()(21x f x f >( )

5 设 ??+=+=c x G dx x g c x F dx x f )()( ,)()(. 则当)()(x G x F ≠时,

有)()(x g x f ≠. ( )

二( 满分 1 5 分,每小题 3 分)填空题: 1 =+=∞

→+=∑n n n k n a k n a lim .911

612 . 2 函数 |

3|ln 3)(--=x x x f 的全部间断点是 . 3. )1ln()(2x x f +=, 已知 56)2()(lim 000

=--→h h x f x f h , =0x . 4. 函数193)(23+--=x x x x f 的既递减又下凸的区间是 .

5. ??='+=dx x f x c x dx x f )( ,sin )(2 .

二 ( 满分 3 6 分,每小题 6 分)计算题: 1 1111lim 3

0-+-+→x x x .

2 求函数54

)15(4)(+-=x x x f 的极值 . 3 ?+12x x

dx . 4 ?

++dx x x )1ln(2. 5 ?+-+dx x x x 5

232. 6 在边长为 a 的正三角形的三个角上剪去长为x 的四边形(如右上图),然后

折起来做成底为正三角形的盒子. 求最大体积 .

三 ( 满分 7 分)验证题: 用“δε-”定义验证函数 2

54)(2-+=x x x f 在点20=x 连续 . 四 ( 满分 3 2 分,每小题 8 分)证明题:

1 设函数f 在区间]

2 , 0 [a 上连续 , 且 ) 2 () 0 (a f f =. 试证明 :

] , 0 [ a c ∈?, 使 )() (a c f c f +=.

2 设函数)(x f 在区间 I 上可导, 且导函数 )(x f '在该区间上有界 .试证明

函数 )(x f 在区间 I 上一致连续 .

3 设函数)(x f 在区间] , 0 [a 上二阶可导,且 0) (=a f . )()(2x f x x F =.

试证明: ) , 0 ( a ∈?ξ, 使 0) (=''ξF .

4 试证明: 对 R ∈?n x x x ,,, 21 , 有不等式 n

x x x n x x x n n 2222121 +++≤+++ .

(十二) 一年级《数学分析》考试题

一 判断题(正确的记(√ ),错误的记(×))(共18分,每题3分):

1. 设)(x f 在],[b a 上连续,M 与m 分别是)(x f 的最大值和最小值,则对

于任何数

)(M c m c ≤≤,均存在],[b a ∈ξ,使得c f =)(ξ。( )

2. 设)(),(t g x f 在),(b a 内可导,且)()(x g x f >,则

)(')('x g x f >。 ( )

3. 设}{n x 的极限存在,}{n y 的极限不存在,则}{n n

y x +的极限未必不存在。 ( )

4. 如0x x =是函数)(x f 的一个极点,则0)('0=x f 。 ( )

二 证明:欧氏空间的收敛点列必是有界的。(10分)

三 证明:n R 中任意有界的点列中必有收敛的子点列。(10分)

四 计算下列极限:(9分) 1 x

xy y x )sin(lim )0,0(),(→ ; 2 42)(lim 22)0,0(),(y x y x y x +→; 3 22)0,1(),()log(lim y x e x x y x ++→;

五 计算下列偏导数:(10分)

(1))(222z y x x e u

++=; (2))log(21n x x x z +???++=;

六(10分)计算下列函数

f 的Jacobian Jf : (1)

)sin(),,(2yz y x z y x f =; (2)2/12222121)(),,,(n n x x x x x x f +???++=???;

七 (10分)设隐函数 )(x y 由方程

定义,求 'y 及 ''y 。

八(11分)在椭球

内嵌入有最大体积的长方体,问长方体的尺寸如何?

九、(10分)求椭球面

过其上的点),,(000z y x p = 处的切平面的方程。

十、(10分)设函数),(),,(y x g y x f 是定义在平面开区域G 内的两个函数,在

G 内均有连续的一阶偏导数,且在G 内任意点处,均有

又设有界闭G D

?,试证:在 D 中满足方程组的点至多有有限个。

(十三)一年级《数学分析》考试题

一 判断题(正确的记(√ ),错误的记(×))(共18分,每题3分):

1设)(x f 在],[b a 上连续,M 与m 分别是)(x f 的最大值和最小值,则对

于任何数)(M c m c ≤≤,均存在],[b a ∈ξ,使得c f =)(ξ。 ( )

5. 设)(),(t g x f 在),(b a 内可导,且

)()(x g x f >,则x y x y a r c t

a n 2=122

2222=++c

z b y a x 122

2222=++c

z b y a x 0≠?????-?????x

g y f y g x f ???==0),(0),(y x g y x f )0(≠x

)(')('x g x f >。 ( )

6. 设}{n x 的极限存在,}{n y 的极限不存在,则}{n n y x +的极限未必不存在。 ( )

7. 如0x x =是函数)(x f 的一个极点,则0)('0=x f 。 ( )

8. 存在这样的函数,它在有限区间中有无穷多个极大点和无穷多个极小点。 ( )

9. 对于函数x x x cos +,由于)sin 1(lim '

)'cos (lim x x x x x x -=+∞→∞→不存在,根据洛必达法制,当x 趋于无穷大时,x

x x cos +的极限不存在。 ( )

二 计算下列极限:(18分) 1 )1sin (lim n

n n ∞→ 2 )sin 1(lim n n

n ∞→; 3 )1...2111(lim n

n n n n ++++++∞→; 4 x o

x x sin lim +→; 5 )ln )(ln(lim x a x x x -+∞

→; 6 42

02

cos lim x e x x x -→-。

三 计算下列函数的导数:(20分)

(1)x x e x f x arcsin )log ()(3+=;

(2))12(ln )(-=x x f x

; (3)2

2,0ln sin 2dx y d y x x y 求=+; (4)???==;

cos ,sin 22t t y t t x (5)设)(x f 二次可导,求'))'(arctan (x f 。

四 计算不定积分(12分):

(1)dx x x ?

+-20)2)(1(; (2)dx x x x ?++cos 1sin ; (3)dx x e x ?2sin ;

(4)dx e dx x ?+2)1(。

五 (8分)求函数x e x f sin )(=在0=x 处的5次Taylor 多项式:

六 (8分)用Lagrange 中值定理证明:如果函数)(x f 在),([+∞a 可微,并且0)('lim =+∞

→x f x ,则0)(lim =+∞→x

x f x 。 七 (8分)证明:若函数)(x f 在),[+∞a 上连续,且A x f x =+∞→)(lim (有限数),则)(x f 在

),[+∞a 上一致连续。

八 (8分)求母线为l 的圆锥之最大体积。

数学分析期末考试题

数学分析期末考试题 一、单项选择题(从给出的四个答案中,选出一个最恰当的答案填入括号内,每小题2分, 共20分) 1、 函数)(x f 在[a,b ]上可积的必要条件是( ) A 连续 B 有界 C 无间断点 D 有原函数 2、函数)(x f 是奇函数,且在[-a,a ]上可积,则( ) A ?? =-a a a dx x f dx x f 0 )(2)( B 0)(=?-a a dx x f C ?? -=-a a a dx x f dx x f 0 )(2)( D )(2)(a f dx x f a a =?- 3、 下列广义积分中,收敛的积分是( ) A ? 1 1dx x B ? ∞ +1 1dx x C ? +∞ sin xdx D ?-1 131dx x 4、级数 ∑∞ =1 n n a 收敛是 ∑∞ =1 n n a 部分和有界且0lim =∞ →n n a 的( ) A 充分条件 B 必要条件 C 充分必要条件 D 无关条件 5、下列说法正确的是( ) A ∑∞ =1n n a 和 ∑∞ =1 n n b 收敛, ∑∞ =1 n n n b a 也收敛 B ∑∞ =1 n n a 和 ∑∞ =1 n n b 发散, ∑∞ =+1 )(n n n b a 发散 C ∑∞ =1n n a 收敛和 ∑∞ =1 n n b 发散, ∑∞ =+1 )(n n n b a 发散 D ∑∞=1 n n a 收敛和∑∞ =1 n n b 发散, ∑∞ =1 n n n b a 发散 6、 )(1 x a n n ∑∞ =在[a ,b ]收敛于a (x ),且a n (x )可导,则( ) A )()('1'x a x a n n =∑∞ = B a (x )可导 C ?∑? =∞ =b a n b a n dx x a dx x a )()(1 D ∑∞ =1 )(n n x a 一致收敛,则a (x )必连续 7、下列命题正确的是( )

数学分析(2)期末试题

数学分析(2)期末试题 课程名称 数学分析(Ⅱ) 适 用 时 间 试卷类别 1 适用专业、年级、班 应用、信息专业 一、单项选择题(每小题3分,3×6=18分) 1、 下列级数中条件收敛的是( ). A .1(1)n n ∞ =-∑ B . 1n n ∞ = C . 21(1)n n n ∞=-∑ D . 11(1)n n n ∞ =+∑ 2、 若f 是(,)-∞+∞内以2π为周期的按段光滑的函数, 则f 的傅里叶(Fourier )级数 在 它的间断点x 处 ( ). A .收敛于()f x B .收敛于1 ((0)(0))2f x f x -++ C . 发散 D .可能收敛也可能发散 3、函数)(x f 在],[b a 上可积的必要条件是( ). A .有界 B .连续 C .单调 D .存在原函 数 4、设()f x 的一个原函数为ln x ,则()f x '=( ) A . 1x B .ln x x C . 21 x - D . x e 5、已知反常积分2 (0)1dx k kx +∞ >+? 收敛于1,则k =( ) A . 2π B .22π C . 2 D . 24π 6、231ln (ln )(ln )(1)(ln )n n x x x x --+-+-+L L 收敛,则( ) A . x e < B .x e > C . x 为任意实数 D . 1e x e -<<

二、填空题(每小题3分,3×6=18分) 1、已知幂级数1n n n a x ∞ =∑在2x =处条件收敛,则它的收敛半径为 . 2、若数项级数1 n n u ∞ =∑的第n 个部分和21 n n S n = +,则其通项n u = ,和S = . 3、曲线1 y x = 与直线1x =,2x =及x 轴所围成的曲边梯形面积为 . 4、已知由定积分的换元积分法可得,1 ()()b x x a e f e dx f x dx =??,则a = ,b = . 5、数集(1) 1, 2 , 3, 1n n n n ?? -=??+?? L 的聚点为 . 6、函数2 ()x f x e =的麦克劳林(Maclaurin )展开式为 . 65

数据分析期末试题及答案

数据分析期末试题及答案 一、人口现状.sav数据中是1992年亚洲各国家和地区平均寿命(y)、按购买力计算的人均GDP(x1)、成人识字率(x2),一岁儿童疫苗接种率(x3)的数据,试用多元回归分析的方法分析各国家和地区平均寿命与人均GDP、成人识字率、一岁儿童疫苗接种率的关系。(25分) 解: 1.通过分别绘制地区平均寿命(y)、按购买力计算的人均GDP(x1)、成人识字率(x2),一岁儿童疫苗接种率(x3)之间散点图初步分析他们之间的关系 上图是以人均GDP(x1)为横轴,地区平均寿命(y)为纵轴的散点图,由图可知,他们之间没有呈线性关系。尝试多种模型后采用曲线估计,得出 表示地区平均寿命(y)与人均GDP(x1)的对数有线性关系

上图是以成人识字率(x2)为横轴,地区平均寿命(y)为纵轴的散点图,由图可知,他们之间基本呈正线性关系。 上图是以疫苗接种率(x3)为横轴,地区平均寿命(y)为纵轴的散点图,由图可知,他们之间没有呈线性关系 。 x)为横轴,地区平均寿命(y)为纵轴的散点图,上图是以疫苗接种率(x3)的三次方(3 3 由图可知,他们之间呈正线性关系 所以可以采用如下的线性回归方法分析。

2.线性回归 先用强行进入的方式建立如下线性方程 设Y=β0+β1*(Xi1)+β2*Xi2+β3* X+εi i=1.2 (24) 3i 其中εi(i=1.2……22)相互独立,都服从正态分布N(0,σ^2)且假设其等于方差 R值为0.952,大于0.8,表示两变量间有较强的线性关系。且表示平均寿命(y)的95.2%的信息能由人均GDP(x1)、成人识字率(x2),一岁儿童疫苗接种率(x3)一起表示出来。 建立总体性的假设检验 提出假设检验H0:β1=β2=β3=0,H1,:其中至少有一个非零 得如下方差分析表 上表是方差分析SAS输出结果。由表知,采用的是F分布,F=58.190,对应的检验概率P值是0.000.,小于显著性水平0.05,拒绝原假设,表示总体性假设检验通过了,平均寿命(y)与人均GDP(x1)、成人识字率(x2),一岁儿童疫苗接种率(x3)之间有高度显著的的线性回归关系。

运城学院数学分析期末试题2-14

运城学院应用数学系 2011—2012学年第二学期期末考试 数学分析2试题(A ) 适用范围:数学与应用数学专业1101\1102班 命题人:常敏慧、王文娟 审核人: 一、判断题(每题2分,共20分) 1、实轴上的任一有界点集至少有一个聚点. ( ) 2、开区间集合1,11,2,1n n ????=?? ?+???? 构成了开区间()0,1的一个无限开覆盖. ( ) 3、初等函数的原函数仍是初等函数. ( ) 4、积分和与达布和都与分割有关. ( ) 5、黎曼函数在[]0,1上可积. ( ) 6、若f 在[],a b 上可积,则f 在[],a b 上可积. ( ) 7、瑕积分 ()b a f x dx ?收敛,则()2b a f x dx ?也收敛. ( ) 8、设n u ∑为收敛的正项级数,则lim 0n n u →∞=. ( ) 9、若函数项级数()n u x ∑在[],a b 上内闭一致收敛,且每一项()n u x 都连续,则()()b b n n a a u x dx u x dx =∑∑?? . ( ) 10、幂级数101n n n a x n ∞+=+∑与幂级数11 n n n na x ∞-=∑有相同的收敛半径. ( ) 二、填空题(每题2分,共20分) 1、设闭区间列[]{},n n a b 满足(i) ,(ii)()lim 0n n n b a →∞-=, 则称[]{} ,n n a b 为闭区间套.

2、()()21f x dx f x '=??+??? . 3、()20ln 1x d t dt dx +=? . 4、光滑曲线:C ()()[],,,x x t y y t t αβ==∈的弧长为 . 5、直线上任一点的曲率为 . 6、无穷积分 1sin p x dx x +∞?当 时条件收敛. 7、级数11p n n ∞=∑当 收敛. 8、幂级数()()1321n n n n x n ∞=+-+∑的收敛半径R = . 9、设函数项级数()n u x ∑定义在数集D 上,n M ∑为收敛的正项级数,若对一切x D ∈,有 ,则称函数项级数()n u x ∑在D 上一致收敛. 10、设幂级数n n x a ∑在0=x 某邻域上的和函数为()x f ,则n a 与()()0n f 之间的关系 是 . 三、求解下列各题(每题5分,共30分) 1、243dx x x ++? . 2、4tan xdx ?. 3 、1 2dx x . 4、112lim p p p p n n n +→∞++ (p 为正整数). 5、讨论无穷积分111x dx x α-+∞ +?的收敛性.

数学分析1-期末考试试卷(A卷)

数学分析1 期末考试试卷(A 卷) 一、填空题(本题共5个小题,每小题3分,满分15分) 1、设 82lim =?? ? ??-+∞→x x a x a x , 则 =a 。 2、设函数) 2(1 )(--=x x e x f x ,则函数的第一类间断点是 ,第二类间断点 是 。 3、设)1ln(2 x x y ++=,则=dy 。 4、设)(x f 是连续函数,且dt t f x x f )(2)(1 0?+=,则=)(x f 。 5、xdx arctan 1 ?= 。 二、单项选择题(本题共5个小题,每小题3分,满分15分) 1、设数列n x 与数列n y 满足0lim =∞ →n n n y x ,则下列断言正确的是( )。 (A )若n x 发散,则n y 必发散。 (B )若n x 无界,则n y 必无界。 (C )若n x 有界,则n y 必为无穷小。 (D )若n x 1 为无穷小,则n y 必为无穷小。 2、设函数x x x f =)(,则)0(f '为( )。 (A ) 1。 (B )不存在。 (C ) 0。 (D ) -1。 3、若),() ()(+∞<<-∞=-x x f x f 在)0(,-∞内0)(,0)(<''>'x f x f ,则 )(x f 在),0(+∞内有( )。 (A )0)(,0)(<''>'x f x f 。 (B )0)(,0)(>''>'x f x f 。

(C )0)(,0)(<''<'x f x f 。 (D )0)(,0)(>''<'x f x f 。 4、设)(x f 是连续函数,且? -=dt t f x F x e x )()(,则)(x F '等于( ) 。 (A )() )(x f e f e x x ----。 (B )() )(x f e f e x x +---。 (C ) () )(x f e f e x x --- 。 (D )() )(x f e f e x x +--。 5、设函数x x a x f 3sin 31sin )(+=在3 π =x 处取得极值,则( )。 (A ))3(,1πf a =是极小值。 (B ))3 (,1π f a =是极大值。 (C ))3(,2πf a =是极小值。 (D ))3 (,2π f a =是极大值。 三、计算题(本题共7个小题,每小题6分,满分42分) 1、求 ) 1ln(sin 1tan 1lim 30x x x x ++-+→ 2、设4lim 221=-++→x x b ax x x ,求 b a 、。

最新大学生高等数学竞赛试题汇总及答案

前三届高数竞赛预赛试题(非数学类) (参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看 一些辅导书及相关题目,主要是一些各大高校的试题。) 2009-2010年第一届全国大学生数学竞赛预赛试卷 一、填空题(每小题5分) 1.计算=--++??y x y x x y y x D d d 1) 1ln()(16/15,其中区域D 由直线1=+y x 与 两坐标轴所围成三角形区域. 解:令v x u y x ==+,,则v u y v x -==,,v u v u y x d d d d 1110det d d =??? ? ??-=, ? -=10 2 d 1u u u (*) 令u t -=1,则21t u -= dt 2d t u -=,42221t t u +-=,)1)(1()1(2t t t u u +-=-, 2.设)(x f 是连续函数,且满足?--=2 022d )(3)(x x f x x f ,则 =)(x f ____________. 解:令?=2 0d )(x x f A ,则23)(2--=A x x f , A A x A x A 24)2(28d )23(20 2-=+-=--= ? , 解得3 4=A 。因此3 10 3)(2- =x x f 。 3.曲面22 22 -+=y x z 平行平面022=-+z y x 的切平面方程是 __________. 解:因平面022=-+z y x 的法向量为)1,2,2(-,而曲面 2 2 22-+=y x z 在 ) ,(00y x 处的法向量为 )1),,(),,((0000-y x z y x z y x ,故)1),,(),,((0000-y x z y x z y x 与)1,2,2(-平 行,因此,由 x z x =, y z y 2=知

北京理工大学2012-2013学年第一学期工科数学分析期末试题(A卷)试题2012-2(A)

1 北京理工大学2012-2013学年第一学期 工科数学分析期末试题(A 卷) 一. 填空题(每小题2分, 共10分) 1. 设?????<≥++=01arctan 01)(x x x x a x f 是连续函数,则=a ___________. 2. 曲线θρe 2=上0=θ的点处的切线方程为_______________________________. 3. 已知),(cos 4422x o bx ax e x x ++=- 则_,__________=a .______________=b 4. 微分方程1cos 2=+y dx dy x 的通解为=y __________________________________. 5. 质量为m 的质点从液面由静止开始在液体中下降, 假定液体的阻力与速度v 成正比, 则质点下降的速度)(t v v =所满足的微分方程为_______________________________. 二. (9分) 求极限 21 0)sin (cos lim x x x x x +→. 三. (9分) 求不定积分?+dx e x x x x )1arctan (12. 四. (9分) 求322)2()(x x x f -=在区间]3,1[-上的最大值和最小值. 五. (8分) 判断2 12arcsin arctan )(x x x x f ++= )1(≥x 是否恒为常数. 六. (9分) 设)ln(21arctan 22y x x y +=确定函数)(x y y =, 求22,dx y d dx dy . 七. (10分) 求下列反常积分. (1);)1(1 22?--∞+x x dx (2) .1)2(1 0?--x x dx 八. (8分) 一垂直立于水中的等腰梯形闸门, 其上底为3m, 下底为2m, 高为2m, 梯形的上底与水面齐平, 求此闸门所受 到的水压力. (要求画出带有坐标系的图形) 九. (10分) 求微分方程x e x y y y 3)1(96+=+'-''的通解. 十. (10分) 设)(x f 可导, 且满足方程a dt t f x x x f x a +=+?)())((2 ()0(>a , 求)(x f 的表达式. 又若曲线 )(x f y =与直线0,1,0===y x x 所围成的图形绕x 轴旋转一周所得旋转体的体积为,6 7π 求a 的值. 十一. (8分) 设)(x f 在]2,0[上可导, 且,0)2()0(==f f ,1sin )(1 21 =?xdx x f 证明在)2,0(内存在ξ 使 .1)(='ξf

数学分析3期末试题

2012 –2013学年第一学期期末考试题 11数学教育《数学分析》(三) 一、单项选择(将正确答案的序号填在括号内,每题2分,共20分) 1. 下列数项级数中收敛的是 ( ) A. 211 n n ∞ =∑; B. 2 1n n n ∞ =+∑; C. 1 1 n n ∞ =∑; D. 0 1 23n n n ∞ =++∑. 2. 下列数项级数中绝对收敛的是 ( ) A. 1(1)n n n ∞ =-∑ B. 1n n ∞= 1n n ∞=1sin n n n ∞ =∑ 3.函数项级数1n n x n ∞ =∑的收敛域是 ( ) A. (1,1)- B. (1,1]- C. [1,1)- D. [1,1]- 4.幂级数021n n n x n ∞ =+∑的收敛半径是 ( ) . A B C D 1 .2 .1 .02 5. 下列各区域中,是开区域的是 ( ) 2. {(,)|}A x y x y > . {(,)|||1}B x y xy ≤ 22.{(,)|14}C x y x y <+≤ .{(,)|1}D x y x y +≥ 6.点集11{,|}E n N n n ?? =∈ ??? 的聚点是 ( ) A. (){0,0} B.()0,0 C. 0,0 D.{}{}0,0 7.点函数()f P 在0P 连续,是()f P 在0P 存在偏导数 ( ) A.必要条件 B.充分条件 C.充要条件 D.既不充分也不必要条件 8. 函数(,)f x y 在()00,x y 可微,则(,)f x y 在()00,x y 不一定 ( ) A.偏导数连续 B.连续 C. 偏导数存在 D. 存在方向导数 9. 设函数)()(y v x u z =,则z x ??等于 ( ) A. ()()u x v y x y ???? B. ()()du x v y dx y ?? C. ()()du x v y dx D. ()() u x v y x y ??+ ?? 10. 函数(,)f x y 在()00,x y 可微的充分必要条件是 ( ) A. 偏导数连续; B. 偏导数存在; C.存在切平面; D. 存在方向导数. 二、填空题(将正确答案填在横线上,每题2分,共20分) 11. 若数项级数1 1n p n n ∞ =-∑() 绝对收敛,则p 的取值范围是 ; 12. 幂级数0(1)n n n x ∞ =+∑的和函数是 ; 13.幂级数2 01 (1)n n x n ∞ =-∑ 的收敛域是 . ; 14.平面点集22{(,)|14}E x y x y =<+≤的内点是_________ ___ __ _______; 15.函数33(,)3f x y x y xy =+-的极值点是 ______________________. 16.曲面221z x y =+-在点(2,1,4)的切平面是 ______________________ 17.函数y z x =,则 z y ?=? ______________________; 18.函数u xyz =在(1,1,1)沿方向(cos ,cos ,cos )l αβγ= 的方向导数是 ___________; 19.设cos sin x r y r ? ?=??=?,则 x x r y y r ??????=???? ; 20 .若arctan y x =,则 dy dx =______________________。

数学系第三学期数学分析期末考试题及答案

第三学期《数学分析》期末试题 一、 选择题:(15分,每小题3分) 1、累次极限存在是重极限存在的( ) A 充分条件 B 必要条件 C 充分必要条件 D 无关条件 2、 =??),(00|) ,(y x x y x f ( ) A x y x f y y x x f x ?-?+?+→?),(),(lim 00000 ; B x y x x f x ??+→?) ,(lim 000; C x y x x f y y x x f x ??+-?+?+→?),(),(lim 00000 ; D x y x f y x x f x ?-?+→?) ,(),(lim 00000。 3、函数f (x,y )在(x 0,,y 0)可偏导,则( D ) A f (x,y )在(x 0,,y 0)可微 ; B f (x,y )在(x 0,,y 0)连续; C f (x,y )在(x 0,,y 0)在任何方向的方向导数均存在 ; D 以上全不对。 4、2 222 2) (),(y x y x y x y x f -+=的二重极限和二次极限各为( B ) A 、0,0,0; B 、不存在,0,0,; C 、0,不存在,0; D 、0,0,不存在。 5、设y x e z =,则=??+??y z y x z x ( A ) A 、0; B 、1; C 、-1; D 、2。 二、计算题(50分,每小题10分) 1、 证明函数?? ? ??=+≠++=0 00),(22222 2y x y x y x xy y x f 在(0,0)点连续且可偏导, 但它在该点不可微; 2、 设 ??'=-x x t x f x f dt d e x f 0) (),(,)(2 求ττ; 3、 设有隐函数,0 x y F z z ??= ???,其中F 的偏导数连续,求z x ??、z y ??; 4、 计算 (cos sin ) x C e ydx ydy -? ,其中C 是任一条以为(0,0)A 起点、(,)B a b 为终点 的光滑曲线; 5、 计算 zdS ∑ ??,其中∑为22 z x y =+在 1 4z ≤ 的部分; 三、验证或解答(满分24分,每小题8分)

江苏省高等数学竞赛试题汇总

2010年江苏省《高等数学》竞赛试题(本科二级) 一 填空题(每题4分,共32分) 1.0sin sin(sin ) lim sin x x x x →-= 2.1y x =+,/ y = 3.2cos y x =,()()n y x = 4.21x x e dx x -=? 5.4 2 1 1dx x +∞ =-? 6.圆222 222042219x y z x y z x y z +-+=?? ?++--+≤??的面积为 7.(2,)x z f x y y =-,f 可微,//12(3,2)2,(3,2)3f f ==,则(,)(2,1)x y dz == 8.级数1 1(1)! 2!n n n n n ∞ =+-∑的和为 . 二.(10分) 设()f x 在[],a b 上连续,且()()b b a a b f x dx xf x dx =??,求证:存在点(),a b ξ∈,使 得()0a f x dx ξ =?. 三.(10分)已知正方体1111ABCD A B C D -的边长为2,E 为11D C 的中点,F 为侧面正方形11BCC B 的中点,(1)试求过点1,,A E F 的平面与底面ABCD 所成二面角的值。(2)试求过点1,,A E F 的平面截正方体所得到的截面的面积. 四(12分)已知ABCD 是等腰梯形,//,8BC AD AB BC CD ++=,求,,AB BC AD 的长,使得梯形绕AD 旋转一周所得旋转体的体积最大。 五(12分)求二重积分()22cos sin D x y dxdy +??,其中22:1,0,0D x y x y +≤≥≥

高等数学竞赛试题(完整资料).doc

【最新整理,下载后即可编辑】 第二十届高等数学竞赛试卷 一、填空题(每小题5分,本题共50分): 1. 若0→x 时,1)1(4 1 2 --ax 与x x sin 是等价无穷小,则= a . 2. = +→) 1ln(1 2) (cos lim x x x . 3. 设函数2 301sin d ,0,(),0,x t t x f x x a x ?≠?=??=?? 在0x =处连续,则a = . 4. =??+??=y z y x z x x y xy z 则设,sin . 5. 的解为: 满足微分方程9 1 )1(ln 2-==+'y x x y y x . _______ )()( ,,)()(,.=-=???≤≤==>??D dxdy x y g x f I D x a x g x f a 则表示全平面, 而其他若设01 006 7.. d tan )cos (222 22005= +? -x x x x π π 8. . sin 2sin sin 1lim = ??? ??+++∞→n n n n n n πππ 9. . ,1222= ≤++Ω???Ω dv e z y x z 计算 所界定由设空间区域 10. 设在上半平面{}(,)|0D x y y =>内,函数 (,)f x y 具有连续偏导 数,且对任意的0t >都有2(,)(,)f tx ty t f x y -=. 对D 内的任意分段光滑的有向简单闭曲线L ,则 .. ),(),(= -?dy y x f x x d y x f y L 二、计算题(每小题6分,本题共42分): . ,)()(cos .的解,并求满足化简微分方程:用变量代换2101010 2=' ==+'-''-<<===x x y y y y x y x t t x π 解题过程是:

数学分析试题及答案解析

2014 ---2015学年度第二学期 《数学分析2》A 试卷 学院 班级 学号(后两位) 姓名 一. 判断题(每小题3分,共21分)(正确者后面括号内打对勾,否则打叉) 1.若()x f 在[]b a ,连续,则()x f 在[]b a ,上的不定积分()?dx x f 可表为 ()C dt t f x a +?( ). 2.若()()x g x f ,为连续函数,则()()()[]()[]????=dx x g dx x f dx x g x f ( ). 3. 若()? +∞ a dx x f 绝对收敛,()?+∞a dx x g 条件收敛, 则()()?+∞-a dx x g x f ][必然条件收敛( ). 4. 若()? +∞ 1 dx x f 收敛,则必有级数()∑∞ =1 n n f 收敛( ) 5. 若{}n f 与{}n g 均在区间I 上内闭一致收敛,则{}n n g f +也在区间I 上内闭一致收敛( ). 6. 若数项级数∑∞ =1n n a 条件收敛,则一定可以经过适当的重排使其发散 于正无穷大( ). 7. 任何幂级数在其收敛区间上存在任意阶导数,并且逐项求导后得到的新幂级数收敛半径与收敛域与原幂级数相同( ).

二. 单项选择题(每小题3分,共15分) 1.若()x f 在[]b a ,上可积,则下限函数()?a x dx x f 在[]b a ,上( ) A.不连续 B. 连续 C.可微 D.不能确定 2. 若()x g 在[]b a ,上可积,而()x f 在[]b a ,上仅有有限个点处与()x g 不相等,则( ) A. ()x f 在[]b a ,上一定不可积; B. ()x f 在[]b a ,上一定可积,但是()()??≠b a b a dx x g dx x f ; C. ()x f 在[]b a ,上一定可积,并且()()??=b a b a dx x g dx x f ; D. ()x f 在[]b a ,上的可积性不能确定. 3.级数()∑ ∞ =--+1 21 11n n n n A.发散 B.绝对收敛 C.条件收敛 D. 不确定 4.设∑n u 为任一项级数,则下列说法正确的是( ) A.若0lim =∞ →n n u ,则级数∑ n u 一定收敛; B. 若1lim 1 <=+∞→ρn n n u u ,则级数∑n u 一定收敛; C. 若1,1<>?+n n u u N n N ,时有当,则级数∑n u 一定收敛;

第三学期 数学分析(3)试卷

一、填空题(每空3分,共24分) 1、 设z x u y tan =,则全微分=u d __________________________。 2、 设32z xy u =,其中),(y x f z =是由xyz z y x 3333=++所确定的隐函数,则 =x u _________________________。 3、 椭球面14222=-+z y x 在点)1,1,2(M 处的法线方程是__________________。 4、 设,d ),()(sin 2y y x f x F x x ?=),(y x f 有连续偏导数,则=')(x F __________________。 5、 设L 是从点(0,0)到点(1,1)的直线段,则第一型曲线积分?=L s x yd _____________。 6、 在xy 面上,若圆{} 122≤+=y x y x D |),(的密度函数为1),(=y x ρ,则该圆关于原点的转动惯量的二重积分表达式为_______________,其值为_____________。 7、 设S 是球面1222=++z y x 的外侧,则第二型曲面积分=??dxdy z S 2_______。 二、计算题(每题8分,共56分) 1、 讨论y x y x y x f 1sin 1sin )(),(-=在原点的累次极限、重极限及在R 2上的连续性。

2、 设),(2x y y x f u =具有连续的二阶偏导数,求二阶偏导数xx u 和xy u 。 3、 求22333),(y x x y x f --=在}16|),{(22≤+=y x y x D 上的最大值和最小值。

数学分析 期末考试试卷

中央财经大学2014—2015学年 数学分析期末模拟考试试卷(A 卷) 姓名: 学号: 学院专业: 联系方式: 一、填空题(本题共5个小题,每小题3分,满分15分) 1、设 82lim =?? ? ??-+∞→x x a x a x , 则 =a 。 2、设函数) 2(1 )(--=x x e x f x ,则函数的第一类间断点是 ,第二类间断点 是 。 3、设)1ln(2 x x y ++=,则=dy 。 4、设)(x f 是连续函数,且dt t f x x f )(2)(1 0?+=,则=)(x f 。 5、xdx arctan 1 ?= 。 二、单项选择题(本题共5个小题,每小题3分,满分15分) 1、设数列n x 与数列n y 满足0lim =∞ →n n n y x ,则下列断言正确的是( )。 (A )若n x 发散,则n y 必发散。 (B )若n x 无界,则n y 必无界。 (C )若n x 有界,则n y 必为无穷小。 (D )若n x 1 为无穷小,则n y 必为无穷小。 2、设函数x x x f =)(,则)0(f '为( )。 (A ) 1。 (B )不存在。 (C ) 0。 (D ) -1。 3、若),() ()(+∞<<-∞=-x x f x f 在)0(,-∞内0)(,0)(<''>'x f x f ,则 )(x f 在),0(+∞内有( )。

(A )0)(,0)(<''>'x f x f 。 (B )0)(,0)(>''>'x f x f 。 (C )0)(,0)(<''<'x f x f 。 (D )0)(,0)(>''<'x f x f 。 4、设)(x f 是连续函数,且? -=dt t f x F x e x )()(,则)(x F '等于( ) 。 (A )() )(x f e f e x x ----。 (B )() )(x f e f e x x +---。 (C ) () )(x f e f e x x --- 。 (D )() )(x f e f e x x +--。 5、设函数x x a x f 3sin 31sin )(+ =在3 π =x 处取得极值,则( ) 。 (A ))3(,1πf a =是极小值。 (B ))3 (,1π f a =是极大值。 (C ))3(,2πf a =是极小值。 (D ))3 (,2π f a =是极大值。 三、计算题(本题共7个小题,每小题6分,满分42分) 1、求 ) 1ln(sin 1tan 1lim 3 x x x x ++-+→ 2、设4lim 221=-++→x x b ax x x ,求 b a 、。

(汇总)数学分析3试卷及答案.doc

数学分析(3)期末试卷 2005年1月13日 班级_______ 学号_________ 姓名__________ 考试注意事项: 1.考试时间:120分钟。 2.试卷含三大题,共100分。 3.试卷空白页为草稿纸,请勿撕下!散卷作废! 4.遵守考试纪律。

一、填空题(每空3分,共24分) 1、 设z x u y tan =,则全微分=u d __________________________。 2、 设32z xy u =,其中),(y x f z =是由xyz z y x 3333=++所确定的隐函数,则 =x u _________________________。 3、 椭球面14222=-+z y x 在点)1,1,2(M 处的法线方程是__________________。 4、 设,d ),()(sin 2y y x f x F x x ? =),(y x f 有连续偏导数,则=')(x F __________________。 5、 设L 是从点(0,0)到点(1,1)的直线段,则第一型曲线积分?=L s x yd _____________。 6、 在xy 面上,若圆{} 12 2≤+=y x y x D |),(的密度函数为1),(=y x ρ,则该圆关 于原点的转动惯量的二重积分表达式为_______________,其值为_____________。 7、 设S 是球面1222=++z y x 的外侧,则第二型曲面积分=??dxdy z S 2 _______。 二、计算题(每题8分,共56分) 1、 讨论y x y x y x f 1 sin 1sin )(),(-=在原点的累次极限、重极限及在R 2上的连续性。

高等数学高数2竞赛试题

命题人: 试卷分类(A 卷或B 卷) A 五邑大学高等数学竞赛(第二组) 试 卷 专业: 班级: 姓名: 学号: 填空题(每小题3分,共15分) 1.1 lim (123).x x x x →+∞ ++= 2..x = ? 求 3.20000(())() ()lim .x f x x x f x f x x ?→+?+?-'= ?设存在,求 4.设()f x 在2x =处连续,且2 () lim 3,2 x f x x →=- 则(2).f '= 5.( ) cot 110 lim .x x x x +-→= 选择题(每小题3分,共15分)(将正确选项的字母填入括号内) 1. 当0x →时,下列函数哪一个是其它三个的高阶无穷小( ) A 2x B 1cos x - C tan x x - D ln(1)x +. 2. 1 402sin lim () 1x x x e x x e →?? ++= ? ?+?? A 1 B -1 C 0 D 不存在. 3. 设有三非零向量,,a b c 。若0, 0a b a c ?=?= ,则b c ?= 。 A 0 B -1 C 1 D 3 4. 函数(,)f x y 在点00(,)x y 处连续,且两个偏导数0000(,),(,)x y f x y f x y 存在是(,)f x y 在该点可微的( ). A 充分条件,但不是必要条件 B 必要条件,但不是充分条件

5. 110 (,)x dx f x y dy -?? =( ) A 1100 (,)x dy f x y dx -? ?; B 1 10 0(,)x dy f x y dx -? ? ; C 1 10 (,)y dy f x y dx -? ? ; D 1 10 (,)y dy f x y dx -? ? . 8分,共24分) 1. 求(1)sin ()(1)(1) x x f x x x x += +- 的间断点, 并判别其类型. 2. 设2 sin x y e =求.y ' 3. 计算二重积分2 2 2()d d ,x y D I x x ye x y +=+??其中: (1) D 为圆域221;x y +≤ (2) D 由直线,1,1y x y x ==-=围成 .

数学分析试题及答案

(二十一)数学分析期终考试题 一 叙述题:(每小题5分,共15分) 1 开集和闭集 2 函数项级数的逐项求导定理 3 Riemann 可积的充分必要条件 二 计算题:(每小题7分,共35分) 1、 ? -9 1 31dx x x 2、求)0()(2 2 2 b a b b y x ≤<=-+绕x 轴旋转而成的几何体的体积 3、求幂级数 n n n x n ∑∞ =+1 2)11(的收敛半径和收敛域 4、1 1lim 2 2220 0-+++→→y x y x y x 5、2 2 ),,(yz xy x z y x f ++=,l 为从点P 0(2,-1,2)到点(-1,1,2)的方向, 求f l (P 0) 三 讨论与验证题:(每小题10分,共30分) 1、已知?? ???==≠+++=0 ,0001sin )(),(222 2 2 2y x y x y x y x y x f ,验证函数的偏导数在原点不连续, 但它在该点可微 2、讨论级数∑∞ =-+1 2211 ln n n n 的敛散性。 3、讨论函数项级数]1,1[)1( 1 1 -∈+-∑∞ =+x n x n x n n n 的一致收敛性。 四 证明题:(每小题10分,共20分) 1 若 ? +∞ a dx x f )(收敛,且f (x )在[a ,+∞)上一致连续函数,则有0)(lim =+∞ →x f x 2 设二元函数),(y x f 在开集2R D ? 内对于变量x 是连续的,对于变量y 满足Lipschitz 条件: ''''''),(),(y y L y x f y x f -≤-其中L D y x y x ,),(),,('''∈为常数证明),(y x f 在D 内连续。 参考答案 一、1、若集合S 中的每个点都是它的内点,则称集合S 为开集;若集合S 中包含了它的所有的聚点,则称集合S 为闭集。

数学分析期末考试题1、2(第二份有答案)

一、 判断题(每小题2分,共20分) 1.开域是非空连通开集,闭域是非空连通闭集. ( ) 2.当二元函数的重极限与两个累次极限都存在时,三者必相等. ( ) 3.连续函数的全增量等于偏增量之和. ( ) 4. xy y x f =),(在原点不可微. ( ) 5.若),(),(y x f y x f yx xy 与都存在,则),(),(y x f y x f yx xy =. ( ) 6. dy y x xy y ) 1(sin 2 1 +? +∞ 在)1,0(内不一致收敛. ( ) 7.平面图形都是可求面积的. ( ) 8.学过的各种积分都可以以一种统一的形式来定义. ( ) 9.第二型曲面积分也有与之相对应的“积分中值定理”. ( ) 10.二重积分定义中分割T 的细度 T 不能用}{max 1i n i σ?≤≤来代替. ( ) 二、 填空题(每小题3分,共15分) 1.设)sin(y x e z xy +=,则其全微分=dz . 2.设 3 2),,(yz xy z y x f +=,则f 在点)1,1,2(0-P 处的梯度= )(0P grad . 3.设L 为沿抛物线 22x y =,从)0,0(O 到)2,1(B 的一段,则?=+L ydx xdy . 4.边长为a 密度为b 的立方体关于其任一棱的转动惯量等于 . 5.曲面2732 22=-+z y x 在点(3,1,1)处的法线方程为 . 三、计算题(每小题5分,共20分) 1.求极限 xy y x y x )(lim 22) 0,0(),(+→. 2. 设),(y x z z =是由方程z e z y x =++所确定的隐函数,求xy z . 3.设 ]1,0[]1,0[?=A ,求??++=A y x ydxdy I 2 322)1( . 4.计算抛物线) 0()(2 >=+a ax y x 与x 轴所围的面积.

高等数学竞赛试题含答案

高等数学竞赛试题 一、选择题 1. 设n n n y z x ≤≤,且0)(lim =-∞ →n n n x y ,则n n z ∞ →lim ( C ) (A) 存在且等于零; (B) 存在但不一定等于零; (C) 不一定存在; (D) 一定不存在. 2. 设)(x f 是连续函数,)()(x f x F 是的原函数,则( A ) (A) 当)(x f 为奇函数时,)(x F 必为偶函数; (B) 当)(x f 为偶函数时,)(x F 必为奇函数; (C) 当)(x f 为周期函数时,)(x F 必为周期函数; (D) 当)(x f 为单调增函数时,)(x F 必为单调增函数. 3. 设0>a ,)(x f 在),(a a -内恒有2|)(|0)("x x f x f ≤>且,记? -= a a dx x f I )(,则有( B ) (A) 0=I ; (B) 0>I ; (C) 0

相关文档
最新文档