下承式城市钢桁架桥上部结构设计与分析

下承式城市钢桁架桥上部结构设计与分析
下承式城市钢桁架桥上部结构设计与分析

客运中心管桁架的结构设计

第19卷第3期宁波大学学报(理工版)V ol.19 No.3 2006年9月JOURNAL OF NINGBO UNIVERSITY ( NSEE ) Sept. 2006 文章编号:1001-5132(2006)03-0330-04 客运中心管桁架的结构设计 邬吉吉华1,2,何丽波2,许国平2,周泓2,刘中华3 (1.同济大学土木工程学院,上海 200092;2.宁波市建筑设计研究院科研所,浙江宁波 315012;3.浙江精工钢结构有限 公司,浙江绍兴 312000) 摘要:根据空间有限元建模计算,探讨了多跨的钢管桁架结构体系的天台客运中心候车大厅屋盖的结构布置、计算模型的对比. 分析表明采用倒三角形截面的管桁架在平面外稳定性较弱,在设计中应通过增设横向和纵向支撑来形成几何不变体系,否则应进行平面外的稳定分析. 管桁架的设计计算应考虑与下部结构共同作用,同时应反映施工对结构内力的影响. 管桁架的计算模型中采用刚性节点与弹性节点对内力的影响不大. 关键词:管桁架;结构设计;有限元 中图分类号:TU318+.1文献标识码:A 在大跨空间结构中采用空间管桁架是种合理经济的结构形式. 空间管桁架的自身刚度大,用钢量小,施工方便,可单制作,适用于复杂多变的建筑形式,并具有明快的结构传力方式[1-5]. 天台客运中心是浙南地区重要的交通枢纽,总建筑面积为15000m2. 采用造型新颖的园弧形屋面来寓意天台人民不断开拓进取的时代精神. 主体结构由候车大厅和售票大厅组成,总高度为20.37m. 东西长112.2m. 南北宽48.6m. 其中候车大厅平面尺寸112m×51m,柱距9m,下部结构采用钢筋混凝土现浇框架. 抗震等级为三级屋面为纵向园弧坡面. 工程设计的使用年限为50年. 建筑物重要类别为丙类建筑. 建筑结构的安全等级为二级. 钢结构的耐火等级为二级. 天台抗震设防烈度为6度. 基本风压为0.4kn/m2,雪压为0.5kn/m2. 地面粗糙度为B类,建筑物场地类别三类. 1结构体系布置 经多种方案比较,候车大厅屋面决定采用空间管桁架结构体系. 其承重主要由钢桁架、屋盖支撑体系以及钢檩条组成,如图1和图2所示. 根据建筑柱网布置,钢桁架ZHJ共计12,间距9m,采用三跨连续的倒三角形截面的钢管桁架. 其跨度分别为15m、27m、4.8m,支承于钢筋混凝土柱上,并向两侧各悬挑3m、6m. 倒三角形截面桁架的高和上边宽均为 1.5m. 钢桁架上、下弦杆选用较大外径和壁厚的圆钢管. 从钢管节点的构造来保证弦杆外径大于腹杆外径,弦杆壁厚大于腹杆壁厚. 按等间距 1.5m错位布置上、下弦杆节点来实现弦杆与腹杆以及腹杆轴线间的夹角大于30o. 同时在钢桁架承受较大横向荷载的支座部位纵向和横向进行了加强. 在本工程中上弦杆为2根φ203 收稿日期:2006-03-28. 基金项目:中国博士后科学基金(2005037512). 作者简介:喆 邬华(1971-),男,上海人,博士后,高级工程师,主要研究方向:大跨钢结构、预应力混凝土结构等. E-mail:wuzhehua@https://www.360docs.net/doc/0413374312.html,

钢桁架桥的结构设计与分析

钢桁架桥的结构设计与分析 1、概述 钢桁架桥以其跨越能力强、施工速度快、承载能力强、耐久性好普遍应用于铁路桥梁。长期以来,由于钢材价格高,材料养护费用高,钢桁架桥梁在公路领域应用较少。近年来,随着我国炼钢水平的提高,国产的钢材品质已经完全能满足结构安全的需要,同时随着钢结构防腐技术的提高,钢结构桥梁越来越多的在公路工程领域得到应用。 相比较我国当前100m左右中等跨径常用的桥型如连续梁、系杆拱、矮塔斜拉桥等结构,钢桁架桥梁虽然建筑成本高,但刨去成本控制的因素,钢桁架桥具有以下的几点优越性:1.建筑高度低,由于钢桁架结构主桁主要由拉杆和压杆构成,对杆件界面的抗弯刚度要求不大,因此钢桁架的建筑高度由横梁控制,在桥梁宽度不是非常大时可极大的降低桥梁建筑高度,尤其适用于对桥梁建筑高度有严格限制的桥梁;2.施工周期短,速度快。钢桁架施工可在工厂制作杆件,运到现场拼装成桥,可采用顶推和支架拼装等方法,这使它在很多工期较紧的工程(如重要道路的桥梁改建)和跨越重要道路的跨线桥上成为桥型首选之一;3.随着钢结构防腐技

术的提高,钢桁架桥的耐久性大为提高,同时钢材作为延性材料,结构安全性较混凝土桥梁高。正因为钢桁架桥梁的这几方面的优点,桁架桥梁成为特定条件下的经济而合理的桥型选择。 2、结构设计 公路桥位于江苏省境内,正交跨越京杭大运河,河口宽95m,通航净空要求90x7m,桥梁主跨采用97m,由于桥梁中心至桥头平交处距离仅140余米,若采用其他结构纵坡将达到5%以上,经综合考虑,主桥采用97m下承式钢桁架结构。 2.1主桁 主桁采用带竖杆的华伦式三角形腹杆体系,节间长度5.35m,主桁高度8m,高跨比为1/12.04。两片主桁中心距为8.6m,宽跨比为1/11.2,桥面宽度为8m。

桁架结构分析

2013-2014年度学生研究计划(SRP)“桁架结构模型结构优化及试验” 结题论文 姓名骆辉军 学院土木与交通学院 专业土木工程(卓越全英班) 学号 201230221450 指导老师范学明 时间 2014年10月

一.实验背景 随着科学技术的发展和计算机软件技术的应用,应用相关的软件来进行桁架结构模型的优化已经可以成为现实。桁架结构中的桁架指的是桁架梁,是格构化的一种梁式结构。桁架结构常用于大跨度的厂房、展览馆、体育馆和桥梁等公共建筑中。由于大多用于建筑的屋盖结构,桁架通常也被称作屋架。在桥梁结构中,桁架结构也应用广泛。只受结点荷载作用的等直杆的理想铰结体系称桁架结构。它是由一些杆轴交于一点的工程结构抽象简化而成的。合理地设计桁架结构,就能够最大限度地利用材料的强度,起到减轻桁架重量,节省材料的目的,从而也能为工程实际应用提供相关的依据和参考。 但桁架的结构模型形式千变万化,仅仅从理论上分析桁架的受力特征和破坏特征,而不进行相应的试验研究是无法取得实质性的进展的。正是基于这样一个原则,我们需要在理论研究的基础上通过试验来优化桁架的结构模型,在各式各样的桁架结构中挑选出受力合理的结构,最大限度地使材料的强度得以利用。 研究桁架结构模型优化的意义 桁架结构中,各杆件受力均以单向拉、压为主,通过对上下弦杆和腹杆的合理布置,可适应结构内部的弯矩和剪力分布。由于水平方向的拉、压内力实现了自身平衡,整个结构不对支座产生水平推力。结构布置灵活,应用范围非常广。桁架梁和实腹梁(即我们一般所见的梁)相比,在抗弯方面,由于将受拉与受压的截面集中布置在上下两端,增大了内力臂,使得以同样的材料用量,实现了更大的抗弯强度。在抗剪方面,通过合理布置腹杆,能够将剪力逐步传递给支座。这样无论是抗弯还是抗剪,桁架结构都能够使材料强度得到充分发挥,从而适用于各种跨度的建筑屋盖结构。更重要的意义还在于,它将横弯作用下的实腹梁内部复杂的应力状态转化为桁架杆件内简单的拉压应力状态,使我们能够直观地了解力的分布和传递,便于结构的变化和组合。 由于杆件之间的互相支撑作用,且刚度大,整体性好,抗震能力强,所以能够承受来自多个方向的荷载。而且具有结构简单,运输方便等优点,其应用于各个工程领域。古代木构建筑,而今的2008北京奥运会的主体育馆鸟巢;太空中的大型可展天线,地面上的跨海大桥,随处都可见到桁架的身影。由于桁架的结构模型千变万化,不同的桁架结构形式对桥梁或者屋架的受力特征有很大的影响,因而,研究桁架结构模型的优化具有重大的意义。 二.实验的相关资料 1.桁架结构的常见构造方式 桁架指的是桁架梁,是格构化的一种梁式结构,即一种由杆件彼此在两端用铰链连接而成的结构。桁架由直杆组成的一般具有三角形单元的平面或空间结构,桁架杆件主要承受轴向拉力或压力,从而能充分利用材料的强度,在跨度较大时可比实腹梁节省材料,减轻自重和增大刚度。由于大多用于建筑的屋盖结构,桁架通常也被称作屋架。 桁架结构常用于大跨度的厂房、展览馆、体育馆和桥梁等公共建筑中。其主要结构特点在于,各杆件受力均以单向拉、压为主,通过对上下弦杆和腹杆的合理布置,可适应结构内部的弯矩和剪力分布。由于水平方向的拉、压内力实现了自身平衡,整个结构不对支座产生水平推力。结构布置灵活,应用范围非常广。桁架梁和实腹梁(即我们一般所见的梁)相

管桁架设计总结

主要参考资料:《空间网格结构技术规程》 《荷载规范》尤其是风荷载,雪荷载 《钢结构连接节点设计手册》计算屋盖支座 一、选型:参见《空间网格结构技术规程》第三章3.1到3.5节 其中:网架的高跨比可取1/10—1/18;网架在短向跨度的网格数不宜小于5;确定网格尺寸时,宜使相邻杆件间的夹角大于45度,且不宜小于30°。 二、结构计算 1.《空间网格结构技术规程》4.1.1空间网格结构应进行重力荷载及风荷载作用下的位 移、内力计算。并应根据具体情况,对地震、温度变化、支座沉降及施工安装荷载等作用下的位移、内力计算。 2.应该考虑荷载: 1)风荷载:注意体形系数的选取。《空间网格结构技术规程》4.1.3对于基本自振周期大于0.25s的空间网格结构,宜进行风振计算。参考《荷载规范》8.4.3 风荷载主要考虑垂直桁架方向,平行桁架方向。 对于风荷载还应该考虑:当风吸力作用于屋盖时,传递到节点荷载上的向上的 合力应小于屋盖自重。 2)雪荷载:雪荷载的主要问题是屋面积雪分布系数参考《荷规》表7.2.1. 3)积水荷载:根据桁架的整体形势,考虑檐口高度以符合积水荷载与雪荷载的大小,并按较大值选取荷载不至于屋面。 4)温度作用:《空间网格结构技术规程》4.2.4中可不考虑温度变化引起的内力条件;若要考虑温度作用,参数考虑《荷规》第九章。 5)地震作用: a).《抗规》10.2节10.2.6下列屋盖结构可不进行地震作用计算,但应符合本节 有关的抗震措施要求: 1.7度时,矢跨比小于5的单向平面桁架和单向立体桁架结构可不进行沿桁架的 水平向以及竖向地震作用计算。 2.7度时,网架结构可不进行地震作用计算。 另参考《空间网格结构技术规程》4.4节 b). 《空间网格结构技术规程》4.4.8 当采用振型分解反应谱法进行空间网格结 构地震效应分析时,对于网架结构宜至少取前10~15个振型,对于网壳结构宜 至少取前25~30个振型,以进行效应组合。 《空间网格结构技术规程》4.4.10 在进行结构地震效应分析时,对于周边落地 的空间网格结构,阻尼比可取0.02,;对设有混凝土结构支撑体系的空间网格结 构,阻尼比可取0.03. 三、模型建立及计算:3D3S 1.当不是采用3D3S的模板建模时(自己手动建模),软件不能自动分辨模型中的“上 弦”、“下弦”、“撑杆”等杆件类型,要用户自己定义,可采用“构件属性”菜单中“定义层面或轴线号”命令定义杆件类型; 2.定义单元计算长度:定义单元时,计算长度取0,程序会自动寻找计算长度。软件 对空间框架结构自动寻找无支撑长度,并按规范自动计算两个方向的计算长度。对普通屋架定义了常见的平面内外计算长度。对平面框架的平面内计算长度(绕3轴)

桁架结构优化设计

桁架结构优化设计 一般所谓的优化,是指从完成某一任务所有可能方案中按某种标准寻找最佳方案。结构优化设计的基本思想是,使所设计的结构或构件不仅满足强度、刚度与稳定性等方面的要求,同时又在追求某种或某些目标方面(质量最轻,承载最高,价格最低,体积最小)达到最佳程度。 对于图1-1的结构,已知L=2m,x b=1m,载荷P=100kN,桁架材料的密度r=7.7x10-5N/mm3,[δt]=150Mpa,[δc]=100Mpa,y b的范围:0.5m≦y b≦1.5m。 图1-1 桁架结构 设计变量与目标函数(质量最小)

预定参数(设计中已确定,设计者不能任意修改的量):L , x b ,P ,r ,[δt ] ,[δc ] 设计变量(可由设计者调整的量)y b ,A 1,A 2 约束条件(对设计变量的约束条件) (1) 强度条件约束(截面、杆件的强度) (2) 几何条件约束(B 点的高度范围) 目标函数:桁架的质量W (最小) 解:1. 应力分析 0sin sin 02112=--=∑θθN N F x 0cos cos 02112=---=∑P N N F y θθ 由此得: )sin(sin 2111θθθ+= p N ) sin(sin 212 2θθθ+- =p N 由正弦定理得: l y l x p N B B 2 1) (2 -+=

l y x p N B B 2 22 += 由此得杆1和2横截面上的正应力 1 2 1) (2 lA y l x p B B -+= σ 2 2 22 lA y x p B B += σ 2.最轻质量设计 目标函数(桁架的质量) ))((2 2 2 1 2 2 B B y x A y l x A W B B ++-+=γ (1-1) 约束条件 [][]? ? ? ?? ????? ????≤+≤-+c B t B lA y x p lA y l x p B B σσ2 2 1 2 22 ) ( (1-2) 0.5≦y b ≦1.5(m ) (1-3) (于是问题归结为:在满足上述约束条件下,确定设计变量y b ,A 1,A 2,使目标函数W 最小。) 3.最优解搜索 采用直接实验法搜索。首先在条件(1-3)所述范围内选取一系列y b 值,由强度条件(1-2)确定A 1与A 2,最后根据式(1-2)计算相应W ,在y b -W 曲线中选取使W 最小的y b 与相应的A 1与A 2,即为本问题的最优解。 4.利用MA TLAB 编程 (1)分析目标函数和约束条件

钢结构桁架设计计算书

renchunmin 一、设计计算资料 1. 办公室平面尺寸为18m ×66m ,柱距8m ,跨度为32m ,柱网采用封闭结合。火灾危险性:戊类,火灾等级:二级,设计使用年限:50年。 2. 屋面采用长尺复合屋面板,板厚50mm ,檩距不大于1800mm 。檩条采用冷弯薄壁卷边槽钢C200×70×20×2.5,屋面坡度i =l/20~l/8。 3. 钢屋架简支在钢筋混凝土柱顶上,柱顶标高9.800m ,柱上端设有钢筋混凝土连系梁。上柱截面为600mm ×600mm ,所用混凝土强度等级为C30,轴心抗压强度设计值f c =1 4.3N/mm 2 。 抗风柱的柱距为6m ,上端与屋架上弦用板铰连接。 4. 钢材用 Q235-B ,焊条用 E43系列型。 5. 屋架采用平坡梯形屋架,无天窗,外形尺寸如下图所示。 6. 该办公楼建于苏州大生公司所 属区内。 7. 屋盖荷载标准值: (l) 屋面活荷载 0.50 kN/m 2 (2) 基本雪压 s 0 0.40 kN/m 2(3) 基本风压 w 0 0.45 kN/m 2(4) 复合屋面板自重 0.15 kN/m 2(5) 檩条自重 查型钢表 (6) 屋架及支撑自重 0.12+0. 01l kN/m 28. 运输单元最大尺寸长度为9m ,高度为0.55m 。 二、屋架几何尺寸的确定 1.屋架杆件几何长度 屋架的计算跨度mm L l 17700300180003000=-=-=,端部高度取mm H 15000=跨中高度为mm 1943H ,5.194220 217700 150020==?+ =+=取mm L i H H 。跨中起拱高度为60mm (L/500)。梯形钢屋架形式和几何尺寸如图1所示。

交错桁架结构的设计

第39卷第3期2007年6月 西安建筑科技大学学报(自然科学版) J1Xi.an Univ.of Arch.&Tech.(N atur al Science Edition) V ol.39N o.3 Jun.2007交错桁架结构的设计 卢林枫1,周绪红2,刘永健1,莫涛3,周期石4 (1.长安大学,陕西西安710064;2.兰州大学,甘肃兰州730000; 3.湖南大学,湖南长沙410082; 4.中南大学,湖南长沙410083) 摘要:采用P KP M系列软件和有限元程序SAP2000,分析了钢框架-剪力墙和交错桁架-剪力墙两种结构方案的抗震、抗风性能,以及在满足设计规范前提下的结构用钢量.对比设计结果显示,交错桁架-剪力墙比钢框架-剪力墙用钢量低,纵向框架结构形式对交错桁架的用钢量有一定影响,设计时宜采用剪力墙或支撑体系增强纵向框架刚度. 关键词:交错桁架;钢结构住宅;钢结构设计;经济评价 中图分类号:T U393.2文献标识码:A文章编号:1006-7930(2007)03-0308-06 交错桁架结构是一种理想的住宅结构体系,既能提供较大的建筑空间又具有较好的抗侧力性能.但目前关于高层交错桁架结构与其他结构体系经济性对比的技术数据还主要来自国外研究成果[1],为重点考察交错桁架结构经济性能,对福州市某城市广场工程15层商住酒店式公寓主楼结构方案作对比分析.该公寓主体建筑1~4层长81.6m,5~15层长71.6m,宽16m;1层层高6.5m,2~4层层高5.0 m,5~14层层高3.15m,15层层高3.9m.原设计在对比了矩形钢管混凝土框架-剪力墙结构和矩形钢管混凝土框架-钢支撑体系两种方案后,用了矩形钢管混凝土框架-剪力墙结构,框架柱均为箱型600@ 600@12内灌C50混凝土.由于矩形钢管混凝土框架-剪力墙结构比钢筋混凝土框架-剪力墙结构成本高,所以该项目的拟施工单位委托我们做以交错桁架为主要受力体系的结构方案,以期降低工程的结构成本.本文提出了两种不同柱距的交错桁架-剪力墙、支撑体系结构方案,并且与原矩形钢管混凝土框架-剪力墙结构方案作了对比分析,着重比较了不同结构方案的技术指标和经济性能. 1交错桁架结构设计方案 1.14m柱距方案 建筑设计方案中公寓楼房间都为4m开间,适合选择4m柱距的交错桁架方案(简称方案一).由于该工程1~4层为商场,建筑要求在这些楼层不能布置桁架,故1~4层仍采用矩形钢管混凝土框架-剪力墙结构,框架按4m设置柱距,5~15层采用钢结构交错桁架-剪力墙结构.由于交错桁架横向刚度较大,为减小层间刚度的突变,在1~4层局部框架间增设了偏心支撑,平面结构布置见图1.采用小柱距可以增强结构的刚度并使结构传力更加平缓,在减小楼板厚度的同时可以不布置次梁,减轻了上部建筑物的荷载,有利于降低地基和基础成本和提高结构抗震性能. 交错桁架体系横向由桁架和剪力墙(支撑体系)承担侧向力结构采用混合式桁架对抗质有利[2],桁架采用5节间桁架形式(见图2),弦杆为250@250@10方管,腹杆为200@200@10方管,空腹节间尺寸由建筑方案的走廊宽度确定,空腹节间可作为结构的耗能机制来改善结构的抗震性能.在纵向,设置H350@120@6@8框架梁,形成4m小柱距框架,而且剪力墙直通向屋面,所以纵向已形成了钢框架-剪力墙结构. *收稿日期:2006-03-24 基金项目:国家自然科学基金资助项目(50078021);教育部科学技术研究重点项目(99089);高等学校博士学科点专项科研基金项目(2000053203) 作者简介:卢林枫(1972-),男,黑龙江龙江人,副教授,博士,主要从事新型钢结构体系分析与设计方法研究.

下承式钢桁架桥施工监控要点分析

下承式钢桁架桥施工监控要点分析 发表时间:2018-06-12T09:45:27.387Z 来源:《基层建设》2018年第11期作者:贾硕荣钊王胜寒孙康 [导读] 摘要:桥梁建设是现代工程基建项目之一,鉴于现代路桥工程较大的通行压力,要求应用各类手段确保桥梁工程质量。 山东交通学院交通土建工程学院 摘要:桥梁建设是现代工程基建项目之一,鉴于现代路桥工程较大的通行压力,要求应用各类手段确保桥梁工程质量。基于此,本文选取某地下承式钢桁架桥施工作为对象,全程进行监控要点分析,包括拱肋模拟、吊杆模拟的建立,线弹性稳定、非线性稳定计算等,最后结合监控工程给予要点总结,以期通过分析明晰理论,为后续下承式钢桁架桥施工监控工作提供参考。 关键词:下承式钢桁架桥;有限元分析;线弹性稳定;非线性稳定 前言:下承式桥(through bridge)是指桥面设置在桥跨主要承重结构(桁架、拱肋、主梁)下面的桥梁,即桥梁上部结构完全处于桥面高程之上,一般主拱肋采用钢管混凝土结构,可作为大跨度拱桥的首选。该种桥梁并给我国独创,进入我国后却得到了快速发展,当前针对该类桥梁的监控主要针对稳定性和形变量控制,此外也包括一些传统的工程环节,就求施工监控要点进行分析十分必要。 1.工程概况 工程位于江苏省南京市境内,为缓解当地交通压力,市政部门拟建下承式钢管混凝土系杆拱桥。设计跨径为77.5m,计算跨径 75.7m,桥面宽为2.8×1.75m (系杆宽度)+2.2×0.8m(防撞护栏)+19.7m(行车道),为进一步确保桥梁质量,布置3道风撑,风撑呈一字型,另有“K”型风撑两道。处于强化桥梁稳定性的考虑,设计拱肋内倾角为11°9′,垂直面内拱肋投影方面,经严密计算取矢高20m。矢跨比为四分之一(计算),拱肋轴线以抛物线原理进行计算和布置,截面高度取178cm,腹板厚度15mm,钢管厚度15mm,单管直径为78cm。桥梁主体结构为钢筋混凝土。其中桥面混凝土规格为C40,系梁、中横梁以及端横梁混凝土规格为C50,钢管强度标准为Q345D,以混凝土进行填充,规格为C50。桥面为沥青品质,厚度8cm,吊杆直接应用预制成品索,规格PES7-91,应用冷铸镦头锚作为搭配,规格LZM7-91。 2.模型构建与分析 2.1拱肋模拟 下承式钢桁架桥是否具备稳定结构,主要取决于拱肋性能,因此采用有限元模型进行建模分析。本次工程中,对拱肋的处理主要应用换算截面法进行,以抗压刚度等效作为核心指标,选取C40、C50钢筋混凝土模式,将其作为等效钢材进行分析,计算方法参考《钢管混凝土结构设计与施工规程》(CECS 28:90,以下简称《CECS 28:90》),并在各构件的等效进行时采用统一方式。此外,利用ANS YS中的超级梁单元BEAM 188作为参考进行复合截面梁计算,构件模型分别对内部圆截面混凝土、外部圆环截面钢材进行强度等效计算[1]。 2.2 吊杆模拟 本次施工所用吊杆为二力杆,模拟成桥状态,以刚性吊杆法代替柔性吊杆索进行分析,在分析过程中额外应用初应变法、降温法进行张拉模拟,模拟过程中,添加参数代表风力、自重和老化程度的影响。此外模拟不考虑不计吊杆在结构中的作用,以极小值替代法作为吊杆弹性模量。桥面板模拟采用壳单元法,将桥面划分为若干单元,代入标准设计值模拟。系梁、风撑和横梁单独作为梁单元,也引入标准设计值进行模拟,在系梁、横梁上所施加的预应力均以作用在梁端的等效力来模拟[2]。 3.结构稳定性监控 稳定性监控是下承式钢桁架桥施工监控的核心,包括线弹性稳定、非线性稳定两个方面。 3.1线弹性稳定监控 针对线弹性稳定的监控主要针对特征值屈曲进行,该方式也被称为第一类稳定。主要观察指标为屈曲荷载的上限,当屈曲荷载达到上限值后,可以获取一个失稳状态下的形变模型。该模型可以随着荷载的增加不断变化,使人员了解目标对象的抗压上限,优势是分析过程简单,属于一种高效的开放模型。本次施工模拟过程中,线弹性稳定监控在非复合截面梁法下进行,监控数据表明屈曲特征值随拱肋面内刚度E I增大而增大,以换算截面法表示,屈曲特征值的上限为7.898,符合设计要求,也符合《CECS 28 :90》的要求。变化幅值方面,依据模拟实验结果,最大变化幅值为16.2%,满足设计要求。此外,实验表明1阶屈曲模态为拱肋面外三波正对称失稳。因为该组合式系杆拱桥具有强大的桥面系和横梁结构,所以本桥表现为“强梁弱拱”特性,拱肋最易发生面外失稳,因此额外进行面内刚度测试,结果表明,形变量基本维持在4-9mm之间,满足设计要求。 3.2 非线性稳定 非线性稳定是指一些不可预知变化导致的结构性能下降,一般通过严格的管理控制可以最大限度降低这种失稳情况,也即通常所说的材料监控、施工规范性监控以及流程监控等常规内容。结合其他同类工程建设经验以及本次施工的实际要求,发现工程的几何非线性效应不显著,为激发面外失稳模态,进行实验参数调整,取拱肋初始几何缺陷为自重下1 阶屈曲变位的3%进行测量。综合考虑材料非线性的结构增量、几何非线性的结构增量,默认二者平衡的情况下,获取计算式: ([ KD] +[ KG] ){Δδ}={ΔF}. 式中,[ KD] 为结构弹塑性刚度矩阵;[ K G] 为结构几何刚度矩阵;{Δδ}为节点位移增量;{ΔF}为外荷载增量。应用N-R 法和弧长法进行求解计算,获取非线性屈曲的极限荷载,进行多次测量、多次计算,求取最优值,使所获结果接近真实情况。本次施工中,在屈曲变位的3%的模拟情况下,双非线性稳定系数K cr=3.944,拱肋失稳时最大横向位移为0.052m,非线性稳定情况良好,梁桥形变量小于0.2%,满足设计要求。 3.3核心结论 结合本次工程施工监控,给出下承式钢桁架桥施工监控要点包括:结构的稳定模拟、形变量计算、正对称失稳水平以及常规监控四个方面。结构的稳定是监控核心,要求以设计参数为准构建模型进行分析,先了解内部超静定结构,再了解拱肋刚度,通过开放性模拟获取极限值,对比极限值与标准值的差异,如果极限值低于标准值,表明设计可行。形变量分析同样遵循开放性模拟原则,要求持续增加外荷载了解形变量上限,如果小于设计允许值,表明设计可行。线弹性稳定系数方面,要求系数均大于6,双非线性分析所得稳定系数大于4,如果无法达到标准要求,应重新进行设计。本次工程中,由于设计较为合理,选材得当,几何非线性效应对失稳影响不显著,但同类工程中应将其作为要点之一给予监控。此外,常规的材料、施工规范性也应作为监管对象,确保工程质量。 总结:通过分析下承式钢桁架桥施工监控要点,获取了相关理论。下承式钢桁架桥属于下承式桥的一种,在对其进行监控时,除常规

48米下承式简支栓焊钢桁梁桥课程设计讲解

现代钢桥课程设计 学院:土木工程学院 班级:1210 姓名:罗勇平 学号:1208121326 指导教师:周智辉 时间:2015年9月19日

目录 第一章设计说明 .............................................. 错误!未定义书签。第二章主桁杆件内力计算 . (5) 第三章主桁杆件截面设计与检算 (14) 第四章节点设计与检算 (23)

第一章 设计说明 一、设计题目 单线铁路下承式简支栓焊钢桁梁设计 二、设计依据 1. 设计规范 铁道部《铁路桥涵设计基本规范》(TB10002.1-2005) 铁道部《铁路桥梁钢结构设计规范》(TB10002.2-2005) 2. 结构基本尺寸 计算跨度L=48m ;桥跨全长L=49.10m ;节间长度d=8.00m ;主桁 节间数n=6;主桁中心距B=5.75m ;平纵联宽度B 0=5.30m ;主桁高度H=11.00m ;纵梁高度h=1.45m ;纵梁中心距b=2.00m ;主桁斜角倾角?=973.53θ,809.0sin =θ,588.0cos =θ。 3. 钢材及基本容许应力 杆件及构件用Q370qD ;高强度螺栓用20MnTiB 钢;精制螺栓用 BL3;螺母及垫圈用45号优质碳素钢;铸件用ZG25Ⅱ;辊轴用锻钢35。钢材的基本容许应力参照《铁路桥梁钢结构设计规范》。 4. 结构的连接方式及连接尺寸 连接方式:桁梁杆件及构件采用工厂焊接,工地高强度螺栓连接; 人行道托架采用精制螺栓连接。 连接尺寸:焊缝的最小焊脚尺寸参照《桥规》;高强度螺栓和精 制螺栓的杆径为22φ,孔径为mm d 23=。 5. 设计活载等级 标准中—活载。 6. 设计恒载 主桁m kN p /70.123=;联结系m kN p /80.24=;桥面系m kN p /50.62=; 高强度螺栓%3)(4326?++=p p p p ;检查设备m kN p /00.15=;桥面m kN p /00.101=;焊缝%5.1)(4327?++=p p p p 。 计算主桁恒载时,按桥面全宽恒载7654321p p p p p p p p ++++++=。 三、设计内容 1. 确定主桁型式及主要参数; 2. 主桁杆件内力计算(全部),并将结果汇制于2号图上; 3. 交汇于E 2、A 3节点(要求是两个大节点)的所有杆件截面设计与 检算;

钢桁架输煤栈桥结构加固设计

钢桁架输煤栈桥结构加固设计 摘要:输煤栈桥主要煤矿运输等厂房和筒仓建筑物的连接通廊,对整个生产过 程至关重要。由于洗煤过程中对钢桁架杆件和节点的腐蚀,使得钢桁架的杆件节 点承载力大大下降,甚至威胁到矿区的生产安全,因此对钢桁架输煤栈桥结构加 固尤为重要。基于此结合实际,从钢栈桥结构设计选型出发,提出钢桁架加固方案,并对钢桁架加固方案进行计算分析,目的在于提高输煤栈桥设计水平,促进 企业的持续发展。 关键词:钢桁架栈桥;MIDASGEN;加固方法 引言 栈桥是煤矿矿井及选煤厂生产系统的关键结构部分,在运转时主要是利用皮 带将井下煤或者外来煤输送到筛分车间、主厂房、筒仓等建筑物。运煤栈桥系统 根据其承载性能的不同可以分为钢筋混凝土、钢结构以及砌体等结构形式,这些 方式中的钢结构可以达到外部美观性的要求,施工具备较强的方便快捷性,更为 关键的是具备较强的抗震性,所以称为了当前煤炭系统中使用的主要方式。 1钢栈桥结构选型 (1)栈桥桁架选型。通常情况下,针对大型跨度的运煤栈桥,它的组成结构 包含了H型钢、角钢以及钢管等配件组成。其中的全拉式桁架中的较长斜腹杆即 为拉杆,较短的腹杆则主要是承载结构,经济效果非常高。此外钢桁架下弦处设 置了拉索的形式,在结构中施以预应力能够实现中心下降平移,在受到外部载荷 的影响之后上弦杆受拉,这就具备了较高的承载性能,即满足桁架受力体系,同 时又满足矿井运煤工作的需要。根据实际调查可以发现,H型钢是使用频率最高 的一种结构形式,该结构形式的主要优势在于如下几点:(a).H型钢两个方向 中的惯性矩是一致的,可以使得内部的结构体系更加的稳定,结构性能比较强。(b).H型钢弦杆与桥面在同一平面中,栈桥结构中的两侧钢桁架在空间位置上 以及桥面水平横向中刚度比较强,可以全面的提升结构的抗震性能。(c).屋面 横梁支撑点设置在弦杆的内部位置上,要确保施工的节点位置与设计方案的一致性,同时还应该保证栈桥空间计算的准确性。H型钢栈桥钢桁架中的受压腹杆与 上下弦节点处的连接是刚性的,各个连接位置具备较高的稳定性。在计算角钢桁 架的时候,采用的方式主要是根据静定结构实施计算的,在计算环节,可以忽略 节点刚性产生的次弯矩问题,同时,在计算时,还需要掌握大跨度钢桁架弦杆和 腹杆截面刚度产生的偏差,如果存在的偏差较大,就会导致节点次弯矩方面的影响。不管是选择哪一种桁架形式都应该保证其满足如下的几个方面:(a).节间 要保证为等距,节间数为偶数。如果无法满足该要求,就应该在中间位置上设置 交叉腹杆。(b).其高度通常按照设定的要求,需要设置为1/8~1/10。但是,在设定高度的同时,还需要全面考虑到净空高度尺寸。(c).在设置桁架节间长度时,需要对楼板部分高度进行考虑,以保证它满足设计要求。 (2)桁架支撑体系。桁架的上下弦支撑结构部分的主要作用就是能够承载水 平载荷,同时将这些载荷传递到支座结构中,此时可以使得结构刚性的增加,还 能够适当的改变平面计算长度。一般情况下,在支撑设置时,其位置都是在上下 弦位置上设置,而针对组合楼板来说,由于该结构自身具备结构功能,可以不采 用支撑方式;而针对预制楼板设置时,需要按照实际的情况做好纵向水平的支撑,同时,还需要对交叉腹杆进行设置,保证它和结构之间存在的角度达到40°~50°。在桁架支撑体系构建的阶段中,在进行钢屋架计算时,需要对上弦杆尺寸进行掌

管桁架结构的设计特点

管桁架结构的设计特点 [摘要]本文主要阐述了空间三角形管桁架的受力特点、结构计算原则以及截面尺寸对其内力的影响等内容。 【关键词】管桁架;受力;结构计算;截面尺寸的影响 近年来,随着我国钢铁产量的不断增长,钢结构以其自身的优势,在建筑中所占的比例越来越大,钢管结构也取得较大的突破。钢管结构的最大优点是能将人们对建筑物的功能要求、感观要求以及经济效益要求完美地结合在一起。钢管结构中的管桁架结构以它独特的优势受到人们的青睐。 1、管桁架结构的受力特点 管桁架,是指用圆杆件在端部相互连接而组成的格构式结构。与传统的开口截面(H型钢和I字钢)钢桁架相比,管桁架结构截面材料绕中和轴较均匀分布,使截面同时具有良好的抗压和抗弯扭承载能力及较大刚度,不用节点板,构造简单;制作安装方便、结构稳定性好、屋盖刚度大。空间三角形钢管桁架在受到竖向均布荷载作用的时候,表现出腹杆抗剪、弦杆抗弯的受力机理。弦杆轴力的主要影响因素是截面的高度,而竖面斜腹杆轴力的主要影响因素是竖面腹杆与竖直线的倾角,水平腹杆在竖向荷载作用下的受力较小,但是如果受到明显的扭矩作用的话,必须考虑适当加大其截面尺寸。 2、管桁架结构的结构计算 2.1设计基本规定 立体桁架的高度可取跨度的1/12~1/16;立体拱架的拱架厚度可取跨度1/20~1/30,矢高可取跨度的1/3~1/6。弦杆(主管)与腹杆(支管)及两腹杆(支管)之间的夹角不宜小于30°。当立体桁架跨度较大(一般认为不小于30m 钢结构)时,可考虑起拱,起拱值可取不大于立体桁架跨度的1/300(一般取1/500)。此时杆件内力变化“较小”,设计时可按不起拱计算。管桁架结构在恒荷载与活荷载标准作用下的最大挠度值不宜超过短向跨度的1/250,悬挑不宜超过跨度1/125。对于设有悬挂起重设备的屋盖结构最大挠度不宜大于结构跨度的1/400。当仅为改善外观要求时,最大挠度可取恒荷载与活荷载标准作用下挠度减去起拱值。一般情况下,按强度控制面而选用的杆件不会因为种种原因样的刚度要求而加大截面。 2.2一般计算原则 管桁架结构应进行重力荷载及风荷载作用下的内力、位移计算,并应根据具体情况,对地震、温度变化、支座沉降及施工安装荷载等作用下的位移、内力进行计算,内力和位移可按弹性理论,采用空间杆系的有限元方法进行计算。对非

下承式钢桁架桥施工监控要点分析

下承式钢桁架桥施工监控要点分析 摘要:桥梁建设是现代工程基建项目之一,鉴于现代路桥工程较大的通行压力,要求应用各类手段确保桥梁工程质量。基于此,本文选取某地下承式钢桁架桥施 工作为对象,全程进行监控要点分析,包括拱肋模拟、吊杆模拟的建立,线弹性 稳定、非线性稳定计算等,最后结合监控工程给予要点总结,以期通过分析明晰 理论,为后续下承式钢桁架桥施工监控工作提供参考。 关键词:下承式钢桁架桥;有限元分析;线弹性稳定;非线性稳定 前言:下承式桥(through bridge)是指桥面设置在桥跨主要承重结构(桁架、拱肋、主梁)下面的桥梁,即桥梁上部结构完全处于桥面高程之上,一般主拱肋 采用钢管混凝土结构,可作为大跨度拱桥的首选。该种桥梁并给我国独创,进入 我国后却得到了快速发展,当前针对该类桥梁的监控主要针对稳定性和形变量控制,此外也包括一些传统的工程环节,就求施工监控要点进行分析十分必要。 1.工程概况 工程位于江苏省南京市境内,为缓解当地交通压力,市政部门拟建下承式钢 管混凝土系杆拱桥。设计跨径为77.5m,计算跨径75.7m,桥面宽为2.8×1.75m (系杆宽度)+2.2×0.8m(防撞护栏)+19.7m(行车道),为进一步确保桥梁质量,布置3 道风撑,风撑呈一字型,另有“K”型风撑两道。处于强化桥梁稳定性的考虑,设计拱肋内倾角为11°9′,垂直面内拱肋投影方面,经严密计算取矢高20m。矢跨比为四分之一(计算),拱肋轴线以抛物线原理进行计算和布置,截面高度取178cm,腹板厚度15mm,钢管厚度15mm,单管直径为78cm。桥梁主体结构为钢筋混凝土。其中桥面混凝土规格为C40,系梁、中横梁以及端横梁混凝土规格为C50, 钢管强度标准为Q345D,以混凝土进行填充,规格为C50。桥面为沥青品质,厚 度8cm,吊杆直接应用预制成品索,规格PES7-91,应用冷铸镦头锚作为搭配, 规格LZM7-91。 2.模型构建与分析 2.1拱肋模拟 下承式钢桁架桥是否具备稳定结构,主要取决于拱肋性能,因此采用有限元 模型进行建模分析。本次工程中,对拱肋的处理主要应用换算截面法进行,以抗 压刚度等效作为核心指标,选取C40、C50钢筋混凝土模式,将其作为等效钢材 进行分析,计算方法参考《钢管混凝土结构设计与施工规程》(CECS 28:90,以下 简称《CECS 28:90》),并在各构件的等效进行时采用统一方式。此外,利用ANS YS中的超级梁单元BEAM 188作为参考进行复合截面梁计算,构件模型分别对内 部圆截面混凝土、外部圆环截面钢材进行强度等效计算[1]。 2.2 吊杆模拟 本次施工所用吊杆为二力杆,模拟成桥状态,以刚性吊杆法代替柔性吊杆索 进行分析,在分析过程中额外应用初应变法、降温法进行张拉模拟,模拟过程中,添加参数代表风力、自重和老化程度的影响。此外模拟不考虑不计吊杆在结构中 的作用,以极小值替代法作为吊杆弹性模量。桥面板模拟采用壳单元法,将桥面 划分为若干单元,代入标准设计值模拟。系梁、风撑和横梁单独作为梁单元,也 引入标准设计值进行模拟,在系梁、横梁上所施加的预应力均以作用在梁端的等 效力来模拟[2]。 3.结构稳定性监控 稳定性监控是下承式钢桁架桥施工监控的核心,包括线弹性稳定、非线性稳

钢结构管桁架工程量计算

浅谈工程量清单模式下钢结构工程中钢管的造价审核 近年来,我国经济有了突飞猛进的发展,随着经济的发展带来了建筑业的空前繁荣,一些大跨度、超高层建筑应运而生。建筑物中运用钢结构种类越来越多,目前世界上最高、最大的结构采用的都是钢结构,厂房、桥梁、住宅、工厂、仓库、体育馆、展览馆、超市等建筑也越来越广泛地运用钢结构。这也是钢结构自身具备如下良好的特点所决定的: 1.钢结构构件安装方便,受气候影响小; 2.施工过程中无需养护,施工工期短; 3.结构自重轻,抗震性能好; 4.外型美观,美化居住环境,布置灵活,建筑功能高; 5.符合环保和可持续发展要求,污染小,可回收再生。 下面将论述工程量清单模式下钢结构工程的造价审核流程及计算方式。 根据《建设工程工程量清单计价规范(GB50500-2008)》附录A(建筑工程工程量清单项目及计算规则)中第一项(实体项目)的A.6条(金属结构工程)工程量计算规则为:“按设计图示尺寸以质量计算。不扣除孔眼、切边、切肢的质量,焊条、铆钉、螺栓等不另增加质量,不规则或多边形钢板以其外接矩形面积乘以厚度乘以单位理论质量计算。”或“按设计图示尺寸以铺设水平投影面积计算。”(压型钢板楼板)或“按设计图示尺寸以铺挂面积计算。”(压型钢板墙板)。 以面积为计量单位的工程量计算规则比较简单,在此不再赘述。以质量为计量单位的工程量计算规则较为复杂,而其中以圆钢管的工程量计算方式最复杂,下面我将重点论述圆钢管的工程量计算方式。 首先,介绍一下钢结构中圆管的加工步骤: →→→→

→→→→ →→ 根据审核后的深化设计,以1∶1的比例绘出零件实样,并制作成轻而不易变形的样板;以样板为依据,在制作完成的钢管上划出实样,再将钢管按照要求的形状和尺寸进行切割。 《建设工程工程量清单计价规范(GB50500-2008)》的工程量计算规则主旨为计量形成工程验收的实体。目前一定比例的钢结构深化设计图纸所标注的尺寸为杆件的轴线相交尺寸,但副管并未伸入至主管内,仅冠至主管表面进行焊接,

钢桁桥施工方案

钢桁桥 施 工 方 案 编制: 审核: 审批:

钢桁桥施工方案 一、编制依据: 1、交通部《公路桥涵设计通用规范》(JTGD60-2004) 2、交通部《公路桥涵施工技术规范》(JTJ041-2000) 3、铁道部《铁路钢桥制造规范》(TB/10212-98) 4、广州军区《装配式公路钢桥多用途使用手册》 二、工程概况: 由于艮山西路南侧地下管线较多,为方便盾构机泥浆循环的施工,满足车辆、行人通行需要,需在艮山西路南侧(地下通道出口以东5米处)架设双排单层钢桁桥壹座。该钢桁桥高7米,净高5.8米(即艮山西路路面与钢桁桥下底之间的距离);宽3.14米,净宽1.9米(即钢桁桥内侧安放泥浆管之间的距离);长度为54米,共分2跨,每跨27米;承载形式为下承式。详见图纸。 三、施工进度计划 该钢桁桥计划架设工期为2天,架设完工后使用期约1年,拆除工期为2天,如遇停电、雨天等恶劣天气或其它不可抗力影响,相应顺延。四、主要机械设备、工具配备 五、人员安排 1、现场负责:1人 5、测量员:1人 2、材料员:1人 6、汽吊司机:1人 3、普工:2人 7、司索工:2人

4、安全员:1人 8、电焊工:1人 六、主要材料(A)上部结构 注:据此算出该钢桁桥主梁均布力q=26514.4公斤×9.8牛顿/公斤÷54米=4.81KN/m 横梁均布力q=80公斤×9.8牛顿/公斤÷1.9米=0.41KN/m (B)下部结构 七、受力计算 该钢桁桥采用双排单层组合贝雷桁架作为主梁,左右各一组主梁,共设置2组主梁,主梁总长度为54米,共分2跨,每跨27米;加强弦杆作为横梁,均匀分布于主梁的下弦杆上,共设置72根横梁,横梁毛长3.14米,净长1.9米;立柱均采用组合贝雷桁架,中间立柱为4排3层的形式,两侧立柱为双排3层的形式。主梁承重共70T,每跨最大荷载为35T;每根横梁最大荷载为1T;中间立柱最大荷载为479.9KN(即上部总重的一半)。现验算如下:

下承式钢桁架桥施工监控要点研究

下承式钢桁架桥施工监控要点研究 摘要:为了确保钢桁架梁桥在施工过程中结构受力和变形始终处于安全的范围内,且成桥后的主梁线形符合设计要求,结构恒载内力状态接近设计期望,在主桥施工过程中必须进行严格的施工控制。 关键词:钢桁架桥;施工监控;应力;线形 引言 为了确保钢桁架梁桥在施工过程中结构受力和变形始终处于安全的范围内,且成桥后的主梁线形符合设计要求,结构恒载内力状态接近设计期望,在主桥施工过程中必须进行严格的施工控制。 对于支架拼装施工的钢桁架桥来说,通过监控施工时临时墩的应力和标高、贝雷架的应力和标高、桁架杆件标高、应力及施工完成后几何状态,来保证成桥后桥面线形以及结构内力状态符合设计要求。通过施工过程的数据采集和严格控制,确保结构的安全和稳定,保证结构的受力合理和线形平顺,避免施工差错,尽可能减少调整工作量,为大桥安全顺利建成提供技术保障。 本文以某75m下承式钢桁架桥为依托,研究下承式钢桁架桥施工监控的控制要点。 1施工监控方法及原则

钢桁架桥施工过程的影响参数较多。如:结构刚度、组成桁架的杆件及桥面系的重量、施工荷载、砼的收缩徐变和温度等。求施工控制参数的理论设计值时,都假定这些参数值为理想值。为了消除因设计参数取值的不确切所引起的施工中设计与实际的不一致性,在施工过程中对这些参数进行识别和预测。对于重大的设计参数误差,提请设计方进行理论设计值的修改,对于常规的参数误差,通过优化进行调整。 1、设计参数识别 通过在典型施工状态下对状态变量(位移和应力应变)实 测值与理论值的比较,以及设计参数影响分析,识别出设计参数误差量。 2、设计参数预测 根据已施工梁段设计参数误差量,采用合适的预测方法(如灰色模型等)预测未来梁段的设计参数可能误差量。 3、优化调整 施工控制主要以控制桁架杆件标高、控制截面弯矩为主, 优化调整也就以这些因素建立控制目标函数(和约束条件)。通过设计参数误差对桥梁变形和受力的影响分析。应用优化方法(如采用加权最小二乘法、线性规划法等),调整本梁段与未来梁段的立模标高,使成桥状态最大限度地接近理想设计成桥状态,并且保证施工过程中受力安全。

相关文档
最新文档