高考数学百大经典例题 曲线和方程(新课标)

高考数学百大经典例题 曲线和方程(新课标)
高考数学百大经典例题 曲线和方程(新课标)

典型例题一

例1 如果命题“坐标满足方程()0=y x f ,的点都在曲线C 上”不正确,那么以下正确的命题是

(A )曲线C 上的点的坐标都满足方程()0=y x f ,.

(B )坐标满足方程()0=y x f ,的点有些在C 上,有些不在C 上. (C )坐标满足方程()0=y x f ,的点都不在曲线C 上. (D )一定有不在曲线C 上的点,其坐标满足方程()0=y x f ,.

分析:原命题是错误的,即坐标满足方程()0=y x f ,的点不一定都在曲线C 上,易知答案为D .

典型例题二

例2 说明过点)1,5(-P 且平行于x 轴的直线l 和方程1=y 所代表的曲线之间的关系. 分析:“曲线和方程”的定义中所列的两个条件正好组成两个集合相等的充要条件,二者缺一不可.其中“曲线上的点的坐标都是方程0),(=y x f 的解”,即纯粹性;“以方程的解为坐标的点都是曲线上的点”,即完备性.这是我们判断方程是不是指定曲线的方程,曲线是不是所给方程的曲线的准则.

解:如下图所示,过点P 且平行于x 轴的直线l 的方程为1-=y ,因而在直线l 上的点的坐标都满足1=y ,所以直线l 上的点都在方程1=y 表示的曲线上.但是以1=y 这个方程的解为坐标的点不会都在直线l 上,因此方程1=y 不是直线l 的方程,直线l 只是方程

1=y 所表示曲线的一部分.

说明:本题中曲线上的每一点都满足方程,即满足纯粹性,但以方程的解为坐标的点不都在曲线上,即不满足完备性.

典型例题三

例3 说明到坐标轴距离相等的点的轨迹与方程x y =所表示的直线之间的关系. 分析:该题应该抓住“纯粹性”和“完备性”来进行分析.

解:方程x y =所表示的曲线上每一个点都满足到坐标轴距离相等.但是“到坐标轴距离相等的点的轨迹”上的点不都满足方程x y =,例如点)3,3(-到两坐标轴的距离均为3,但它不满足方程x y =.因此不能说方程x y =就是所有到坐标轴距离相等的点的轨迹方程,到坐标轴距离相等的点的轨迹也不能说是方程x y =所表示的轨迹.

说明:本题中“以方程的解为坐标点都在曲线上”,即满足完备性,而“轨迹上的点的坐标不都满足方程”,即不满足纯粹性.只有两者全符合,方程才能叫曲线的方程,曲线才能叫方程的曲线.

典型例题四

例 4 曲线4)1(2

2

=-+y x 与直线4)2(+-=x k y 有两个不同的交点,求k 的取值范围.有一个交点呢?无交点呢?

分析:直线与曲线有两个交点、一个交点、无交点,就是由直线与曲线的方程组成的方程组分别有两个解、一个解和无解,也就是由两个方程整理出的关于x 的一元二次方程的判别式?分别满足0>?、0=?、0

解:由??

?=-++-=.

4)1(,4)2(2

2y x x k y

得04)23()23(2)1(2

2

2

=--+-++k x k k x k ∴]4)23)[(1(4)23(42

2

2

2

--+--=?k k k k

)5124(42+--=k k

)52)(12(4---=k k

∴当0>?即0)52)(12(<--k k ,即

25

21<

=k 时,直线与曲线有一个交点.

当0--k k ,即21

5

>k 时,直线与曲线没有公共点.

说明:在判断直线与曲线的交点个数时,由于直线与曲线的方程组成的方程组解的个数

与由两方程联立所整理出的关于x (或y )的一元方程解的个数相同,所以如果上述一元方程是二次的,便可通过判别式来判断直线与曲线的交点个数,但如果是两个二次曲线相遇,两曲线的方程组成的方程组解的个数与由方程组所整理出的一元方程解的个数不一定相同,所以遇到此类问题时,不要盲目套用上例方法,一定要做到具体问题具体分析.

典型例题五

例5 若曲线x a y =与)0(

>+=a a x y 有两个公共点,求实数a 的取值范围. 分析:将“曲线有两个公共点”转化为“方程有两个不同的解”,从而研究一元二次方程的解的个数问题.若将两条曲线的大致形状现出来,也许可能得到一些启发.

解法一:由???+==a

x y x

a y 得:a y a y -=

∵0≥y ,∴2

2

2

)(a y a y -=, 即02)1(4

3

2

2

=+--a y a y a . 要使上述方程有两个相异的非负实根.

则有:????

?????

>->->--=?010

120)1(442

4

23246a a a a a a a 又∵0>a

∴解之得:1>a .

∴所求实数a 的范围是),1(∞+.

解法二:x a y =的曲线是关于y 轴对称且顶点在原点的折线,而a x y +=表示斜率为1且过点),0(a 的直线,由下图可知,当1≤a 时,折线的右支与直线不相交.所以两曲线只有一个交点,当1>a 时,直线与折线的两支都相交,所以两条直线有两个相异的交点.

说明:这类题较好的解法是解法二,即利用数形结合的方法来探求.若题设条件中“0>a ”改为R a ∈呢,请自己探求.

典型例题六

例 6 已知AOB ?,其中)0,6(A ,)0,0(O ,)3,0(B ,则角AOB 平分线的方程是

x y =(如下图),对吗?

分析:本题主要考查曲线方程概念掌握和理解的程度,关键是理解三角形内角平分线是一条线段.

解:不对,因为AOB ?内角平分线是一条线段OC ,而方程x y =的图形是一条直线.如点)8,8(P 坐标适合方程x y =,但点P 不在AOB ?内角AOB 的平分线上.

综合上述内角AOB 平分线为:)20(≤≤=x x y .

说明:判断曲线的方程或方程的曲线,要紧扣定义,两个条件缺一不可,关键是要搞清楚曲线的范围.

典型例题七

例7 判断方程122+--=x x y 所表示的曲线.

分析:根据方程的表面形式,很难判断方程的曲线的形状,因此必需先将方程进行等价变形.

解:由原方程122+--=x x y 可得:

1--=x y ,即??

?<-≥+-=),

1(1),

1(1x x x x y ∴方程122+--=x x y 的曲线是两条射线,如图所示:

说明:判断方程表示的曲线,在化简变形方程时要注意等价变形.如方程2

1-=

-y x 等价于2)1(2

-=-y x 且1≥x ,即)1(2)1(2

≥+-=x x y ,原方程的曲线是抛物线一部分.

典型例题八

例8 如图所示,已知A 、B 是两个定点,且2=AB ,动点M 到定点A 的距离是4,线段MB 的垂直平分线l 交线段MA 于点P ,求动点P 的轨迹方程.

分析:本题首先要建立适当直角坐标系,动点P 满足的条件(等量关系)题设中没有明显给出,要从题意中分析找出等量关系.连结PB ,则PB PM =,由此

4==+=+AM PM PA PB PA ,即动点P 到两定点A ,B 距离之和为常数.

解:过A ,B 两点的直线为x 轴,A ,B 两点的中点O 为坐标原点,建立直角坐标系 ∵2=AB ,∴A ,B 两点坐标分别为)0,1(-,)0,1(. 连结PB .∵l 垂直平分线段BM , ∴PB PM =,

4==+=+AM PM PA PB PA .

设点),(y x P ,由两点距离公式得

4)1()1(2222=+-+++y x y x ,

化简方程,移项两边平方得(移项)

x y x -=+-4)1(222.

两边再平方移项得:

13

42

2=+y x ,即为所求点P 轨迹方程. 说明:通过分析题意利用几何图形的有关性质,找出P 点与两定点A ,B 距离之和为常数4,是解本题的关键.方程化简过程也是很重要的,且化简过程也保证了等价性.

典型例题九

例9 过()42,

P 点作两条互相垂直的直线1l ,2l ,若1l 交1l 轴于A ,2l 交y 轴于B ,求线段AB 中点M 的轨迹方程.

解:连接PM ,设()y x M ,,则()02,x A ,()y B 20,.

∵ 21l l ⊥

∴ PAB ?为直角三角形.

由直角三角形性质知

AB PM 21

=

()()222

2442

1

42y x y x +=

-+- 化简得M 的轨迹方程为

052=-+y x

说明:本题也可以用勾股定理求解,还可以用斜率关系求解,因此本题可有三种解法.用斜率求解的过程要麻烦一些.

典型例题十

例10 求与两定点A 、B 满足2

2

2

k PB PA =-(k 是常数)的动点P 的轨迹方程. 分析:按求曲线方程的方法步骤求解.

解法一:如图甲,取两定点A 和B 的连线为x 轴,过AB 的中点且与AB 垂直的直线为y 轴建立坐标系.

设)0,(a A -,)0,(a B ,),(y x P ,则:2

2

2

)(y a x PA ++=,2

2

2

)(y a x PB +-=.

据题意,2

2

2

k PB PA =-,有[

][

]2

2

22

2)()(k

y

a x y a x =+--++得2

4k ax =.

O A

x

P

y

B

图2

M

由于k 是常数,且0≠a ,所以a

k x 42

=为动点的轨迹方程,即动点P 的轨迹是一条平

行于y 轴的直线.

解法二:如图乙,取A 与B 两点连线为x 轴,过A 点且与AB 垂直的直线为y 轴建立坐标系.

设)0,0(A ,)0,(a B ,),(y x P ,则:2

2

2

y x PA +=,2

2

2

)(y a x PB +-=.

据题意,2

2

2

k PB PA =-,有(

)[]

222

2

2)

(k y a x y

x =+--+,

得a k a x 222+=,即动点P 的轨迹方程为a

k a x 22

2+=,它是平行于y 轴的一条直线.

解法三:如图丙建立坐标系,设),(11y x A ,),(22y x B ,),(y x P ,则

21212)()(y y x x PA -+-=,22222

)()(y y x x PB -+-=.

据题意,2

2

2

k PB PA =-,有

[][]

22222212

1

)()()()

(k y y x x y y x x =-+---+-,

整理后得到点P 的轨迹方程为:

0)(2)(222

22221211212=---++-+-k y x y x y y y x x x ,它是一条直线.

说明:由上面介绍的三种解法,可以看到对于同一条直线,在不同的坐标系中,方程不

同,适当建立坐标系如解法一、解法二,得到的方程形式简单、特性明显,一看便知是直线.而解法三得到的方程烦琐、冗长,若以此为基础研究其他问题,会引起不必要的麻烦.因此,在求曲线方程时,根据具体情况适当选取坐标系十分重要.另外,也要注意到本题所求的是

轨迹的方程,在作解答表述时应强调曲线的方程,而不是曲线.

典型例题十一

例11 两直线分别绕着定点A 和B (a AB 2=)在平面内转动,且转动时保持相互垂直,求两直线的交点P 的轨迹方程.

分析:建立适当的直角坐标系,利用直角三角形的性质,列出动点所满足的等式. 解:取直线AB 为x 轴,取线段AB 的中点O 为原点建立直角坐标系,则:

)0,(a A -,)0,(a B ,P 属于集合{

}2

22AB

PB PA P C =+=.

设),(y x P ,则2

2

2

2

2

)2()()(a y a x y a x =+-+++,化简得2

22a y x =+.

这就是两直线的交点P 的轨迹方程. 说明:本题易出现如下解答错误:

取直线AB 为x 轴,取线段AB 的中点O 为原点建立直角坐标系,则:

)0,(a A -,)0,(a B ,交点P 属于集合{}{}1-=?=⊥=PB PA k k P PB PA P C .

设),(y x P ,则a x y k PA +=)(a x -≠,a

x y

k PB -=)(a x ≠, 故

1-=-?+a

x y

a x y ,即222a y x =+(a x ±≠). 要知道,当x PA ⊥轴且另一直线与x 轴重合时,仍有两直线互相垂直,此时两直线交点为A .同样x PB ⊥轴重合时,且另一直线与x 轴仍有两直线互相垂直,此时两直线交点

为B .因而,)0,(a A -与)0,(a B 应为所求方程的解.

纠正的方法是:当PA 或PB 的斜率不存在时,即a x ±=时,)0,(a A -和)0,(a B 也在曲线上,故所求的点P 的轨迹方程是2

2

2

a y x =+.

求出曲线上的点所适合的方程后,只是形式上的曲线方程,还必须对以方程的解为坐标的点作考察,既要剔除不适合的部分,也不要遗漏满足条件的部分.

典型例题十二

例12 如图,ABC Rt ?的两条直角边长分别为a 和b )(b a >,A 与B 两点分别在x 轴的正半轴和y 轴的正半轴上滑动,求直角顶点C 的轨迹方程.

分析:由已知ACB ∠是直角,A 和B 两点在坐标轴上滑动时,AOB ∠也是直角,由平面几何知识,A 、C 、B 、O 四点共圆,则有AOC ABC ∠=∠,这就是点C 满足的几何条件.由此列出顶点C 的坐标适合的方程.

解:设点C 的坐标为),(y x ,连结CO ,由?=∠=∠90AOB ACB ,所以A 、O 、B 、

C 四点共圆.

从而ABC AOC ∠=∠.由a b ABC =∠tan ,x y AOC =∠tan ,有a b x y =,即x a

b

y =. 注意到方程表示的是过原点、斜率为

a

b

的一条直线,而题目中的A 与B 均在两坐标轴的正半轴上滑动,由于a 、b 为常数,故C 点的轨迹不会是一条直线,而是直线的一部分.我们可考察A 与B 两点在坐标轴上的极端位置,确定C 点坐标的范围.

如下图,当点A 与原点重合时,

x b a x AB S ABC ?+=?=

?222

121,所以2

2

b

a a

b x +=.

如下图,当点B 与原点重合时,C 点的横坐标BD x =.

由射影定理,AB BD BC ?=2

,即2

22b a x a +?=,有2

2

2b

a a x +=

.由已知b a >,

所以

2

2

22

2

b

a

a b

a a

b +<

+.

故C 点的轨迹方程为:x a b y =(222

22b

a a x

b a ab +≤

≤+). 说明:求出曲线上的点所适合的方程后,只是形式上的曲线方程,还必须对以方程的解

为坐标的点作考察,剔除不适合的部分.

典型例题十三

例13 过点)2,3(P 作两条互相垂直的直线1l 、2l ,若1l 交x 轴于A ,2l 交y 轴于B ,

M 在线段AB 上,且3:1:=BM AM ,求M 点的轨迹方程.

分析:如图,设),(y x M ,题中几何条件是21l l ⊥,在解析几何中要表示垂直关系的代数关系式就是斜率乘积为-1,所以要求M 的轨迹方程即x 、y 之间的关系,首先要把1l 、

2l 的斜率用x 、y 表示出来,而表示斜率的关键是用x 、y 表示A 、B 两点的坐标,由题

可知M 是A 、B 的定比分点,由定比分点坐标公式便可找出A 、B 、M 坐标之间的关系,进而表示出A 、B 两点的坐标,并求出M 点的轨迹方程.

解:设),(y x M ,)0,(a A ,),0(b B ∵M 在线段AB 上,且3:1:=BM AM . ∴M 分AB 所成的比是

3

1, 由???

??

??????+=+=31131311b y a x ,得????

?==y b x

a 434,

∴)0,3

4(x A 、)4,0(y B

又∵)2,3(P ,∴1l 的斜率x k 3

432

1-=

,2l 的斜率3242--=y k . ∵21l l ⊥,∴

132

43

4

32-=--?-y x . 化简得:01384=-+y x .

说明:本题的上述解题过程并不严密,因为1k 需在49≠x 时才能成立,而当4

9

=x 时,)0,3(A ,1l 的方程为3=x .所以2l 的方程是2=y .故)2,0(B ,可求得)2

1

,49(M ,而

)2

1

,49(也满足方程01384=-+y x .故所求轨迹的方程是01384=-+y x .这类题在解答时应注意考虑完备性和纯粹性.

典型例题十四

例14 如图,已知两点)2,2(-P ,)2,0(Q 以及一直线x y l =:,设长为2的线段AB 在直线l 上移动.求直线PA 和QB 的交点M 的轨迹方程.

分析1:设),(y x M ,题中的几何条件是2=AB ,所以只需用),(y x 表示出A 、B 两点的坐标,便可求出曲线的方程,而要表示A 点坐标可先找出A 、M 两点坐标的关系,显然P 、A 、M 三点共线.这样便可找出A 、M 坐标之间的关系,进而表示出A 的坐标,同理便可表示出B 的坐标,问题便可以迎刃而解.

解法一:设),(y x M 、),(a a A 、),(b b B )(a b >. 由P 、A 、M 三点共线可得:

2

2

22+-=+-x y a a (利用PA 与MP 斜率相等得到)

∴4

22+-+=

y x y

x a .

由Q 、B 、M 三点共线可得x

y b b 2

2-=

-. ∴2

2+-=

y x x

b .

又由2=AB 得2)(22

=-b a . ∴1=-a b ,∴

14

2222=+-+-+-y x y

x y x x .

化简和所求轨迹方程为:08222

2

=+-+-y x y x .

分析2:此题也可以先用P 、A 、M 三点共线表示出A 点坐标,再根据2=AB 表示出B 点坐标,然后利用Q 、B 、M 三点共线也可求得轨迹方程.

解法二:设),(y x M ,),(a a A

由2=AB 且B 在直线x y =上且B 在A 的上方可得:)1,1(++a a B 由解法一知4

22+-+=

y x y

x a ,

∴)4

4

3,443(

+-+++-++y x y x y x y x B

又由Q 、B 、M 三点共线可得:

x y y x y x y x y x 24

432

4

4

3-=+-++-+-++.

化简得所求轨迹方程为:08222

2

=+-+-y x y x . 解法三:由于2=AB 且AB 在直线x y =上 所以可设),(a a A ,)1,1(++a a B .

则直线AP 的方程为:)2)(2()2)(2(+-=-+x a y a

直线BQ 的方程为:x a y a )1()2)(1(-=-+

由上述两式解得)0(1

212≠??????

?-+=--=a a a y a

a x ∴???

????++=+-+=+44)1(44)1(22222

2a a y a a x ∴8)1()1(2

2

-=+-+y x , 即082222

=+-+-y x y x .

而当0=a 时,直线AP 与BQ 平行,没有交点. ∴所求轨迹方程为08222

2

=+-+-y x y x .

说明:本题的前两种方法属于直接法,相对较繁,而后一种方法,事实上它涉及到参数

的思想(a 为参数),利用交点求轨迹方程.一般先把交点表示为关于参数的坐标,然后消去参数,这也反映出运动的观点.

曲线与方程练习题

曲线与方程 命题人:褚晓清 审核人:王焕功 一、选择题 1、方程(x 2+y 2-4) x +y +1=0的曲线形状是( ) 2、已知点P 是直线2x -y +3=0上的一个动点,定点M (-1,2),Q 是线段PM 延长线上的一点,且|PM |=|MQ |,则Q 点的轨迹方程是( ) A .2x +y +1=0 B .2x -y -5=0 C .2x -y -1=0 D .2x -y +5=0 3、已知命题“曲线C 上的点的坐标是方程(,)0f x y =的解”是正确的,则下列命题中正确的是 A .满足方程(,)0f x y =的点都在曲线C 上 B .方程(,)0f x y =是曲线 C 的方程 C .方程(,)0f x y =所表示的曲线不一定是C D .以上说法都正确 4、方程2(326)[log (2)3]0x y x y --+-=表示的图形经过点(0,1)A -,(2,3)B ,(2,0)C ,57(,)34 D -中的 A .0个 B .1个 C .2个 D .3个 52(2)0y +=表示的图形是 A .圆 B .两条直线 C .一个点 D .两个点 6、方程y =- A B C D

7、一条线段的长等于10,两端点,A B 分别在x 轴和y 轴上滑动,M 在线段AB 上 且4AM MB =,则点M 的轨迹方程是 A .221664x y += B . 221664x y += C .22168x y += D .22168x y += 8、“点M 在曲线||y x =上”是“点M 到两坐标轴距离相等”的 A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件 9、已知(2,0)M -,(2,0)N ,则以MN 为斜边的直角三角形的直角顶点P 的轨迹方程是 A . 222x y += B .224x y += C .222(2)x y x +=≠± D .224(2)x y x +=≠± 10、一动点C 在曲线221x y +=上移动时,它和定点B (3,0)连线的中点P 的轨迹方程是 A .22(3)4x y ++= B .22(3)1x y -+= C .22(23)41x y -+= D .223()12 x y ++= 11、已知F 1,F 2分别为椭圆C :x 24+y 23 =1的左、右焦点,点P 为椭圆C 上的动点,则△PF 1F 2的重心G 的轨迹方程为( ) A.x 236+y 227=1(y ≠0) B.4x 29 +y 2=1(y ≠0) C.9x 24+3y 2=1(y ≠0) D .x 2+4y 23=1(y ≠0) 12、设圆C 与圆x 2+(y -3)2 =1外切,与直线y =0相切,则C 的圆心轨迹为( ) A .抛物线 B .双曲线 C .椭圆 D .圆 二、填空题 13、已知△ABC 的顶点B (0,0),C (5,0),AB 边上的中线长|CD |=3,则顶点A 的轨迹方程为__________. 14、曲线y =||0()y ax a +=∈R 的交点有______个. 15、已知两定点A (-2,0),B (1,0),如果动点P 满足|PA |=2|PB |,则点P 的 轨迹所包围的图形的面积为__________.

(完整版)数学归纳法经典例题详解

例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n Λ. 请读者分析下面的证法: 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k Λ. 那么当n =k +1时,有: ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ????????? ??+-++??? ??+--++??? ??-+??? ??-+??? ? ?-=3211211211217151513131121k k k k Λ 322221321121++?=??? ??+-= k k k ()1 121321+++=++=k k k k 这就是说,当n =k +1时,等式亦成立. 由①、②可知,对一切自然数n 等式成立. 评述:上面用数学归纳法进行证明的方法是错误的,这是一种假证,假就假在没有利用归纳假设n =k 这一步,当n =k +1时,而是用拆项法推出来的,这样归纳假设起到作用,不符合数学归纳法的要求. 正确方法是:当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k

()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 例2.是否存在一个等差数列{a n },使得对任何自然数n ,等式: a 1+2a 2+3a 3+…+na n =n (n +1)(n +2) 都成立,并证明你的结论. 分析:采用由特殊到一般的思维方法,先令n =1,2,3时找出来{a n },然后再证明一般性. 解:将n =1,2,3分别代入等式得方程组. ?????=++=+=603224 26321 211a a a a a a , 解得a 1=6,a 2=9,a 3=12,则d =3. 故存在一个等差数列a n =3n +3,当n =1,2,3时,已知等式成立. 下面用数学归纳法证明存在一个等差数列a n =3n +3,对大于3的自然数,等式 a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 因为起始值已证,可证第二步骤. 假设n =k 时,等式成立,即 a 1+2a 2+3a 3+…+ka k =k (k +1)(k +2) 那么当n =k +1时, a 1+2a 2+3a 3+…+ka k +(k +1)a k +1 = k (k +1)(k +2)+ (k +1)[3(k +1)+3] =(k +1)(k 2+2k +3k +6) =(k +1)(k +2)(k +3) =(k +1)[(k +1)+1][(k +1)+2] 这就是说,当n =k +1时,也存在一个等差数列a n =3n +3使a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)成立. 综合上述,可知存在一个等差数列a n =3n +3,对任何自然数n ,等式a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 例3.证明不等式n n 21 31 21 1<++++Λ (n ∈N). 证明:①当n =1时,左边=1,右边=2.

高考数学圆锥曲线与方程章总结题型详解

圆锥曲线与方程 题型一 定义运用 1..(2017·湖南高考模拟(理))已知抛物线2 2x y = 上一点P 到焦点F 的距离为1,,M N 是直线2y =上 的两点,且2MN =,MNP ?的周长是6,则sin MPN ∠=( ) A . 4 5 B . 25 C . 23 D . 13 【答案】A 【解析】由题意,22p = ,则 122p = ,故抛物线22x y = 的焦点坐标是10,2?? ??? ,由抛物线的定义得,点P 到准线1 2y =- 的距离等于PF ,即为1 ,故点P 到直线2y =的距离为132122d ??=---= ??? . 设 点P 在直线MN 上的射影为P' ,则3 '2 PP = . 当点,M N 在P'的同一侧(不与点P'重合)时,35 2=622 PM PN MN ++> ++ ,不符合题意;当点,M N 在P'的异侧(不与点P'重合)时,不妨设()'02P M x x =<<,则'2P N x =- ,故由 2=6PM PN MN ++= ,解得0x = 或2 ,不符合题意,舍去, 综上,M N 在两点中一定有一点与点P'重合,所以 24552 sin MPN <= = ,故选A. 2.(2017·河南高考模拟(文))已知直线()()20y k x k =+>与抛物线2 :8C y x =相交于A ,B 两点,F 为C 的焦点,若2FA FB =,则点A 到抛物线的准线的距离为( ) A .6 B .5 C .4 D .3 【答案】A 【解析】由题意得,设抛物线2 8y x =的准线方程为:2l x =-,直线()2y k x =+恒过定点()2,0-, 如图过,A B 分别作AM l ⊥于M ,BN l ⊥于N ,连接OB , 由2FA FB =,则2AM BN =,点B 为AP 的中点, 因为点O 是PF 的中点,则1 2 OB AF = ,

高考数学大题经典习题

1. 对于函数()3 2 1(2)(2)3 f x a x bx a x =-+-+-。 (1)若()f x 在13x x ==和处取得极值,且()f x 的图像上每一点的切线的斜率均不超过 22sin cos t t t -+t 的取值范围; (2)若()f x 为实数集R 上的单调函数,设点P 的坐标为(),a b ,试求出点P 的轨迹所形成的图形的面积S 。 1. (1)由()3 2 1 (2)(2)3 f x a x bx a x =-+-+-,则()2'(2)2(2)f x a x bx a =-+-+- 因为()13f x x x ==在和处取得极值,所以()13'0x x f x ===和是的两个根 22 1(2)121(2)02 (2)323(2)0a a b a b a b a ?=--+?-?+-=????=--+?-?+-=?? ()2 '43f x x x ∴=-+- 因为()f x 的图像上每一点的切线的斜率不超过2 2sin cos t t t -+ 所以()2 '2sin cos f x t t t x R ≤-∈恒成立, 而()()2 '21f x x =--+,其最大值为1. 故2 2sin cos 1t t t -≥ 72sin 21,3412t k t k k Z πππππ? ??-≥?+≤≤+∈ ??? (2)当2a =-时,由()f x 在R 上单调,知0b = 当2a ≠-时,由()f x 在R 上单调()'0f x ?≥恒成立,或者()'0f x ≤恒成立. ∵()2 '(2)2(2)f x a x bx a =-+-+-, 2244(4)0b a ∴?=+-≤可得224a b +≤ 从而知满足条件的点(),P a b 在直角坐标平面aob 上形成的轨迹所围成的图形的面积为 4S π= 2. 函数cx bx ax x f ++=2 3 )((0>a )的图象关于原点对称,))(,(ααf A 、)) (,(ββf B 分别为函数)(x f 的极大值点和极小值点,且|AB|=2,αββα-=-)()(f f .

圆锥曲线与方程测试题及答案

2013-2014学年度第二学期3月月考 高二数学试卷 满分:150分,时间:120分钟 一、选择题:(本大题共12小题,每小题5分,共60分) 1、抛物线y2=-2px (p >0)的焦点为F ,准线为l ,则p表示 ( ) A 、F 到准线l 的距离 B、F到y 轴的距离 C 、F点的横坐标 D 、F到准线l 的距离的一半 2.抛物线 2 2x y =的焦点坐标是 ( ) A .)0,1( B.)0,4 1(?C.)8 1,0( D .)4 1,0( 3.离心率为 3 2,长轴长为6的椭圆的标准方程是 ( )A.22195x y + = B .22195x y +=或22 159 x y += C.2213620x y += D.2213620x y +=或22 12036 x y += 4、焦点在x 轴上,且6,8==b a 的双曲线的渐近线方程是 ( ) A.043=+y x B .043=-y x C .043=±y x D . 034=±y x 5、以椭圆15 82 2=+y x 的焦点为顶点,椭圆的顶点为焦点的双曲线的方程为 ( ) A.15322=-y x B.13522=-y x C.181322=-y x D .15 132 2=-y x 6.顶点在原点,坐标轴为对称轴的抛物线过点(-2,3),则它的方程是 ( ) A .y x 292-=或x y 342= B .x y 2 9 2-=或y x 3 42= C .y x 3 4 2 = D.x y 2 92 - = 7.抛物线2 2y px =的焦点与椭圆22 162 x y + =的右焦点重合,则p = ( ) A.4 B.4-?C .2 D. 2-

[高考数学]高考数学函数典型例题

?0x时,总有 00 ?01}的四组函数如下: ①f(x)=x2,g(x)=x;②f(x)=10-x+2,g(x)=2x-3 x;

③ f(x)= , g(x)= ; ④ f(x)= , g(x)=2(x-1-e -x ) . 年 高 考 江 苏 卷 试 题 11 ) 已 知 函 数 f ( x ) = ? x + 1, x ≥ 0 , 则 满 足 不 等 式 ) 剪成两块,其中一块是梯形,记 S = ,则 S 的最小值是____▲____。 2 x 2 +1 xlnx+1 2x 2 x lnx x+1 其中, 曲线 y=f(x) 和 y=g(x) 存在“分渐近线”的是( ) A. ①④ B. ②③ C.②④ D.③④ 33. (20XX 年 高 考 天 津 卷 理 科 16) 设 函 数 f ( x ) = x 2 - 1 , 对 任 意 3 x x ∈[ , +∞) , f ( ) - 4m 2 f ( x ) ≤ f ( x - 1) + 4 f (m ) 2 m 恒成立,则实数 m 的取值范围是 。 34 .( 20XX ? 2 ?1, x < 0 f (1- x 2 )> f ( 2x 的 x 的范围是__▲___。 35.(20XX 年高考江苏卷试题 14)将边长为 1m 正三角形薄片,沿一条平行于底边的直线 (梯形的周长) 梯形的面积 36 已知函数 f ( x ) = ( x + 1)ln x - x + 1 . (Ⅰ)若 xf '(x) ≤ x 2 + ax + 1 ,求 a 的取值范围; (Ⅱ)证明: ( x - 1) f ( x ) ≥ 0 .

曲线和方程练习题

曲线和方程练习题 一、选择题 1、(2014·安徽高考文科·T3)抛物线2 14 y x = 的准线方程是( ) A. 1-=y B. 2-=y C. 1-=x D. 2-=x 【解题提示】 将抛物线化为标准形式即可得出。 【解析】选A 。22 144 y x x y = ?,所以抛物线的准线方程是y=-1. 2. (2014·新课标全国卷Ⅱ高考文科数学·T10) (2014·新课标全国卷Ⅱ高考文科数学·T10)设F 为抛物线C:y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A,B 两点,则 AB = ( ) A. B.6 C.12 D. 【解题提示】画出图形,利用抛物线的定义求解. 【解析】选C.设AF=2m,BF=2n,F 3,04?? ??? .则由抛物线的定义和直角三角形知识可得, 2m=2· 34·34n,解得m=32 ),n=3 2 所以m+n=6. AB=AF+BF=2m+2n=12.故选C. 3. (2014·新课标全国卷Ⅱ高考理科数学·T10)设F 为抛物线C:y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A,B 两点,O 为坐标原点,则△OAB 的面积为( ) A. 4 B. 8 C. 6332 D. 9 4 【解题提示】将三角形OAB 的面积通过焦点“一分为二”,设出AF,BF,利用抛物线的定义求得面积. 【解析】选D.设点A,B 分别在第一和第四象限,AF=2m,BF=2n,则由抛物线的定义和直角三角形知识可 得,2m=2· 34+m,2n=2·34-n,解得m=32 (2+),n=3 2 (2-),所以m+n=6.所以S △OAB =1324?·(m+n)=94 .故选D. 4. (2014·四川高考理科·T10)已知F 为抛物线x y =2 的焦点,点A ,B 在该抛物线上且位于x 轴的两 侧,2OA OB ?=u u u r u u u r (其中O 为坐标原点),则ABO ?与AFO ?面积之和的最小值是( ) A. 2 B.3 C. 8 【解题提示】

(完整版)数学归纳法经典例题及答案(2)

数学归纳法(2016.4.21) 一、用数学归纳法证明与正整数有关命题的步骤是: (1)证明当n 取第一个值0n (如01n =或2等)时结论正确; (2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),…… 注意:数学归纳法使用要点: 两步骤,一结论。 二、题型归纳: 题型1.证明代数恒等式 例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n Λ 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k Λ. 当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k ()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 由①、②可知,对一切自然数n 等式成立.

题型2.证明不等式 例2.证明不等式n n 21 31 21 1<++++Λ (n ∈N). 证明:①当n =1时,左边=1,右边=2. 左边<右边,不等式成立. ②假设n =k 时,不等式成立,即k k 2131211<++++ Λ. 那么当n =k +1时, 11 1 31 21 1++++++k k Λ 1 1 1211 2+++=++

数学归纳法典型例习题

欢迎阅读数学归纳法典型例题 一. 教学内容: 高三复习专题:数学归纳法 二. 教学目的 掌握数学归纳法的原理及应用 三. 教学重点、难点 四. ??? ??? (1 ??? (2()时命题成立,证明当时命题也成立。??? 开始的所有正整数 ??? 即只 称为数学归纳法,这两步各司其职,缺一不可,特别指出的是,第二步不是判断命题的真伪,而是证明命题是否具有传递性,如果没有第一步,而仅有第二步成立,命题也可能是假命题。 【要点解析】 ? 1、用数学归纳法证明有关问题的关键在第二步,即n=k+1时为什么成立,n=k+1时成立是利用假设n=k时成立,根据有关的定理、定义、公式、性质等数学结论推证出n=k+1时成立,而不是直接代入,否则n=k+1时也成假设了,命题并没有得到证明。 ??? 用数学归纳法可证明有关的正整数问题,但并不是所有的正整数问题都是用数学归纳法证明的,学习时要具体问题具体分析。

? 2、运用数学归纳法时易犯的错误 ??? (1)对项数估算的错误,特别是寻找n=k与n=k+1的关系时,项数发生什么变化被弄错。 ??? (2)没有利用归纳假设:归纳假设是必须要用的,假设是起桥梁作用的,桥梁断了就通不过去了。 ??? (3)关键步骤含糊不清,“假设n=k时结论成立,利用此假设证明n=k+1时结论也成立”,是数学归纳法的关键一步,也是证明问题最重要的环节,对推导的过程要把步骤写完整,注意证明过程的严谨性、规范性。 ? 例1. 时,。 ,右边,左边 时等式成立,即有,则当时, 由①,②可知,对一切等式都成立。 的取值是否有关,由到时 (2 到 本题证明时若利用数列求和中的拆项相消法,即 ,则这不是归纳假设,这是套用数学归纳法的一种伪证。 (3)在步骤②的证明过程中,突出了两个凑字,一“凑”假设,二“凑”结论,关键是明确 时证明的目标,充分考虑由到时,命题形式之间的区别和联系。

高中数学函数与方程知识点总结例题及解析高考真题及答案

函数与方程 【知识梳理】 1、函数零点的定义 (1)对于函数)(x f y =,我们把方程0)(=x f 的实数根叫做函数)(x f y =的零点。 (2)方程0)(=x f 有实根?函数()y f x =的图像与x 轴有交点?函数()y f x =有零点。因此判断一个函数是否有零点,有几个零点,就是判断方程0)(=x f 是否有实数根,有几个实数根。函数零点的求法:解方程0)(=x f ,所得实数根就是()f x 的零点 (3)变号零点与不变号零点 ①若函数()f x 在零点0x 左右两侧的函数值异号,则称该零点为函数()f x 的变号零点。 ②若函数()f x 在零点0x 左右两侧的函数值同号,则称该零点为函数()f x 的不变号零点。 ③若函数()f x 在区间[],a b 上的图像是一条连续的曲线,则0)()(?)(x f y =有2个零点?0)(=x f 有两个不等实根; 0?=?)(x f y =有1个零点?0)(=x f 有两个相等实根; 0?

圆锥曲线与方程测试和答案

圆锥曲线与方程 测试(1) 第Ⅰ卷(选择题 共60分) 一.选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是最符合题目要求的.) 1.椭圆12 2 =+my x 的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值为( ) A. 41 B.2 1 C.2 D.4 2.双曲线 22 1412 x y -=的焦点到渐近线的距离为( ) A 3. 已知双曲线12222=-b y a x 的一条渐近线方程为x y 34 =,则双曲线的离心率为( ) A. 35 B. 34 C. 45 D. 2 3 4.已知椭圆 116 252 2=+y x 上的一点P 到椭圆一个焦点的距离为3,则P 到另一焦点距离为( ) A.9 B.7 C.5 D.3 5.动点P 到点)0,1(M 及点)0,3(N 的距离之差为2,则点P 的轨迹是( ) A.双曲线 B.双曲线的一支 C.两条射线 D.一条射线 6.中心在原点,焦点在x 轴上,焦距等于6,离心率等于 5 3 ,则椭圆的方程是( ) A. 13610022=+y x B.16410022=+y x C.1162522=+y x D.19252 2=+y x 7.焦点为(06), 且与双曲线2 212 x y -=有相同的渐近线的双曲线方程是( ) A. 22 11224 y x -= B. 2212412y x -= C.22 12412 x y -= D. 22 11224 x y -=

8.若椭圆的短轴为AB ,它的一个焦点为1F ,则满足1ABF △为等边三角形的椭圆的离心率是( ) A. 14 B. 2 C. 2 D. 12 9.以双曲线2 2 312x y -+=的焦点为顶点,顶点为焦点的椭圆的方程是( ) A. 22 11612 x y += B. 221164x y += C.22 11216x y += D. 22 1416 x y += 10.双曲线的虚轴长为4,离心率2 6 = e ,1F .2F 分别是它的左.右焦点,若过1F 的直线与双曲线的左支交于A .B 两点,且||AB 是||2AF 与||2BF 的等差中项,则||AB 等于( ) A.28 B.24 C.22 D.8. 11.已知双曲线中心在原点且一个焦点为)0,7(F ,直线1-=x y 与其相交于N M ,两点, MN 中点横坐标为3 2 - ,则此双曲线的方程是( ) A 14322=-y x B 13422=-y x C 12522=-y x D 15 22 2=-y x 12.若直线4=+ny mx 和⊙O ∶42 2 =+y x 没有交点,则过),(n m 的直线与椭圆 14 922=+y x 的交点个数( ) A.至多一个 B.2个 C.1个 D.0个

实用文库汇编之数学归纳法经典例题及答案

*实用文库汇编之数学归纳法(2016.4.21)* 一、用数学归纳法证明与正整数有关命题的步骤是: (1)证明当n 取第一个值0n (如01n =或2等)时结论正确; (2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),…… 注意:数学归纳法使用要点: 两步骤,一结论。 二、题型归纳: 题型1.证明代数恒等式 例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k . 当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k ()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 由①、②可知,对一切自然数n 等式成立.

题型2.证明不等式 例2.证明不等式n n 21 31 21 1<++++ (n ∈N). 证明:①当n =1时,左边=1,右边=2. 左边<右边,不等式成立. ②假设n =k 时,不等式成立,即k k 2131211<++++ . 那么当n =k +1时, 11 1 31 21 1++++++k k 1 1 1211 2+++=++

高考数学专题复习曲线与方程

第8讲 曲线与方程 一、选择题 1.若点P 到直线x =-1的距离比它到点(2,0)的距离小1,则点P 的轨迹为( ). A .圆 B .椭圆 C .双曲线 D .抛物线 解析 依题意,点P 到直线x =-2的距离等于它到点(2,0)的距离,故点P 的轨迹是抛物线. 答案 D 2. 动点P (x ,y )满足5x -1 2 y -2 2 =|3x +4y -11|,则点P 的轨迹 是 ( ). A .椭圆 B .双曲线 C .抛物线 D .直线 解析 设定点F (1,2),定直线l :3x +4y -11=0,则|PF |= x -1 2 y -2 2 ,点P 到直线l 的距离d =|3x +4y -11| 5 . 由已知得|PF | d =1,但注意到点F (1,2)恰在直线l 上,所以点P 的轨迹是直 线.选D. 答案 D 3.设圆(x +1)2+y 2=25的圆心为C ,A (1,0)是圆内一定点,Q 为圆周上任一点.线段AQ 的垂直平分线与CQ 的连线交于点M ,则M 的轨迹方程为 ( ). A.4x 221-4y 2 25=1 B.4x 221+4y 2 25=1 C.4x 225-4y 2 21 =1 D.4x 225+4y 2 21 =1 解析 M 为AQ 垂直平分线上一点,则|AM |=|MQ |,∴|MC |+|MA |=|MC |+|MQ |=|CQ |=5,故M 的轨迹为椭圆,∴

a =52,c =1,则 b 2=a 2- c 2=214 , ∴椭圆的标准方程为4x 225+4y 2 21=1. 答案 D 4.在△ABC 中,A 为动点,B ,C 为定点,B ? ? ???- a 2,0,C ? ????a 2,0且满足条件 sin C -sin B =1 2sin A ,则动点A 的轨迹方程是( ) A.16x 2 a 2-16y 2 15a 2=1(y ≠0) B.16y 2a 2-16x 2 3a 2=1(x ≠0) C.16x 2a 2-16y 2 15a 2=1(y ≠0)的左支 D.16x 2a 2-16y 2 3a 2=1(y ≠0)的右支 解析:sin C -sin B =12sin A ,由正弦定理得|AB |-|AC |=12|BC |=12a (定值). ∴A 点的轨迹是以B ,C 为焦点的双曲线的右支,其中实半轴长为a 4,焦距为 |BC |=a . ∴虚半轴长为? ????a 22-? ?? ??a 42 =34a ,由双曲线标准方程得动点A 的轨迹方程 为16x 2 a 2-16y 2 3a 2=1(y ≠0)的右支. 答案:D 5.正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,AE =BF =3 7 .动点 P 从E 出发沿直线向F 运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当点P 第一次碰到E 时,P 与正方形的边碰撞的次数为( ). A .16 B .14 C .12 D .10 解析 当E 、F 分别为AB 、BC 中点时,显然碰撞的结果为4,当E 、F 分别为

高考数学大题经典习题

1. 对于函数()32 1(2)(2)3 f x a x bx a x =- +-+-。 (1)若()f x 在13x x ==和处取得极值,且()f x 的图像上每一点的切线的斜率均不超过 2 2sin cos t t t -+ t 的取值范围; (2)若()f x 为实数集R 上的单调函数,设点P 的坐标为(),a b ,试求出点P 的轨迹所形成的图形的面积S 。 1. (1)由()32 1(2)(2)3 f x a x bx a x =- +-+-,则 ()2 '(2)2(2)f x a x bx a =-+-+- 因为()13f x x x ==在和处取得极值,所以()13'0x x f x ===和是的两个根 22 1(2)121(2)02(2)323(2)0 a a b a b a b a ?=--+?-?+-=????=--+?-?+-=?? ()2 '43f x x x ∴=-+- 因为()f x 的图像上每一点的切线的斜率不超过2 2sin cos t t t -+ 所以()2 '2sin cos f x t t t x R ≤-+ ∈恒成立, 而()()2 '21f x x =--+,其最大值为1. 故2 2sin cos 1t t t -+ ≥ 72sin 21,3412t k t k k Z πππππ? ??-≥?+≤≤+∈ ??? (2)当2a =-时,由()f x 在R 上单调,知0b = 当2a ≠-时,由()f x 在R 上单调()'0f x ?≥恒成立,或者()'0f x ≤恒成立. ∵()2 '(2)2(2)f x a x bx a =-+-+-, 2244(4)0b a ∴?=+-≤可得22 4a b +≤ 从而知满足条件的点(),P a b 在直角坐标平面aob 上形成的轨迹所围成的图形的面积为 4S π= 2. 函数cx bx ax x f ++=2 3)((0>a )的图象关于原点对称,))(,(ααf A 、)) (,(ββf B

圆锥曲线与方程单元测试卷答案

圆锥曲线与方程单元测试 卷答案 Newly compiled on November 23, 2020

《圆锥曲线与方程》单元测试卷 一、选择题:(本大题共10小题,每小题4分,共40分.) 1.方程132-=y x 所表示的曲线是 ( ) (A )双曲线 (B )椭圆 (C )双曲线的一部分 (D )椭圆的一部分 2.平面内两定点A 、B 及动点P ,设命题甲是:“|PA|+|PB|是定值”,命题乙是:“点P 的 轨迹是以A .B 为焦点的椭圆”,那么 ( ) (A )甲是乙成立的充分不必要条件 (B )甲是乙成立的必要不充分条件 (C )甲是乙成立的充要条件 (D )甲是乙成立的非充分非必要条件 3.椭圆14222=+a y x 与双曲线12 2 2=-y a x 有相同的焦点,则a 的值是 ( ) (A )12 (B )1或–2 (C )1或12 (D )1 4.若抛物线的准线方程为x =–7, 则抛物线的标准方程为 ( ) (A )x 2=–28y (B )y 2=28x (C )y 2=–28x (D )x 2=28y 5.已知椭圆19 252 2=+y x 上的一点M 到焦点F 1的距离为2,N 是MF 1的中点,O 为原点,则|ON|等于 (A )2 (B ) 4 (C ) 8 (D ) 23 ( ) 6.顶点在原点,以x 轴为对称轴的抛物线上一点的横坐标为6,此点到焦点的距离等于10,则抛物线焦点到准线的距离等于 ( ) (A ) 4 (B )8 (C )16 (D )32 7.21F F 为双曲线2214 x y -=-的两个焦点,点P 在双曲线上,且1290F PF ∠=,则21PF F ?的面积是 (A ) 2 (B )4 (C )8 (D )16 ( )

数学归纳法经典例题及答案精品

【关键字】认识、问题、要点 数学归纳法( 一、用数学归纳法证明与正整数有关命题的步骤是: (1)证明当n 取第一个值0n (如01n =或2等)时结论正确; (2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),…… 注意:数学归纳法使用要点: 两步骤,一结论。 二、题型归纳: 题型1.证明代数恒等式 例1.用数学归纳法证明: 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k . 当n =k +1时. 这就说明,当n =k +1时,等式亦成立, 由①、②可知,对一切自然数n 等式成立. 题型2.证明不等式 例2.证明不等式n n 21 31 21 1<++++ (n ∈N). 证明:①当n =1时,左边=1,右边=2. 左边<右边,不等式成立. ②假设n =k 时,不等式成立,即k k 2131211<++++ . 那么当n =k +1时, 这就是说,当n =k +1时,不等式成立. 由①、②可知,原不等式对任意自然数n 都成立. 说明:这里要注意,当n =k +1时,要证的目标是 1211 1 31 21 1+<++++++k k k ,当代入归纳假设后,就是要证明:

1211 2+<++k k k . 认识了这个目标,于是就可朝这个目标证下去,并进行有关的变形,达到这个目标. 题型3.证明数列问题 例3 (x +1)n =a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+…+a n (x -1)n (n ≥2,n ∈N *). (1)当n =5时,求a 0+a 1+a 2+a 3+a 4+a 5的值. (2)设b n = a 22n -3,T n = b 2+b 3+b 4+…+b n .试用数学归纳法证明:当n ≥2时,T n =n (n +1)(n -1)3 . 解: (1)当n =5时, 原等式变为(x +1)5=a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+a 4(x -1)4+a 5(x -1)5 令x =2得a 0+a 1+a 2+a 3+a 4+a 5=35=243. (2)因为(x +1)n =[2+(x -1)]n ,所以a 2=C n 2·2n -2 b n =a 22 n -3=2C n 2=n (n -1)(n ≥2) ①当n =2时.左边=T 2=b 2=2, 右边=2(2+1)(2-1)3 =2,左边=右边,等式成立. ②假设当n =k (k ≥2,k ∈N *)时,等式成立, 即T k =k (k +1)(k -1)3 成立 那么,当n =k +1时, 左边=T k +b k +1=k (k +1)(k -1)3+(k +1)[(k +1)-1]=k (k +1)(k -1)3 +k (k +1) =k (k +1)?? ??k -13+1=k (k +1)(k +2)3 =(k +1)[(k +1)+1][(k +1)-1]3 =右边. 故当n =k +1时,等式成立. 综上①②,当n ≥2时,T n =n (n +1)(n -1)3 .

高考数学 第八章第八节曲线与方程课后练习 理 人教A版

一、选择题 1.(2012·济南模拟)方程(x -y )2 +(xy -1)2 =0的曲线是( ) A .一条直线和一条双曲线 B .两条双曲线 C .两个点 D .以上答案都不对 解析:(x -y )2 +(xy -1)2 =0???? ?? x -y =0, xy -1=0. ∴??? ? ? x =1,y =1, 或??? ? ? x =-1,y =-1. 答案:C 2.长为3的线段AB 的端点A 、B 分别在x 轴、y 轴上移动,AC =2CB ,则点C 的轨迹是( ) A .线段 B .圆 C .椭圆 D .双曲线 解析:设C (x ,y ),A (a,0),B (0,b ),则a 2 +b 2 =9,① 又AC =2CB ,所以(x -a ,y )=2(-x ,b -y ), 即???? ? a =3x , b =3 2 y ,② 代入①式整理可得x 2 +y 2 4=1. 答案:C 3.如图所示,一圆形纸片的圆心为O ,F 是圆内一定点,M 是圆周上一动点,把纸片折叠使M 与F 重合,然后抹平纸片,折痕为CD ,设 CD 与OM 交于点P ,则点P 的轨迹是( ) A .椭圆 B .双曲线 C .抛物线 D .圆 解析:由条件知|PM |=|PF |, ∴|PO |+|PF |=|PO |+|PM |=|OM |>|OF | ∴P 点的轨迹是以O 、F 为焦点的椭圆. 答案:A 4.已知A (0,7),B (0,-7),C (12,2),以C 为一个焦点作过A ,B 的椭圆,椭圆的另一个焦点F 的轨迹方程是( ) A .y 2 -x 2 48 =1(y ≤-1)

高考数学典型例题详解

高考数学典型例题详解 奇偶性与单调性 函数的单调性、奇偶性是高考的重点和热点内容之一,特别是两性质的应用更加突出.本节主要帮助考生学会怎样利用两性质解题,掌握基本方法,形成应用意识. ●难点磁场 (★★★★★)已知偶函数f (x )在(0,+∞)上为增函数,且f (2)=0,解不等式f [log 2(x 2+5x +4)]≥0. ●案例探究 [例1]已知奇函数f (x )是定义在(-3,3)上的减函数,且满足不等式f (x -3)+f (x 2-3)<0,设不等式解集为A ,B =A ∪{x |1≤x ≤5},求函数g (x )=-3x 2+3x -4(x ∈B )的最大值. 命题意图:本题属于函数性质的综合性题目,考生必须具有综合运用知识分析和解决问题的能力,属★★★★级题目. 知识依托:主要依据函数的性质去解决问题. 错解分析:题目不等式中的“f ”号如何去掉是难点,在求二次函数在给定区间上的最值问题时,学生容易漏掉定义域. 技巧与方法:借助奇偶性脱去“f ”号,转化为x cos 不等式,利用数形结合进行集合运算和求最值. 解:由? ??<<-<

∴x -3>3-x 2,即x 2+x -6>0,解得x >2或x <-3,综上得2f (0)对所有θ∈[0, 2 π ]都成立? 若存在,求出符合条件的所有实数m 的范围,若不存在,说明理由. 命题意图:本题属于探索性问题,主要考查考生的综合分析能力和逻辑思维能力以及运算能力,属★★★★★题目. 知识依托:主要依据函数的单调性和奇偶性,利用等价转化的思想方法把问题转化为二次函数在给定区间上的最值问题. 错解分析:考生不易运用函数的综合性质去解决问题,特别不易考虑运用等价转化的思想方法. 技巧与方法:主要运用等价转化的思想和分类讨论的思想来解决问题. 解:∵f (x )是R 上的奇函数,且在[0,+∞)上是增函数,∴f (x )是R 上的增函数.于是不等式可等价地转化为f (cos2θ-3)>f (2m cos θ-4m ), 即cos2θ-3>2m cos θ-4m ,即cos 2θ-m cos θ+2m -2>0. 设t =cos θ,则问题等价地转化为函数g (t ) =t 2-mt +2m -2=(t - 2 m )2 -4 2 m +2m -2在[0,1]上的值恒为正,又转化为函数g (t )在[0,1]上的最小值为正. ∴当 2 m <0,即m <0时,g (0)=2m -2>0?m >1与m <0不符; 当0≤2 m ≤1时,即0≤m ≤2时,g (m )=-42m +2m -2>0 ?4-221,即m >2时,g (1)=m -1>0?m >1.∴m >2 综上,符合题目要求的m 的值存在,其取值范围是m >4-22.

相关文档
最新文档