材料研究方法复习资料.

材料研究方法复习资料.
材料研究方法复习资料.

1. X 射线的本质是什么?是谁首先发现了X 射线,谁揭示了X 射线的本质?

本质是一种波长很短的电磁波,其波长介于0.01-1000A 。 1895年由德国物理学家伦琴首先发现了X 射线,1912年由德国物理学家laue 揭示了X 射线本质。

2. 试计算波长0.071nm (Mo-K α)和0.154A (Cu-K α)的X 射线束,其频率和每个量子的能

量?

E=h ν=hc/λ

3. 试述连续X 射线谱与特征X 射线谱产生的机理

连续X 射线谱: 从阴极发出的电子经高压加速到达阳极靶材时,由于单位时间内到达的电子数目极大,而且达到靶材的时间和条件各不相同,并且大多数电子要经过多次碰撞,能量逐步损失掉,因而出现连续变化的波长谱。

特征X 射线谱: 从阴极发出的电子在高压加速后,如果电子的能量足够大而将阳极靶原子中内层电子击出留下空位,原子中其他层电子就会跃迁以填补该空位,同时将多余的能量以X 射线光子的形式释放出来,结果得到具有固定能量,频率或固定波长的特征X 射线。

4. 连续X 射线谱强度随管电压、管电流和阳极材料原子序数的变化规律?

发生管中的总光子数(即连续X 射线的强度)与:

1 阳极原子数Z 成正比;

2 与灯丝电流i 成正比;

3 与电压V 二次方成正比: I 正比于i Z V 2

可见,连续X 射线的总能量随管电流、阳极靶原子序数和管电压的增加而增大

5. K α线和K β线相比,谁的波长短?谁的强度高?

K β线比K α线的波长短,强度弱

6.实验中选择X 射线管以及滤波片的原则是什么?已知一个以Fe 为主要成分的样品,试选择合适的X 射线管和合适的滤波片?

实验中选择X 射线管要避免样品强烈吸收入射X 射线产生荧光幅射,对分析结果产生干扰。必须根据所测样品的化学成分选用不同靶材的X 射线管。

Z 靶≤Z 样品+1

应当避免使用比样品中的主元素的原子序数大2-6(尤其是2)的材料作靶材。

滤波片材料选择规律是:

Z 靶< 40时:

Z 滤=Z 靶-1

Z 靶>40时:

Z 滤=Z 靶-2

例如: 铁为主的样品,选用Co 或Fe 靶,不选用Ni 或Cu 靶;对应滤波片选择Mn

7. X 射线与物质的如何相互作用的,产生那些物理现象?

X 射线与物质的作用是通过X 射线光子与物质的电子相互碰撞而实现的。

与物质作用后会产生X 射线的散射(弹性散射和非弹性散射),X 射线的吸收,光电效应与荧光辐射等现象

8. X 射线强度衰减规律是什么?质量吸收系数的计算?

X 射线通过整个物质厚度的衰减规律:

I/I0 = exp(-μ x) 式中I/I0称为X 射线穿透系数, I/I0 <1。I/I0愈小,表示x 射线被衰减的程度愈大。μ为线性吸收系数

吸收常用质量吸收系数 μm 表示,μm =μ/ρ 如果材料中含多种元素,则μm =Σμmi w i 其中w i 为质量分数

9.下列哪些晶面属于[111]晶带? (111)、(321)、(231)、(211)、(101)、(101)、(133),(-1-10),(1-12),(1-32),(0-11),(212),为什么?

晶面(crystal plane )——晶体结构一系列原子所构成的平面。

在晶体中如果许多晶面同时平行于一个轴向,前者总称为一个晶带,后者为晶带轴。

hu+kv+lw=0

与[111]晶带垂直,彼此相互平行

10.下面是某立方晶系物质的几个晶面,试将它们的面间距从大到小按次序重新排列:(12-3),(100),(200),(-311),(121),(111),(-210),(220),(130),(030),(2-21),(110)。

参考ch7-2-XRD P37

11.某正交(斜方)晶体的a=7.417?, b=4.945?, c=2.547?, 计算d110和d200。

参考ch7-2-XRD P37

12. X 射线衍射与可见光反射的差异

可见光的反射只是物体表面上的光学现象,而衍射是一定厚度内许多相同间距的晶面共同作用的

结果; 可见光在任意入射角方向都能产生反射,而X 射线只能在有限的布拉格方向发生反射。因此X 射线的反射是选择性的反射。

13. 请问是hkl 值大的还是小的面网容易出现衍射?要使某个晶体的衍射数量增加,你选长波的X 射线还是短波的?

2dsin θ=n λ, hkl 小,则d hkl 大,衍射角θ也小,可观测衍射线多,因此~~ 由于sin θ<1 所以要产生衍射,必须有d >λ/2 用短波的X 射线

14. 布拉格方程 2dsin θ=λ中的d 、θ、λ分别表示什么?布拉格方程式有何用途?

d 为某一面网间距(可以把某一面网的n 级衍射看成另一假想面(其面网间距d hkl =d/n )的一级衍射),θ为Bragg 角,又称衍射角;λ为入射X 射线波长

布拉格方程的应用:

1)已知波长λ的X 射线,测定θ角,计算晶体的晶面间距d ,结构分析;

2)已知晶体的晶面间距,测定θ角,计算X 射线的波长,X 射线光谱学。

15. 衍射线在空间的方位取决于什么?而衍射线的强度又取决于什么? 前者取决于衍射角,后者由多种因素决定。相对强度 I 相对=F 2P (1+cos 22θ/ sin2θcos θ) e -2M F-结构因子; P-多重性因子; e -2M -温度因子; 分式为角因子

16. 原子散射因数的物理意义是什么?某元素的原子散射因数与其原子序数有何关系?

原子散射因子f=一个原子散射波的振幅 /一个自由电子散射波振幅,f 相当于散射X 射线的有效电子数。表明一束非偏振的X-ray 经过电子散射后,散射波的强度在空间上的分布不相同,即被偏振化了

Z 增大,f 增大

17.多重性因子的物理意义是什么?某立方晶系晶体,其{100}的多重性因子是多少?如该晶体转变为四方晶系,这个晶面族的多重性因子会发生什么变化?为什么? 多重性因子表示多晶体中某一晶面族{hkl}中等同晶面的数目。 立方晶系晶体,其{100}的多重性因子是6 如该晶体转变为四方晶系??? 18.衍射强度的影响因数有哪些,各有什么物理意义M c e A F P V V m c e R I I 22222230)()(32-???? ??=θθφπλ 见课本P26-27

19. 非晶态物质的x 射线衍射图样与晶态物质的有何不同? 非晶态物质由于其结构的近程有序、长程无序,因而与X 射线作用不会发生相干散射与衍射。因I 随2θ角变化不明显。

20. 对于晶粒直径分别为100,75,50,25nm 的粉末衍射图形,请计算由于晶粒细化引起的衍射线条宽化幅度B (设θ=450,λ=0.15nm )。对于晶粒直径为25nm 的粉末,试计算θ=100、450、800时的B 值。

由Scherrer (谢乐)公式 t=k λ/Bcos θ

t :在hkl 法线方向上的平均尺寸(?)

k :Scherrer 形状因子:0.89

B :衍射峰的半高宽(弧度)

21. 多晶体衍射的积分强度表示什么?今有一张用CuK α摄得的钨(体心立方)的德拜图相,试计算出头4根线的相对积分强度(不计算A (θ)和e -2M ,以最强线的强度为100)。头4根线的θ值如下: 线 条 θ

1 20.20

2 29.20

3 36.70

4 43.60

22. CuK α射线(λk α=0.154nm )照射Cu 样品,已知Cu 的点阵常数a =0.361nm ,试用布拉格方程求其(200)反射的θ角。

布拉格方程 2dsin θ=λ

求d Cu 的晶系 以及对立方晶系d=a/√(h 2+k 2+l 2)

23. α-Fe 属立方晶系,点阵参数a=0.2866nm 。如用CrK αX 射线(λ=0.2291nm )照射,试求(110)、(200)及(211)可发生衍射的掠射角(衍射角θ?)。

布拉格方程 2dsin θ=λ 立方晶系d=a/√(h 2+k 2+l 2) 24. 金刚石晶体属面心立方点阵,每个晶胞含8个原子,坐标为:(0,0,0)、(21,21,0)、(21,0,21)、(0,21,21)、(41,41,41)、(43,43,41)、(43,41,43)、(41,43,43)原子散射因子f a ,求其系统消光规律(F2最简表达式),并据此说明结构消光的概念。

见幻灯片ch7-3-XRD P56

晶体结构中如果存在着带心的点阵、滑移面等,则产生的衍射会成群地或系统地消失,这种现象称为系统消光,即由于原子在晶胞中位置不同而导致某些衍射方向的强度为零的现象。

立方晶系的系统消光规律是:

体心点阵(I) h + k + l=奇数

面心点阵(F) h,k,l奇偶混杂

底心(c) h + k=奇数

(a) k + l=奇数

(b) h + l=奇数

简单点阵(P)无消光现象

26.试推导Bragg方程,并对方程中的主要参数的范围确定进行讨论

见课本p22-p23

27. 物相定量分析的原理是什么?试述用k值法进行物相定量分析的过程。

原理见课本P70;k值法见课本P74-75

依据:从衍射线强度理论可知,多相混合物中某一相的衍射强度,随该相的相对含量的增加而增加。但由于试样的吸收等因素的影响,一般来说某相的衍射线强度与其相对含量并不成线性的正比关系,而是曲线关系。如果我们用实验测量或理论分析等办法确定了该关系曲线,就可以从实验测得的强度算出该相的含量。

28. 名词解释:相干散射(汤姆逊散射)、不相干散射(康普顿散射)、荧光辐射、俄歇效应、吸收限、俄歇效应、晶面指数与晶向指数、晶带、X射线散射、衍射结构因子、多重因子、罗仑兹因子、系统消光

相干散射(汤姆逊散射):X射线光子作用于内层电子,散射波波长不变,方向改变。

不相干散射(康普顿散射):X射线与弱束缚的外层电子作用,使散射波波长变长,方向改变的散射。

荧光辐射:X射线将内层电子击出导致外层电子向内层跃迁引起的辐射。

俄歇效应:原子内层电子被击出,外层电子向该层跃迁,其能量被相邻电子吸收而激发成自由电子的现象。

吸收限:质量吸收系数发生突变的波长为~

晶面指数:结晶平面在三个坐标轴上截距倒数的最小整数比,用(hkl)表示

晶向指数:点阵中结点坐标的最小整数比,用[uvw]表示

晶带:晶体中平行于同一晶向的所有晶面的总体。

X射线散射: X射线与物质发生相互作用后传播方向发生改变的现象。

衍射结构因子:|F|=一个晶格内全部原子散射波的振幅之和/一个电子的散射波振幅,即晶胞内全部原子散射的总和为衍射结构因子。

多重因子:反映(hkl)晶面处于有利取向几率的因数,指某个面族中具有同样晶面间距的不同点阵面组数目。

罗仑兹因子:(1+cos22θ)/2sin2θ, 反映了晶块尺寸,参加衍射晶粒个数对衍射强度I的影响。(:衍射角对积分强度的影响,归纳为角因数)

系统消光:由晶胞内原子种类,原子数量,原子位置而引起X射线衍射相消,其强度为零的现象。29. PDF卡片每一部分代表的意义和内容是什么?

P64 参考课本或见课件ch7-4-XRD P26-33

30. 试述X射线衍射物相分析步骤及其鉴定时应注意问题?分别从原理、衍射特点及应用方面比较X射线衍射和透射电镜中的电子衍射在材料结构分析中的异同点。

定性分析过程

(1)实验。获取被测试样物相的衍射花样或图谱。

(2)通过对所获衍射图谱或花样的分析和计算,获得各衍射线条的2θ,d 及相对强度大小I/I

1。

(3)使用检索手册,查寻物相PDF卡片号

(4)若是多物相分析,则在(3)步完成后,对剩余的衍射线重新根据相对强度排序,重复(3)步骤,直至全部衍射线能基本得到解释。

注意事项:

1)d值的数据比相对强度的数据更重要

2)低角度区域的衍射数据比高角度区域的数据重要

3)尽可能了解试样的来源、化学成分和物理特性等

4)确定试样中含量较少的相时,可以先提纯再检测

5)多相混合时,力求全部数据能合理解释

6)与其他物相分析方法结合起来,如偏光显微镜,SEM等

定量分析步骤:1)物相鉴定 2)选择标准物相 3)测定定标曲线与Ksj(若用K值法)4)找出最

强I/I

S 5)计算Xj

注意事项:1)晶粒尺寸要求非常细小,各相混合均匀,无择优取向 2)制备或选择试样时,避免重压,减少择优取向。

SEM

31. 电子波有何特征?与可见光有何异同?

电子波波长短,散射强

32. 如何提高显微镜分辨本领,电子透镜的分辨本领受哪些条件的限制?

提高显微镜分辨本领的方法:

1) 采用高折射率介质

2) 增大α角

3) 利用短波长的射线

光学显微镜的局限

两个发光点的分辨距离为d=0.61λ/(nsinα)

n:物镜与物体之间介质的折射率α:半孔径角,不能大于90°nsinα:显微镜的数值孔径λ:光线的波长;

可以增加介质的折射率,增大物镜孔径半角来提高分辨率,但nsinα的增加十分有限。因此,减小λ是提高显微镜分辨本领的关键因素。对电子透镜而言,波长短的紫外线能被物质强烈地吸收,而对X射线也无法聚焦。

33. 分析电磁透镜对电子波的聚焦原理,说明电磁透镜的结构对聚焦能力的影响。

原理见课本P103-104

运动电子在磁场中受到Lorentz力作用,其表达式为:F=-e V×B(F、V、B为矢量)

电磁透镜可以放大和汇聚电子束,是因为它产生的磁场沿透镜长度方向是不均匀的,但却是轴对称的,其等磁位面的几何形状与光学玻璃透镜的界面相似,使得电磁透镜与光学玻璃凸透镜具有相似的光学性质。

34. 电磁透镜的像差是怎样产生的,如何来消除和减少像差?

实际的电磁透镜并不能完全满足上述条件,因此从物面上一点散射出的电子束,不一定全部会聚在一点,或者物面上的各点并不按比例成像于同一平面内,结果图像模糊不清,或者与原物的几何形状不完全相似,这种现象称为像差。像差分为几何像差和色差。几何相差:由于透镜磁场几何形状上的缺陷而造成的像差,包括球差和像散色差。

色差:由于电子波的波长或能量发生一定幅度的改变而造成的像差(由于入射电子波长(或能量)的非单一性产生)

球差是由于电子透镜的中心区域和边缘区域对电子会聚能力不同而造成的。它是限制电子透镜分

(采用高励磁低放大倍数的电流可以减小球差。)

像散是由透镜磁场的非旋转对称而引起的。像散可以通过引入消像散器来矫正。

35. 说明影响光学显微镜和电磁透镜分辨率的关键因素是什么?如何提高电磁透镜的分辨率?

光学显微镜d=0.61λ/(nsinα) 对于光学显微镜而言,由于nsinα的增加十分有限。因此,减小λ是提高显微镜分辨本领的关键因素。

电磁透镜分辨极限d=0.61λ/α增大电磁透镜孔径半角,可以使d减小,但将引起球差急剧增大;提高电镜工作电压u,可以使λ降低,从而提高电磁透镜的分辨率。

36. 电磁透镜景深(场深)和焦长(焦深)主要受哪些因素影响?说明电磁透镜的景深大、焦长长、是什么因素影响的结果?

焦深D

f =2dmin/α焦长D

i

=2dminM2/α D

f

、D

i

主要受孔径半角α和放大倍数M的影响。dmin 为透镜的

分辨本领

电磁透镜的景深大,焦长长是由于电磁透镜孔径半角小,放大倍数大。

说明透射电子显微镜成像系统的主要构成、特点及其作用

透射电子显微镜的主要组成部分是哪些?它有哪些功能?在材料科学中有什么应用?

光学成像系统,真空系统,电气系统。可以实现微区物相分析;高的图像分辨率;获得立体丰富的信息

物镜是TEM成像系统的核心,决定了TEM的分辨本领。对于物镜,要求尽可能高的分辨本领和尽可能小的像差(通常为短焦距,高放大倍数如100倍,低像差的强磁透镜)。作用:安置样品,放大成像。

中间镜和投影镜将物镜形成的一次像再放大,最后显示到荧光屏上,从而获得放大图像。中间镜一般为长焦距,可变放大倍数(如0-20倍)的弱磁透镜。当放大倍数大于1时,进一步放大物镜所成的像;当放大倍数小于1时,缩小物镜说成的像。

投影镜也是短焦距、高放大倍数(如100倍,一般固定不变)的强磁透镜。作用是把中间镜的像进一步放大并投射在荧光屏或照相底板上。

特点:放大倍数越低,成像亮度越低,要求根据具体情况选择成像系统的放大倍数。

质厚衬度(散射衬度)

对于无定形或非晶体试样,电子图象的衬度是由于试样各部分的密度和厚度不同形成的,这种衬度称为质(量)厚(度)衬度(散射衬度)。

由于样品的不均匀性,即同一样品的相邻两点,可能有不同的样品密度、不同的样品厚度或不同的组成,因而对入射电子有不同的散射能力。散射角大的电子,由于光阑孔径的限制,只有部分

散射电子通过光阑参与成像,形成图象中的暗点;相反,散射角小的电子,大部分甚至全部通过

物镜光阑参与成像,形成图象的亮点;这两方面共同形成图象的明暗衬度,这种衬度反映了样品各点在厚度、密度和组成上的差异。

电子衍射与X射线衍射相比的优点 Rd=L*波长

电子衍射能在同一试样上将形貌观察与结构分析结合起来。电子波长短,单晶的电子衍射花样宛如晶体的倒易点阵的一个二维截面在底片上放大投影,从底片上的电子衍射花样可以直观地辨认出一些晶体的结构和有关取向关系,使晶体结构的研究比X射线简单。物质对电子散射主要是核散射,因此散射强,约为X射线一万倍,曝光时间短。

不足:电子衍射强度有时几乎与透射束相当,以致两者产生交互作用,使电子衍射花样,特别是强度分析变得复杂,不能象X射线那样从测量衍射强度来广泛的测定结构。此外,散射强度高导致电子透射能力有限,要求试样薄,这就使试样制备工作较X射线复杂;在精度方面也远比X射线低。38. 试说明电子束入射固体样品表面激发的主要信号、主要特点和用途

1)背散射电子,又称弹性散射电子,其特点是能量高,E>50eV,分辨率低,与原子序数Z,样品形貌有关。因此可利用背散射电子判断样品微区化学成分的变化;

2)二次电子,特点:1能量低,E=2-3 eV;分辨率极高,2仅在表面10nm层产生;对表面状态敏感,与表面微区形貌有关;3是SEM分析手段;图像景深大,立体感强。因此可以用二次电子实现对样品形貌观察,表面形貌衬度分析;

3)吸收电子,样品厚度越大,密度越大;原子序数越大,则吸收电子越多。吸收电子用作SEM和探针的信号;

4)透射电子,特点:成像清晰,电子衍射斑点比较明锐,可反映样品微区成分厚度,晶体结构及取向;

5)俄歇电子:仅在表面1nm内产生,用作表面分析

39. 为什么透射电镜的样品要求非常薄,而扫描电镜无此要求?

透射电镜的样品要求非常薄,使得电子束能穿透样品而不被吸收,携带的信号的透射电子能被系统收集。而SEM主要利用的是二次电子,背散射电子,和特征X射线这三种信号,不要求电子能穿透样品,因而无此要求。

40. 请导出电子衍射的基本公式,解释其物理意义,并阐述倒易点阵与电子衍射图之间有何对应关系?Rd=L*波长

参考课件ch8-2-TEM P27-28

42.透射电镜中为何要求真空环境,电源为何要求稳定。

要求真空环境的原因:

高速电子与气体分子相互作用会导致电子散射,引起炫光和降低像衬度,因此要求真空环境以消除干扰。

电子枪会发生电离和放电,使电子束不稳定;

残余气体会腐蚀灯丝,缩短其寿命,且会严重污染样品。

透射电镜要求电源稳定的原因:1)电源电压的微小波动会引起透射电流的波动,经过电子光学系统放大,会引起严重的像差,从而使分辨本领下降,故要求电源稳定;2)电源电压的波动会导致电子束具有不同波长,不满足电子衍射条件,影响正常工作;3)电源电压不稳定,导致电子束具有不同波长,影响TEM的分辨率。

43. (1)扫描电镜的分辨率受哪些因素影响? 给出典型信号成像的分辨率,并说明原因。(2)二次电子(SE)信号主要用于分析样品表面形貌,说明其衬度形成原理。(3)用二次电子像和背散射电子像在显示表面形貌衬度时有何相同与不同之处?

(1)SEM的分辨率主要影响因素有:1)扫描电子束斑直径 2)入射电子束在样品中的扩展效应 3)成像所用信号的种类(SE BSE 特征X射线吸收电子等)。

以SE为调制信号的SEM,分辨率为6-10nm。原因:SE能量较低,小于样品的平均自由程,电子束无扩展效应。

BSE为调制信号的SEM,分辨率为50-300nm。原因:BSE能量高,且在样品较深层有扩展效应,其范围远大于入射电子束的尺寸。

(2)SE的角分布符合余弦分布律N(θ)=Ncosθ/π;其产率δ正比于1/cosθ。θ越大的部位,δ越大,SE发散的数量越多,该部位的图像就越明亮。

(3)SE,BSE都可以对样品表面进行形貌和衬度分析,且都随倾斜角θ不同衬度有所变化。但BSE 像在分辨率、立体感及形貌真实程度上都不及SE像。

绪论

材料科学的研究内容

材料学就是研究材料的成分、组织结构、合成加工、性质与使用性能之间关系的科学。

材料研究方法的含义和分类

广义:技术路线、实验技术和数据分析

狭义:测试材料组成和结构的仪器方法

如:X射线衍射分析,电子显微分析,热分析,表面分析,光谱分析等

材料分析的理论依据和方法

材料分析方法分可以分为为形貌分析、物相分析、成分与价键分析与分子结构分析四大类方法。基于其它物理性质或电化学性质与材料的特征关系建立的色谱分析、质谱分析、电化学分析及热

分析等方法也是材料现代分析的重要方法。

尽管材料分析手段纷繁复杂,但它们也具有共同之处。

基本上是利用入射电磁波或物质波(X射线、电子束、可见光、红外光)与材料作用,产生携带样品信息的各种出射电磁波或物质波(X射线、电子束、可见光、红外光),探测这些出射的信号,进行分析处理,即可获得材料的组织、结构、成分、价键信息。

热分析(TA)

热分析是指在程序控温下,测量物质的物理性质与温度关系的一类技术。

热分析技术包括三个内容:

程序控制温度:T=ψ(t),指以一定速率升(降温);

选择一种观测的物理量P;

P直接或间接表示为温度关系。P= f (T或t)

热分析法的特点:

应用的广泛性

方法和技术的多样性

一般用于定性分析的灵敏度较高

用于定量分析时具有无需分离、不用试剂、分析快速的优点。

DTA差热分析

DTA基本原理

将试样S和参比物R置于以一定速率加热或冷却的相同温度状态的环境中,记录下试样和参比物之间的温差△T,并对时间或温度作图,得到DTA曲线。

DTA是在程序控制温度下测定物质和参比物之间的温度差和温度关系的一种技术。

差热曲线提供的信息

1)峰的位置:是由导致热效应变化的温度和热效应种类决定的。2)峰面积:与试样的焓变有关。影响DTA曲线的因素

仪器方面的影响

样品支持器应与参比物支持器完全对称,温度测量和热电偶的影响(平板热电偶),试样容器的影响;

操作条件

升温速率,炉内气氛(静态、动态);

样品方面

1试样性质(粒度、结晶度)2试样的结晶度、纯度和离子取代3试样的用量4参比物和稀释剂的影响5试样装填方式

DTA技术的一般应用:

物质鉴定

热力学研究

反应动力学研究

物质结构与物质性能关系的研究

DSC差示扫描量热分析

DSC:在程控温度下,测定输入到物质和参比物之间的功率差与温度的关系。

1 热流型DSC:定量DTA

通过测量加热过程中试样热流量达到DSC分析的目的,试样和参比物仍存在温度差。

2 功率补偿型DSC的原理:热动态零位平衡原理

在程序控温过程中,始终保持试样和参比物温度相同;保持R侧以给定的程序控温,通过变化S 侧的加热量来达到补偿的作用。

DSC的应用

熔点,比热容,玻璃转化温度,结晶度等的测定

DTA和DSC比较

相似之处:两种方法所测转变和热效应类似;曲线形状(需注明方向)和定量校正方法相似;

主要差别:原理和曲线方程不同

DSC(测定热流率dH/dt;定量;分辨率好、灵敏度高;有机、高分子及生物化学等领域)

DTA(测定△T;定性;无内加热问题,1500℃以上,可到2400℃;无机材料)

TG热重分析

1 热重分析(TG)的基本原理

基本原理仍是热天平,利用加热或冷却过程中物质质量变化的特点,来区别和鉴定不同的物质TG: 在程序控温下,测量物质的质量与温度关系的一种技术

热重分析的具体实验程序

(1)参量校正(2)实验程序 1) 试样的预处理,称量及填装;2) 升温速率的选择;(以保证基线平稳为原则)3) 启动电源开关,接通电炉电源;4) 选定走纸速度,开动记录仪开关;5) 实验完毕后,先关记录仪开关,再切断电源

3 影响热重分析曲线的因素有哪些?

实验条件的影响

1.升温速率(无机材料:10~20℃/min;有机和高分子材料:5~10℃/min)

2.样品量(样品量少、粒度细、铺平)

3.气氛(静态、动态)真空、空气、二氧化碳

仪器因素的影响

1.震动(办法:严格防震)

2.浮力(办法:做空白实验(空载热重实验),画出校正曲线)

3.挥发物冷凝(办法:使用较浅的试样皿)

4 由热重分析曲线求得反应级数的公式是什么?见课本P215

5 应用

金属的腐蚀,升华过程,吸附和解吸附,反应动力学的研究等

红外和激光拉曼光谱(IR&Raman)

基本原理

光与分子的相互作用(不完全)

当一束连续红外波长的光照射到物质上时,其中某些波被吸收了,形成了吸收谱带,透过光按波长及强度记录下来,就形成了红外吸收光谱。

对于某一分子来说,只能吸收某一特定频率的波长,从而引起分子转动或振动能级的变化,产生特征的分子光谱。谱中被吸收的光的波长对于不同分子或原子基团都是特征的

红外谱图的特征

一、谱带的数目,二、谱带的位置,三、谱带的形状,四、谱带的强度

影响红外谱图的因素

影响谱带位置(位移)的因素

分子间相互作用,键应力,氢键,诱导效应,共轭效应,空间效应,样品的物理状态。

影响谱带强度的因素

⑴偶极矩变化越大,吸收峰越强(只有偶极矩(μ)发生变化的,才能有红外吸收)

⑵能级的跃迁几率(样品浓度增大,跃迁几率上升,峰强增强)

红外谱带的划分

特征频率区4000cm-1~1300 cm-1,在该区域内有明确的基团与频率的对应关系

指纹谱带区1300~400 cm-1,谱带的数目很多,往往很难给予明确的归属

色散型红外光谱仪结构原理

红外辐射光源→样品室→光栅(狭缝)→检测器→电子放大系统→记录装置

样品的制备

厚度(如果薄膜过厚,许多主要谱带都吸收到顶,彼此连成一片,看不出准确的波数位置和精细结构;如果样品过薄,弱的甚至中等强度的吸收谱带显示不出来,失去了谱图的特征。)表面反射(反射引起能量损失,造成谱带变形。并产生干涉条纹。消除的方法是使样品表面粗糙些。)

样品不含有游离水(水的存在干扰谱图的形态)

多组分的样品应尽可能进行组分分离

制样方法:

气体——气体法;液体——液膜法or溶液法;固体——KBr压片法or薄膜法

激光拉曼光谱(Raman)

当光入射某些物质时,其散射光除了与入射光频率相同的成分瑞利线(ν0)外,还会在瑞利线两侧对称分布斯托克斯线(ν0-ν)和反斯托克斯线(ν0+ν),后来将这种散射命名为拉曼散射

利用材料分子对单色激光(近红外区)的散射作用而引起的拉曼位移,可以间接观察分子振动能级的跃迁,研究物质结构的方法。

拉曼散射光谱的基本概念

处于基态的分子与光子发生非弹性碰撞,获得能量跃迁到激发态可得到斯托克斯线,反之,如果分子处于激发态,与光子发生非弹性碰撞就会释放能量而回到基态,得到反斯托斯线。

拉曼位移:斯托克斯线或反斯托克斯线与入射光频率之差称为拉曼位移。

拉曼位移的大小与入射光的频率无关,只与分子的能级结构有关,其范围为25~4000cm-1

拉曼位移的大小和分子的跃迁能级差一样。入射光的能量应大于分子振动跃迁所需能量,小于电子能跃迁的能量。

激光拉曼光谱仪器和实验技术

激光光源,样品室,单色器,检测记录系统,计算机

拉曼实验用的样品主要是溶液(以水溶液为主),固体(包括纤维)

应用

互相排斥定则:凡具有对称中心的分子,它们的红外吸收光谱与拉曼散射光谱没有频率相同的谱带

俄歇电子能谱分析(Auger)

基本原理

俄歇电子谱(AES)主要用于研究≤2nm尺度的表面成分与状态

入射电子对试样内电子发生非弹性散射碰撞,内电子被激发到真空能级产生电离,在内电子能级

上形成空穴。(原子内层电子被击出,外层电子向该层跃迁,其能量被相邻电子吸收而激发成自由电子的现象。)

用来进行分析的俄歇电子,应当是能量无损地输运到表面的电子,因而只能是在深度很浅处产生的,这就是用俄歇谱能进行表面分析的原因。

俄歇电子能谱仪

有两类AES谱仪:

电压阻挡型AES谱仪

扫描AES谱仪

四种操作模式:

点分析,线扫描,面扫描,深度剖析(厚度≤2nm时,采用改变发射角方法,否则采用离子束蚀刻方法)

装置组成:初级探针系统,能量分析系统,测量系统

以扫描AES谱仪为例,仪器由六个主要系统构成:

探束,试样室,检测系统及能量分析系统,数据处理与显示系统,锁相放大器和微分装置,辅助系统

俄歇电子能谱的特点:

1、逸出深度范围小1nm

2、空间分辨率小10nm

3、和离子刻蚀结合可以分析深度成分分析。

4、要求高真空。

5、定量分析不是很准确。

应用:

由于俄歇电子能谱具有很高的表面灵敏度,采样深度为1-3nm,因此非常适用于研究固体表面的化学吸附和化学反应。

其适用于很薄的膜以及多层膜的厚度测定。

通过俄歇电子的深度剖析,可以对截面上各元素的俄歇线形研究,获得界面

产物的化学信息,鉴定界面反应产物。

AES的主要功能:

可研究纳米尺寸(0.5~2nm,衰减长度)表面、界面的组成、状态;

可检测Z≥3的所有元素,且对轻元素灵敏度高

可作零、一、二、三维分布研究

可作状态研究

可结合SEM进行形貌研究(扫描AES)

可结合LEED进行二维点阵结构、缺陷研究

X射线光电子能谱分析(XPS)

基本原理

光电子能谱是以光子束为探束来对原子不同层次进行非弹性散射,分析弛豫产生的多种二次电子信息的方法。

(光电子发射是建立在激发态原子弛豫后的电子发射,即某一内层轨道上一个电子被激发电离而产生的电子发射。光电子发射峰的宽度直接反映了电离产生的离子寿命的长短。)

XPS的优点:谱线的自然宽度很窄,具有很高的分辨率,不容易发生叠峰等。

用软X-ray(200-2000ev)作为探束的为X光电子谱;(XPS)

用真空UV(10-45ev)作为探束的为紫外光电子能谱。(UPS)

化学位移

同种原子处于不同化学环境而引起的电子结合能的变化,在谱线上造成的位移称为化学位移。

化学环境不同有两方面含义:一是指与它结合的元素种类和数量不同;二是指原子具有不同的价态。

样品的制备

X射线光电子能谱仪对待分析的样品有特殊的要求,在通常情况下只能对固体样品进行分析。

由于涉及到样品在超高真空中的传递和分析,待分析的样品一般都需要经过一定的预处理。

主要包括样品的大小,粉体样品的处理, 挥发性样品的处理,表面污染样品及带有微弱磁性的样品的处理

X射线光电子能谱的特点

1 适用范围广,Z≥2的元素及各种聚集态(固、液、气)均适用

2 分辨率高,干扰少

3 除H外全谱一次显示,对复杂成分体系能快速准确定性分析

4 可结合化学位移,研究同一成分的不同状态

5 定量分析方便,较准确。

X射线光电子能谱的应用

元素定性分析,元素价态分析,元素定量分析,同质异构体研究,研究材料中原子格位结构,表面与界面研究等

材料研究方法期末复习资料(不错)

材料研究方法复习 X射线,SEM(扫描电子显微镜),TA,DTA,DSC,TG,红外,拉曼 1.X射线的本质是什么?是谁首先发现了X射线,谁揭示了X射线的本质? 本质是一种波长很短的电磁波,其波长介于0.01-1000A。1895年由德国物理学家伦琴首先发现了X射线,1912年由德国物理学家laue揭示了X射线本质。 2.试计算波长0.071nm(Mo-Kα)和0.154A(Cu-Kα)的X射线束,其频率和每个量子的能量? E=hν=hc/λ 3.试述连续X射线谱与特征X射线谱产生的机理 连续X射线谱:从阴极发出的电子经高压加速到达阳极靶材时,由于单位时间内到达的电子数目极大,而且达到靶材的时间和条件各不相同,并且大多数电子要经过多次碰撞,能量逐步损失掉,因而出现连续变化的波长谱。 特征X射线谱: 从阴极发出的电子在高压加速后,如果电子的能量足够大而将阳极靶原子中内层电子击出留下空位,原子中其他层电子就会跃迁以填补该空位,同时将多余的能量以X射线光子的形式释放出来,结果得到具有固定能量,频率或固定波长的特征X射线。 4. 连续X射线谱强度随管电压、管电流和阳极材料原子序数的变化规律? 发生管中的总光子数(即连续X射线的强度)与: 1 阳极原子数Z成正比; 2 与灯丝电流i成正比; 3 与电压V二次方成正比: I 正比于i Z V2 可见,连续X射线的总能量随管电流、阳极靶原子序数和管电压的增加而增大 5. Kα线和Kβ线相比,谁的波长短?谁的强度高?

Kβ线比Kα线的波长短,强度弱 6.实验中选择X射线管以及滤波片的原则是什么?已知一个以Fe为主要成分的样品,试选择合适的X射线管和合适的滤波片? 实验中选择X射线管要避免样品强烈吸收入射X射线产生荧光幅射,对分析结果产生干扰。必须根据所测样品的化学成分选用不同靶材的X射线管。 其选择原则是: Z靶≤Z样品+1 应当避免使用比样品中的主元素的原子序数大2-6(尤其是2)的材料作靶材。 滤波片材料选择规律是: Z靶<40时: Z滤=Z靶-1 Z靶>40时: Z滤=Z靶-2 例如: 铁为主的样品,选用Co或Fe靶,不选用Ni或Cu靶;对应滤波片选择Mn 7. X射线与物质的如何相互作用的,产生那些物理现象? X射线与物质的作用是通过X射线光子与物质的电子相互碰撞而实现的。 与物质作用后会产生X射线的散射(弹性散射和非弹性散射),X射线的吸收,光电效应与荧光辐射等现象 8. X射线强度衰减规律是什么?质量吸收系数的计算? X射线通过整个物质厚度的衰减规律: I/I0 = exp(-μx) 式中I/I0称为X射线穿透系数,I/I0 <1。I/I0愈小,表示x射线被衰减的程度愈大。μ为线性吸收系数 μm表示,μm=μ/ρ 如果材料中含多种元素,则μm=Σμmi w i其中w i为质量分数 9.下列哪些晶面属于[111]晶带? (111)、(3 21)、(231)、(211)、(101)、(101)、(133),(-1-10),(1-12), (1- 32),(0-11),(212),为什么?

现代材料研究方法知识点总结

一、X 射线谱(连续和特征)X 射线与物质相互作用 1、吸收限及其应用 定义:吸收系数发生突变的波长 激发K 系荧光辐射,光子的能量至少等于激出一个K 层电子所作的功W k h νk = Wk= hc/λk 只有 ν > νk 才能产生光电效应。 所以: λk 从激发荧光辐射角度称为激发限。从吸收角度看称为吸收限。 吸收限λk 的应用 (1)滤波片的选择 主要目的去除k β 原理:选择滤波片物质的λk 介于λ k α 和λk β之间。即Z 滤=Z 靶-1(Z 靶<40) Z 滤=Z 靶-2 (Z 靶>40) (2)阳极靶的选择 (1) Z 靶< Z 试样 (2) 自动滤波 Z 靶= Z 试样+1 或 +2 (3) Z 靶>> Z 试样最忌Z 靶+1或+2=Z 试样 2、X 射线与物质相互作用产生那些信息。 X 射线通过物质,一部分被散射,一部分被吸收,一部分透射。 3、衰减公式I=I 0e -μm ρH 1、衰减公式 相对衰减: μ:线衰减系数负号厚度↑ I ↓ 积分: 为穿透系数 2、衰减系数 1) 线衰减系数 I :单位时间通过单位面积的能量 μ的物理意义:通过单位体积的相对衰减。 2) 质量衰减系数 X 射线的衰减与物质的密度有关,因此每克物质引起的相对衰减为 μ/ρ= μm H H m e I I ρμ-=0 3) 复杂物质的衰减系数 w :重量百分比 μm = w 1μm1+ w 2 μm2 + w 3 μm3 +….+ w n μmn 4) μm 与λ、Z 的关系 μm ≈k λ3Z 3 λ<λk 时k=0.007 λ>λk 时 k=0.009 二、晶体学内容 7种晶系、倒易点阵。 晶系 点阵常数间的关系和特点 实例 三斜 单斜 斜方(正交) 正方 立方 六方 菱方 a ≠ b ≠c,α≠β≠γ≠90° a ≠b ≠c,α=β=90°≠γ(第一种) α=γ=90°≠β二种 a ≠b ≠c,α=β=γ=90° a=b ≠c α=β=γ=90° a=b=c α=β=γ=90° a=b ≠c α=β=90γ=120 a=b=c α=β=γ≠ 90° K2CrO7 β-S CaSO 42H 2O Fe 3C TiO 2 NaCl Ni-As Sb,Bi 倒易点阵的定义 若正点阵的基矢为a 、b 、c 。如果假设有一点阵其基矢为a*、b*、c*。两种基矢间存在如下关系: a*·a = b*·b = c*·c =1 a*·b = a*·c = b*·a =b*·c =c*·a =c*·b =0 则称基矢a*、b*、c*所确定的点阵为基矢a 、b 、c 所确定的点阵的倒易点阵。 倒易点阵也可用另一数学公式表达: 晶体点阵中晶包体积为 v =c·(a ?b) 因为:c*·c = 1= v/v 所以:c*·c = c·(a ?b)/v 即:c* =(a ?b)/v 同理:a* =(b ? c)/v b* =(c ? a)/v 任意倒易矢量 g=ha*+kb*+lc*必然垂直于正点阵中的(hkl )面。 证明:g·AB =g·(OB-OA)=[ha*+kb*+lc*]·(b/k - a/h)=0 所以 g 垂直AB 同理:g 垂直BC 和CA 所以 g 垂直于(hkl )面。 晶带、晶带轴、晶带面。 dx I dI I I I x x x dx x x ∝=-+dx I dI μ-=??-=H I I dx I dI H 00μH H H e I I H I I μμ-=?-=00 ln H H e I I μ-=0Idx dI -=μ

2013年秋季兰州理工大学《材料研究方法》期中考试复习题

2013年秋季兰州理工大学研究生《材料研究方法》考试复习题 一、名词解释 1)短波限 各种管电压下的连续X射线谱都具有一个最短的波长值,该波长值称为短波限。P6。 2)吸收限 吸收限是指对一定的吸收体,X射线的波长越短,穿透能力越强,表现为质量吸收系数的下降,但随着波长的降低,质量吸收系数并非呈连续的变化,而是在某些波长位置上突然升高,出现了吸收限。每种物质都有它本身确定的一系列吸收限。P13。 3)特征X射线 U时,在连续谱的某些特当加于X射线管两端的电压增高到与阳极靶材相应的某一特定值 k 定的波长位置上,会出现一系列强度很高、波长范围很窄的线状光谱,它们的波长对一定材料的阳极靶有严格恒定的数值,此波长可作为阳极靶材的标志或特征,故称为特征X射线。P8。 4)相干散射 当入射线与原子内受核束缚较紧的电子相遇,光量子不足以使原子电离,但电子可在X射线交变电场作用下发生受迫振动,这样的电子就成为一个电磁波的发射源,向周围辐射电磁波,这些散射波之间符合波长相等、频率相同、位相差相同的光的干涉条件,故称相干散射。P11。 5)光电效应 光电效应是入射X射线的光量子与物质原子中电子相互碰撞时产生的物理效应。当入射光量子的能量足够大时,可以从被照射物质的原子内部(例如K壳层)击出一个电子,同时外层高能态电子要向内层的K空位跃迁,辐射出波长一定的特征X射线。这种以光子激发原子所发生的激发和辐射过程称为光电效应。P12。 6)晶带面 在晶体结构和空间点阵中平行于某一轴向的所有晶面均属于同一个晶带,这些晶面叫做晶带面。P24。 7)系统消光

我们把因原子在晶体中位置不同或原子种类不同而引起的某些方向上的衍射线消失的现象称之为系统消光。P35。 8)球差 球差即球面像差,是由于电磁透镜的中心区域和边缘区域对电子的折射能力不符合预定的规律而造成的像差。P111。 9)像散 像散是由于电磁透镜磁场的非旋转对称性而引起的像差。P112。 10)色差 是由于入射电子波长(或能量)的非单一性所造成的。P112。 11)倒易点阵 倒易点阵是在晶体点阵的基础上按照一定的对应关系建立起来的空间几何图形,是晶体点阵的另一种表达形式。 二、简答题 1、试说明电子束入射固体样品表面激发的主要信号、主要特点和用途。P183-185。 2、扫描电镜的分辨率受哪些因素影响? 给出典型信号成像的分辨率,并说明原因。P188 3、透射电镜中有哪些主要光阑?在什么位置?其作用如何?P124。 4、何为波谱仪和能谱仪?说明其工作的三种基本方式,并比较波谱仪和能谱仪的优缺点。P198。 5、决定X 射线强度的关系式是 M c e A F P V V mc e R I I 2222 2230)()(32-???? ??=θθφπλ, 试说明式中各参数的物理意义? 6、比较物相定量分析的外标法、内标法、K 值法、直接比较法和全谱拟合法的优缺点? 7、实验中选择X 射线管以及滤波片的原则是什么?已知一个以Fe 为主要成 分的样品,试选择合适的X 射线管和合适的滤波片? 三、计算题 1、在立方点阵中画出下面的晶面和晶向。 2、已知面心立方铝的点阵常数a=0.40491nm ,今用CuKα(λ=1.5406?)辐射在衍射仪上扫

材料研究方法简单总结

XRD: ●所有的衍射峰都有一定的宽度是因为:1.晶体不是严格的晶体;2.X射线不是严格的单 色光;3.仪器设计造成。 ●XRD用途:1.精确测定晶胞参数——可反映晶体内部成分、受力状态等的变化,可用 于鉴别固溶体类型、测量固溶度、测定物质的真实密度等等。 2.物相定性分析——各衍射峰的角度位置所确定的晶面间距d以及它们的相对强度I/Io 是物质的固有特性。因而呢过用于五物相分析。 3.物相的(半)定量分析——外标法(物相数=2);内标法(物相数>2);基体冲洗法(修 正了内标法由于引入参比物导致的误差) 4.纳米物质平均粒度分析——当粒度小于200nm的时候,衍射线会发生宽化(相干散射 的不完全所致),测定待测样品的衍射峰的半高宽和标准物质的衍射峰的半高宽,用公式即可以得出纳米颗粒的平均粒度。 电镜: 电镜的缺陷:其实际分辨率达不到理论值 原因:电磁透镜存在像差(几何像差和色差) 几何像差:由透镜磁场几何形状上的缺陷而造成的,包括球差和像散。 球差:由于电磁透镜中心区域和边缘区域磁场强度的差异,从而造成对电子会聚能力不 同而造成的。 像散:由于透镜的磁场轴向不对称所引起的一种像差。 色差:由于成像电子的能量或波长不同而引起的一种像差。 像差的存在使同一物点散射的具有不同能量的电子经透镜后不再会聚于一点,而是在像 面上形成一漫射圆斑。 ●透射电镜(TEM):1.观察水泥及其原料颗粒表面及聚集体的状态,揭示水泥熟料的微 细结构,研究水泥浆体的断面结构,观察其水化产物、未水化产物及孔的大小、形状和分布 2.黏土矿物的形态和结晶习性对陶瓷至关重要,可用TEM观察陶瓷的显微结构、点阵 缺陷和畸变。 3.TEM广泛应用于金相分析和金属断口分析。 4.TEM可以观察高分子粒子的形状、大小及分布。 ●扫描电镜(SEM):用于形貌分析(观察粉体表面形貌、材料断面、材料表面形貌)●电子探针(EPMA 配合波谱仪或能谱仪使用):主要用于材料表面层成分的定性和定 量分析 能谱仪(EDS) 优点:1.分析速度快;2.灵敏度高;3.谱线重复性好 缺点:1.能量分辨率低,峰背比低;2.使用条件苛刻 波谱仪(WDS) 优点:波长分辨率高 缺点:1.为了有足够的色散率,聚焦圆半径需足够大。导致X射线光子收集率低,使其对X射线利用率低 2.X光经衍射后,强度损失大,难以在低束流和低激发强度下使用 热分析 具体的研究内容有:熔化、凝固、升华、蒸发、吸附、解吸、裂解、氧化还原、相图制

《近代材料研究方法2 》课程教学大纲

《近代材料研究方法2 》课程教学大纲课程代码:050332025 课程英文名称:Modern Materials Analysis Methods 适用专业:高分子材料与工程 课程总学时:48 讲课:40 实验:8 上机:0 适用专业:高分子材料与工程 大纲编写(修订)时间:2017.06 一、大纲使用说明 (一)课程的地位及教学目标 近代材料研究方法是高等学校材料类各专业开设的一门培养学生掌握材料现代分析测试方法的专业基础选修课,主要讲授X射线衍射、电子显微分析、热分析、光谱分析和核磁共振的基本知识、基本理论和基本方法,在材料类专业培养计划中,它起到由基础理论课向专业课过渡的承上启下的作用。本课程在教学内容方面除基本知识、基本理论和基本方法的教学外,着重培养学生运用所学知识解决实际问题的能力。 通过本课程的学习,学生将达到以下要求: 1. 掌握X射线衍射分析、透射电子显微分析、扫描电子显微分析、热分析、光谱分析和 核磁共振的基本理论; 2. 掌握材料组成、晶体结构、显微结构等的分析测试方法与技术; 3. 具备根据材料的性质等信息确定分析手段的能力; 4. 具备对检测结果进行标定、分析解释的初步能力。 (二)知识、能力及技能方面的基本要求 1.基本知识:掌握晶体几何学、X射线衍射以及电子显微分析方面的一般知识,了解X射线衍射仪、透射电子显微镜、扫描电子显微镜的工作、热分析、光谱分析和核磁共振原理以及适用范围。 2.基本理论和方法:掌握晶体几何学理论知识(晶体点阵、晶面、晶向、晶面夹角、晶带);掌握特征X射线的产生机理以及X射线与物质的相互作用;掌握X射线衍射理论基础—布拉格定律;了解影响X射线衍射强度各个因子,掌握结构因子计算以及系统消光规律;掌握物相定性、定量分析原理及方法;掌握利用倒易点阵与厄瓦尔德图解法分析衍射现象;掌握电子衍射的基本理论以及单晶体电子衍射花样的标定方法;掌握表面形貌衬度和原子序数衬度的原理及应用;掌握能谱、波谱分析原理及方法;掌握原子光谱法、分子光谱法、电子能谱分析法、核磁共振、热分析法的基本原理和适用范围;了解相关仪器的主要部件和测试方法;了解质谱分析法和色谱分析法的基本原理和适用范围。。 3.基本技能:具备根据材料的性质等信息正确选用分析手段的能力;具备对检测结果进行标定和分析解释的初步能力;具有利用本课程基本知识进行科学研究的初步能力。能够独立进行X 射线衍射、扫描电镜、透射电镜、紫外-可见光光谱和热分析的样品制备与结果分析。 (三)实施说明 1.教学方法:以基本理论——工作原理——应用及结果分析为主线,对课程中的重点、难点问题着重讲解。由于本课程既具有理论性又具有实践性,因此在教学过程中要注意理论联系实际,通过实例锻炼学生分析解决问题的能力。采用启发式教学,培养学生思考问题、分析问题和解决问题的能力;注意教授学生学会分析、解决问题的方法。处理好重点与难点,将各种分析方法的实际应用纳入教学过程,使学生能够利用所学知识解决实际问题。通过实例和作业,通过作业调动学生学习的主观能动性,强化学生运用知识的能力,培养自学能力。

材料研究方法复习题

1.X射线的波长范围大致为多少?X射线产生的基本原理及X射线管的基本结构 (1)0。01-10nm(2)高速运动的自由电子被突然减速便产生X射线;(3)X射线管的基本结构:使用最广泛的是封闭式热阴极X射线管,包括一个热阴极(绕成螺线形的钨丝)和一个阳极(靶),窗口,管内高真空(10—7Torr) 2.X射线谱的基本类型及其特点 X射线强度 I 随波长λ的变化曲线称为X射线谱,可分为连续X射线(由连续的各种波长组成,其波长与工作条件V、I有关)和特征X射线(又称标识X射线,不随工作条件而变,只取决于阳极靶的物质)。 3.描述X射线于物质的相互作用(俄歇效应和光电效应)课本图3.8 补充俄歇效应:当较外层的电子跃迁到空穴时,所释放的能量随即在原子内部被吸收而逐出较外层的另一个次级光电子,此称为俄歇效应,所逐出的次级光电子称为俄歇电子。它的能量是特征的,与入射辐射的能量无关。 4.X射线衍射的几何条件(布拉格方程或定律) X射线通过物质(晶体)后衍射线特征包括方向和强度,其中衍射线的方向与晶体的点阵参数(晶胞大小和形状)、入射线的方位及X射线波长有关,具体表现为:劳厄方程式、布拉格定律和倒易空间衍射公式. 5.X射线衍射分析的方法主要有哪些?各自的特点是什么?(注意λ和Θ的变化) 单晶:劳厄法(λ变,θ不变);转晶法(λ不变,θ部分变化) 粉末:粉末照相法(粉末法或粉晶法) (λ不变,θ变);粉末衍射仪法(λ不变,θ变化) 6.X射线衍射物相分析的基本原理(I/I0、2Θ) X射线衍射线的位置决定于晶胞的形状和大小,即决定于各晶面的晶面间距,而衍射线的强度决定于晶胞内原子种类、数目及排列方式,每种结晶物质具有独特的衍射花样,且试样中不同物质的衍射花样同时出现互不干涉,某物相的衍射强度取决于它在试样中的相对含量,当试样的衍射图谱中d值和I/I0与已知物质的数值一致时,即可判定试样中含有该已知物质. 7.说明X射线衍射仪法定性分析物相组成的基本过程,注意事项及PDF卡片的检索方法 (1)X射线衍射定性分析是将试样的衍射谱与标准衍射谱进行比较鉴别,确定某种物相的存在以及确定该物相的结晶状态。其过程为:获得试样的衍射图谱—-求d值和I/I0值-—查索引——核对卡片。 (2)注意事项:1)d值的数据比相对强度的数据重要,d值一般要到小数点后第二位才允许有误差;2)低角度区域的数据比高角度区域的数据重要;3)了解试样的来源、化学成分和物理特性对作出正确结论十分有帮助;4)进行多样混合试样分析时要多次核对,若某些物质含量少,只出现一两条衍射线,以致无法鉴定;5)尽量与其它方法结合起来使用,如偏光显微镜、电子显微镜等;6)从目前所应用的粉末衍射仪看,绝大部分仪器均是由计算机进行自动物相检索过程,需结合专业人员的丰富专业知识,判断物相,给出正确的结论. (3)检索方法:字母索引:对已知物质,按物质英文名称的字母顺序排列;哈那瓦特法(Hanawalt method):未知矿物,三强线或数值索引;芬克索引(Fink method) 8.何为X射线和荧光X射线? (1)X射线的产生见第一题(2)当较外层的电子跃入内层空穴所释放的能量不在原子内被吸收,而是以辐射形式放出,便产生荧光X射线,其能量等于两能级之间的能量差。 9.X射线荧光光谱分析的基本原理和主要用途 (1)荧光X射线的能量或波长是特征性的,与元素有一一对应的关系。测出荧光X射线的波长或能量,就可以知道元素的种类(定性分析基础).此外,荧光X射线的强度与相应元素的含量有一定的关系(定量分析基础)。 (2)定性分析:根据荧光X射线的波长或能量可以确定元素的组成。定量分析:定量分析的依据是元素的荧光X 射线强度Ii与试样中该元素的含量Wi成正比。 10.X射线分析的主要用途(物相分析、晶体结构分析) 11.电子和固体物质相互作用可以产生哪些物理信号?各有何特点? (1)二次电子;对试样状态非常敏感,显示表面微小的形貌结构非常有效,所成的电子像分辨率高,是扫描电镜中的主要手段。 (2)背散射电子:能量较高,但背散射电子像的分辨率较低。 (3)透射电子:能量损失情况视试样厚薄而定,较薄时大部分为弹性散射电子,成像比较清晰,电子衍射斑点比较明锐;试样较厚时,成像清晰度降低。

材料研究方法思考题答案重点及真题汇编

第1章 1、材料是如何分类的?材料的结构层次有哪些? 答:材料按化学组成和结构分为:金属材料、无机非金属材料、高分子材料、复合材料; 按性能特征分为:结构材料、功能材料; 按用途分为:建筑材料、航空材料、电子材料、半导体材料、生物材料、医用材料。 材料的结构层次有:微观结构、亚微观结构、显微结构、宏观结构。 2、材料研究的主要任务和对象是什么,有哪些相应的研究方法? 答:任务:材料研究应着重于探索制备过程前后和使用过程中的物质变化规律,也就是在此基础上探明材料的组成(结构)、合成(工艺过程)、性能和效能及其之间的相互关系,或者说找出经一定工艺流程获得的材料的组成(结构)对于材料性能与用途的影响规律,以达到对材料优化设计的目的,从而将经验性工艺逐步纳入材料科学与工程的轨道. 研究对象和相应方法见书第三页表格。 3、材料研究方法是如何分类的?如何理解现代研究方法的重要性? 答:按研究仪器测试的信息形式分为图像分析法和非图像分析法;按工作原理,前者为显微术,后者为衍射法和成分谱分析。 第2章 1、简述现代材料研究的主X射线实验方法在材料研究中有那些主要应用? 答:现代材料研究的主X射线实验方法在材料研究中主要有以下几种应用: (1)X射线物相定性分析:用于确定物质中的物相组成 (2)X射线物相定量分析:用于测定某物相在物质中的含量 (3)X射线晶体结构分析:用于推断测定晶体的结构 2、试推导Bragg方程, 并对方程中的主要参数的范围确定进行讨论. 答:见书第97页。 3、X射线衍射试验主要有那些方法, 他们各有哪些应用,方法及研究对象. 答: 实验方法所用 辐射 样 品 照相法衍射仪法 粉末法劳厄法转晶法单色辐射 连续辐射 单色辐射 多晶或晶 体粉末 单晶体 单晶体 样品转动或固定 样品固定 样品转动或固定 德拜照相 机 劳厄相机 转晶-回 摆照相机 粉末衍射仪 单晶或粉末衍 射仪 单晶衍射仪 最基本的衍射实验方法有:粉末法,劳厄法和转晶法三种。由于粉末法在晶体学研究中应用最广泛,而且实验方法及样品的制备简单,所以,在科学研究和实际生产中的应用不可缺少;而劳厄法和转晶法主要应用于单晶体的研究,特别是在晶体结构的分析中必不可少,在某种场合下是无法替代的。 第3章 1、如何提高显微镜分辨本领,电子透镜的分辨本领受哪些条件的限制? 答:分辨本领:指显微镜能分辨的样品上两点间的最小距离;以物镜的分辨本领来定义显微镜的分辨本领。光学透镜:d0 =0.061λ/n·sinα= 0.061λ/N·A,式中:λ是照明束波长;α是透镜孔径半角; n是物方介 质折射率;n·sinα或N·A称为数值孔径。 在物方介质为空气的情况下,N·A值小于1。即使采用油浸透镜(n=1.5;α一般为70°~75°), N·A值也不会超过1.35。所以 d0≈1/2λ。因此,要显著地提高显微镜的分辨本领,必须使用波长比可见光短得多的 照明源。

材料研究方法复习资料.

1. X 射线的本质是什么?是谁首先发现了X 射线,谁揭示了X 射线的本质? 本质是一种波长很短的电磁波,其波长介于0.01-1000A 。 1895年由德国物理学家伦琴首先发现了X 射线,1912年由德国物理学家laue 揭示了X 射线本质。 2. 试计算波长0.071nm (Mo-K α)和0.154A (Cu-K α)的X 射线束,其频率和每个量子的能 量? E=h ν=hc/λ 3. 试述连续X 射线谱与特征X 射线谱产生的机理 连续X 射线谱: 从阴极发出的电子经高压加速到达阳极靶材时,由于单位时间内到达的电子数目极大,而且达到靶材的时间和条件各不相同,并且大多数电子要经过多次碰撞,能量逐步损失掉,因而出现连续变化的波长谱。 特征X 射线谱: 从阴极发出的电子在高压加速后,如果电子的能量足够大而将阳极靶原子中内层电子击出留下空位,原子中其他层电子就会跃迁以填补该空位,同时将多余的能量以X 射线光子的形式释放出来,结果得到具有固定能量,频率或固定波长的特征X 射线。 4. 连续X 射线谱强度随管电压、管电流和阳极材料原子序数的变化规律? 发生管中的总光子数(即连续X 射线的强度)与: 1 阳极原子数Z 成正比; 2 与灯丝电流i 成正比; 3 与电压V 二次方成正比: I 正比于i Z V 2 可见,连续X 射线的总能量随管电流、阳极靶原子序数和管电压的增加而增大 5. K α线和K β线相比,谁的波长短?谁的强度高? K β线比K α线的波长短,强度弱 6.实验中选择X 射线管以及滤波片的原则是什么?已知一个以Fe 为主要成分的样品,试选择合适的X 射线管和合适的滤波片? 实验中选择X 射线管要避免样品强烈吸收入射X 射线产生荧光幅射,对分析结果产生干扰。必须根据所测样品的化学成分选用不同靶材的X 射线管。 Z 靶≤Z 样品+1 应当避免使用比样品中的主元素的原子序数大2-6(尤其是2)的材料作靶材。 滤波片材料选择规律是: Z 靶< 40时: Z 滤=Z 靶-1 Z 靶>40时: Z 滤=Z 靶-2 例如: 铁为主的样品,选用Co 或Fe 靶,不选用Ni 或Cu 靶;对应滤波片选择Mn 7. X 射线与物质的如何相互作用的,产生那些物理现象? X 射线与物质的作用是通过X 射线光子与物质的电子相互碰撞而实现的。 与物质作用后会产生X 射线的散射(弹性散射和非弹性散射),X 射线的吸收,光电效应与荧光辐射等现象 8. X 射线强度衰减规律是什么?质量吸收系数的计算? X 射线通过整个物质厚度的衰减规律: I/I0 = exp(-μ x) 式中I/I0称为X 射线穿透系数, I/I0 <1。I/I0愈小,表示x 射线被衰减的程度愈大。μ为线性吸收系数 吸收常用质量吸收系数 μm 表示,μm =μ/ρ 如果材料中含多种元素,则μm =Σμmi w i 其中w i 为质量分数 9.下列哪些晶面属于[111]晶带? (111)、(321)、(231)、(211)、(101)、(101)、(133),(-1-10),(1-12),(1-32),(0-11),(212),为什么? 晶面(crystal plane )——晶体结构一系列原子所构成的平面。 在晶体中如果许多晶面同时平行于一个轴向,前者总称为一个晶带,后者为晶带轴。 hu+kv+lw=0 与[111]晶带垂直,彼此相互平行 10.下面是某立方晶系物质的几个晶面,试将它们的面间距从大到小按次序重新排列:(12-3),(100),(200),(-311),(121),(111),(-210),(220),(130),(030),(2-21),(110)。 参考ch7-2-XRD P37 11.某正交(斜方)晶体的a=7.417?, b=4.945?, c=2.547?, 计算d110和d200。 参考ch7-2-XRD P37 12. X 射线衍射与可见光反射的差异 可见光的反射只是物体表面上的光学现象,而衍射是一定厚度内许多相同间距的晶面共同作用的

聚合物研究方法课程大纲

《材料研究方法与测试技术》课程教学大纲 一、课程基本信息 课程名称:材料研究方法与测试技术(Research Methods of Materials) 课程编号:020711 课程类别:专业课 适用专业:高分子材料与工程专业(本科生) 学时:40 (学分:2) 先修课程:有机化学、高分子化学、高分子物理 内容概要:主要内容为,化学分析方法,波谱分析法,凝胶色谱法,热分析法,电镜分析法,材料研究方法的综合应用。 使用教材及参考书: 教材:张美珍主编,《聚合物研究方法》,中国轻工业出版社,2007年第一版 参考书: 1、汪昆华主编,《聚合物近代仪器分析》,清华大学大学出版社,2000年第二版 2、周玉主编,《材料分析方法》,机械工业出版社,2004年第一版 3、国内外相关刊物前沿性学术文章 二、课程的目的和任务 材料研究方法是材料科学的内容之一。主要介绍高分子材料中聚合物的现代仪器分析测试技术及方法。重点研究高分子材料中聚合物的微观结构与宏观性能之间内在的关系和一般规律。为评价高分子材料的质量、改性及新材料研究提供重要的依据。本课程是高分子材料与工程专业必修的技术专业课之一,旨在使学生具备有机聚合物材料结构分析表征所需的基础理论、基础知识和基本技能。课程的主要目的和任务是阐明有机聚合物材料科学领域中化学方法

和主要的仪器研究方法,使学生掌握各种研究方法的原理、适用范围和实验手段,为以后从事各类材料的组成剖析和开发研究打下良好的基础。 三、课程基本要求 1.了解重要的基本概念及其来源、含义与适用范围。 2.熟悉掌握化学分析和主要仪器分析方法的基本原理,了解各种分析方法的应用范围。 3.能运用所学理论及方法,分析测试常见有机聚合物材料的结构、成分等简单问题。 4.能初步综合运用所学知识,解决有机聚合物材料剖析与开发中的实际问题。 四、与其它课程的联系 本课程的先修课主要是有机化学、高分子化学和高分子物理。联系较多的是与有机聚合物的聚集态、物理化学性质,组成聚合物的有机单体中特征官能团的化学及波谱表征方法等内容。以上课程中的有关内容,在本课程中均属应用,未有重复。本课程应着重讲授运用化学分析及重要仪器分析方法,研究有机聚合物材料结构成分等有关内容。 五、大纲内容和要求 第一章绪论 1、材料研究方法的研究对象 2、材料研究方法的一般程序 3、发展方向和动态 要求学生了解材料研究方法的研究对象和任务、一般程序、发展方向和动态。并能按照指定参考书籍和国内外相关学科的期刊资料,经常阅读跟踪了解该学科的发展前沿。 第二章化学分析法 1、聚合物初步检验

材料研究方法真题集

1.X射线与物质相互作用时会产生那些效应?利用其中那些效应可以进行晶体结构的分析鉴定?如何利用X射线衍射分析法鉴定晶态与非晶态? 2.画出晶体对X射线衍射的示意图,写出布拉格方程,并说明该方程中各参数的意义。3.X射线衍射方法在材料研究中有哪些应用?请具体阐述。 4.请阐述电子与固体物质相互作用时产生的各种电子信号,并介绍这些电子信号在材料分析研究中的各种用途。 5.试讨论加热速度、试样颗粒度、炉内压力和气氛对差热分析结果的影响,为什么说差热分析只能进行定性或半定量分析,而示差扫描量热分析法则可以进行定量分析? 6.通常在一张NMR谱图中可以得到哪些基本信息?并举例说明NMR在材料结构分析中的应用。 7.影响热重曲线的因素有哪些?如何保证热重分析的精确度?举例说明热重分析在材料研究中的应用 8.请介绍透射电镜分析时的块状样品表面复型种类和复型方法。为何电子显微分析可以获得较光学显微分析高得多的分辨。 9.请阐述电子探针X射线显微分析的基本原理和应用,并比较两种常用的X射线谱仪——波谱仪和能谱仪的特点。 10.如何利用差热分析、热重分析和热膨胀分析来区分无机材料中的脱水分解、氧化、多晶转变、烧结等过程? 11.微晶玻璃是一种在玻璃基体中均匀析出所需微晶相的新材料,在微晶玻璃材料研究过程中,需要掌握玻璃转变温度Tg、析晶温度、析出晶体的晶相种类、以及析出晶体尺寸形貌等物性数据。通过哪些测试方法可以方便地获得这些数据?并请介绍在这些测试图谱中获取所需数据的具体过程。 12.有机高分子材料的TEM和SEM的试样有哪些特点。 13.试画出有机高分子材料DSC的特征曲线,并说出相应的焓变峰或转变区的物理化学含义。 14.试阐述红外光谱分析的基础以及应用。 15.什么是斯托克斯线、反斯托克斯线,试说明拉曼光谱与红外光谱是互补的。 4. 请阐述电子与固体物质相互作用时产生的各种电子信号那些信号可以用于晶体研究? 5. DTA曲线用什么作为反应起始温度,为什么? 6. 何谓自旋偶合? 何谓自旋分裂? 它们在NMR分析中有何重要作用? 7.下列化合物中OH的氢核,何者处于较低场? 为什么? 8.按化学位移值的大小,将下列每个化合物的核磁共振信号排列程序。 (1) CH3CH2OCH2CH3 (2) CH3CHO (3) Cl2CHCH2Cl 1.电子束轰击到固体样品表面会产生哪些主要物理信号?研究材料的表面形貌一般收集哪种物理信号?并说明其衬度原理研究材料表面元素分原布状况应收集哪些信息,并收明其衬

材料研究方法作业答案

材料研究方法作业答案

材料研究方法

第二章思考题与习题 一、判断题 √1.紫外—可见吸收光谱是由于分子中价电子跃迁产生的。 ×2.紫外—可见吸收光谱适合于所有有机化合物的分析。 ×3.摩尔吸收系数的值随着入射波光长的增加而减少。×4.分光光度法中所用的参比溶液总是采用不含待测物质和显色剂的空白溶液。 ×5.人眼能感觉到的光称为可见光,其波长范围是200~400nm。 ×6.分光光度法的测量误差随透射率变化而存在极大值。 √7.引起偏离朗伯—比尔定律的因素主要有化学因素和物理因素,当测量样品的浓度极大时,偏离朗伯—比尔定律的现象较明显。 √8.分光光度法既可用于单组分,也可用于多组分同时测定。 ×9.符合朗伯—比尔定律的有色溶液稀释时,其最大吸

收波长的波长位置向长波方向移动。 ×10.有色物质的最大吸收波长仅与溶液本身的性质有关。 ×11.在分光光度法中,根据在测定条件下吸光度与浓度成正比的比耳定律的结论,被测定溶液浓度越大,吸光度也越大,测定的结果也越准确。() √12.有机化合物在紫外—可见区的吸收特性,取决于分子可能发生的电子跃迁类型,以及分子结构对这种跃迁的影响。() ×13.不同波长的电磁波,具有不同的能量,其大小顺序为:微波>红外光>可见光>紫外光>X射线。()×14.在紫外光谱中,生色团指的是有颜色并在近紫外和可见区域有特征吸收的基团。() ×15.区分一化合物究竟是醛还是酮的最好方法是紫外光谱分析。() ×16.有色化合物溶液的摩尔吸光系数随其浓度的变化而改变。() ×17.由共轭体系π→π*跃迁产生的吸收带称为K吸收带。() √18.红外光谱不仅包括振动能级的跃迁,也包括转动能级的跃迁,故又称为振转光谱。() √19.由于振动能级受分子中其他振动的影响,因此红

开题报告“研究步骤、方法和措施”栏目填写方法

开题报告“研究步骤、方法和措施”栏目填写方法 栏目填写方法本栏目由开题者(学生)填写。要求回答本课题怎样研究的问题。可以分三个层次表述:即研究步骤、研究方法、研究措施。 1.研究步骤 研究步骤,也称写作步骤、写作程序等,具体指从提出问题到撰写成文的各个阶段。填写时可以如下表述: 第一步,选题; 第二步,搜集、阅读和整理资料; 第三步,证论与组织(拟写开题报告); 第四步,撰写成文;第五步,论文修改与定稿;第六步,外文翻译。 为了使同学们对六个步骤有一个明晰的印象,以下逐个给予简单的介绍。 第一步,选题。 即选择研究课题,确定主攻方向,是撰写论文的第一步,是具有战略意义的大事。选题必须符合选题原则。 选题恰当与否直接关系到研究成果的质量水平。选题有导师命题分配和学生自拟自定两种方法。题目选择恰当,等于论文成功了一半。 第二步,搜集与阅读整理资料。 论文题目选好以后,接着就要搜集资料,进行知识积累。“巧妇难为无米之炊”,没有资料就无法进行科学研究。搜集资料要发挥高度的主观能动性,想方设法得到自己需要的东西。 资料来源主要有两个方面:一是文献资料;二是科学实验、观察、调查。 先谈谈文献资料的问题,文献资料是前人从事科学研究的总结。科学研究总是在前人研究的基础上进行的,有着继承性和连续性。我们要了解本课题研究的历史和现状、掌握动向、吸取经验教训、开扩思路、进行比较、做出判断等等,都需要参考资料,从中得到借鉴、印证、补充和依据。这些都是写作论文的必要素材。 再谈谈搜集科学实验、观察、调查材料的问题。科学实验是人们为暴露事物内部矛盾,揭示事物本质及其规律,发现其内部的矛盾而进行的变革研究对象

材料研究方法作业集合及复习思考题

第五章:热分析作业: 1、功率补偿型DSC和DTA的区别? 答:功率补偿型DSC分别有两个小加热器和传感器对试样和参比物加热和监控,从而消除试样和参比物的温度差,而DTA则没有这一功能。 2、热流型DSC和DTA的异同点? 答:热流型DSC与DTA仪器十分相似,不同之处在于试样与参比物托架下,置一电热片(通常是康铜),加热器在程序控制下对加热块加热,其热量通过电热片同时对试样和参比物加热,使之受热均匀。仪器所测量的是通过电热片流向试样和参比物的热流之差。 3、功率补偿型DSC和热流型DSC的异同点? 答:功率补偿型DSC采用零点平衡原理,通过两个小加热器和传感器对试样和参比物加热和监控,从而使两者温度恒定相等;热流型DSC主要通过加热过程中试样吸收/放出热量的流量来达到DSC分析的目的。 4、简述热分析的原理 答:在程序控制温度下,测量物质的物理性质随温度变化的一类技术称之为热分析。差热分析的原理:是在程序温度控制(升温或降温)下,测量试样与参比物(热惰性物质)之间的温度差与温度关系的一种技术。差示扫描量热分析原理:是在程序温度控制下,测量输入到物质和参比物之间的功率差与温度的关系的一种技术。 5、影响热分析的仪器、试样、操作因素有哪些? 答: 1.仪器方面: (1)炉子的结构和尺寸:炉膛直径↓长度↑均温区↑,均温区温度梯度↓ (2)坩埚材料和形状: 金属热导性能好,基线偏离小,但灵敏度较低,峰谷较小。 非金属热导性能差,容易引起基线偏离。但灵敏度高,少样品大峰谷。 坩埚直径大,高度小,试样容易反应,灵敏度高,峰形也尖锐。 (3)热电偶性能与位置:置于物料中心点,插入试样和参比物应具有相同深度。 2.试样方面: (1)热容量和热导率变化: ①在反应前后,试样的热容量和热导率变化 1文档来源为:从网络收集整理.word版本可编辑.

材料研究方法

核磁共振在分子筛催化剂表征中的研究应用 摘要 核磁共振己经发展成为一种不可取代的工具,它常被用来作为化学分析、结构确定和研究有机、无机以及生物体系的动力学的一种手段。核磁共振通常被用来表征合成产物的结构,是研究催化剂的强有力手段之一。介绍了固体核磁共振的基本原理及魔角旋转、高功率质子去耦、交叉极化、多脉冲同核去耦以及四级核的信号增强等一系列相关操作技术,综述了核磁共振在催化剂表征中的一些研究进展。 关键词:核磁共振;原理;催化剂;谱图表征

Application of NMR in Characterization of Molecular Sieve Catalysts Abstract NMR has evolved into an irreplaceable tool for chemical analysis, structural determination, and study of the dynamics of organic, inorganic, and biological systems. Nuclear magnetic resonance is often used to characterize the structure of synthetic products and is one of the powerful means of studying catalysts. The basic principles of solid-state NMR and the related operating techniques such as magic angle rotation, high power proton decoupling, cross polarization, multi-pulse homonuclear decoupling and four-stage nuclear signal enhancement are introduced. The characterization of NMR in catalysts is reviewed. Some of the research progress. Key words:Nuclear magnetic resonance;Principle;Catalyst;Spectral representation

材料研究方法考试

1、相比于纯铜而言,青铜具有哪些明显的优点? 答:更坚韧,更耐磨。 2、请分别画出传统材料与环境材料的材料-环境系统示意图。 3、请画出材料科学与工程学科的四要素(四面体)。请用该四面体来分析不锈钢和普通碳钢这两种材料。 答:性能:不锈钢密度略低于普通碳钢,而电阻率高于普通碳钢, 不锈钢的线膨胀系数较大,而热导率较低。不锈钢具有焊接性,耐腐蚀性,抛光性。 结构成分:普通碳钢的质量分数小于2.11%而不含有特意加入的合金元素,即以铁,碳,锰为主要元素的合金,所以机械性能通常不如合金钢; 不锈钢隶属于合金钢范畴,一种高合金钢,含有大量的铬,还有的含有大量的镍和一定量的钛。铬的作用就是让钢具有耐腐蚀性,镍的作用是降低不锈钢的奥氏体化温度。合金元素的总含量可达到10~28%,所以它是高合金钢。 制备加工:普通碳钢:的冶炼通常在转炉、平炉中进行。转炉一般冶炼普通碳素钢,而平炉可以冶炼各种优质钢。近年来氧气顶吹转炉炼钢技术发展很快,有趋势可代替平炉炼钢。 不锈钢:在钢的冶炼是加入适当的铬、镍、钛等元素,这些元素的含量决定了不锈钢的牌号及防锈性能,冶炼好浇铸或连铸成毛坯,再经过轧机轧成各种规格的钢板及型材,轧好的钢板及型材还可以在表面进行拉丝和抛光处理,改善外观效果。 4、什么是纳米材料?材料的纳米效应有哪些?请举例说明其中的“量子效应”。答:纳米材料是指在三维空间中至少有一维处于纳米尺寸(0.1-100 nm)或由它们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。纳米效应:尺寸、晶界、量子→纳米结构表征。美国1995年提出麻雀卫星,重量不足10千克,用纳米材料制造,采用微机电体化集成技术整合。若在太阳同步轨道. 上布置648颗纳米卫星,就可以全面监视地球。 5、材料科学有哪些共性规律?

材料研究方法作业答案

材料研究方法

第二章思考题与习题 一、判断题 √1.紫外—可见吸收光谱是由于分子中价电子跃迁产生的。 ×2.紫外—可见吸收光谱适合于所有有机化合物的分析。 ×3.摩尔吸收系数的值随着入射波光长的增加而减少。 ×4.分光光度法中所用的参比溶液总是采用不含待测物质和显色剂的空白溶液。 ×5.人眼能感觉到的光称为可见光,其波长范围是200~400nm。 ×6.分光光度法的测量误差随透射率变化而存在极大值。 √7.引起偏离朗伯—比尔定律的因素主要有化学因素和物理因素,当测量样品的浓度极大时,偏离朗伯—比尔定律的现象较明显。 √8.分光光度法既可用于单组分,也可用于多组分同时测定。 ×9.符合朗伯—比尔定律的有色溶液稀释时,其最大吸收波长的波长位置向长波方向移动。 ×10.有色物质的最大吸收波长仅与溶液本身的性质有关。 ×11.在分光光度法中,根据在测定条件下吸光度与浓度成正比的比耳定律的结论,被测定溶液浓度越大,吸光度也越大,测定的结果也越准确。() √12.有机化合物在紫外—可见区的吸收特性,取决于分子可能发生的电子跃迁类型,以及分子结构对这种跃迁的影响。() ×13.不同波长的电磁波,具有不同的能量,其大小顺序为:微波>红外光>可见光>紫外光>X射线。() ×14.在紫外光谱中,生色团指的是有颜色并在近紫外和可见区域有特征吸收的基团。() ×15.区分一化合物究竟是醛还是酮的最好方法是紫外光谱分析。() ×16.有色化合物溶液的摩尔吸光系数随其浓度的变化而改变。() ×17.由共轭体系π→π*跃迁产生的吸收带称为K吸收带。() √18.红外光谱不仅包括振动能级的跃迁,也包括转动能级的跃迁,故又称为振转光谱。() √19.由于振动能级受分子中其他振动的影响,因此红外光谱中出现振动偶合谱带。() ×20.确定某一化合物骨架结构的合理方法是红外光谱分析法。() ×21.对称分子结构,如H2O分子,没有红外活性。() √22.分子中必须具有红外活性振动是分子产生红外吸收的必备条件之一。() √23.红外光谱中,不同化合物中相同基团的特征频率总是在特定波长范围内出现,故可以根据红外光谱中的特征频率峰来确定化合物中该基团的存在。() ×24.不考虑其他因素的影响,下列羰基化合物的大小顺序为:酰卤>酰胺>酸>醛>酯。() √25.傅里叶变换型红外光谱仪与色散型红外光谱仪的主要差别在于它有干涉仪和计算机部件。()√26.当分子受到红外光激发,其振动能级发生跃迁时,化学键越强吸收的光子数目越多。() ×27.游离有机酸C=O伸缩振动v C=O频率一般出现在1760cm-1,但形成多聚体时,吸收频率会向高波数移动。() 二、选择题 1.在一定波长处,用2.0 cm吸收池测得某试液的百分透光度为71%,若改用3.0 cm吸 收池时,该试液的吸光度A为(B) (A)0.10 (B)0.22 (C)0.45 2.某化合物浓度为c1,在波长λ1处,用厚度为1 cm的吸收池测量,求得摩尔吸收系数为ε1,在浓度为3 c1时,在波长λ1处,用厚度为3 cm的吸收池测量,求得摩尔吸收系数为ε2。则它们的关系是(A)(A)ε1=ε2(B)ε2=3ε1(C)ε2>ε1

相关文档
最新文档