高等数学期末复习要点

高等数学期末复习要点
高等数学期末复习要点

高等数学期末考试复习要点 定积分部分知识点及典型例题

1.若函数()y f x =在闭区间[,]a b 连续,则在()y f x =在闭区间[,]a b 上可积。 典型例题:下列函数中,在区间[2,2]-可积的函数是: 。

22111,,ln(1),,sin 11

y y x y x y y y x x x ===+===+-。

2.变上限定积分求导数:()()x

a

d f t dt f x dx =?。

典型例题:(1

0sin x d dx =? ;(2

)1sin x d dx

=? ; (3)2

1

cos 2

lim

t x

x e dt x

-→=?

3.定积分的计算牛顿—莱布尼兹公式()()|()()b b a a

f x dx F x F b F a ==-?,其中主要用到不定积分主要公式?

dt t α、

?dt t 1、?dt e t

、?tdt sin 、?tdt cos ,凑微分法等。

典型例题:计算下列定积分(1

)8

?

(2

)0

?,

(3

)2

1

e ?,

(4

)1

?

4.对称区间奇偶函数的定积分的性质:若()f x 是奇函数,则

()0a

a

f x dx -=?

;若()f x 是偶函数,则

()2()a

a

a

f x dx f x dx -=?

?;。

典型例题:(1)1

21sin 1-=+?x

dx x ;(2)cos ||-=?x dx ππ ; (3

3

23

(sin x x --=?

;(4

)1

31

(4--=?x ;

5.定积分的几何意义。

典型例题:利用几何意义直接求下列积分(1

)3

-?

;(2

)0

?

6.0>a ,广义积分dx x

a

?

+∞

α1

收敛、发散的充要条件。 典型例题:

(1)指出反常积分

11

+∞

?p dx x 何时收敛,何时发散?

(2

)判断下列积分的敛散性:1+∞?,311dx x +∞?,611

dx x +∞?。 7.定积分应用:

1)求平面曲线所围成图形的面积:由曲线()(()0)y f x f x =≥,直线,x a x b ==以及x 轴围成的曲边梯形的面积为()b

a f x dx ?;

2)旋转几何体的体积:由曲线()(()0)y f x f x =≥,直线,x a x b ==以及x 轴围成的曲边梯形绕x 轴旋转一周形成的旋转几何体的体积为2[()]b

a f x dx π?。

3)已知边际函数()f x ',则0

()(0)()x

f x f f t dt '=+?。

典型例题:

(1)计算由曲线x y =、1=xy 及2=x 围成的平面图形的面积。

(2)计算由抛物线2

42x y -=与直线2=-x y 所围成的平面图形的面积。

(3)计算由曲线2

2

,4y x y x ==-所围成的平面图形绕x 轴旋转一周产生的旋转体的体积。 (4)生产某产品x 单位的边际收入为()20050

'=-

x

R x (元/单位):a.求生产100单位时的总收入及平均收入;b.求再多生产10单位时所增加的总收入与平均收入。

多元函数部分知识点及典型例题

1、 求已知多元函数的偏导数及全微分。 以二元函数(,)z f x y =为例,0

(,)(,)lim

x f x x y f x y z x

x

?→+?-?=??,0(,)(,)lim y f x y y f x y z

y y ?→+?-?=??,()()

22222,,z z z z z z x x x y y x y y x y ???????????=== ?

????????????。注意:对哪个自变量求偏导数,则将其余自变量看成

常数。全微分公式z z dz dx dy x y

??=+??。

典型例题:

(1)已知2

2

sin()=++z x xy y ,求

22222,,,,???????????z z z z z

x y x x y y

。 (2)已知22

sin()=++u x y z ,求du 。

2、 复合函数求导及隐函数的导数。 1) 复合函数导数的链式法则:

设(,),(,),(,)z f u v u x y v x y ?ψ===,则f f z u v x

u x v x ?????=

+

?????,f f z u v

y u y v y

?????=+?????。 2) 隐函数的导数:

由方程(,)0F x y =所确定的一元隐函数()y f x =的导数

x y

F dy

dx F =-。 由方程(,,)0F x y z =所确定的二元隐函数(,)z z x y =的偏导数

,y x z z

F F z z x F y F ??=-=-??。 典型例题: (1

)已知233cos ,,=

==-z v u x y v y x ,求

,

????z z x y

。 (2)求由方程2

32

10x yz

e

x y z +-+=所确定的二元隐函数(,)z z x y =的偏导数。 3、 半抽象函数的一阶偏导数。

若(,)f u v 可偏导,且((,),(,))z f x y x y ?ψ=,则1

2

z f f x

x x

???=+???,12z f f y y y ?ψ???=+???。 典型例题:

(1)已知一元函数()u ?可微,232

()=+-z x x y ?求

,????z z x y

。 (2)已知二元函数(,)f u v 可微,22

(sin(),)=+-z f x y x y ,求

,????z z x y

4、 求一个已知二元函数(,)z f x y =的极值。 步骤:1)令(,)0,(,)0x y f x y f x y ==,求得驻点。

2)求二阶导数22222

,,z z z

A B C x y x y ???===????。 3)在每个驻点处求2B AC -,若2

0B AC ->,则驻点是极值点。进一步,0A >时,驻点为极小

值点;0A <时,驻点为极大值点。

典型例题:

(1)求x y x y x y x f 933),(2

2

3

3

-++-=的极值。

(2)要造一个容量一定的长方体箱子,问怎样的尺寸,才能使所用的材料最省。 5、 直角坐标系下

??D

dxdy y x f ),(的计算及交换二次积分的顺序。

1)二重积分的计算步骤:

a .画图,用不等式表示积分区域D (注意X 型与Y 型区域的选择)。

b .将二重积分根据a 转化为二次积分,然后逐次计算。

2)交换积分次序是指将X 型区域上的二次积分转化主Y 型区域上的二次积分,或者是将Y 型区域上的二次积分转化主X 型区域上的二次积分。

典型例题:

(1)交换二次积分?

?1

),(y

dx y x f dy 的积分次序。

(2)交换二次积分

2

2

1

(,)??x x dx f x y dy 的积分次序。

(3)计算二重积分??xy D

xe d σ,{(,)|01,01}=≤≤≤≤D x y x y 。

(4)计算二重积分

sin ??D

x dxdy x ,其中D 是由直线=y x 及抛物线2

=y x 围成的区域。 微分方程部分知识点及典型例题

1、 微分方程的基本概念:微分方程,阶,解(通解,特解),初始条件。

2、 可分离变量微分方程()()y f x g y '=求解:

1) 分离变量

1()()

dy f x dx g y =。 2) 两端积分1()()

dy f x dx g y =??。

3) 化简整理

3、 一阶线性微分方程()()y p x y q x '+=的求解:

1) 当()0q x =时,称为齐次方程,此时方程为()0y p x y '+=为可分离变量方程,用分离变量法可

求得其通解为()p x dx

y Ce -?=

2) 当()0q x ≠时,()()y p x y q x '+=称为非齐次方程,其求解步骤为:

a . 写出对应的齐次方程()0y p x y '+=,求得其通解()p x dx

y Ce -?=。

b . 将齐次方程通解中的C 变易为一个函数()u x ,设非齐次方程的通解为()()p x dx y u x e -?=。

c . 将()()p x dx y u x e -?=代入非齐次方程得()()()p x dx

u x q x e ?'=,所以()()()p x dx u x q x e dx C ?=+?

d . 由上一步可知非齐次方程的通解为()()[()]p x dx

p x dx

y q x e dx C e -?

?=+?

典型例题:

(1)微分方程05)(23

2

2=+-xy dx dy dx

y d x 是 阶微分方程。 (2)微分方程

y x dx

dy

23=的通解是 。 (3)方程0y xy '+=的通解是 。

(4)求微分方程

()3

112+=+-x y x dx dy 的通解。 (5)求微分方程2

2--=x dy xy xe dx

满足初始条件(0)1y =的特解。

线性代数部分部分知识点及典型例题

1、 计算行列式: 1) 行列式的性质。

2) 三角行列式与对角行列式的值等于其对角线元素的乘积。

3) 降阶法,即行列式展开:行列式的值等于其某一行(一列)元素与各自代数余子式的乘积之和。 典型例题:

(1)如果3332

31

232221

131211

a a a a a a a a a D ==1,33

32

3131

2322212113

1211111324324324a a a a a a a a a a a a D ---== 。 (2)

01

2

21≠--k k 的充分必要条件是 。

(3)计算24

52

,122

134213

(4)设A=?

?

?

???d c b a ,则A *=_________.

2、 矩阵乘法。

1) 矩阵m n A ?与s t B ?能进行矩阵乘法的条件是A 的列数等于B 和行数,即m s =。

2) 若()ij m n A a ?=与()ij n t B b ?=,则其乘积()ij m t C AB c ?==,其中1122ij i j i j in nj c a b a b a b =+++L 。 典型例题:

(1)已知)013(=A ,???

?

?

??--=5304

12

B ,则=AB 。 (2)已知)013(=A ,212??

?

= ? ???

B ,则=AB ;BA= 。

(3)矩阵A 与B 能进行乘积运算AB 的充要条件是 。

3、 利用行变换求矩阵的秩。

矩阵的秩等于其行阶梯形矩阵所包含的非零行的个数。

典型例题:

(1)已知214284?? ?

=-- ? ?--??

A ,11

21

0224203061103001-??

?

-- ?

= ?- ?

??

B ,则()=r A ;()=r B 。 4、 方阵可逆的充要条件,矩阵可逆时求逆矩阵。 1) n 阶方矩阵可逆的充要条件有: a .||0A ≠。 b .A 的秩为n 。

c .A 的行阶梯形矩阵不含有零行。A 的行简化阶梯形矩阵是单位矩阵。

d .A 经初等变换可变换为单位矩阵。

2)求方阵的逆矩阵的方法:

a .伴随矩阵法1*

1||

A A A -=;

b .初等变换法()()A E E B →M

M ,则1A B -=。 典型例题:

(1)用伴随矩阵法判断矩阵2132??=

?

??

A 是否可逆?如果可逆,求1

-A 。 (2)判断矩阵114012210?? ?= ? ?-??

A ,是否可逆?如果可逆,求1

-A 。

5、 非齐次线性方程组11???=m n n m B X A 无解、有解、有唯一解、有无穷多解的充要条件,一个具体的线性方程组的求解。

1)设方程组11???=m n n m B X A 的增广矩阵为()C A B =M ,则方程组有解的充分必要条件是系数矩阵与增广矩阵的秩相等,即()()r A r C r ==。且:

当r n =时,只有唯一解;当r n <时,方程组有无穷多解。

2) 方程组11???=m n n m B X A 的求解步骤:

a .写出增广矩阵()C A B =M

,用初等变换将增广矩阵变换为阶梯形矩阵(最好是化成行简化阶梯形)。

b .写出对应的等价方程组,判断方程是否有解,如果有解。

c .如果有唯一解,则由最后一个方程组,可以写出解。如果有无穷多解,选取自由未知量(个

数为n -r ),写出通解。

典型例题:

(1)非性方程组AX B =有解的充分必要条件是系数矩阵的秩与增方矩阵的秩相等(或r(A)=r(A,B)) (2)求下列线性方程组的通解:

a )123412423412342214

3

39234-+-=-??--=??+-=??-+-=-?x x x x x x x x x x x x x x b )12341234

1231

23435123342585

371139x x x x x x x x x x x x x x x ++-=??++-=??++=??++-=? c)1231231

233342161845614+-=??-+=??++=?x x x x x x x x x

(3)计论方程组

123

123

123

2(1)1

46818

48816

kx x k x

x x x

x x kx

+-+=

?

?

++=

?

?++=

?

何时无解,何时有唯一解,何时有无穷多解。

最新高数期末考试题.

往届高等数学期终考题汇编 2009-01-12 一.解答下列各题(6*10分): 1.求极限)1ln(lim 1 x x e x ++ →. 2.设?? ? ??++++=22222ln a x x a a x x y ,求y d . 3.设?????-=-=3 232t t y t t x ,求22d d x y . 4.判定级数()()0!1 2≥-∑∞ =λλλn n n n n e 的敛散性. 5.求反常积分() ?-10 d 1arcsin x x x x . 6.求?x x x d arctan . 7.?-π 03d sin sin x x x . 8.将?????≤≤<=ππ πx x x x f 2,02,)(在[]ππ,-上展为以π2为周期的付里叶级数,并指出收敛于()x f 的区间. 9.求微分方程0d )4(d 2=-+y x x x y 的解. 10.求曲线1=xy 与直线0,2,1===y x x 所围平面图形绕y 轴旋转一周所得旋转体的体积. 二.(8分)将()()54ln -=x x f 展开为2-x 的幂级数,并指出其收敛域. 三.(9分)在曲线()10sin 2≤≤=x x y 上取点() ()10,sin ,2≤≤a a a A ,过点A 作平行于ox 轴的直线L ,由直线L ,oy 轴及曲线()a x x y ≤≤=0sin 2所围成的图形记为1S ,由直线L ,直线1=x 及曲线 ()1sin 2≤≤=x a x y 所围成的图形面积记为2S ,问a 为何值时,21S S S +=取得最小值. 四.(9分)冷却定律指出,物体在空气中冷却的速度与物体和空气温度之差成正比,已知空气温度为30℃时,物体由100℃经15分钟冷却至70℃,问该物体冷却至40℃需要多少时间? 五.(8分)(学习《工科数学分析》的做(1),其余的做(2)) (1)证明级数∑∞ =-02n nx e x 在[),0+∞上一致收敛. (2)求幂级数()∑ ∞ =-----1 221 21212)1(n n n n x n 的收敛域及和函数. 六.(6分)设()[]b a C x f ,2∈,试证存在[]b a ,∈ξ,使()()()()?''-+ ??? ??+-=b a f a b b a f a b dx x f ξ324 1 2

期末高等数学(上)试题及答案

1 第一学期期末高等数学试卷 一、解答下列各题 (本大题共16小题,总计80分) (本小题5分) 3 求极限 lim 一3x - x 2 2x 3 (本小题5分) 求 X 2 2 dx. (1 x ) (本小题5分) (本小题5分) 设函数y y (x )由方程y 5 in y 2 x 6 所确定,求鱼. dx (本小题5分) 求函数y 2e x e x 的极值 (本小题5分) 2 2 2 2 求极限lim & ° (2x ° (3x ° 辿」 x (10x 1)(11x 1) (本小题5分) cos2x d x. sin xcosx 二、解答下列各题 (本大题共2小题,总计14分) 3 . ---------- 求 x . 1 xdx . 5 sin x , 2—dx. 0 8 sin 2 x (本小题5分) 1、 2、 3、 4、 5、 6、 7、 8、 9、 10、 11、 12、 13、 14、 15、 16、 x 2的单调区间 设 x(t) e kt (3cos 4sin t), 求 dx . 12x 16 9x 2 12x .1 arcs in x 求极限 limarctan x x (本小题5分) 求—^dx. 1 x (本小题5分) 求—x .1 t 2 dt . dx 0 (本小题5分) 求 cot 6 x esc 4 xdx. (本小题5分) 求-1 1 , 求 cos dx. x x 5分) [曲2确定了函数y es int 5分) (本小题 设 x y (本小 y(x),求乎 dx

(本大题6分) 设f (x ) x (x 1)( x 2)( x 3),证明f (x ) 0有且仅有三个实根 一学期期末高数考试(答案) 、解答下列各题 (本大题共16小题,总计77分) 1、(本小题3分) lim 」^ x 2 12x 18 2、(本小题3分) (1 2 1 d(1 x ) 2 (1 x 2)2 1 1 2 1 x 2 3、(本小题3分) 故 limarctan x 4、(本小题3分) dx dx 」 dx dx 1 x x In 1 x c. 5、 (本小题3分) 原式 2x 1 x 4 6、 (本小题4分) .6 4 cot x csc xdx cot 6 x(1 cot 2 x)d(cot x) 1、(本小题7分) 某农场需建一个面积为 512平方米的矩形的晒谷场,一边可用原来的石条围 另三边需砌新石条围沿 2、(本小题7分) 2 求由曲线y -和y 2 三、解答下列各题 ,问晒谷场的长和宽各为多少时,才能使材料最省? 3 —所围成的平面图形绕 ox 轴旋转所得的旋转体的 8 沿, 体积. 解:原式 lim x 2 6x 3x 2~ 2 12 18x 12 c. 因为 arctanx —而 limarcsin 2 x .1 x arcs in x

同济大学大一 高等数学期末试题 (精确答案)

学年第二学期期末考试试卷 课程名称:《高等数学》 试卷类别:A 卷 考试形式:闭卷 考试时间:120 分钟 适用层次: 适用专业; 阅卷须知:阅卷用红色墨水笔书写,小题得分写在每小题题号前,用正分表示,不 得分则在小题 大题得分登录在对应的分数框内;考试课程应集体阅卷,流水作业。 课程名称:高等数学A (考试性质:期末统考(A 卷) 一、单选题 (共15分,每小题3分) 1.设函数(,)f x y 在00(,)P x y 的两个偏导00(,)x f x y ,00(,)y f x y 都存在,则 ( ) A .(,)f x y 在P 连续 B .(,)f x y 在P 可微 C . 0 0lim (,)x x f x y →及 0 0lim (,)y y f x y →都存在 D . 00(,)(,) lim (,)x y x y f x y →存在 2.若x y z ln =,则dz 等于( ). ln ln ln ln .x x y y y y A x y + ln ln .x y y B x ln ln ln .ln x x y y C y ydx dy x + ln ln ln ln . x x y y y x D dx dy x y + 3.设Ω是圆柱面2 2 2x y x +=及平面01,z z ==所围成的区域,则 (),,(=??? Ω dxdydz z y x f ). 21 2 cos .(cos ,sin ,)A d dr f r r z dz π θθθθ? ? ? 21 2 cos .(cos ,sin ,)B d rdr f r r z dz π θθθθ? ? ? 212 2 cos .(cos ,sin ,)C d rdr f r r z dz π θπθθθ-?? ? 21 cos .(cos ,sin ,)x D d rdr f r r z dz πθθθ?? ? 4. 4.若1 (1)n n n a x ∞ =-∑在1x =-处收敛,则此级数在2x =处( ). A . 条件收敛 B . 绝对收敛 C . 发散 D . 敛散性不能确定 5.曲线2 2 2x y z z x y -+=?? =+?在点(1,1,2)处的一个切线方向向量为( ). A. (-1,3,4) B.(3,-1,4) C. (-1,0,3) D. (3,0,-1) 二、填空题(共15分,每小题3分) 系(院):——————专业:——————年级及班级:—————姓名:——————学号:————— ------------------------------------密-----------------------------------封----------------------------------线--------------------------------

高等数学 简明二阶微分方程讲义

高等数学简明二阶微分方程讲义 作者:齐睿添 ————微分方程的理论帮助了很多工程学,物理学中实际 问题的解决 讨论0. 欧拉公式 欧拉公式在二阶线性齐次常系数方程通解的推导和其非齐次方程的自由项为三角函数时的求解过程中有重要的应用. 讨论1. 二阶常系数线性齐次微分方程 实际问题1. 如图,在水平光滑平面上有一物体在弹簧和阻尼器的牵拉下往复运动.阻力f的大小与物体运动速率成正比,阻力f的方向与速度方向相反(f=-cv).

物体的位置随时间如何变化? 设位置函数x=x(t) 已知: F弹=-kx,f=-cv 故由牛顿第二定律: 合力=-kx-cv=ma 即a+(c/m)v+(k/m)x=0 得到微分方程: 记 得到形如下式的方程(*) 这便是一个二阶常系数线性齐次微分方程. 其通解如下表所示: 特征方程

(上表的具体推导与证明详见教材P174-177) 可以发现其通解形式是符合物块运动的直观直觉的. 1)如果阻力很大,弹簧弹性弱,那么物块晃动两下很快就会停止. 这种情况下,列出方程的通解应是表中第一条或者第二条. 例如:取m=1kg, k=3, c=4, 一开始物块位置在+0.5m处, 给予它一个初速度-5 m/s. 我们依照数学习惯将时间(自变量)记为x, 将位置(因变量)记为y. 那么方程为: . 特征方程为,有两个不相等实根 通解为 把初值条件带入 求得 故该例的解为 图像

2)如果阻力很小,弹簧的弹性很强,那么物块将反复往返震荡,幅度随时间越来越小.这种情况下方程通解应是上表第三条. 例如: 取m=1kg,c=3,k=4,一开始物块位置在+0.5m处, 给予它一个初速度-5 m/s. 即为 带入初值条件 C_1=1/2, C_2=-17根号7/14 图像为

大学全册高等数学知识点(全)

大学高等数学知识点整理 公式,用法合集 极限与连续 一. 数列函数: 1. 类型: (1)数列: *()n a f n =; *1()n n a f a += (2)初等函数: (3)分段函数: *0102()(),()x x f x F x x x f x ≤?=?>?; *0 ()(), x x f x F x x x a ≠?=?=?;* (4)复合(含f )函数: (),()y f u u x ?== (5)隐式(方程): (,)0F x y = (6)参式(数一,二): () ()x x t y y t =??=? (7)变限积分函数: ()(,)x a F x f x t dt = ? (8)级数和函数(数一,三): 0 (),n n n S x a x x ∞ ==∈Ω∑ 2. 特征(几何): (1)单调性与有界性(判别); (()f x 单调000,()(()())x x x f x f x ??--定号) (2)奇偶性与周期性(应用). 3. 反函数与直接函数: 1 1()()()y f x x f y y f x --=?=?= 二. 极限性质: 1. 类型: *lim n n a →∞; *lim ()x f x →∞ (含x →±∞); *0 lim ()x x f x →(含0x x ± →) 2. 无穷小与无穷大(注: 无穷量): 3. 未定型: 000,,1,,0,0,0∞ ∞∞-∞?∞∞∞ 4. 性质: *有界性, *保号性, *归并性 三. 常用结论: 11n n →, 1(0)1n a a >→, 1()max(,,)n n n n a b c a b c ++→, ()00! n a a n >→

东北大学历年期末高等数学试题

八、高等数学试题 2005/1/10 一、填空题(本题20分,每小题4分) 1.已知==?? ? ??-+∞→a a x a x x x ,则9lim 2.设函数?????>+≤+=1 1 12)(2x b ax x x x f ,,,当a = ,b = 时,f (x )在x =1处可导。 3.方程017 =-+x x 共有 个正根。 4.当=x 时,曲线c bx ax y ++=2 的曲率最大。 5. ?=20sin π xdx x 。 二、选择题(本大题24分,共有6小题,每小题4分) 1.下列结论中,正确的是( ) (A )若a x n n =∞ →2lim ,a x n n =+∞ →12lim ,则a x n n =∞ →lim ; (B )发散数列必然无界; (C )若a x n n =-∞ →13lim ,a x n n =+∞ →13lim ,则a x n n =∞ →lim ; (D )有界数列必然收敛。 2.函数)(x f 在0x x =处取得极大值,则必有( )。 (A )0)(0='x f ; (B )0)(0<''x f ; (C )0)(0='x f 或)(0x f '不存在; (D )0)(0='x f 且0)(0<''x f 。 3.函数?= x a dt t f x F )()(在][ b a ,上可导的充分条件是:)(x f 在][b a ,上( ) (A )有界; (B )连续; (C )有定义; (D )仅有有限个间断点。 4.设?-+=2242 cos 1sin π πxdx x x M ,?-+=2243)cos (sin π πdx x x N ,?--=22 432)cos sin (π πdx x x x P ,则必有关系式( ) (A ) M P N <<;(B )P M N <<;(C )N P M <<;(D )N M P <<。 5.设)(x f y =在0x x =的某邻域内具有三阶连续导数,如果0)()(00=''='x f x f ,而0)(0≠'''x f ,则必有( )。 (A )0x 是极值点,))((00x f x ,不是拐点; (B )0x 是极值点,))((00x f x ,不一定是拐点; (C )0x 不是极值点,))((00x f x ,是拐点; (D )0x 不是极值点,))((00x f x ,不是拐点。 6.直线3 7423z y x L =-+=-+: 与平面3224=--z y x : π的位置关系是( ) (A )L 与π平行但L 不在π上; (B )L 与π垂直相交; (C )L 在π上; (D )L 与π相交但不垂直。 6.微分方程x x e xe y y y 3265+=+'-''的特解形式为( ) (A)x x cxe e b ax x y 32)(*++=; (B )x x e c x b ae y 32)(*++=;

同济大学版高等数学期末考试试卷

同济大学版高等数学期 末考试试卷 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

《高数》试卷1(上) 一.选择题(将答案代号填入括号内,每题3分,共30分). 1.下列各组函数中,是相同的函数的是( ). (A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ( )g x =(C )()f x x = 和 ( )2 g x = (D )()|| x f x x = 和 ()g x =1 2.函数() 00x f x a x ≠=?? =? 在0x =处连续,则a =( ). (A )0 (B )1 4 (C )1 (D )2 3.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ). (A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ). (A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微 5.点0x =是函数4y x =的( ). (A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点 6.曲线1 || y x = 的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7.211 f dx x x ??' ????的结果是( ). (A )1f C x ?? -+ ??? (B )1f C x ?? --+ ??? (C )1f C x ??+ ??? (D )1f C x ?? -+ ???

(完整word版)高等数学辅导讲义

第一部分函数极限连续

历年试题分类统计及考点分布 本部分常见的题型 1.求分段函数的复合函数。 2.求数列极限和函数极限。 3.讨论函数连续性,并判断间断点类型。 4.确定方程在给定区间上有无实根。

一、 求分段函数的复合函数 例1 (1988, 5分) 设2 (),[()]1x f x e f x x ?==-且()0x ?≥,求()x ?及其定义域。 解: 由2 ()x f x e =知2 ()[()]1x f x e x ??==-,又()0x ?≥, 则()0x x ?=≤. 例2 (1990, 3分) 设函数1,1 ()0,1 x f x x ?≤?=?>??,则[()]f f x =1. 练习题: (1)设 1,1, ()0,1,(),1,1, x x f x x g x e x ??求[()]f g x 和[()]g f x , 并作出这 两个函数的图形。 (2) 设 20,0,0,0, ()(), ,0,,0, x x f x g x x x x x ≤≤??==??>->??求 [()],[()],[()],[()]f f x g g x f g x g f x . 二、 求数列的极限 方法一 利用收敛数列的常用性质 一般而言,收敛数列有以下四种常用的性质。 性质1(极限的唯一性) 如果数列{}n x 收敛,那么它的极限唯一。 性质2(收敛数列的有界性)如果数列{}n x 收敛,那么数列{}n x 一定有界。 性质3(收敛数列的保号性) 如果lim n n x a →∞ =,且0a >(或0a <),那么存在 0n N +∈,使得当0n n >时,都有0n x >(或0n x <). 性质4(数列极限的四则运算法则) 如果,,lim lim n n n n x a y b →∞ →∞ ==那么 (1)()lim n n n x y a b →∞ ±=±; (2)lim n n n x y a b →∞ ?=?; (3)当0()n y n N +≠∈且0b ≠时,lim n n n x a y b →∞ =.

需要掌握的高等数学知识

高等数学(微积分、微分方程、数理方程) 一、极限 1.定义; 2.序列的极限; 3.函数的极限; 4.极限的运算。 二、函数 1.连续; 2.奇函数和偶函数; 3.复合函数; 4.函数的几种表示方法; 5.常用的几种初等函数及其性质; 6.隐函数。 三、导数与微分、偏导数与全微分 1.导数与偏导数的计算; 2.复合函数和隐函数的导数与偏导数的计算; 3.微分与全微分的计算; 4.一阶微分的形式不变性。 四、矢量分析和场论 1.梯度、散度、旋度的定义及计算; 2.矢量的导数。 五、导数与微分的应用 1.切线方程; 2.函数的增减、凸凹及拐点; 3.极值、最值; 4.曲率; 5.条件极值; 6.渐近线。 六、Taylor级数 1.Taylor级数公式; 2.函数的级数展开; 3.级数的收敛性及收敛半径; 4.级数的求和; 5.常用的Taylor级数。 七、不定积分 1.不定积分的基本性质; 2.分部积分法; 3.换元积分法; 4.简单的不定积分公式。 八、定积分 1.定积分的定义及几何意义; 2.定积分的基本性质; 3. 分部积分法; 4.换元积分法; 5.奇函数与偶函数在对称区间上的积分。 6.积分号F的微商; 7.广义积分; 8.积分的应用。 九、曲线积分、曲面积分和重积分 1.定义; 2.性质; 3.计算; 4.应用。 十、Fourier级数 1.正弦级数与余弦级数; 2.复数形式的Fourier级数;

3.任意函数的Fourier级数; 4.解析延拓。 十一、常微分方程 1.一阶线性常微分方程; 2.二阶常系数线性常微分方程; 3.Euler方程。 十二、偏微分方程 1.二阶线性偏微分方程的分类; 2.分离变量法; 3.本征值问题; 4.球坐标系,柱坐标系和平面极坐标系中的Laplace算子。 参考书: a). 《高等数学》(第三版)同济大学数学教研室主编,高等教育出版社1996年 b). 《高等数学讲义》樊映川编高等教育出版社1989年 c).《数学物理方法》梁昆淼编高等教育出版社1998年

高等数学期末模拟考试卷(含答案)

高等数学(上)模拟试卷一 一、 填空题(每空3分,共42分) 1 、函数lg(1)y x =-的定义域是 ; 2、设函数 20() 0x x f x a x x ?<=? +≥?在点0x =连续,则a = ; 3、曲线 4 5y x =-在(-1,-4)处的切线方程是 =0 ; 4、已知3 ()f x dx x C =+? ,则()f x = ; 5、2 1lim(1) x x x →∞ -= ; 6、函数32 ()1f x x x =-+的极大点是 ; 7 设 ()(1)(2)2006) f x x x x x =---……(,则 (1)f '= ; 8、曲线x y xe =的拐点是 ; 9、2 1x dx -? = ; 10 、 设 32,a i j k b i j k λ=+-=-+, 且 a b ⊥,则 λ= ; 11、2 lim()01x x ax b x →∞--=+,则a = ,b = ; 12、 3 11 lim x x x -→= ; 13、设()f x 可微,则 ()()f x d e = 。 二、 计算下列各题(每题5分,共20分) 1、 11 lim( ) ln(1)x x x →-+ 2、y =y '; 3、设函数()y y x =由方程 xy e x y =+所确定,求0x dy =; 4、已知cos sin cos x t y t t t =?? =-?,求dy dx 。 三、 求解下列各题(每题5分,共20分) 1、4 21x dx x + ? 2、2 sec x xdx ? 3、 40? 4、22 01 dx a x + 四、 求解下列各题(共18分): 1、求证:当0x >时, 2 ln(1)2x x x +>- (本题8分) 2 、求由,,0x y e y e x ===所围成的图形的面积,并求该图形绕x 轴旋转 一周所形成的旋转体的体积。(本题10分) 高等数学(上)模拟试卷二 一、填空题(每空3分,共42分) 1、函数lg(1)y x -的定义域是 ; 2、设函数sin 0()20x x f x x a x x ?

历年高等数学期末考试试题

2008-2009学年第一学期期末试题 一、填空题(每题5分,共30分) 1.曲线1ln()y x e x =+的斜渐近线方程是________________________ 2.若函数)(x y y =由2cos()1x y e xy e +-=-确定,则在点(0,1)处的法线方程是________ 3.设()f x 连续,且21 40 ()x f t dt x -=? ,则(8)______f = 4.积分 20 sin n xdx π =? ___________________ 5.微分方程044=+'+''y y y 的通解为_____________ 6 .曲边三角形y = 0,1y x ==绕x 轴旋转所得的旋转体体积为_________ 二.选择题(每题3分,共15分) 1.当0x +→ ) () A 1- () B () C 1 () D 1-2. 若1()(21)f x x x ??=-???? ,则()f x 在( )处不连续 ()A 3x = ()B 2x = ()C 12x = ()D 13 x = 3.若()sin cos f x x x x =+,则( ) ()A (0)f 是极大值,()2f π是极小值, ()B (0)f 是极小值,()2f π 是极大值 ()C (0)f 是极大值,()2f π 也是极大值 ()D (0)f 是极小值,()2 f π 也是极小值 4.设线性无关的函数123,,y y y 都是二阶非齐次线性方程()()()y p x y q x y f x '''++=的解, 12,c c 是任意常数,则该方程的通解为( ) ()A 11223c y c y y ++, ()B 1122123()c y c y c c y +-+, ()C 1122123(1)c y c y c c y +---, ()D 1122123(1)c y c y c c y ++--, 5.极限2 1 33lim ( )n n i i n n n →∞=-∑可表示为( ) ()A 2 2 13x dx -? ()B 1 2 03(31)x dx -? ()C 2 2 1 (31)x dx --? () D 1 20 x dx ?

经典的考研数学辅导书比较

考研数学辅导书比较,一个比较经典的帖子,重温一下。 1.李永乐考研数学复习全书 题型很全面,内容很充实(线代和概率很不错,微积分稍逊)难度要高于真题,所谓的简单是命题的风格 很常规,没有什么剑走偏锋让人一下傻眼的题,考研真题不正是这样的吗? 做熟练(我不知道怎么叫做透哈)120以上真不难,135以上就要看临场发挥。 --------------------------------------------------------------------------------------------------------------------------------------------------------- 2.陈文灯考研数学复习指南 个别题其实已经很陈旧了,难度也有被夸大的嫌疑。很大一部分也是注重基础的题只是不像全书加以强调 和总结,微积分部分题型归纳很好,个别题有难度(真不多),但有助于锻炼思维。线代和概率内容显单 薄。 PS:无穷级数,积分,不等式证明,泰勒公式,中值定理等是精华,做过思路会很清晰。传说,考高分要 做指南,我想,是因为指南在你有一定基础之后,能对你的思维有一个提炼吧。 --------------------------------------------------------------------------------------------------------------------------------------------------------- 3.蔡燧林考研数学标准全书 微积分部分例题精华,讲解很深入,给人醍醐灌顶的感觉。所谓精华就是不会边边角角都涉及到的意思, 所以还是要做点非精华的练习(比如全书??^_^) 线代一般,概率一般,纸张一般,印刷一般。 ps :章后练习很多,但一定要做,那个也是精华。 --------------------------------------------------------------------------------------------------------------------------------------------------------- 4.水木艾迪微积分通用讲义 配合水木的视频,很好的哈。把解题中的疑难提出来,然后列举例题加以解决分析。章前的知识点讲解也 很好,选题很也典型。总之,比全书微积分要好,值得一读。 PS:多元微分,一元微积分非常好。 --------------------------------------------------------------------------------------------------------------------------------------------------------- 5.赵达夫高等数学辅导讲义 体例不好,一堆知识点,一堆练习,一堆解答。章后练习选题还是很好的,不一定很难,但非常典型。但 PS:只靠这一本书是不够的。是不是叫不给力? --------------------------------------------------------------------------------------------------------------------------------------------------------- 6.黄庆怀高等数学辅导教材 同学们骂我书托吧,我做了这么多书,最想推荐的就是这本了。 体例好,内容全,例题典型,归纳完整,练习题保质保量。唯一稍差是讲解不够(全书和标

同济六版高等数学(下)知识点整理

第八章 1、向量在轴上的投影: 性质:?cos )(a a u =(即Prj u ?cos a a =),其中?为向量a 与u 轴的夹角; u u u b a b a )()()( +=+(即Prj u =+)(b a Prj u a + Prj u b ); u u a a )()( λλ=(即Prj u λλ=)(a Prj u a ). 2、两个向量的向量积:设k a j a i a a z y x ++=,k b j b i b b z y x ++=,则 =?b a x x b a i y y b a j z z b a k =1 1) 1(+-y y b a z z b a i +21)1(+-x x b a z z b a j +3 1)1(+- x x b a y y b a k =k b a b a j b a b a i b a b a x y y x z x x z y z z y )()()(-+-+- 注:a b b a ?-=? 3、二次曲面 (1) 椭圆锥面:222 22z b y a x =+; (2) 椭圆抛物面:z b y a x =+2222; (旋转抛物面: z a y x =+2 2 2(把把xOz 面上的抛物线z a x =22 绕z 轴旋转)) (3) 椭球面:1222222=++c z b y a x ; (旋转椭球面: 122 222=++c z a y x (把xOz 面上的椭圆122 22=+c z a x 绕z 轴旋转)) (4) 单叶双曲面:1222222=-+c z b y a x ; (旋转单叶双曲面:122 2 22=-+c z a y x (把xOz 面上的双曲线122 22=-c z a x 绕z 轴旋转))

东南大学往年高数期末考试试题及答案-8篇整合

东南大学往年高数期末考试试题及答案-8篇 整合 https://www.360docs.net/doc/0611288213.html,work Information Technology Company.2020YEAR

2 东 南 大 学 考 试 卷( A 卷) 一.填空题(本题共5小题,每小题4分,满分20分) 1.2 2lim sin 1 x x x x →∞ =+ 2 ; 2.当0x →时 ,()x α=2()x kx β=是等价无穷小,则 k = 3 4 ; 3.设()1sin x y x =+,则d x y π == d x π- ; 4.函数()e x f x x =在1x =处带有Peano 余项的二阶Taylor 公式为 ()223e e 2e(1)(1)(1)2 x x x ο+-+ -+- ; 5.已知函数3 2e sin , 0()2(1)9arctan ,0 x a x x f x b x x x ?+

(完整word版)大一高数期末考试试题.docx

2011 学年第一学期 《高等数学( 2-1 )》期末模拟试卷 专业班级 姓名 学号 开课系室考试日期 高等数学 2010 年 1 月11 日 页号一二三四五六总分得分 阅卷人 注意事项 1.请在试卷正面答题,反面及附页可作草稿纸; 2.答题时请注意书写清楚,保持卷面清洁; 3.本试卷共五道大题,满分100 分;试卷本请勿撕开,否则作废.

本页满分 36 分 本 页 得 一.填空题(共 5 小题,每小题 4 分,共计 20 分) 分 1 lim( e x x) x 2 . 1. x 0 1 x 2005 e x e x dx x 1 2. 1 . x y t 2 dy 3.设函数 y y( x) 由方程 e dt x x 0 1 确定,则 dx x tf (t)dt f (x) 4. 设 f x 1 ,则 f x 可导,且 1 , f (0) . 5.微分方程 y 4 y 4 y 的通解为 . 二.选择题(共 4 小题,每小题 4 分,共计 16 分) . f ( x) ln x x k 1.设常数 k e 0 ,则函数 在 ( 0, (A) 3 个; (B) 2 个 ; (C) 1 2. 微分方程 y 4y 3cos2 x 的特解形式为( ( A ) y Acos2 x ; ( B ) y ( C ) y Ax cos2 x Bx sin 2x ; ( D ) y * 3.下列结论不一定成立的是( ) . ) 内零点的个数为( 个 ; (D) 0 个 . ) . Ax cos2x ; A sin 2x . ) . d b x dx ( A )若 c, d a,b , 则必有 f x dx f ; c a b x dx 0 (B )若 f (x) 0 在 a,b f 上可积 , 则 a ; a T T ( C )若 f x 是周期为 T 的连续函数 , 则对任意常数 a 都有 a f x dx x t dt (D )若可积函数 t f f x 为奇函数 , 则 0 也为奇函数 . 1 f 1 e x x 1 4. 设 2 3e x , 则 x 0 是 f ( x) 的( ). (A) 连续点 ; (B) 可去间断点 ; (C) 跳跃间断点 ; (D) 无穷间断点 . f x dx ; 三.计算题(共 5 小题,每小题 6 分,共计 30 分)

高中物理竞赛辅导讲义_微积分初步

微积分初步 一、微积分的基本概念 1、极限 极限指无限趋近于一个固定的数值 两个常见的极限公式 0sin lim 1x x x →= *1lim 11x x x →∞??+= ??? 2、导数 当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限叫做导数。 0'lim x dy y y dx x ?→?==? 导数含义,简单来说就是y 随x 变化的变化率。 导数的几何意义是该点切线的斜率。 3、原函数和导函数 对原函数上每点都求出导数,作为新函数的函数值,这个新的函数就是导函数。 00()()'()lim lim x x y y x x y x y x x x ?→?→?+?-==?? 4、微分和积分 由原函数求导函数:微分 由导函数求原函数:积分 微分和积分互为逆运算。 例1、根据导函数的定义,推导下列函数的导函数 (1)2y x = (2) (0)n y x n =≠ (3)sin y x = 二、微分 1、基本的求导公式 (1)()'0 ()C C =为常数 (2)()1' (0)n n x nx n -=≠ (3)()'x x e e = *(4)()'ln x x a a a = (5)()1ln 'x x = *(6)()1log 'ln a x x a =

(7)()sin 'cos x x = (8)()cos 'sin x x =- (9)()21tan 'cos x x = (10)()21cot 'sin x x = **(11)() arcsin 'x = **(12)()arccos 'x = **(13)()21arctan '1x x =+ **(14)()2 1arccot '1x x =-+ 2、函数四则运算的求导法则 设u =u (x ),v =v (x ) (1)()'''u v u v ±=± (2)()'''uv u v uv =+ (3)2'''u u v uv v v -??= ??? 例2、求y=tan x 的导数 3、复合函数求导 对于函数y =f (x ),可以用复合函数的观点看成y =f [g (x)],即y=f (u ),u =g (x ) 'dy dy du y dx du dx == 即:'''u x y y u = 例3、求28(12)y x =+的导数 例4、求ln tan y x =的导数 三、积分 1、基本的不定积分公式 下列各式中C 为积分常数 (1) ()kdx kx C k =+?为常数 (2)1 (1)1n n x x dx C n n +=+≠-+?

高等数学基础知识点归纳

第一讲函数,极限,连续性 1、集合的概念 一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。集合具有确定性(给 定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。比如“身材较高的人”不能构成集合,因为它的元素不是确定的。 ⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。记作N ⑵、所有正整数组成的集合叫做正整数集,记作N+。 ⑶、全体整数组成的集合叫做整数集,记作Z。 ⑷、全体有理数组成的集合叫做有理数集,记作Q。 ⑸、全体实数组成的集合叫做实数集,记作R。 集合的表示方法 ⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合 ⑵、描述法:用集合所有元素的共同特征来表示集合 集合间的基本关系 ⑴、子集:一般地,对于两个集合A、B,如果集合A 中的任意一个元素都是集合B 的元素,我们就 说A、B 有包含关系,称集合A 为集合B 的子集,记作A ?B。 ⑵、相等:如何集合A 是集合B 的子集,且集合B 是集合A 的子集,此时集合A 中的元素与集合B 中 的元素完全一样,因此集合A 与集合B 相等,记作A=B。 ⑶、真子集:如何集合A 是集合B 的子集,但存在一个元素属于B 但不属于A,我们称集合A 是集合 B 的真子集,记作A 。 ⑷、空集:我们把不含任何元素的集合叫做空集。记作,并规定,空集是任何集合的子集。 ⑸、由上述集合之间的基本关系,可以得到下面的结论: ①、任何一个集合是它本身的子集。 ②、对于集合A、B、C,如果A 是B 的子集,B 是C 的子集,则A 是C 的子集。 ③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。 集合的基本运算 ⑴、并集:一般地,由所有属于集合A 或属于集合B 的元素组成的集合称为A 与B 的并集。记作A ∪B。(在求并集时,它们的公共元素在并集中只能出现一次。) 即A∪B={x|x∈A,或x∈B}。 ⑵、交集:一般地,由所有属于集合A 且属于集合B 的元素组成的集合称为A 与B 的交集。记作A ∩B。 即A∩B={x|x∈A,且x∈B}。 ⑶、全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集。 通常记作U。

关于大学高等数学期末考试试题与答案

关于大学高等数学期末考 试试题与答案 Last revision on 21 December 2020

(一)填空题(每题2分,共16分) 1 、函数ln(5)y x =+-的定义域为 . 2、2()12x e f x x a ??=??+? 000x x x <=> ,若0lim ()x f x →存在,则a = . 3、已知 30lim(1)m x x x e →+=,那么m = . 4、函数21()1x f x x k ?-?=-??? 11x x ≠= ,在(),-∞+∞内连续,则k = . 5、曲线x y e =在0x =处的切线方程为 . 6、()F x dx '=? . 7、sec xdx =? . 8、20cos x d tdt dx ??=? ???? . (二)单项选择(每题2分,共12分。在每小题给出的选项中,选出正确答案) 1、下列各式中,不成立的是( )。 A 、lim 0x x e →+∞= B 、lim 0x x e →-∞= C 、21 lim 1x x e →∞= D 、1lim 1x x e →∞= 2、下列变化过程中,( )为无穷小量。 A 、()sin 0x x x → B 、()cos x x x →∞ C 、()0sin x x x → D 、()cos x x x →∞ 3、0lim ()x x f x →存在是)(x f 在0x 处连续的( )条件。 A 、充分 B 、必要 C 、充要 D 、无关 4、函数3y x =在区间[]0,1上满足拉格朗日中值定理的条件,则ξ=( )。 A 、 B 、

5、若曲线()y f x =在区间(),a b 内有()0f x '<,()0f x ''>,则曲线在此区间内 ( )。 A 、单增上凹 B 、单增下凹 C 、单减上凹 D 、单减下凹 6、下列积分正确的是( ). A 、1 12111dx x x --=-? B 、 122π-==?? C 、22cos xdx ππ-=?0 D 、2220 sin 2sin 2xdx xdx πππ-==?? (三)计算题(每题7分,共 56分) 1、求下列极限 (1 )2x → (2)lim (arctan )2x x x π →∞?- 2、求下列导数与微分 (1)x x y cos ln ln sin +=,求dy ; (2)2tan (1)x y x =+,求 dx dy ; (3)ln(12)y x =+,求(0)y '' 3、计算下列积分 (1 ); (2 ); (3)10arctan x xdx ?. (四)应用题(每题8分,共16分) 1. 求ln(1)y x x =-+的单调区间与极值. 2. 求由抛物线21y x +=与直线1y x =+所围成的图形的面积. 参考答案 一、填空题(每空2分,共16分) 1. ()3,5 2. 2 3. 3 4. 2 5. 10x y -+= 6. ()F x C + 7. sec tan x x C ++ln 8.2cos x

相关文档
最新文档