二次函数的基本概念的理解与应用

二次函数的基本概念的理解与应用
二次函数的基本概念的理解与应用

二次函数概念

学习要求

1.熟练掌握二次函数的有关概念.

2.熟练掌握二次函数y =ax 2的性质和图象.

综合、运用、诊断

一、填空题

1.抛物线y =ax 2的顶点是______,对称轴是______.当a >0时,抛物线的开口向______;当a <0时,抛物线的开口向______.

2.抛物线y =ax 2,|a |越大则抛物线的开口就______,|a |越小则抛物线的开口就______. 3.二次函数y =ax 2的图象大致如下,请将图中抛物线字母的序号填入括号内.

(1)y =2x 2如图( );(2)22

1x y =

如图( );(3)y =-x 2

如图( ); (4)231x y -=如图( );(5)29

1

x y =如图( );(6)291x y -=如图( ).

4.已知函数,2

3

2x y -=不画图象,回答下列各题.

(1)开口方向______;(2)对称轴______;(3)顶点坐标______;(4)当x ≥0时,y 随x 的增大而______; (5)当x ______时,y =0;(6)当x ______时,函数y 的最______值是______. 5.在下列函数中①y =-2x 2;②y =-2x +1;③y =x ;④y =x 2,回答:

(1)______的图象是直线,______的图象是抛物线.

(2)函数______y 随着x 的增大而增大.函数______y 随着x 的增大而减小. (3)函数______的图象关于y 轴对称.函数______的图象关于原点对称. (4)函数______有最大值为______.函数______有最小值为______.

6.已知函数y =ax 2+bx +c (a ,b ,c 是常数).(1)若它是二次函数,则系数应满足条件______. (2)若它是一次函数,则系数应满足条件______.(3)若它是正比例函数,则系数应满足条件______. 7.已知函数y =(m 2-3m )1

22--m m x

的图象是抛物线,则函数的解析式为______,抛物线的顶点坐标为______,

对称轴方程为______,开口______.

9.已知函数y =m 2

22+-m m x

+(m -2)x .

(1)若它是二次函数,则m =______,函数的解析式是______,其图象是一条______,位于第______象限. (2)若它是一次函数,则m =______,函数的解析式是______,其图象是一条______,位于第______象限. 9.已知函数y =m m

m x

+2,则当m =______时它的图象是抛物线;当m =______时,抛物线的开口向上;当m

=______时抛物线的开口向下.

二、选择题

110.下列函数中属于一次函数的是( ),属于反比例函数的是( ),属于二次函数的是( )

A .y =x (x +1)

B .xy =1

C .y =2x 2-2(x +1)2

D .132+=x y

11.在二次函数①y =3x 2;②223

4

;32x y x y ==

③中,图象在同一水平线上的开口大小顺序用题号表示应该为 A .①>②>③ B .①>③>② C .②>③>① D .②>①>③

12.对于抛物线y =ax 2,下列说法中正确的是( )

A .a 越大,抛物线开口越大

B .a 越小,抛物线开口越大

C .|a |越大,抛物线开口越大

D .|a |越小,抛物线开口越大 13.下列说法中错误的是( )

A .在函数y =-x 2中,当x =0时y 有最大值0

B .在函数y =2x 2中,当x >0时y 随x 的增大而增大

C .抛物线y =2x 2,y =-x 2,22

1

x y -=中,抛物线y =2x 2的开口最小,抛物线y =-x 2的开口最大

D .不论a 是正数还是负数,抛物线y =ax 2的顶点都是坐标原点

三、解答题

17.函数y =(m -3)2

32

--m m

x 为二次函数.(1)若其图象开口向上,求函数关系式;

(2)若当x >0时,y 随x 的增大而减小,求函数的关系式,并画出函数的图象.

18.抛物线y =ax 2与直线y =2x -3交于点A (1,b ).

(1)求a ,b 的值;

(2)求抛物线y =ax 2与直线y =-2的两个交点B ,C 的坐标(B 点在C 点右侧); (3)求△OBC 的面积.

19.已知抛物线y =ax 2经过点A (2,1).

(1)求这个函数的解析式;

(2)写出抛物线上点A 关于y 轴的对称点B 的坐标; (3)求△OAB 的面积;

(4)抛物线上是否存在点C ,使△ABC 的面积等于△OAB 面积的一半,若存在,求出C 点的坐标;若不存在,请说明理由.

二次函数y =ax 2

+bx +c 及其图象

学习要求

掌握并灵活应用二次函数y =ax 2+bx +c 的性质及其图象.

基本知识点:⑴定义:))(0(2

一般式≠++=a c bx ax y ))(0()(2

顶点式≠+-=a k h x a y 特殊地,)0(),0(22

≠+=≠=a k ax y a ax y 都是二次函数。

⑵图象:抛物线(用描点法画出:先确定顶点、对称轴、开口方向,再对称地描点)。)0(2

≠++=a c bx ax y 用配方法变为)0()(2

≠+-=a k h x a y ,则顶点为(h,k );对称轴为直线x=h;a>0时,开口向上;a<0时,开口向下。

⑶性质:a>0时,在对称轴左侧,y 随x 增大而减小,在对称轴右侧y 随x 增大而增大。

a<0时,在对称轴左侧,y 随x 增大而增大,在对称轴右侧y 随x 增大而减小。

一、填空题

1.把二次函数y =ax 2+bx +c (a ≠0)配方成y =a (x -h )2+k 形式为______,顶点坐标是______,对称轴是直线______.当x =______时,y 最值=______;当a <0时,x ______时,y 随x 增大而减小;x ______时,y 随x 增大而增大. 2.抛物线y =2x 2-3x -5的顶点坐标为______.当x =______时,y 有最______值是______,与x 轴的交点是______,与y 轴的交点是______,当x ______时,y 随x 增大而减小,当x ______时,y 随x 增大而增大. 3.抛物线y =ax 2+bx +c 与y =3-2x 2的形状完全相同,只是位置不同,则a =______.

4.抛物线y =2x 2先向______平移______个单位就得到抛物线y =2(x -3)2,再向______平移______个单位就得到抛物线y =2(x -3)2+4.

5.已知抛物线y =ax 2+bx +c (a ≠0).

(1)若抛物线的顶点是原点,则____________; (2)若抛物线经过原点,则____________;

(3)若抛物线的顶点在y 轴上,则____________; (4)若抛物线的顶点在x 轴上,则____________. 6.若二次函数y =mx 2-3x +2m -m 2的图象经过原点,则m =______,这个函数的解析式是______. 7.若二次函数y =ax 2+4x +a 的最大值是3,则a =______.

8.函数y =x 2-4x +3的图象的顶点及它和x 轴的两个交点为顶点所构成的三角形面积为______平方单位. 9.抛物线y =ax 2+bx (a >0,b >0)的图象经过第______象限. 二、选择题

10.下列函数中①y =3x +1;②y =4x 2-3x ;;42

2

x x

y +=③④y =5-2x 2,是二次函数的有( ) A .② B .②③④ C .②③ D .②④ 11.抛物线y =-3x 2-4的开口方向和顶点坐标分别是( )

A .向下,(0,4)

B .向下,(0,-4)

C .向上,(0,4)

D .向上,(0,-4) 12.抛物线x x y --

=221的顶点坐标是( ) A .)21

,1(-

B .)21

,1(- C .)1,2

1(- D .(1,0)

13.二次函数y =ax 2+x +1的图象必过点( )

A .(0,a )

B .(-1,-a )

C .(-1,a )

D .(0,-a )

14.函数y =x 2+mx -2(m <0)的图象是( )

15.抛物线y =ax 2+bx +c (a ≠0)的图象如下图所示,那么( )

A .a <0,b >0,c >0

B .a <0,b <0,c >0

C .a <0,b >0,c <0

D .a <0,b <0,c <0 16.已知二次函数y =ax 2+bx +c 的图象如右图所示,则( )

A .a >0,c >0,b 2-4ac <0

B .a >0,c <0,b 2-4ac >0

C .a <0,c >0,b 2-4ac <0

D .a <0,c <0,b 2-4ac >0 17.已知二次函数y =ax 2+bx +c 的图象如下图所示,则( )

A .b >0,c >0,?=0

B .b <0,c >0,?=0

C .b <0,c <0,?=0

D .b >0,c >0,?>0 18.二次函数y =mx 2+2mx -(3-m )的图象如下图所示,那么m 的取值范围是( )

A .m >0

B .m >3

C .m <0

D .0<m <3

15 16 17 18

19.在同一坐标系内,函数y =kx 2和y =kx -2(k ≠0)的图象大致如图( ) 20.函数x

ab

y b ax y =

+=22

1,(ab <0)的图象在下列四个示意图中,可能正确的是( )

19

三、解答题

21.已知二次函数y =2x 2+4x -6.

(1)将其化成y =a (x -h )2+k 的形式;

(2)写出开口方向,对称轴方程,顶点坐标; (3)求图象与两坐标轴的交点坐标; (4)画出函数图象;

(5)说明其图象与抛物线y =x 2的关系; (6)当x 取何值时,y 随x 增大而减小; (7)当x 取何值时,y >0,y =0,y <0;

(8)当x 取何值时,函数y 有最值?其最值是多少? (9)当y 取何值时,-4<x <0;

(10)求函数图象与两坐标轴交点所围成的三角形面积.

23.画出2

3

212++-=x x y 的图象,并求:

(1)顶点坐标与对称轴方程;

(2)x 取何值时,y 随x 增大而减小? x 取何值时,y 随x 增大而增大?

(3)当x 为何值时,函数有最大值或最小值,其值是多少? (4)x 取何值时,y >0,y <0,y =0? (5)当y 取何值时,-2≤x ≤2?

24.如图,在平面直角坐标系中,抛物线A (-1,0),B (3,0)C (0,-1)三点。

(1)求该抛物线的表达式;

(2)点Q 在y 轴上,点P 在抛物线上,要使Q 、P 、A 、B 为顶点的四边形是平行四边形求所有满足条件点P 的坐标。

25.如图,抛物线2

4y ax bx a =+-经过(1

0)A -,、(04)C ,两点,与x 轴交于另一点B . (1)求抛物线的解析式;

(2)已知点(1)D m m +,在第一象限的抛物线上,求点D 关于直线BC

(3)在(2)的条件下,连接BD ,点P 为抛物线上一点,且45DBP ∠=°,求点P

初中数学二次函数应用方法

初中数学二次函数应用方法 初中数学二次函数应用学习方法 学生是学习的主体,老师是学习的主导。教师要因人而异,因材施教,方能取得较好的课堂效果。 二次函数应用 在期末复习期间,我们在区教研室和学校领导的指导下,通过“初备一一交流一一复备一一再交流”,完成了《二次函数应用》的复习。通过本次活动,使我受益匪浅。 一、集体智慧胜于个人智慧。备课期间大家各显神通,献计献 尺0 束。 二、备学生要胜于备教材。 三、化难为易,化繁为简。教师在课堂上应该起到把握重点,分解难点的作用。 四、勤于思考,善于总结。在大量的习题中,在众多的方法下, 指导学生梳理知识,归纳题型,提炼方法,总结规律。以提高学生的分析问题解决问题的能力。 温馨建议:备课时将问题设置成问题串,为学生搭建解决问题的台阶。 初中数学解题方法之常用的公式 下面是对数学常用的公式的讲解,同学们认真学习哦。 对于常用的公式 如数学中的乘法公式、三角函数公式,常用的数字,女口11?25 的平

方,特殊角的三角函数值,化学中常用元素的化学性质、化合价以及化学反 应方程式等等,都要熟记在心,需用时信手拈来,则对提高演算速度极为有利。 总之,学习是一个不断深化的认识过程,解题只是学习的一个重要环节。你对学习的内容越熟悉,对基本解题思路和方法越熟悉,背熟的数字、公式越多,并能把局部与整体有机地结合为一体,形成了跳跃性思维,就可以大大加快解题速度。 初中数学解题方法之学会画图数学的解题中对于学会画图是有必要的,希望同学们很好的学会画图。 学会画图 画图是一个翻译的过程。读题时,若能根据题义,把对数学(或其他学科)语言的理解,画成分析图,就使题目变得形象、直观。这样就把解题时的抽象思维,变成了形象思维,从而降低了解题难度。有些题目,只要分析图一画出来,其中的关系就变得一目了然。尤其是对于几何题,包括解析几何题,若不会画图,有时简直是无从下手。所以,牢记各种题型的基本作图方法,牢记各种函数的图像和意义及演变过程和条件,对于提高解题速度非常重要。 画图时应注意尽量画得准确。画图准确,有时能使你一眼就看出答案,再进一步去演算证实就可以了;反之,作图不准确,有时会将你引入歧 途。 初中数学解题方法之审题对于一道具体的习题,解题时最重要的环节 是审题。 审题

二次函数的图像与性质知识点及练习

第二节 二次函数的图像与性质 1.能够利用描点法做出函数y =ax 2,y=a(x-h)2 ,y =a(x-h)2 +k 和c bx ax y ++=2图象,能根据图象认识和理解二次函数的性质; 2.理解二次函数c bx ax y ++=2中a 、b 、c 对函数图象的影响。 一、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定 其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们 选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c , 关于对称轴对称的点()2h c ,、与x 轴的交点()10x , ,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 例1. 在同一平面坐标系中分别画出二次函数y =x 2 ,y =-x 2 ,y =2x 2 ,y =-2x 2 ,y =2(x-1)2 的图像。 一、二次函数的基本形式 1. y =ax 2 的性质:

2. y=ax2+k的性质:(k上加下减) 3. y=a(x-h)2的性质:(h左加右减) 4. y=a (x-h)2+k的性质: 5. y=ax2+bx+c的性质:

二、二次函数图象的平移 1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左 加右减,上加下减”. 方法二: ⑴c bx ax y ++=2 沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2 变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵c bx ax y ++=2 沿x 轴平移:向左(右)平移m 个单位,c bx ax y ++=2 变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 四、二次函数()2y a x h k =-+与2y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即2 2424b ac b y a x a a -? ?=++ ??? ,其中2424b ac b h k a a -=-= ,. 六、二次函数图象的对称 二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位

二次函数的基本概念的理解与应用

二次函数概念 学习要求 1.熟练掌握二次函数的有关概念. 2.熟练掌握二次函数y =ax 2的性质和图象. 综合、运用、诊断 一、填空题 1.抛物线y =ax 2的顶点是______,对称轴是______.当a >0时,抛物线的开口向______;当a <0时,抛物线的开口向______. 2.抛物线y =ax 2,|a |越大则抛物线的开口就______,|a |越小则抛物线的开口就______. 3.二次函数y =ax 2的图象大致如下,请将图中抛物线字母的序号填入括号内. (1)y =2x 2如图( );(2)22 1x y = 如图( );(3)y =-x 2 如图( ); (4)231x y -=如图( );(5)29 1 x y =如图( );(6)291x y -=如图( ). 4.已知函数,2 3 2x y -=不画图象,回答下列各题. (1)开口方向______;(2)对称轴______;(3)顶点坐标______;(4)当x ≥0时,y 随x 的增大而______; (5)当x ______时,y =0;(6)当x ______时,函数y 的最______值是______. 5.在下列函数中①y =-2x 2;②y =-2x +1;③y =x ;④y =x 2,回答: (1)______的图象是直线,______的图象是抛物线. (2)函数______y 随着x 的增大而增大.函数______y 随着x 的增大而减小. (3)函数______的图象关于y 轴对称.函数______的图象关于原点对称. (4)函数______有最大值为______.函数______有最小值为______. 6.已知函数y =ax 2+bx +c (a ,b ,c 是常数).(1)若它是二次函数,则系数应满足条件______. (2)若它是一次函数,则系数应满足条件______.(3)若它是正比例函数,则系数应满足条件______. 7.已知函数y =(m 2-3m )1 22--m m x 的图象是抛物线,则函数的解析式为______,抛物线的顶点坐标为______, 对称轴方程为______,开口______. 9.已知函数y =m 2 22+-m m x +(m -2)x . (1)若它是二次函数,则m =______,函数的解析式是______,其图象是一条______,位于第______象限. (2)若它是一次函数,则m =______,函数的解析式是______,其图象是一条______,位于第______象限. 9.已知函数y =m m m x +2,则当m =______时它的图象是抛物线;当m =______时,抛物线的开口向上;当m =______时抛物线的开口向下. 二、选择题 110.下列函数中属于一次函数的是( ),属于反比例函数的是( ),属于二次函数的是( ) A .y =x (x +1) B .xy =1 C .y =2x 2-2(x +1)2 D .132+=x y 11.在二次函数①y =3x 2;②223 4 ;32x y x y == ③中,图象在同一水平线上的开口大小顺序用题号表示应该为 A .①>②>③ B .①>③>② C .②>③>① D .②>①>③ 12.对于抛物线y =ax 2,下列说法中正确的是( ) A .a 越大,抛物线开口越大 B .a 越小,抛物线开口越大 C .|a |越大,抛物线开口越大 D .|a |越小,抛物线开口越大 13.下列说法中错误的是( ) A .在函数y =-x 2中,当x =0时y 有最大值0

浙教版九年级数学上册《二次函数的应用》教案

《二次函数的应用》教学设计 一、教学背景分析: 1.教学内容分析: 二次函数的知识是七到九年级数学学习的重要内容之一,它的应用是本章的教学重点也是难点。因为它是从生活实际问题中抽象出的数学知识,又是在解决实际问题时广泛应用的数学工具,因此这部分的教学内容具有重要意义;同时学好二次函数的应用,可又为高中进一步学习各类初等函数作好准备。而经历从实际问题情景入手,抽象出解决问题的数学模型和相关知识的过程中不仅可以让学生体会数学的价值和建模的意义,更能提高学生应用数学知识解决问题的意识。 2.学生情况分析: 本节课的授课对象是九年级的学生。在此之前,学生已经掌握了求二次函数解析式的方法并理解图象上的点和图象的关系,并且学习了一元一次方程、一元一次不等式、一元二次方程、一次函数的应用,以及初步的二次函数的应用,经历了多次从实际问题抽象出数学知识再运用相关知识解决实际问题的过程;因此他们有解决简单实际问题的基础知识和基本能力。但是,由于函数知识的抽象性,多数学生在学习时应用函数的意识并不强;同时,他们从实际问题中抽象出数学问题的能力以及利用已有的数学知识去解决的能力也是比较弱的。 二、教学重点: 建立适当的坐标系解决实际问题. 三、教学难点: 正确理解实际问题中的量与坐标系中的点的对应关系. 四、教学目标: 1.能把实际问题归结为数学知识来解决,并能运用二次函数的知识解决实际问题. 2.经历在具体情境中抽象出数学知识的过程,体验解决问题方法的多样性,体会建模思想,渗透转化思想、数形结合思想,提高数学知识的应用意识. 3.在运用数学知识解决问题的过程中,体会数学的价值、感受数学的简捷美,并勇于表达自己的看法.

二次函数综合题经典习题(含答案及基本讲解)

二次函数综合题训练题型集合 1、如图1,已知二次函数图象的顶点坐标为C(1,0),直线m x y+ =与该二次函数的图象交于A、B两点,其中A点的坐标为(3,4),B点在轴y上. (1)求m的值及这个二次函数的关系式; (2)P为线段AB上的一个动点(点P与A、B不重合),过P作x轴的垂线与这个二次函数的图象交于点E点,设线段PE的长为h,点P的横坐标为x,求h与x之间 的函数关系式,并写出自变量x的取值范围; (3)D为直线AB与这个二次函数图象对称轴的交点,在线段AB上是否存在一点P,使得四边形DCEP是平行四边形?若存在,请求出此时P点的坐标;若不存在,请说 明理由. 2、如图2,已知二次函数24 y ax x c =-+的图像经过点A和点B.(1)求该二次函数的表达式; (2)写出该抛物线的对称轴及顶点坐标; (3)点P(m,m)与点Q均在该函数图像上(其中m>0),且这两点关于抛物线的对称轴对称,求m的值及点Q 到x轴的距离 E B A C P 图1 O x y D x y O 3 -9 -1 -1 A B 图2

P B A C O x y Q 图3 3、如图3,已知抛物线c x b x a y ++=2经过O(0,0),A(4,0),B(3,3)三点,连结AB ,过点B 作BC ∥x 轴交该抛物线于点C. (1) 求这条抛物线的函数关系式. (2) 两个动点P 、Q 分别从O 、A 两点同时出发,以每秒1个单位长度的速度运动. 其中,点P 沿着线段0A 向A 点运动,点Q 沿着折线A →B →C 的路线向C 点运动. 设这两个动点运动的时间为t (秒) (0<t <4),△PQA 的面积记为S. ① 求S 与t 的函数关系式; ② 当t 为何值时,S 有最大值,最大值是多少?并指出此时△PQA 的形状; ③ 是否存在这样的t 值,使得△PQA 是直角三角形?若存在,请直接写出此时P 、Q 两点的坐标;若不存在,请说明理由. 7、(07海南中考)如图7,直线43 4 +- =x y 与x 轴交于点A ,与y 轴交于点C ,已知二次函数的图象经过点A 、C 和点()0,1-B . (1)求该二次函数的关系式; (2)设该二次函数的图象的顶点为M ,求四边形AOCM 的面积; (3)有两动点D 、E 同时从点O 出发,其中点D 以每秒 2 3 个单位长度的速度沿折线OAC 按O →A →C 的路线运动,点E 以每秒4个单位长度的速度沿折线OCA 按O →C → A 的路线运动, 当D 、E 两点相遇时,它们都停止运动.设D 、E 同时从点O 出发t 秒时,ODE ?的面积为S . ①请问D 、E 两点在运动过程中,是否存在DE ∥OC ,若存在,请求出此时t 的值;若不存在,请说明理由; ②请求出S 关于t 的函数关系式,并写出自变量t 的取值范围; ③设0S 是②中函数S 的最大值,那么0S = . C A M y B O x C A M y B O x C A M y B O x

二次函数的三种表达形式.

二次函数的三种表达形式: ①一般式: y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为[,] 把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。 ②顶点式: y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。 有时题目会指出让你用配方法把一般式化成顶点式。 例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。 解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。 注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。 具体可分为下面几种情况: 当h>0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到;当h<0时,y=a(x-h)2的图象可由抛物线y=ax2向左平行移动|h|个单位得到;当h>0,k>0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象; 当h>0,k<0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;

当h<0,k>0时,将抛物线y=ax2向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象; 当h<0,k<0时,将抛物线y=ax2向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象。 ③交点式: y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即y=0有交点时的抛物线,即b2-4ac≥0] . 已知抛物线与x轴即y=0有交点A(x1,0)和B(x2,0),我们可设y=a(x-x1)(x-x2),然后把第三点代入x、y中便可求出a。 由一般式变为交点式的步骤: 二次函数 ∵x1+x2=-b/a,x1?x2=c/a(由韦达定理得), ∴y=ax2+bx+c =a(x2+b/ax+c/a) =a[x2-(x1+x2)x+x1?x2] =a(x-x1)(x-x2). 重要概念: a,b,c为常数,a≠0,且a决定函数的开口方向。a>0时,开口方向向上;a<0时,开口方向向下。a的绝对值可以决定开口大小。 a的绝对值越大开口就越小,a的绝对值越小开口就越大。 能灵活运用这三种方式求二次函数的解析式;

二次函数的性质

20.4二次函数的性质 教学目标: 1.从具体函数的图象中认识二次函数的基本性质. 2.了解二次函数与二次方程的相互关系. 3.探索二次函数的变化规律,掌握函数的最大值(或最小值)及函数的增减性的概念,会求二次函数的最值,并能根据性质判断函数在某一范围内的增减性 教学重点:二次函数的最大值,最小值及增减性的理解和求法. 教学难点:二次函数的性质的应用. 教学过程: 一、复习引入 二次函数: y=ax2 +bx + c (a 1 0)的图象是一条抛物线,它的开口由什么决定呢? 补充: 当a的绝对值相等时,其形状完全相同,当a的绝对值越大,则开口越小,反之成立. 二、新课教学: 1.探索填空: 根据下边已画好抛物线y= -2x2的顶点坐标 是, 对称轴是,在侧,即x_____0时, y随着x的增大而增大;在侧,即x_____0时, y随着x的增大而减小. 当x= 时,函数y最大值是____. 当x____0时,y<0. 2. 探索填空::据上边已画好的函数图象填空:抛物线y= 2x2的顶点坐标 是, 对称轴是,在侧,即x_____0时, y随着x的增大而减少;在侧,即x_____0时, y随着x的增大而增大. 当x= 时,函数y最小值是____. 当x____0时,y>0

3.归纳: 二次函数y=ax2+bx+c(a≠0)的图象和性质 (1).顶点坐标与对称轴 (2).位置与开口方向 (3).增减性与最值 当a ﹥0时,在对称轴的左侧,y随着x的增大而减小;在对称轴的右侧,y随着x的增大而增大;当时,函数y有最小值。当a ﹤0时,在对称轴的左侧,y随着x的增大而增大;在对称轴的右侧,y随着x的增大而减小。当时,函数y有最大值 4.探索二次函数与一元二次方程 二次函数y=x2+2x,y=x2-2x+1,y=x2-2x+2的图象如图所示. (1).每个图象与x轴有几个交点? (2).一元二次方程x2+2x=0,x2-2x+1=0有几个根?验证一下一元二次方程x2-2x+2=0有根吗? (3).二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系? 归纳: (3).二次函数y=ax2+bx+c的图象和x轴交点有三种情况: ①有两个交点, ②有一个交点, ③没有交点. 当二次函数y=ax2+bx+c的图象和x轴有交点时, 交点的横坐标就是当y=0时自变量x 的值,即一元二次方程ax2+bx+c=0的根.

二次函数知识点梳理

初三年级数学—二次函数的基础 一、考点、热点回顾 二次函数知识点 一、二次函数概念: 1.二次函数的概念:一般地,形如2 y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c , 可以为零.二次函数的定义域是全体实数. 2. 二次函数2 y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c , ,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2 y ax =的性质: a 的绝对值越大,抛物线的开口越小。 2. 2 y ax c =+的性质:上加下减。 3. ()2 y a x h =-的性质:左加右减。

4. ()2 y a x h k =-+的性质: 三、二次函数图象的平移 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二: ⑴ c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵ c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 四、二次函数()2 y a x h k =-+与2 y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2 y ax bx c =++是两种不同的表达形式,后者通过配方可以得 到前者,即2 2424b ac b y a x a a -??=++ ?? ?,其中2424b ac b h k a a -=-=,. 五、二次函数2 y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2 y ax bx c =++化为顶点式2 ()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、 与y 轴的交点()0c , 、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 六、二次函数2 y ax bx c =++的性质 1. 当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a =-时,y 有最小值2 44ac b a -.

“数形结合”在二次函数中的应用

“数形结合”在二次函数中的应用 数形结合是通过“数”与“形”的相互转化,使复杂问题简单化、抽象问题具体化;数形结合是初中数学基本思想之一,是用来解决数学问题的重要思想,近几年来各地中考对考生数形结合能力的考查越来越大,本文通过实例浅谈“数形结合”在二次函数中的应用。 1、“以形解数” 例1:已知:点(-1 ,1y ) (-3 ,2y ) (2,3y )在y=3x 2+6x+2 的图象上, 则:1y 、2y 、3y 的大小关系为( A. 1y >2y >3y B. 2y >1y >3y C. 2y >3y >1y D. 3y >2y >1y 分析:由y=3x 2+6x+2 =3(x+1)2- 1画出图象1抛物线的对称轴为直线x=-1 图1 即:x=-1 时,y 有最小值, 故排除A 、B ,由图象可以看出:x=2时 y 3的值,比x=-3时y 2的值大,故选c. 例2: 已知抛物线y=2x 2+x-2m+1与x 轴的两个交点,在原点的两 侧,则m 的取值范围是( ) A m >1 2 B m <12 C m >-12 D m >7 16

分析:按常规,此题要用判别式、根与系数的关系列出不等式组解之,若用数形结合的方法, 先画出抛物线y=2x 2+x-2m+1 的草图,易知当x=0时,y <0, 因此,只要解不等式-2m+1<0即 可,即m >12 ,故选A 例3:二次函数 y=ax 2+bx+c 象限,则此抛物线开口向 ,c 的取值范围 ,b 的取值范围 ,b 2-4ac 的取值范围 。 解:由题意画出图象,如图: 从而判断:a >0, c ≥0 ∴对称轴:x=-2b a <0 ∴b >0 图象与x 轴有两个交点:∴ ?>0 即b 2 -4ac >0 注:以上各题是“以形助数”即 将数量关系借于图形及其性质,使其直观化,形象化,从而使问题得以解决。 2、“以数助形” 例4:已知:二次函数m x m x y ----=1)1(22的图像与x 轴交于 A (1x ,0)、 B (2x ,0),210x x <<,与y 轴交于点 C ,且满足 CO BO AO 211=- 求:这个二次函数的解析式; 解: ∵210x x <<

中考二次函数讲义附练习及答案

y x O 第三讲 二次函数的性质及其应用 ? 相关概念及定义 ? 二次函数的概念:一般地,形如2y ax bx c =++(a b c , ,是常数,0a ≠)的函数,叫做二次函数。这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c , 可以为零.二次函数的定义域是全体实数. ? 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c , ,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二次函数各种形式之间的变换 ? 二次函数c bx ax y ++=2 用配方法可化成:()k h x a y +-=2的形式,其中 a b a c k a b h 4422 -=-=,. ? 二次函数由特殊到一般,可分为以下几种形式:①2ax y =;②k ax y +=2 ;③()2 h x a y -=; ④()k h x a y +-=2 ;⑤c bx ax y ++=2 . 二次函数解析式的表示方法 ? 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠); ? 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠); ? 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). ? 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成 交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化. 二次函数 2 ()y a x h k =-+的图像和性质 a >0 a <0 图 象 开 口 对 称 轴 顶点坐标 最 值 当x = 时,y 有最 值 当x = 时,y 有最 值 增减 性 在对称轴左侧 y 随x 的增大而 y 随x 的增大而 在对称轴右侧 y 随x 的增大而 y 随x 的增大而 ? 抛物线 的三要素:开口方向、对称轴、顶点. ? a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0

初中数学二次函数的应用(二)

初中数学二次函数的应用(二)

二次函数的应用 ◆目标指引 1.运用二次函数的知识去分析问题、解决问题,?并在运用中体会二次函数的实际意义.2.体会利用二次函数的最值方面的性质解决一些实际问题. 3.经历把实际问题的解决转化为数学问题的解决的过程,?学会运用这种“转化”的数学思想方法. ◆要点讲解 1.在具体问题中经历数量关系的变化规律的过程,?运用二次函数的相关知识解决简单的实际问题,体会二次函数是刻画现实世界的一个有效的数学模型. 2.运用函数思想求最值和数形结合的思想方法研究问题. ◆学法指导 1.当涉及最值问题时,应运用二次函数的性 2

3

4 5t 2-12t+36的最小值,就可以求P ,Q 的最短距离. 【解】(1)设经过ts 后P ,Q 的距离最短,则: ∵22 BP BQ +22 (6)(2)t t -+251236 t t -+26144 5()55 t -+ ∴经过65s 后,P ,Q 的距离最短. (2)设△PBQ 的面积为S , 则S=12BP·BQ=12 (6-t )·2t=6t -t 2 =9-(t -3)2 ∴当t=3时,S 取得最大值,最大值为9. 即经过3s 后,△PBQ 的面积最大,最大面积为9cm 2. 【注意】对于动点问题,一般采用“以静制动”的方法,抓住某个静止状态,寻找等量关系.在求最值时,可用配方法或公式法,同时取值时要注意自变量的取值范围. 【例2】某高科技发展公司投资1500万元,成功研制出一种市场需求较大的高科技替代产品,并

投入资金500万元进行批量生产.已知生产每件产品的成本为40元,在销售过程中发现:当销售单价定为100元时,年销售量为20万件;销售单价若增加10元,年销售量将减少1万件.设销售单价为x(元),年销售量为y(万件),年获利额(年获利额=年销售额-生产成本-投资)为z(万元).(1)试写出y与x之间的函数关系式(不必写出x的取值范围); (2)试写出z与x之间的函数关系式(不必写出x的取值范围); (3)计算销售单价为160元时的年获利额,并说明:得到同样的年获利额,?销售单价还可以定为多少元?相应的年销量分别为多少万件? (4)公司计划:在第一年按年获利额最大时确定的销售单价进行销售;?第二年的年获利额不低于1130万元,请你借助函数的大致图象说明,第二年的销售单价x(元)?应确定在什么范围? 【分析】本题以传统的经济活动中的利润、销售决策问题为背景,设计成数学应用题,引导学生 5

【浙教版初中数学】《二次函数的性质》综合练习

1.3 二次函数的性质 一、基础训练 1.若抛物线y=x2-2x+m与x轴只有一个公共点,则m=______. 2.如图所示的抛物线是二次函数y=ax2-3x+a-1的图象,那么a的值是_____. 3.若抛物线y=x2+(m-2)x-m与x轴的两个交点关于y轴对称,则m=______.4.二次函数y=-x2+4x+m的值恒小于0,则m的取值范围是______.5.不论k取任何实数,抛物线y=a(x+k)2+k(a≠0)的顶点都在()A.直线y=x上B.直线y=-x上C.x轴上D.y轴上 6.已知抛物线y=ax2+bx+c上的两点(2,0),(4,0),那么它的对称轴是直线() A.x=-3 B.x=1 C.x=2 D.x=3 7.已知直角三角形的两直角边之和为4,求斜边长的最小值及当斜边长达到最小值时的两条直角边长. 1

8.心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间满足函数关系:y=-0.1x2+2.6x+43(0≤x≤30).y值越大,表示接受能力越强. (1)x在什么范围内,学生的接受能力逐步增强?x在什么范围内,学生的接受能力逐步降低? (2)第几分钟,学生的接受能力最强? 二、提高训练 9.已知二次函数y=x2-4x-a,下列说法正确的是() A.当x<0时,y随x的增大而减小 B.若图象与x轴有交点,则a≤4 2

C.当a=3时,不等式x2-4x+a>0的解集是1

二次函数y=ax^2+bx+c(a≠0)的图象与性质—知识讲解(基础)

二次函数y=ax 2 +bx+c(a ≠0)的图象与性质—知识讲解(基础) 撰稿:张晓新 审稿:杜少波 【学习目标】 1. 会用描点法画二次函数2 (0)y ax bx c a =++≠的图象;会用配方法将二次函数2 y ax bx c =++的解析式写成2 ()y a x h k =-+的形式; 2.通过图象能熟练地掌握二次函数2 y ax bx c =++的性质; 3.经历探索2 y ax bx c =++与2()y a x h k =-+的图象及性质紧密联系的过程,能运用二次函数的图象和性质解决简单的实际问题,深刻理解数学建模思想以及数形结合的思想. 【要点梳理】 要点一、二次函数2 (0)y ax bx c a =++≠与=-+≠2 ()(0)y a x h k a 之间的相互关系 1.顶点式化成一般式 从函数解析式2 ()y a x h k =-+我们可以直接得到抛物线的顶点(h ,k),所以我们称 2()y a x h k =-+为顶点式,将顶点式2()y a x h k =-+去括号,合并同类项就可化成一般式2y ax bx c =++. 2.一般式化成顶点式 22 2 2222b b b b y ax bx c a x x c a x x c a a a a ?? ??????=++=++=++-+?? ? ? ?????????? ? 2 2424b ac b a x a a -? ?=++ ?? ?. 对照2 ()y a x h k =-+,可知2b h a =-,244ac b k a -=. ∴ 抛物线2 y ax bx c =++的对称轴是直线2b x a =-,顶点坐标是24,24b ac b a a ??-- ??? . 要点诠释: 1.抛物线2 y ax bx c =++的对称轴是直线2b x a =-,顶点坐标是24,24b ac b a a ??-- ???,可以当作公 式加以记忆和运用. 2.求抛物线2 y ax bx c =++的对称轴和顶点坐标通常用三种方法:配方法、公式法、代入法,这三种方法都有各自的优缺点,应根据实际灵活选择和运用.

二次函数的概念—知识讲解(提高)

二次函数的概念—知识讲解(提高) 【学习目标】 1.理解函数的定义、函数值、自变量、因变量等基本概念; 2.了解表示函数的三种方法——解析法、列表法和图像法; 3.会根据实际问题列出函数的关系式,并写出自变量的取值范围; 4.理解二次函数的概念,能够表示简单变量之间的二次函数关系. 【要点梳理】 要点一、函数的概念 一般地,在一个变化过程中,如果有两个变量x,y,对于自变量x在某一范围内的每一个确定值,y都有惟一确定的值与它对应,那么就说y是x的函数. 对于自变量x在可以取值范围内的一个确定的值a,函数y有惟一确定的对应值,这个对应值叫做当x=a时函数的值,简称函数值. 要点诠释: 对于函数的概念,应从以下几个方面去理解: (1)函数的实质,揭示了两个变量之间的对应关系; (2)判断两个变量之间是否有函数关系,要看对于x允许取的每一个值,y是否都有惟一确定的值与它相对应; (3)函数自变量的取值范围,应要使函数表达式有意义,在解决实际问题时,还必须考虑使实际问题有意义. 要点二、函数的三种表示方法 表示函数的方法,常见的有以下三种: (1)解析法:用来表示函数关系的数学式子叫做函数的表达式,(或解析式),用数学式子表示函数的方法称为解析法. (2)列表法:用一个表格表达函数关系的方法. (3)图象法:用图象表达两个变量之间的关系的方法. 要点诠释: 函数的三种表示方法各有不同的长处.解析式法能揭示出变量之间的内在联系,但较抽象,不是所有的函数都能列出解析式;列表法可以清楚地列出一些自变量和函数值的对应值,这会对某些特定的数值带来一目了然的效果,例如火车的时刻表,平方表等;图象法可以直观形象地反映函数的变化趋势,而且对于一些无法用解析式表达的函数,图象可以充当重要角色. 对照表如下:

二次函数图像与性质总结

二次函数的图像与性质 一、二次函数的基本形式 1.二次函数基本形式:2 =的性质: y ax 2.2 =+的性质: y ax c 上加下减。 =-的性质: y a x h 左加右减。

4.()2 y a x h k =-+的性质: 1.平移步骤: 方法一:⑴将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标 ()h k ,; ⑵保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2.平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.

概括成八个字“左加右减,上加下减”. 方法二: ⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 三、二次函数()2 y a x h k =-+与2y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者 通过配方可以得到前者,即2 2424b ac b y a x a a -? ?=++ ?? ?,其中2424b ac b h k a a -=-= ,. 四、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确 定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我 们选取的五点为:顶点、与y 轴的交点()0c , 、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对 称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 五、二次函数2y ax bx c =++的性质 1.当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a =-时,y 有最小值244ac b a -. 2.当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,.当2b x a <- 时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2b x a =-时,y 有最大值2 44ac b a -. 六、二次函数解析式的表示方法 1.一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠); 2.顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);

二次函数的应用(最值问题)

二次函数的应用(最值问题) 教学目标: 知识与技能:利用二次函数y=ax2+bx+c(a≠0)的图象与性质解决简单的实际问题。能理解函数图象的顶点、端点与最值的关系,并能应用这些关系解决实际问题。 过程与方法: 1、能将实际问题转化为二次函数问题,进而建立数学模型解决,从中体会数学建模的思想和数学来源于生活又服务于生活。 2、从“数”(解析式)和“形”(图象)的角度理解二次函数与实际生活中“最值“问题之间的联系,体会”数形结合“的思想。 情感态度:通过用二次函数解决实际生活中的问题,体验函数知识的实际应用价值,感受数学与人类生活的密切联系。 重点:应用二次函数解决实际生活及几何图形中有关的最值问题。 难点: 1、正确构建数学模型。 2、对函数图象顶点、端点与最值关系的理解与应用。 教学方法与手段: 由于本节课是应用问题,重在通过学习总结解决问题的方法,故而本节课以“启 发探究式“为主线开展教学活动,解决问题。以学生动手动脑探究为主,必要时加以 小组合作讨论,充分调动学生学习积极性和主动性,突出学生的主体地位,达到”不 但使学生学会,而且使学生会学“的目的。为了提高课堂效率,展示学生的学习效果,适当地辅以电脑多媒体技术。 教学过程: 一、复习导入: 1、二次函数y=ax2+bx+c(a≠0)的图象是一条___,他的对称轴是﹍﹍,顶点坐标是﹍﹍。 2、当a>0时,抛物线开口向﹍,有最﹍点,当x=﹍时,函数有最﹍值是﹍﹍;当a<0时,抛物线开口向﹍,有最﹍点,当x=﹍时,函数有最﹍值,是﹍﹍。

二、探究问题 问题一:利润最值问题 提问:利润公式?利润=(售价-进价)×销售量 出示问题: 小丽、小强和小红到某超市参加社会实践活动,在活动中他们参与了某种水果的销售工作。已知该水果的进价为8元/千克,下面是他们在活动结束后的对话。 小丽:如果以10元/千克的价格销售,那么每天可售出300千克。 小强:如果每千克的利润为3元,那么每天可售出250千克。 小红:如果以13元/千克的价格销售,那么每天可获取利润750元。 (1)请根据他们的对话填写下表 (2)请你根据表格中的信息判断每天的销售量y(千克)与销售单价x(元)之间存在怎样的函数关系?并求y(千克)与x(元)的函数关系式。 (3)设该超市销售这种水果每天获取的利润为W元,求W与x之间的函数关系式。当销售单价为何值时,每天可获得的利润最大?最大利润是多少元? (4)若物价部门规定,这种水果的售价不能高于11元/千克,当销售单价为何值时,每天可获得的利润最大?最大利润是多少元? 让学生小组活动,并让学生说出每一个信息是由哪一句话得出的?如何想的?然后独立求出解析式并小组订正,最后独立求出最值,集体板演订正。最后一问教师引导得出。 小结:对于二次函数求最值问题应设一个量为自变量x,所求问题为函数,建立二次函数模型,写出函数关系式。要注意自变量的取值范围,在取值范围内利用顶点或端点求最值。 问题二:线段长度最值问题 如图,抛物线y=-5/4x2+17/4x+1与y轴交于A点,过点A的直线与抛物线交于 另一点B,过点B作BC⊥x轴,垂足为点 C(3,0)。

二次函数基本概念讲义

二次函数的图像和性质----基础概念 1.二次函数的定义:形如的函数叫二次函数。 限制条件:(1)自变量的最高次数是;(2)二次项系数。2.二次函数的解析式(表达式)——三种形式,重点是前两种。 (1)一般式:; (2)顶点式:y=a(x-h)2+k(a≠0),此时二次函数的顶点坐标为(,),对称轴是。 注意:顶点形式的最大优点是直接从解析式看出顶点坐标和对称轴,比较方便。离开它用一般形式也可以。 ※(3)交点式(两点式):设x1、x2是抛物线与x轴的两个交点的横坐标,则y=a(x-x1)(x-x2) 此时抛物线的对称轴为直线x= 22 1x x+ 。 注意:(1)当顶点在X轴上(即抛物线与X轴只有一个交点(0,x1))时,函数表达式为。这个交点是抛物线的什么点? (2)是不是任意一个二次函数都可以写成交点形式?在什么条件下才有交点式? (3)利用这种形式只是解决相关问题要简便一些,直接用一般形式也可以。实际上利用一般形式和顶点坐标公式可以解决二次函数的多数问题。 ▲三种二次函数的解析式的联系: 针对一般形式而言,顶点式:y=a(x-h)2+k(a≠0)中,h= ;k= 。当Δ=b2-4ac 时,才有两根式。 3、二次函数y=ax2+bx+c(a≠0)的图象与性质 ----抛物线的特征---待定系数a,b,c的作用二次函数y=ax2+bx+c(a≠0)的图象是一条线,它是一个对称图形,抛物线与对称轴的交点叫抛物线的点。不过这个结论成立的条件是自变量的取值范围是。 (1)形状----开口大小。由决定,越大,开口越。 (2)开口方向:由决定。当a>0时,函数开口方向向;当a<0时,函数开口方向向;(3)对称轴:直线x= ; 注意:一次函数的图象是直线,但直线的解析式不一定是一次函数。例如与坐标轴平行(垂直) 的直线的解析式是X=K,或Y=K,它们为什么不是一次函数呢? ▲(4)顶点坐标公式:(,); 利用顶点坐标公式的注意事项:当求得顶点横坐标后,可以用纵坐标公式,也可以不用纵坐标 公式,而直接将横坐标代入哪里求得纵坐标。例如:Y=2x2-4X+1 当X= 4 2 - =-2时,Y= ,顶点坐标为(,) 可见,必须记住顶点横坐标公式。顶点纵坐标公式记不住也没有关系。 (5)增减性:分对称轴左右两侧描述。 当a>0时,在对称轴左侧,即x 时,y随着x的增大而;在对称轴右侧,即x 时,y随着x的增大而;当a<0时,在对称轴左侧,即x 时,y随着x的增大而; 在对称轴右侧,即x 时,y随着x的增大而; ▲(6)最值:特别注意顶点横坐标是否在自变量的取值范围内 ①若顶点横坐标在自变量的取值范围内 当a>0时,函数有最值,并且当x= 时,y最小值= ;当a<0时,函数有最值, 并且当x= ,y最大值= ;并且考虑在端点处是否取得最值。 ②若顶点横坐标不在自变量的取值范围内,只考虑在端点处是否取得最值。 (7)与坐标轴的交点 ①与X轴的交点 求法:解方程,其求根公式是。

相关文档
最新文档