尼龙处理剂的附着力原理和使用方法

尼龙处理剂的附着力原理和使用方法
尼龙处理剂的附着力原理和使用方法

尼龙处理剂的附着力原理和使用方法

(本尼龙处理剂方案由炅盛整理发布)

尼龙处理剂概述:

尼龙处理剂应用于尼龙(尼龙+玻纤)塑胶表面加工时增进上涂料时对底材的附着性的特殊助剂。

物理性质:

1、化学组成:高分子界面聚合物。

2、密度(g/cm3):0.90。

3、闪点:约12℃。

4、外观:淡黄透明液体。

使用用途:

尼龙(尼龙+玻纤)素材的表面物理性能差、极性低,常常附着力差,需要进行特殊处理后,才能有效的附着,炅盛尼龙处理剂具有优异的附着力。可以在处理过的尼龙(尼龙+玻纤)底材上喷涂任何涂料(包括手感油、UV光油等)。广泛应用于家用电器、小商品、高级玩具等许多方面。操作方便、可通过各种测试。

使用方法:

1.将要处理的尼龙素材擦拭干净,去除表面残留油脂或脱模剂等。

2.将附着力促进剂专家尼龙底水喷涂或擦拭在要处理的尼龙素材上至干膜5-10UM,静置5-10分钟。

3.涂装油墨或油漆,静置5-10分钟。

4.将涂装好的工件以80℃强制干燥30分钟最佳。

注意事项:

1、避免接触眼睛或皮肤,如不慎沾上,请用大量清水和肥皂水清洗,必要时及时就医。

2、贮存于阴凉(30℃以下)避光处,通风良好的场所,远离火源。

3、开启后要及时密封保存

氨氮废水常用处理方法

氨氮废水常用处理方法 来源:作者:发布时间:2007-11-14 过量氨氮排入水体将导致水体富营养化,降低水体观赏价值,并且被氧化生成的硝酸盐和亚硝酸盐还会影响水生生物甚至人类的健康。因此,废水脱氮处理受到人们的广泛关注。目前,主要的脱氮方法有生物硝化反硝化、折点加氯、气提吹脱和离子交换法等。消化污泥脱水液、垃圾渗滤液、催化剂生产厂废水、肉类加工废水和合成氨化工废水等含有极高浓度的氨氮(500 mg/L以上,甚至达到几千mg/L),以上方法会由于游离氨氮的生物抑制作用或者成本等原因而使其应用受到限制。高浓度氨氮废水的处理方法可以分为物化法、生化联合法和新型生物脱氮法。 1 物化法 1.1 吹脱法 在碱性条件下,利用氨氮的气相浓度和液相浓度之间的气液平衡关系进行分离的一种方法。一般认为吹脱效率与温度、pH、气液比有关。 王文斌等[1]对吹脱法去除垃圾渗滤液中的氨氮进行了研究,控制吹脱效率高低的关键因素是温度、气液比和pH。在水温大于25 ℃,气液比控制在3500左右,渗滤液pH控制在10.5左右,对于氨氮浓度高达2000~4000 mg/L的垃圾渗滤液,去除率可达到90%以上。吹脱法在低温时氨氮去除效率不高。

王有乐等[2]采用超声波吹脱技术对化肥厂高浓度氨氮废水(例如882 mg/L)进行了处理试验。最佳工艺条件为pH=11,超声吹脱时间为40 min,气水比为l000:1试验结果表明,废水采用超声波辐射以后,氨氮的吹脱效果明显增加,与传统吹脱技术相比,氨氮的去除率增加了17%~164%,在90%以上,吹脱后氨氮在100 mg/L以内。 为了以较低的代价将pH调节至碱性,需要向废水中投加一定量的氢氧化钙,但容易生水垢。同时,为了防止吹脱出的氨氮造成二次污染,需要在吹脱塔后设置氨氮吸收装置。 Izzet等[3]在处理经UASB预处理的垃圾渗滤液(2240 mg/L)时发现在pH=11.5,反应时间为24 h,仅以120 r/min的速度梯度进行机械搅拌,氨氮去除率便可达95%。而在pH=12时通过曝气脱氨氮,在第17小时pH开始下降,氨氮去除率仅为85%。据此认为,吹脱法脱氮的主要机理应该是机械搅拌而不是空气扩散搅拌。 1.2 沸石脱氨法 利用沸石中的阳离子与废水中的NH4+进行交换以达到脱氮的目的。沸石一般被用于处理低浓度含氨废水或含微量重金属的废水。然而,蒋建国等[4]探讨了沸石吸附法去除垃圾渗滤液中氨氮的效果及可行性。小试研究结果表明,每克沸石具有吸附15.5 mg氨氮的极限潜力,当沸石粒径为30~16目时,氨氮去除率达到了78.5%,且在吸附时间、投加量及沸石粒径相同的情况下,进水氨氮浓度越大,吸附速率越大,沸石作为吸附剂去除渗滤液中的氨氮是可行的。

附着力促进剂针对不同底材的分类!

附着力促进剂针对不同底材的分类! (本文章由东莞炅盛附着力促进剂整理发布) 附着力促进剂是针对材质在涂装工艺中出现附着力、掉漆的问题而提供解决方案的!下面就跟大家看看炅盛科技主要的附着力促进剂有几大种类: 一:PP附着力促进剂: 附着力促进剂应用于PP塑料加工时增进涂膜对底材附着性的特殊助剂,广泛应用于家电器、小商品、高级玩具等许多方面,为了使其制品在外观上达到高一级水平,需要进行表面涂饰,而PP塑料的表面能力差、极性低,常常附着力差,需要进行特殊处理。 二:尼龙附着力促进剂: 尼龙(尼龙+玻纤)素材的表面物理性能差、极性低,常常附着力差,需要进行特殊处理后,才能有效的附着。附着力促进剂专家尼龙底水专门为这些而产生,具有优异的附着力。可以在处理过的尼龙(尼龙+玻纤)底材上喷涂任何涂料(包括手感油、UV光油等)。广泛应用于家用电器、小商品、高级玩具等许多方面。操作方便、可通过各种测试。 三:金属附着力促进剂: 金属附着力促进剂是无卤五金处理剂.应用于增强UV金属的附着力,金属附着力促进剂的作用是起承上启下作用, 使其铰链上底材和UV,达到附着。广泛应用于各种锌合金、镁合金、不锈钢等五金件及其水镀件或真空镀膜上,可辅助加强金属镀膜层与UV的结合,同时和大部分的常用溶剂型树脂有良好的亲和力,是一款得到市场广泛认可的常用型处理剂。 四:UV返修水、UV返工水: UV返修水应用于塑胶、金属、木器等UV大面积喷涂表面缺陷修复涂底水,附着力优异。其作用并不是把原有UV漆膜除去,而是起承上启下作用使原UV

漆膜铰链上再喷涂的UV,达到附着,可大大提高制程良率,达到节约成本的 目的。 五:TPU处理剂: 大多数TPU素材在注塑成形过程中为了改善脱模不良离型变形问题,都会在 模具上喷上中性或油性的脱模剂(离型剂),这样一来在产品上就混有脱模剂,就算喷涂前表面清洁也不能把脱模剂清理干净,导致在上UV底漆后起油窝或 不上油。TPU处理剂专业解决TPU材质表面油污造成附着力差、掉漆,过不 了测试等问题! 六:TR90处理剂: TR90是一种记忆性高分子材料,是目前用在眼镜框上比较常见的材料。 TR90具有超韧性,耐撞耐磨,摩擦系数低等特点,能有效防止在运动中,因 镜架断裂、摩擦对眼睛及脸部造成的伤害。因其特异的分子结构,抗化学性佳,在高温的环境下不易变形,短时间内可耐350度高温,不易熔化和燃烧。 TR90素材在喷涂的流程中,因素材与油漆的匹配性不好,单从油色上解决可 能会有技术性的品项,必需要进行表面处理,因而我司针对性而为。极具专业性。为此我司专业研发和生产出一款适合TR90的尼龙底水。它采用了德国先 进环保树脂,拥有特殊官能团,可以与尼龙底材表面的极性团有效结合,在尼 龙表面产生新的稳定性树脂涂层,为油墨或涂料起到良好的打底作用,在涂覆 了尼龙底水的尼龙材料表面,能够有效的解决TR-90素材喷油附着力不好的问题,有效的通过百格等测试。

高氨氮废水处理方法

高氨氮废水的一般的形成是由于氨水和无机氨共同存在所造成的,一般上ph在中性以上的废水氨氮的主要来源是无机氨和氨水共同的作用,ph在酸性的条件下废水中的氨氮主要由于无机氨所导致。废水中氨氮的构成主要有两种,一种是氨水形成的氨氮,一种是无机氨形成的氨氮,主要是硫酸铵,氯化铵等等。 高氨氮废水如何处理,我们着重介绍一下其处理方法: 1 物化法 1.1 吹脱法 在碱性条件下,利用氨氮的气相浓度和液相浓度之间的气液平衡关系进行分离的一种方法,一般认为吹脱与湿度、PH、气液比有关。1.2 沸石脱氨法 利用沸石中的阳离子与废水中的NH4+进行交换以达到脱氮的目的。应用沸石脱氨法必须考虑沸石的再生问题,通常有再生液法和焚烧法。采用焚烧法时,产生的氨气必须进行处理。 1.3 膜分离技术 利用膜的选择透过性进行氨氮脱除的一种方法。这种方法操作方便,氨氮回收率高,无二次污染。例如:气水分离膜脱除氨氮 氨氮在水中存在着离解平衡,随着PH升高,氨在水中NH3形态比

例升高,在一定温度和压力下,NH3的气态和液态两项达到平衡。根据化学平衡移动的原理即吕.查德里(A.L.LE Chatelier)原理。在自然界中一切平衡都是相对的和暂时的。化学平衡只是在一定条件下才能保持“假若改变平衡系统的条件之一,如浓度、压力或温度,平衡就向能减弱这个改变的方向移动。”遵从这一原理进行了如下设计理念在膜的一侧是高浓度氨氮废水,另一侧是酸性水溶液或水。当左侧温度T1>20℃,PH1>9,P1>P2保持一定的压力差,那么废水中的游离氨NH4+,就变为氨分子NH3,并经原料液侧介面扩散至膜表面,在膜表面分压差的作用下,穿越膜孔,进入吸收液,迅速与酸性溶液中的H+反应生成铵盐。 1.4MAP沉淀法 主要是利用以下化学反应:Mg2++NH4++PO43-=MgNH4PO4 理论上讲以一定比例向含有高浓度氨氮的废水中投加磷盐和镁盐,当[Mg2 + ][NH4+][PO43 -]>2.5×10–13时可生成磷酸铵镁(MAP),除去废水中的氨氮。 1.5 化学氧化法 利用强氧化剂将氨氮直接氧化成氮气进行脱除的一种方法。折点加氯是利用在水中的氨与氯反应生成氨气脱氨,这种方法还可以起到杀菌作用,但是产生的余氯会对鱼类有影响,故必须附设除余氯设施。

氨氮废水处理方法

高氨氮废水处理技术 介绍各类氨氮废水处理技术及其原理,包括各种方法的优缺点、适用范围、高浓度氨氮废水处理技术的研究进展。通过对比分析,明确不同类型高氨氮废水处理的选择方法,为治理高氨氮废水提供一条便捷的选择方法。 近年来,随着环境保护工作的日益加强,水体中有机物的代表指标-COD基本上得到有效控制,但是,含高氨氮废水达标排放没有得到有效控制,未经处理的含氮废水排放给环境造成了极大的危害,如易导致湖泊富营养化,海洋赤潮等。本文总结了国内外高氨氮废水处理技术及其优缺点、适用范围等。 1、废水中氨氮处理的主要技术应用与新进展 1.1吹脱法 吹脱法是将废水中的离子态铵(NH4+),通过调节pH值转化为分子态氨,随后被通入的空气或蒸汽吹出。影响吹脱效率的主要因素有:pH值、水温、布水负荷、气液比、足够的气液分离空间。 NH4++OH-→NH3+H2O 炼钢、石油化工、化肥、有机化工等行业的废水,常含有很高浓度的氨,因此常用蒸汽吹脱法处理,回收利用的氨部分抵消了产生蒸汽的高费用。石灰一般用来提高pH值。用蒸汽比用空气更易控制结垢现象,若用烧碱则可大大减轻结垢的程度。吹脱法一般采用填料吹脱塔,主要特征是在塔内装置一定高度的填料层,利用大表面积的填充塔来达到气水充分接触,以利于气水间的传质过程。常用的填料有拉西环、聚丙烯鲍尔环、聚丙烯多面空心球等。胡允良等人研究了某制药厂生产乙胺碘呋酮时产生的一部分高浓度氨氮废水的静态吹脱效果。结果表明:当pH=10~13,温度为30~50℃时,氨氮吹脱率为70.3%~99.3%。 氨吹脱法通常用于高浓度氨氮废水的预处理,该处理技术优点在于除氨效果稳定,操作简单,容易控制。但如何提高吹脱效率、避免二次污染及如何控制生产过程水垢的生成都是氨吹脱法需要考虑的问题。 1.2化学沉淀法(MAP法)

涂料附着力基本原理分析

涂料附着力基本原理分析 涂料附着力基本原理分析 附着力理论和机理 当两物体被放在一起达到紧密的界面分子接触,以至生成新的界面层,就生成了附着力。附着力是一种复杂的现象,涉及到“界面”的物理效应和化学反应。因为通常每一可观察到的表面都与好几层物理或化学吸附的分子有关,真实的界面数目并不确切知道,问题是在两表面的何处划界及附着真正发生在哪里。 当涂料施工于底材上,并在干燥和固化的过程中附着力就生成了。这些力的大小取决于表面和粘结料(树脂、聚合物、基料)的性质。广义上这些力可分为二类:主价力和次价力(表1)。化学键即为主价力,具有比次价力高得多的附着力,次价力基于以氢键为代表的弱得多的物理作用力。这些作用力在具有极性基团(如羧基)的底材上更常见,而在非极性表面如聚乙烯上则较少。 涂料附着的确切机理人们尚未完全了解。不过,使两个物体连接到一起的力可能由于底材和涂料通过涂料扩散生成机械连接、静电吸引或化学键合。根据底材表面和所用涂料的物理化学性质的不同,附着可采取上述机理的一种或几种。一些提出的理论讨论如下。1.机械连接理论 这种涂层作用机制适用于当涂料施工于含有孔、洞、裂隙或空穴的底材上时,涂料能够渗透进去。在这种情况下,涂料的作用很象木材拼合时的钉子,起机械锚定作用。当底材有凹槽并填满固化的涂料时,由于机械作用,去掉涂层更加困难,这与把两块榫结的木块拼在一起类似。对各种表面的仪器分析和绘图(外形图)表明,涂料确实可渗透到复杂“隧道”形状的凹槽或裂纹中,在固化硬化时,可提供机械附着。各种涂料对老的或已风化的涂层的附着,以及对喷砂底材的附着就属于这种机理。磷酸锌或铁与涂料具有较大的接触面积,因而能提高附着和耐蚀性。图2展示了假定的底材表面形状和涂料的渗透。 表面的粗糙程度影响涂料和底材的界面面积。因为去除涂层所需的力与几何面积有关,

PP、尼龙附着力促进剂的选择应用说明书

附着力促进剂的分类 涂膜与底材之间可通过机械结合、物理吸附,形成氢键和化学键,互相扩散等作用结合在一起。这些作用所产生的黏附力,决定了漆膜与底材间的附着力。这种附着力应是漆膜和底材之间各种结合力(黏附力)之总和。 附着力不好时应采取如下的措施,底材打磨、降低涂料施工黏度,或者提高施工温度,或烘干均因能提高机械结合力及扩散作用而提高附着力。 使用附着力促进剂,也是行之有效的方法之一,附着力促进剂主要有以下三类。 树脂类附着力促进剂 目前很多公司提供含羟基、羧基、醚键或氯代树脂、磺酰氨基等溶剂型树脂,它与一般树脂有较好的混容性,又与底材可形成一定的化学结合,因而在涂膜与底材间形成化学结合力。这些助剂自身又在涂膜中通过互溶、缠绕等作用与涂膜结合在一起,因而提高了附着力。 树脂类附着力促进剂还有丙烯酸" 环氧基类、丙烯酸" 氨基类等。用于水性漆、塑料PP、PE的附着力促进剂也有相应的品种。 尼龙处理剂、专业解决尼龙表面附着力差,不良品 来源:东莞源雅化工 产品用途: 尼龙处理剂应用于尼龙塑胶表面加工时增进上涂料时对底材的附着性的特殊助剂。尼龙素材的表面物理性能差、极性低,常常附着力差,需要进行特殊处理后,才能有效的附着。尼龙处理剂专门为这些而产生,具有优异的附着力,可以在处理过的尼龙底材上喷涂任何涂料(包括手感油、UV光油等)。尼龙处理剂广泛应用于家用电器、小商品、高级玩具等许多方面,操作方便、可通过各种测试。 物理性质: 1、化学组成:高分子界面聚合物。 2、密度(g/cm3):0.90。 3、闪点:约12℃。 4、外观:淡黄透明液体。 使用方法: 1.将要处理的尼龙素材擦拭干净,去除表面残留油脂或脱模剂等。 2.将尼龙处理剂喷涂或擦拭在要处理的素材上至干膜5-10UM,静置5-10分钟。 3.涂装油墨或油漆,静置5-10分钟。 4.将涂装好的工件以80℃强制干燥30分钟最佳。 东莞源雅化工专业为你解决各种UV油墨疑难杂症。

附着力促进剂分析涂装附着力差的解决方案!

附着力促进剂分析涂装附着力差的原因和解决方案! (本方案由东莞炅盛附着力促进剂整理发布) 喷涂过程中,经常出现底材的附着力不够出现掉漆过不了百格等测试问题,由于底材的不同以及工艺生产的不同,市场上出现大量的不同种类的附着力促进剂,分析底材在涂装过程中的缺陷,并进行针对性问题的解决,是一般处理剂的要求试样的前提,下面我们就来看看涂装缺陷的一些原因和解决方案! 一:附着力不良的理论: 附着力是评判涂膜质量的基本项目之一,如果不能保证附着力,其他性能也就无从谈起。涂料与基材的附着是一个复杂的过程,涉及到“界面”的物理效应和化学反应。涂料附着的确切机理人们尚未完全了解,常见的理论有化学键理论、机械连接理论、静电理论、扩散理论等。附着力的大小取决于涂料与被涂基材的性质,广义上可分为主价力和次价力。主价力为化学键,而次价力是基于以氢键为代表的物理作用力。 二:附着力不良产生原因分析: 1.底漆与基材间的附着力不良主要与表面张力相关,是塑料基材表面张力较低,湿润性能差,涂料附着较困难。所以塑料件表面的预涂底漆选用不当,喷涂前基材表面处理不当,未进行除油和火焰处理是造成基材与底漆附着不良的主要原因。 2.底漆与色漆间附着力不良的主要原因为底、色漆涂料品种选用不对,底涂层放置过久或烘烤过度,影响层间结合力。 3.色漆与清漆间附着力不良的主要原因为色漆与清漆不配套,色漆不良、清漆不良、涂装参数不匹配。 三:附着力不良解决方案: 1.彻底处理基材表面。 2.对于光滑的喷涂表面,喷涂前需要进行适当的打磨处理。 3.合理选择配套的底、面漆,一般要求底层的涂膜和面漆涂膜的硬度和伸缩性接近。 4.加强涂装控制,按照标准施工工艺施工,控制适当的膜厚,减少重涂次数。

吹脱法处理高浓度氨氮废水

吹脱法处理高浓度氨氮废水 作者:周明罗陈建中刘志勇 简介:对垃圾渗滤液处理难点进行了分析,阐述了垃圾渗滤液国内外处理现状、处理工艺对比、以及存在弊端,概述OFR新型专利技术处理垃圾渗滤液的原理、使用范围、技术优势及其推广方向,提出OFR 技术在高浓度有机废水处理有特殊的效果,已成功使用于国内外多家企业,尤其在垃圾渗滤液前预处理和经膜技术处理后的浓液处理方面有广阔的使用前景。 关键字:垃圾渗滤液浓缩液氨氮 高浓度氨氮废水来源甚广且排放量大。如化肥、焦化、石化、制药、食品、垃圾填埋场等均产生大量高浓度氨氮废水。大量氨氮废水排入水体不仅引起水体富营养化、造成水体黑臭,而且将增加给水处理的难度和成本,甚至对人群及生物产生毒害作用[1]。氨氮废水对环境的影响已引起环保领域和全球范围的重视,近20 年来,国内外对氨氮废水处理方面开展了较多的研究。其研究范围涉及生物法、物化法的各种处理工艺,如生物方法有硝化及藻类养殖;物理方法有反渗透、蒸馏、土壤灌溉;化学法有离子交换法、氨吹脱、化学沉淀法、折点氯化、电化学处理、催化裂解等。新的技术不断出现,在处理氨氮废水的使用方面展现出诱人的前景。本文侧重介绍吹脱法处理高浓度氨氮废水的技术特点及研究使用。 1 吹脱技术 吹脱法用于脱除水中氨氮,即将气体通入水中,使气液相互充分接触,使水中溶解的游离氨穿过气液界面,向气相转移,从而达到脱除氨氮的目的。常用空气作载体(若用水蒸气作载体则称汽提)。 水中的氨氮,大多以氨离子(NH4+)和游离氨(NH3)保持平衡的状态而存在。其平衡关系式如下: NH4++OH-NH3+H2O (1) 氨和氨离子之间的百分分配率可用下式进行计算: Ka=Kw /K b=(C NH3·C H+)/C NH4+(2) 式中:Ka———氨离子的电离常数;

尼龙改性中使用的相容剂和增韧剂

尼龙改性中主要可以使用的相容剂为POE接枝相容剂ST-2,另外还有EPDM接枝相容剂ST-18,我们现在生产得最多的是POE 接枝相容剂ST-2,在玻纤增强尼龙、防火尼龙、玻纤防火增强尼龙以及增韧尼龙中,我们都建议大家使用ST-2,因为POE接枝相容剂ST-2在尼龙中的增韧效果比较理想,ST-2在尼龙中的作用主要是提高尼龙的韧性及冲击强度。在玻纤增强尼龙、防火尼龙、玻纤防火增强尼龙中,建议大家使用ST-2的添加量为5-10%时较为理想,添加量太少,可能增韧效果达不到要求,添加量太多,可能对尼龙的防火、拉伸强度以及耐温会有一定的影响,任何事物只能是量力而为,相容剂的使用亦是如此。而在上述尼龙改性中的一些特殊情况,如用户只要求冲击强度达到一定高度而对尼龙耐温和拉伸强度没有什么要求,则ST-2的使用量可以在10%以上。另外ST-2的一个大的用途是在超韧尼龙和超韧耐寒尼龙中使用,这时ST-2的建议使用量为15-20%,甚至在一些高要求的情况中,ST-2的使用量需达25%以上。ST-2在尼龙中使用时,尼龙最高缺口冲击强度可达120KJ/ m2,耐寒尼龙最低温度可做到零下35℃,另外在超韧耐寒尼龙改性中,对尼龙的粘度的选择亦有较高要求,这一点是许多尼龙改性工作者所不注意的,在超韧耐寒尼龙改性中,要求尼龙粘度达2.8以上,否则,相容剂加得再多,冲击强度也难提高。我公司ST-2在PBT改性中亦能起到很好的相容增韧作用,用户如作高韧性要求的PBT改性产品,ST-2 一定会让你得到意想不到的帮助。 EPDM接枝相容剂ST-18主要用于超耐寒尼龙中,如要求尼龙的耐寒在-35℃到-40℃的情况,就需用它。

去除氨氮的有效方法

根据废水中氨氮浓度的不同,可将废水分为3类:高浓度氨氮废水(NH3-N>500mg/l),中等浓度氨氮废水(NH3-N:50-500mg/l),低浓度氨氮废水(NH3-N<50mg/l)。然而高浓度的氨氮废水对微生物的活性有抑制作用,制约了生化法对其的处理应用和效果,同时会降低生化系统对有机污染物的降解效率,从而导致处理出水难以达到要求。 故本工程的关键之一在于氨氮的去除,去除氨氮的主要方法有:物理法、化学法、生物法。物理法含反渗透、蒸馏、土壤灌溉等处理技术;化学法含离子交换、氨吹脱、折点加氯、焚烧、化学沉淀、催化裂解、电渗析、电化学等处理技术;生物法含藻类养殖、生物硝化、固定化生物技术等处理技术。目前比较实用的方法有:折点加氯法、选择性离子交换法、氨吹脱法、生物法以及化学沉淀法。 1.折点氯化法去除氨氮 折点氯化法是将氯气或次氯酸钠通入废水中将废水中的NH3-N氧化成N2的化学脱氮工艺。当氯气通入废水中达到某一点时水中游离氯含量最低,氨的浓度降为零。当氯气通入量超过该点时,水中的游离氯就会增多。因此该点称为折点,该状态下的氯化称为折点氯化。处理氨氮污水所需的实际氯气量取决于温度、pH值及氨氮浓度。氧化每克氨氮需要9~10mg 氯气。pH值在6~7时为最佳反应区间,接触时间为0.5~2小时。 折点加氯法处理后的出水在排放前一般需要用活性碳或二氧化硫进行反氯化,以去除水中残留的氯。1mg残留氯大约需要0.9~1.0mg的二氧化硫。在反氯化时会产生氢离子,但由此引起的pH值下降一般可以忽略,因此去除1mg残留氯只消耗2mg左右(以CaCO3计)。折点氯化法除氨机理如下: Cl2+H2O→HOCl+H++Cl- NH4++HOCl→NH2Cl+H++H2O NHCl2+H2O→NOH+2H++2Cl- NHCl2+NaOH→N2+HOCl+H++Cl- 折点氯化法最突出的优点是可通过正确控制加氯量和对流量进行均化,使废水中全部氨氮降为零,同时使废水达到消毒的目的。对于氨氮浓度低(小于50mg/L)的废水来说,用这种方法较为经济。为了克服单独采用折点加氯法处理氨氮废水需要大量加氯的缺点,常将此法与生物硝化连用,先硝化再除微量残留氨氮。氯化法的处理率达90%~100%,处理效果稳定,不受水温影响,在寒冷地区此法特别有吸引力。投资较少,但运行费用高,副产物氯胺和氯化有机物会造成二次污染,氯化法只适用于处理低浓度氨氮废水。 2.选择性离子交换化去除氨氮 离子交换是指在固体颗粒和液体的界面上发生的离子交换过程。离子交换法选用对NH4+离子有很强选择性的沸石作为交换树脂,从而达到去除氨氮的目的。沸石具有对非离子氨的吸附作用和与离子氨的离子交换作用,它是一类硅质的阳离子交换剂,成本低,对NH4+有很强的选择性。 O.Lahav等用沸石作为离子交换材料,将沸石作为一种把氨氮从废水中分离出来的分离器以及硝化细菌的载体。该工艺在一个简单的反应器中分吸附阶段和生物再生阶段两个阶段进行。在吸附阶段,沸石柱作为典型的离子交换柱;而在生物再生阶段,附在沸石上的细菌把脱附的氨氮氧化成硝态氮。研究结果表明,该工艺具有较高的氨氮去除率和稳定性,能成功地去除原水和二级出水中的氨氮。 沸石离子交换与pH的选择有很大关系,pH在4~8的范围是沸石离子交换的最佳区域。当pH<4时,H+与NH4+发生竞争;当pH>8时,NH4+变为NH3而失去离子交换性能。用离子交换法处理含氨氮10~20mg/L的城市污水,出水浓度可达1mg/L以下。离子交换法具有工艺简单、投资省去除率高的特点,适用于中低浓度的氨氮废水(<500mg/L),对于高浓度的氨氮废水会因树脂再生频繁而造成操作困难。但再生液为高浓度氨氮废水,仍需进一

如何选择PA6 的增韧剂

如何选择PA6的增韧剂? 尼龙6具有干态和低温冲击性能差的缺陷,为了改善这一缺陷,需对尼龙进行增韧改性,增韧尼龙6中应用最多的是接枝改性的弹性体增韧。S.Wu认为,作为分散相,橡胶粒子之间需要达到一定的间距才能有效增韧尼龙,通过量化橡胶粒子的粒径及间距,明确了尼龙增韧弹性体的选择依据。另外,弹性体的交联程度、粘度及所接枝官能团的多少对增韧效果也有影响。 1.POE-g-MAH粒径大小对增韧尼龙6性能的影响 , 8wt% CMG5805-L added 12wt% CMG5805-L added 16wt% CMG5805-L added 20wt% CMG5805-L added 图1 增韧尼龙6在10,000倍SEM下的表面形貌 对比添加量分别为8%、12%、16%、20%佳易容?CMG5805-L (POE-g-MAH)在PA6中的SEM,如图1,发现相同加工工艺、不同添加量的情况下,增韧尼龙6中橡胶粒子的粒径没有发生变化(CMG5805-L在尼龙6中的平均粒径d=0.21μm)。但是,橡胶粒子的粒子间距随添加量增加而变小。

2. POE-g-MAH 粒子间距对增韧尼龙6性能的影响 S .Wu 给出了橡胶粒子间距(ID )与橡胶粒子粒径之间的关系: π (1) 其中Vr 为分散相粒子在体系中的体积分数: ρ (2) 6

距( 如图 3. 之间的接触面也就越大,橡胶粒子的粒径也就越小,如图4。但是,MAH接枝率更高,PA6冲击强度反而有所降低,这是因为对于PA6这类分子链柔性较好的树脂,较大的橡胶相粒径即可使其粒子间距达到临界值,橡胶相粒径小了反而不利于银纹的终止和剪切带的产生。故而增韧尼龙6时应该选择合适接枝率的增 韧剂。

高氨氮废水处理——Bardenpho工艺

三种高氨氮废水处理工艺 【格林大讲堂】 一、Bardenpho工艺 该工艺是在A/O工艺基础上,增设了一个缺氧段和好氧段,各段反应池均独立运行,混合液自第一好氧池回流至第一缺氧池而第二好氧池无混合液回流(因而须注意,第二缺氧池和第二好氧池并非组成一级A/O工艺)所增设的缺氧段和好氧段起强化脱氨和提高处理出水水质的作用。 武汉格林环保有完善的服务体系和配套的专业环境工程团队,秉着崇高的环保责任和义务长期维护提供免费的污水处理解决方案,是湖北省工业废水运营管理行业中的品牌。18年来公司设计并施工了上百个交钥匙式的污水处理工程。 运行过程中,第一好氧池的内部回流混合液、原水中的有机基质及回流污泥进入第一厌氧池,进行反硝化脱氮。由于第一厌氧池进水中含有较多内碳源可利用因而具有较高的反硝化速率,但与其进水中的食料比有关。好氧一池的容积一般可按F./M为0.25考虑;在厌氧二池中,由于好氧二池出水中有机物浓度较低,同时也没有外加碳源因而反硝化菌主要通过内源呼吸作用,以细胞内碳源进行反硝化,因此反硝化效率较低,并与系统的污泥龄有关。但这种反硝化作用可有效地提高整个处理系统的反硝化程度,从而利于提高脱氮效率。 必要时,可将少部分进水引入厌氧二池以适当补充碳源,提高其反硝化速率。该工艺中好氧二池的主要作用是进一步降低废水中的有机物浓度,同时改善出水的表观性状

由于增设了厌氧二池和好氧二池强化处理作用,该工艺的脱氮效率可以高达90%~95%(城市污水)。 二、BABE工艺 在通常的废水生物处理工艺中,其污泥经浓缩的上层液或氧化处理后脱水滤液均需返回至主体工艺进行处理。由于污泥浓缩上层液或脱水滤液中富含氮,因而其向主体工艺的返回将增加主体工艺的处理负荷,从而影响处理出水中氮的指标。 BABE在运行过程中将以A/O方式运行的处理工艺主流程中回流污泥的一部分分流入BABE间歇曝气池,BABE所处理的对象为含有高浓度的TN的污泥浓缩上层液或污泥脱水滤液。通过BABE池的间歇曝气运行,不仅有效地延长了处理工艺的污泥龄,并可对其进液中的氮实现充分的硝化作用,同时由于BABE池的良好消化条件,即较低的有机负荷及良好的温度控制(一般将温度控制在30℃),有效地提高了污泥中硝化菌的数量。 BABE池经间歇曝气后富含硝化菌的混合液、内回流与进水一起进入A/O工艺主流程,可实现充分的反硝化脱氮,强化了系统对氮的去处作用。 三、超声吹脱处理氨氮 超声吹脱法去除氨氮是一种新型、高效的高浓度氨氮废水处理技术,它是在传统的

油漆附着力促进剂

油漆附着力促进剂 油漆是装修中很常用的,由于其味道很大,所以我们都很反感。然而油漆附着力有什么作用?我们在涂油漆的时候,其实都很随便,没有过多去研究。油漆附着力差的话,会影响我们的装修。当我们发现油漆附着力低下的时候,我们可以怎么样去解决呢?油漆附着力促进剂又是什么呢? 现代涂装对制品表面的效果和所需要达到的耐性需求的要求更高。底材表面喷油漆出现附着力差这一现象就是普遍影响生产质量和效率的一大难题。如何去提升油漆的附着力变得急需去解决。其实,这里面关乎到两个点,一个是油漆,一个是素材。 附着力的好坏是指油漆漆膜与被素材表面结合在一起的坚牢程度而言的。这种结合力是由漆膜中聚合物的极性基团(如羟基或羧基)与被涂物表面的极性基相互作用而形成的。被涂物表面有污染或水分;油漆漆膜本身有较大的收缩能力;聚合物在固化过程中相互交联而使极性基的数量减少等。这些均是导致漆膜附着力下降的因素。 对于附着力的测定来说现在一般是以划格法、划圈法为代表的综合测定法为主,以拉开法为代表的剥落试验法一般都是作为测定材质附着力性能的基本方法,在涂装行业得到基本一致的使用。油漆与塑料以及金属材质能密切接触,他们之间产生的附着力能发生作用。导致附着力下降的原因还有:被素材内部的低分子物质向表面迁移并聚集在漆膜与素材表面之间,消弱了漆膜中聚合物的极性基团与被涂物表面极性基团间的作用力。进行表面电晕处理的目的就是要消除(去掉)附着在被涂物表面的可能影响漆膜附着力的低分子物质。但是电晕和火焰法的使用都具备效果不稳定,安全性能不高等缺点。 如何提高油漆的附着力?既在操作使用时安全稳定,工艺简单又能很好的控制材质表面的涂装效果变成了喷涂行业存在的一个常见问题。炅盛附着力促进剂有效解决材质涂装掉漆问题,通过对不同的材质进行大量的综合性实验和线上生产实验,能够提升素材与油漆之间的层间附着力,促进油漆在素材表面的附着力性能,使得漆膜与素材达到有效结合,被涂装行业广泛使用。 我们首先要知道油漆附着力为什么那么差,这样才好去解决问题。对于促进剂的使用,的确可以给我们带来很大的方便。我们对于这方面要是不了解的可以多看看哦。

尼龙牌号及用途、尼龙增韧、尼龙增强

尼龙是最重要的工程塑料,产量在五大通用工程塑料中居首位。性能:尼龙为韧性角状半透明或乳白色结晶性树脂,作为工程塑料的尼龙分子量一般为1.5-3万尼龙具有很高的机械强度,软化点高,耐热,磨擦系数低,耐磨损,自润滑性,吸震性和消音性,耐油,耐弱酸,耐碱和一般溶剂,电绝缘性好,有自熄性,无毒,无臭,耐候性好,染色性差。缺点是吸水性大,影响尺寸稳定性和电性能,纤维增强可降低树脂吸水率,使其能在高温、高湿下工作。尼龙与玻璃纤维亲合性十分良好。 尼龙中尼龙66的硬度、刚性最高,但韧性最差,做高韧性尼龙加南京塑泰相关的高效接枝增韧剂,和普通增韧剂相比,更好地和材料结合,更好地传递冲击能量。 尼龙增强加玻纤来的快,同样要考虑材料间的结合。 各种尼龙按韧性大小排序为: PA66<PA66/6<PA6<PA610<PA11<PA12. 尼龙的燃烧性为UL94v-2级,氧指数为24-28,尼龙的分解温度>299℃,在449~499℃时会发生自燃。尼龙的熔体流动性好,故制品壁厚可小到1mm PA用途对照表牌号和用途: PA6 轴承,齿轮,凸轮,滚子,滑轮,辊轴,螺钉,螺帽,垫片,高压,油管,储油,容器,等 PA66 用途与尼龙6基本一样还可作把手壳体支撑架等 PA610 机械制造,汽车用齿轮,衬垫,轴承,滑轮等精密部件,输油

管储油容器, 传动带,仪表壳,体纺织,机械部件 PA612 精密机械部件,电线电缆绝缘层,枪托弹药箱,工具架,线圈 PA9 齿轮,机械部件,电缆护套,医疗特种消毒包,渔网金属涂层PA11 输送汽油的硬管和软管,电缆护套,食品包装膜,发泡建材,静电喷涂 PA12 轴承,齿轮,精密部件,电子部件,油管软管,电线电缆护套PA1010 机械部件轴承架轴套油箱衬里电线电缆护套工业滤布筛网毛刷等

电化学原理思考题答案培训资料

电化学原理思考题答案 (注:我只做了老师要求做的) 第三章 1.自发形成的双电层和强制形成的双电层在性质和结构上有无不同?为什么? 2.理想极化电极和不极化电极有什么区别?它们在电化学中有什么重要用途? 答:当电极反应速率为0,电流全部用于改变双电层的电极体系的电极称为理想极化电极,可用于界面结构和性质的研究。理想不极化电极是指当电极反应速率和电子反应速率相等时,极化作用和去极化作用平衡,无极化现象,通向界面的电流全部用于电化学反应,可用作参比电极。 3.什么是电毛细现象?为什么电毛细曲线是具有极大值的抛物线形状? 答:电毛细现象是指界面张力随电极电位变化的现象。溶液界面存在双电层,剩余电荷无论带正电还是负电,同性电荷间相互排斥,使界面扩大,而界面张力力图使界面缩小,两者作用效果相反,因此带电界面的张力比不带电时小,且电荷密度越大,界面张力越小,因此电毛细曲线是具有极大值的抛物线形状。 4.标准氢电极的表面剩余电荷是否为零?用什么办法能确定其表面带电状况? 答:不一定,标准氢电极电位为0指的是氢标电位,是人为规定的,电极表面剩余电荷密度为0时的电位指的是零电荷电位,其数值并不一定为0;因为形成相间电位差的原因除了离子双电层外,还有吸附双电层\偶极子双电层\金属表面电位。可通过零电荷电位判断电极表面带电状况,测定氢标电极的零电荷电位,若小于0则电极带正电,反之带负电。 5.你能根据电毛细曲线的基本规律分析气泡在电极上的附着力与电极电位有什么关系吗?为什么有这种关系?(提示:液体对电极表面的润湿性越高,气体在电极表面的附着力就越小。) 6.为什么在微分电容曲线中,当电极电位绝对值较大时,会出现“平台”? 7.双电层的电容为什么会随电极电位变化?试根据双电层结构的物理模型和数学模型型以解释。 8.双电层的积分电容和微分电容有什么区别和联系? 9.试述交流电桥法测量微分电容曲线的原理。 10.影响双电层结构的主要因素是什么?为什么? 答:静电作用和热运动。静电作用使符号相反的剩余电荷相互靠近,贴于电极表面排列,热运动使荷电粒子外散,在这两种作用下界面层由紧密层和分散层组成。 11.什么叫ψ1 电位?能否说ψ1 电位的大小只取决于电解质总浓度而与电解质本性无关?ψ1 电位的符号是否总是与双电层总电位的符号一致?为什么? 答:距离电极表面d处的电位叫ψ1电位。不能,因为不同的紧密层d的大小不同,而紧密层的厚度显然与电解质本性有关,所以不能说ψ1 电位的大小只取决于电解质总浓度而与电解质本性无关。当发生超载吸附时ψ1 电位的符号与双电层总电位的符号不一致。 12.试述双电层方程式的推导思路。推导的结果说明了什么问题? 13.如何通过微分电容曲线和电毛细曲线的分析来判断不同电位下的双电层结构? 答: 14.比较用微分电容法和电毛细曲线法求解电极表面剩余电荷密度的优缺点。 15.什么是特性吸附?哪些类型的物质具有特性吸附的能力? 答:溶液中的各种粒子还可能因非静电作用力而发生吸附称为特性吸附。大部分无机阴离子,部分无机阳离子以及表面活性有机分子可发生特性吸附。 16.用什么方法可以判断有无特性吸附及估计吸附量的大小?为什么? 17.试根据微分电容曲线和电毛细曲线的变化,说明有机分子的特性吸附有哪些特点?

高浓度氨氮废水处理方法与工艺

高浓度氨氮废水处理 废水处理, 高浓度废水处理, 高浓度 过量氨氮排入水体将导致水体富营养化,降低水体观赏价值,并且被氧化生成的硝酸盐和亚硝酸盐还会影响水生生物甚至人类的健康。因此,废水脱氮处理受到人们的广泛关注。目前,主要的脱氮方法有生物硝化反硝化、折点加氯、气提吹脱和离子交换法等。消化污泥脱水液、垃圾渗滤液、催化剂生产厂废水、肉类加工废水和合成氨化工废水等含有极高浓度的氨氮(500 mg/L以上,甚至达到几千mg/L),以上方法会由于游离氨氮的生物抑制作用或者成本等原因而使其应用受到限制。高浓度氨氮废水的处理方法可以分为物化法、生化联合法和新型生物脱氮法。 1 物化法 1.1 吹脱法 在碱性条件下,利用氨氮的气相浓度和液相浓度之间的气液平衡关系进行分离的一种方法。一般认为吹脱效率与温度、pH、气液比有关。 王文斌等[1]对吹脱法去除垃圾渗滤液中的氨氮进行了研究,控制吹脱效率高低的关键因素是温度、气液比和pH。在水温大于25 ℃,气液比控制在3500左右,渗滤液pH控制在10.5左右,对于氨氮浓度高达2000~4000 mg/L的垃圾渗滤液,去除率可达到90%以上。吹脱法在低温时氨氮去除效率不高。

王有乐等[2]采用超声波吹脱技术对化肥厂高浓度氨氮废水(例如882 mg/L)进行了处理试验。最佳工艺条件为pH=11,超声吹脱时间为40 min,气水比为l000:1试验结果表明,废水采用超声波辐射以后,氨氮的吹脱效果明显增加,与传统吹脱技术相比,氨氮的去除率增加了17%~164%,在90%以上,吹脱后氨氮在100 mg/L 以内。 为了以较低的代价将pH调节至碱性,需要向废水中投加一定量的氢氧化钙,但容易生水垢。同时,为了防止吹脱出的氨氮造成二次污染,需要在吹脱塔后设置氨氮吸收装置。 Izzet等[3]在处理经UASB预处理的垃圾渗滤液(2240 mg/L)时发现在pH=11.5,反应时间为24 h,仅以120 r/min的速度梯度进行机械搅拌,氨氮去除率便可达95%。而在pH=12时通过曝气脱氨氮,在第17小时pH开始下降,氨氮去除率仅为85%。据此认为,吹脱法脱氮的主要机理应该是机械搅拌而不是空气扩散搅拌。 1.2 沸石脱氨法 利用沸石中的阳离子与废水中的NH4+进行交换以达到脱氮的目的。沸石一般被用于处理低浓度含氨废水或含微量重金属的废水。然而,蒋建国等[4]探讨了沸石吸附法去除垃圾渗滤液中氨氮的效果及可行性。小试研究结果表明,每克沸石具有吸附15.5 mg氨氮的极限潜力,当沸石粒径为30~16目时,氨氮去除率达到了78.5%,且在吸附时间、投加量及沸石粒径相同的情况下,进水氨氮浓度越大,吸附速率越大,沸石作为吸附剂去除渗滤液中的氨氮是可行的。

附着力促进剂

附着力指漆膜与被涂物表面结合在一起的坚牢程度而言的。这种结合力是由漆膜中聚合物的极性基团(如羟基或羧基)与被涂物表面的极性基相互作用而形成的。被涂物表面有污染或水分;漆膜本身有较大的收缩应力;聚合物在固化过程中相互交联而使极性基的数量减少等。这些均是导致漆膜附着力下降的因素 1、氰基乙酰氧基类湿附着力促进剂 其中: R1 是氢; R2 是烷基; R3 是无环基团,而且其每个支链有亚烃基或亚烷氧基。 该类化合物属于共聚单体类,含有的氰基乙酰氧基可与涂料、粘合剂成分中的单体发生共聚,从而发挥促进剂的作用,达到提高水性涂料、粘合剂湿附着力的目的。而氰基乙酰氧乙基甲基丙烯酸酯是文献中应用最多的的一种。将该单体力日入到链烯烃类的单体聚合物中,促进剂和单体的质量占聚合物总质量的98 %,另外再加入表面活性剂和引发剂制备水性乳液,测得该乳液的固含量为 50-65 %,而由该乳液为基料制成的涂料的耐擦洗性可达 2000 次,提高到原来的 4 倍。 2、乙酰乙酸类 其中: R1 、 R2 、 R3 如上所述; R4 是甲基; R5 和 R6 是烷基或环烷基; R7 是氢或甲基。该类化合物中含有乙酰乙酰基 (3-氧乙酰基 ) ,此基团作为涂料与基质间所成膜的聚结剂和附着力促进剂,通过与涂料聚合物的成分发生聚结和交联反应,从而改善涂料与基质间的湿附着力。另外该类化合物单体的混合物也具有同样的作用。可与其聚合的物质为乙酰乙酸酯的共聚单体或带有羟基、胺基的乳液单体,如丙烯酸乳液、链烯烃类乳液、水性醇酸树脂乳液等。将占乳液聚合单体总质量的0 . 1 ~50 %的该类促进剂加入到丙烯酸类聚合物,以形成丙烯酸共聚体系;而苯乙烯类共聚体系、醋酸乙烯酯共聚体系和链烯烃类共聚体系中该类促进剂的加入量则是按占单体总质量的0 . 1 ~20 %加入的。将上述共聚体系的水性乳液分别用于合成纤维,用ARMA4-82 和ARMA5-82 测试体系测得经过改性处理的合成织物的性能,测试结果表明:该织物的拉伸强度和撕裂强度均大大提高。 3 、HMDAA(hytroxymethyl diacetone acrylamide) 该化合物是由3摩尔的甲醛与1摩尔的双丙酮丙烯酰胺发生反应而得。由于该化合物含有胺基和丙烯羰基,由于不饱和双键能与涂料中乳液单体发生共聚,从而将胺基合并入乳胶聚合物链,进而可显著提高水性涂料的湿附着力。将占单体总质量的0 . 3 ~ 5 %的HMDAA 加入到氯乙烯/丙烯酸或全- 丙乳液中,可将这些涂料的湿附着力性能提高到原来的 5 倍。但由于该类化合物品种单一,未能形成体系,故缺乏深入研究。

附着力原理

涂料附着力基本原理分析 附着力理论和机理 当两物体被放在一起达到紧密的界面分子接触,以至生成新的界面层,就生成了附着力。附着力是一种复杂的现象,涉及到“界面”的物理效应和化学反应。因为通常每一可观察到的表面都与好几层物理或化学吸附的分子有关,真实的界面数目并不确切知道,问题是在两表面的何处划界及附着真正发生在哪里。 当涂料施工于底材上,并在干燥和固化的过程中附着力就生成了。这些力的大小取决于表面和粘结料(树脂、聚合物、基料)的性质。广义上这些力可分为二类:主价力和次价力(表1)。化学键即为主价力,具有比次价力高得多的附着力,次价力基于以氢键为代表的弱得多的物理作用力。这些作用力在具有极性基团(如羧基)的底材上更常见,而在非极性表面如聚乙烯上则较少。 表1:键的强度和键能强度/类型/能量(千卡/摩尔)/实例 共价键主价力 15~170 绝大多数有机物 氢键次价力 <12 水 色散力次价力<10 绝大多数分子 偶极力次价力 <5 极性有机物 诱导力次价力<0.5 非极性有机物 涂料附着的确切机理人们尚未完全了解。不过,使两个物体连接到一起的力可能由于底材和涂料通过涂料扩散生成机械连接、静电吸引或化学键合。根据底材表面和所用涂料的物理化学性质的不同,附着可采取上述机理的一种或几种。一些提出的理论讨论如下。 1.机械连接理论 这种涂层作用机制适用于当涂料施工于含有孔、洞、裂隙或空穴的底材上时,涂料能够渗透进去。在这种情况下,涂料的作用很象木材拼合时的钉子,起机械锚定作用。当底材有凹槽并填满固化的涂料时,由于机械作用,去掉涂层更加困难,这与把两块榫结的木块拼在一起类似。对各种表面的仪器分析和绘图(外形图)表明,涂料确实可渗透到复杂“隧道”形状的凹槽或裂纹中,在固化硬化时,可提供机械附着。各种涂料对老的或已风化的涂层的附着,以及对喷砂底材的附着就属于这种机理。磷酸锌或铁与涂料具有较大的接触面积,因而能提高附着和耐蚀性。图2展示了假定的底材表面形状和涂料的渗透。 表面的粗糙程度影响涂料和底材的界面面积。因为去除涂层所需的力与几何面积有关,而使涂层附着于底材上的力与实际的界面接触面积有关。随着表面积增大,去除涂层的困难增加,这通常可通过机械打磨方法提供粗糙表面来实现。截面的几何面积和实际的界面面积的比较见图3。实际的界面接触面积一般比几何面积大好几倍。通过喷砂使表面积增加,结果附着力增加,见图4。显然由于其他许多因素的影响,附着并不按相同比例增加,不过通常可见到显着的增加。 只有当涂料完全渗透到不规则表面处,提高表面粗糙度才有利,若不能完全渗入,则涂料与表面的接触会比相应的几何面积还小,并且在涂料和底材间留有空隙,空隙中驻留的气泡会导致水汽的聚积,最终导致附着力的损失。 经常通过对已固化的涂层进行磨砂处理,可改进层间附着力(特别是在汽车涂料中), 特别是在底色漆/清漆体系中,要求清漆平滑、光亮且表面能低,因此第二层清漆的附着有一定的困难。这一问题当涂料在比原定温度高得多的温度下固化或烘烤时间延长时变得更为严重,这两种情况下,对该表面进行轻度打磨表明,附着力可显着提高。虽然表面粗糙化能提高附着力,

高氨氮废水处理技术及其发展趋势

高氨氮废水处理技术及其发展趋势 (能源与环境学院,环境工程072班,学号:200701144210) 摘要:经济有效地控制氨氮废水污染是当前面临的重大课题。本文简述了高浓度氨氮废水的危害, 介绍了对高浓度氨氮废水处理的处理方法, 并对这些方法工艺的优缺点做出了分析,对今后高氨氮废水的处理技术作出了展望。 关键词:脱氨氮废水处理技术发展 一、引言 随着人们生活水平的提高和对环境要求的加强、环境污染治理的加强和环保技术的发展,水体中有机物的代表指标——COD 基本上得到有效控制,但是,含高氨氮废水达标排放没有得到有效控制,未经处理的含氮废水排放给环境造成了极大的危害,如易导致湖泊富营养化,海洋赤潮等。 随着社会经济的发展,来源广泛的高氨氮废水处理越来越受到重视,像传统领域的化工、制革、屠宰等行业废水的预处理主要采用物化的吹脱工艺或投加氯系氧化剂的化学处理工艺,在市政污水处理方面,随着排放标准的提高,A /O或A /A /O的生化处理工艺得到了越来越广泛的应用。本文总结了高氨氮废水处理技术、现状及其发展趋势等。 二、技术简介 许多方法都能够有效的处理氨氮,如物理化学法有吹脱、气提、折点加氯、离子交换、混凝沉淀、反渗透、电渗析及各种高级氧化技术(AOTs)等多种方法;生物方法有硝化及水藻等水生植物养殖。但具有应用方便,处理效果稳定、适应废水水质及比较经济等优点,并且目前实用性较好、研究较多、具有良好发展用前景的有:氨吹脱、化学沉淀法、高效生物脱氮法和高级氧化技术。 1. 吹脱法 吹脱法是目前处理氨氮废水最普遍应用的方法之一。研究主要集中在:吹脱设备(吹脱池、吹脱塔)、吹脱形式(自然吹脱、鼓风吹脱)、填料形式(规整填料、拉西环、聚丙烯鲍尔环等)吹脱参数(pH 值、气水比、吹脱温度等)。 吹脱法是将废水中的离子态铵(NH4+),通过调节pH 值转化为分子态氨,随后被通入的空气或蒸汽吹出。影响吹脱效率的主要因素有:pH 值、水温、布水负荷、气液比、足够的气液分离空间。。研究结果表明:当pH=10~13,温度为30~50℃时,氨氮吹脱率为70.3%~99.3%。 炼钢、石油化工、化肥、有机化工等行业的废水,常含有很高浓度的氨,因此常用蒸汽吹脱法处理。 吹脱法通常用于高浓度氨氮废水的预处理,该处理技术优点在于除氨效果稳定,操作简单,容易控制。但如何提高吹脱效率、避免二次污染及如何控制生产过程水垢的生成都是氨吹脱法需要考虑的问题。 2.化学沉淀法(MAP 法) 化学沉淀法是在含有NH4+离子的废水中,投加Mg2+和PO43-,使之与NH4+生成难溶复盐磷酸氨镁MgNH4PO4·6H2O(简称MAP)结晶,通过沉淀,使MAP 从废水中分离出来。 化学沉淀法尤其适用于处理高浓度氨氮废水,且有90%以上的脱氮效率。在废水中无有毒有害物质时,磷酸氨镁是一种农作物所需的良好的缓释复合肥料。处理时,若pH 值过高,易造成部分NH3 挥发。建议缩短沉淀时间,适当降低

相关文档
最新文档