生物表面活性剂和高分子表面活性剂

生物表面活性剂和高分子表面活性剂
生物表面活性剂和高分子表面活性剂

生物表面活性剂和高分子表面活性剂

摘要:表面活性剂是由两种截然不同的粒子形成的分子,一种粒子具有极强的亲油性,另一种则具有极强的亲水性。溶解于水中以后,表面活性剂能降低水的表面张力,并提高有机化合物的可溶性。本文将就生物表面活性剂和高分子表面活性剂进行具体介绍,并且列举了部分它们在社会中的应用以及它们存在的问题和发展前景进行了简单的介绍。

关键词:表面活性剂;生物表面活性剂;高分子表面活性剂

Biological surfactant and polymer surfactant

Abstract:Surfactant is composed of two distinct particles, a kind of particle has extremely strong lipophilicity, the other with strong hydrophilic. Dissolved in water, surfactants can reduce the surface tension of the water, and increase of soluble organic compounds. This article will discuss biosurfactant and polymeric surfactants are detailed introduction, and lists the part of their application in society and their existing problems and development prospects were simply introduced.

Keyword:The surfactant; Biosurfactant; Polymer surfactant

引言

传统观念上认为,表面活性剂是一类即使在很低浓度时也能显著降低表(界)面张力的物质。随着对表面活性剂研究的深入,目前一般认为只要在较低浓度下能显著改变表(界)面性质或与此相关、由此派生的性质的物质,都可以划归表面活性剂范畴。

1、表面活性剂

表面活性剂是分子中具有亲溶剂基与疏溶剂基,能富集(吸附)于界面,使界面性质发生显著改变而出现界面活性的物质。

通常所说的表面活性剂是指水中的表面活性剂。其分子常被称作“双亲分子”,因为表面活性剂的特有结构通常称之为“双亲结构”。表面活性剂分子的一端为亲油的疏水基,分子的另一端为极性亲水的亲水基。两类结构与性能截然相反的分子碎片或基团分处于同一分子的两端并以化学键相连接,形成了一种不对称的、极性的结构,因而赋予了该类特殊分子既亲水、又亲油,但又不是整体亲水或亲油的特性。

1.1分类

表面活性剂的性能取决于其亲水基和亲油基的构成,但亲水基在种类和结构上的改变远较亲油基的改变对表面活性剂性质的影响大.最常用的分类法是按分子结构中亲水基团的带电性分为阴离子、非离子、阳离子和两性表面活性剂四大类。

1.1.1阴离子表面活性剂

最常见的阴离子表面活性剂是烷基苯磺酸盐(ABS),阴离子表面活性剂中亲水基的引入有直接连接法和问接连接法。所谓直接连接法是用亲油基物料与无机试剂直接反应,按引入亲水基的小同,可分为皂化、磺化、硫酸醋化和磷酸醋化。而所谓问接连接就是利用两个以上的多功能、高反应性化合物使亲油基与亲水基相连接,比如以含活性基的小饱和化合物、环状化合物、多元醇作为连接剂所合成的表面活性剂。而正是由于阴离子表面活性剂有上述性质以及它在性能和价格方面的优势,所以它应用最广泛。但它同时也是造成水质污染的主要因素之一。

1.1.2非离子表而活性剂

非离子表面活性剂在水中小离解成离子状态,其表面活性是由中性分子体现出来的。合成非离子表面活性剂所用主要单元反应有乙氧基化、酯化、聚合反应

等。非离子表面活性剂具有很高的表面活性、良好的乳化能力和洗涤作用。主要类型有聚氧乙烯型、多元醇型和烷醇酞胺型,以及聚醚型、氧化胺型等。1.1.3阳离子表面活性剂

阳离子表面活性剂疏水基的结构和阴离子表面活性剂相似,且疏水基与亲水基的连接方式也很类同,一种是亲水基直接连在疏水基上,另一种是亲水基通过醋、酞胺、醚键等形式与疏水基问接相连;所小同的是,阳离子表面活性剂溶于水时,其亲水基呈现正电荷,亲水基主要为碱性氮原子。目前工业上所有阳离子表面活性剂均为含氮有机物的衍生物,主要有胺盐型阳离子表面活性剂和季钱盐型表面活性剂两大类。

1.1.4两性表面活性剂[1]

两性表面活性剂的特点在于其分子结构中含有两个小同的官能团,并分别具有阴离子和阳离子的特性。两性表面活性剂有着优异的表面性能。这一性能在表面张力以及临界胶束浓度CMC上得到了体现。

大多数的清洁用品都要求有良好的润湿性和渗透性。两性表面活性剂在整个pH范围内都体现了优良的润湿能力。

1.2结构特点

表面活性剂是一种两亲性物质,一部分是与油有亲和性的亲油基(也称憎水基),另一部分是与水有亲和性的亲水基(也称憎油基)。其亲水基和疏水基分处两端,形成小对称结构。表面活性剂的这种结构特点使它溶于水后,亲水基受到水分子的吸引,而亲油基受到水分子的排斥。为了克服这种小稳定状态,就只有占据到溶液的表面,将亲油基伸向气相,亲水基伸入水中。

肥皂的亲水基来自亲水基团竣酸钠(- COONa);洗衣粉(烷基苯磺酸钠)的亲

Na),分别示于图1和图2中。亲水基有许多种,而实际能水基是磺酸钠(- S0

3

做亲水基原料的只有较少的几种,能做亲油基原料的就更少。

图1肥皂的亲油基和亲水基示意图

图2洗衣粉有效成分的亲油基和亲水基示意图

从某种意义来讲,表面活性剂的研制就是寻找价格低廉、货源充足而又有较好理化性能的亲油基和亲水基原料。亲水基(如羧酸基等)常连接在表面活性剂分子亲油基的一端(或中间)。作为特殊用途,有时也用甘油、山梨醇、季戊四醇等多元醇的基团做亲水基。亲水基多来自天然动植物油脂和合成化工原料它们的化学结构很相似只是碳原子数和端基结构不同。

1.3作用机理

两亲分子溶解在水中达一定浓度时,其非极性部分会互相吸引,从而使得分子自发形成有序的聚集体,使憎水基向里、亲水基向外,以减少憎水基与水分子的接触,使体系能量下降,这种多分子有序聚集体称为胶束。

表面活性剂通过在气液两相界面吸附降低水的表面张力,或通过吸附在液体界面间来降低油水界面张力。许多表面活性剂也能在本体溶液中聚集成为聚集体。囊泡和胶束都是此类聚集体。表面活性剂开始形成胶束的浓度叫做临界胶束浓度或CMC。当胶束在水中形成,胶束的尾形成能够包裹油滴的核,而它们的(离子/极性)头能够形成一个外壳,保持与水接触。表面活性剂在油中聚集,聚集体指的是反胶束。在反胶束中,头在核,尾保持与油的充分接触。

临界胶束浓度越小,表面活性剂形成胶束和达到表面(界面)吸附饱和所需的浓度越低,改变表面(界面)性质,产生润湿、乳化、起泡和增溶等作用所需的浓度也越低。

1.3.1胶束的作用

(1)乳化作用: 指将一种液体的细小颗粒分散于另一种不相溶的液体中,所得到的分散体系被称为乳液。

(2)泡沫作用: 泡沫实际是气体分散于液体中的分散体系,泡沫的形成涉及起泡和稳泡两个因素。

(3)分散作用: 增加固体粒子在溶液中的分散稳定性。

(4)增溶作用: 指水溶液中表面活性剂的存在能使不溶或微溶于水的有机化合物的溶解度显著增加的现象,这种作用只有在表面活性剂的浓度超过临界胶束浓

度后才显现出来。

(5)催化作用: 表面活性剂胶束的直径通常为3~5nm,其大小、结构和性质与含酶球状蛋白相似,因此具有与酶类似的催化作用,合理选择表面活性剂可以使化学反应的速度显著提高。

2.生物表面活性剂

生物表面活性剂(Biosurfactants,简称BS)是细菌、真菌和酵母在特定条件下,在其生长过程中分泌出的具有表面活性的代谢产物[2]。生物表面活性剂按其生化性质和生产菌种的不同,一般可分为五种类型:糖脂、磷脂和脂肪酸、脂肤和脂蛋白、聚合物和全胞表面本身等。生物表面活性剂的分子中既含有极性亲水基团,又含有非极性亲油基团,因此能在水油两相界面上定向排列形成整齐的分子层,从而显著降低界面的表面张力。

2.1生物表面活性剂的形成

生物表面活性剂多数由细菌、酵母菌、真菌等微生物产生。许多微生物都可能仅靠烃类为单一碳源而生长。微生物要利用这些烃类,就必须使烃类通过外层亲水细胞壁进入细胞,由于烃基水溶性非常小,一些细胞和酵母菌分泌出离子型表面活性剂,另一些微生物产生非离子型表面活性剂。有时候一种细菌在不同的培养基下和不同的环境中可分泌形成不同的表面活性剂。

2.2生物表面活性剂的制备

生物表面活性剂主要采用微生物发酵、酶法和从动植物材料中提取三种方法,其中微生物发酵和酶法应用较为广泛。

2.2.1微生物发酵法产生生物表面活剂

微生物在一定条件下进行培养后,分泌一种胞外两亲代谢物,如单糖脂类、多糖脂类、脂蛋白类或类脂衍生物等。其中糖脂类是研究最广泛、最深入的一类生物表面活性剂,代表物有鼠李糖脂、2?葡糖? ?葡糖苷、海藻糖脂,其结构是如下:

鼠李糖脂2?葡糖? ?葡糖苷

2.2.2酶法合成生物表面活性剂

酶合成法生产条件温和(可在常温和常压下进行),反应具有专一性,可获得高含量的目标产物且产物易回收,对环境污染少等特点,所以发展快速。目前酶合成法的主流是以非极性溶剂和无溶剂法合成生物表面活性剂,并获得了较高产率。特别是现代生物技术的发展,可以利用基因工程和蛋白质工程设计特定的、高效的酶具有重大意义,使酶合成具有较大的潜力。

2.2.3动植物材料中提取生物表面活性剂

我国动植物资源丰富,蕴含丰富的表面活性剂,如我国古代皂角的使用。现

在从利用食用大豆油精炼副产品制取表面活性剂方法简介从,蛋黄分离提取磷脂、卵磷脂等表面活性剂,这些提取物已广泛应用于食品、医药、化妆品等工业。但由于杂质较多、分离步骤较多、相对成本较高等原因,限制部分生物表面活性剂的大规模生产。

2.3生物表面活性剂的分离提纯

在食品、医药等其它行业对生物表面活性剂的纯度要求较高,一般生产出来的产物都需要进行分离提纯。工业大多数的产物分离提纯主要有以下几种方法:萃取、结晶与沉淀、超滤、泡沫色谱分离等。其中萃取是经典的表面活性剂提取方法之一,特别是利用甲醇、乙醚、丁醇等有机溶剂对亲油性生物表面活性剂的提取。结结晶与沉淀也是经典的表面活性剂提取方法之一,主要依据各组分在溶剂中溶解度的差异,使某些组分从溶液中结晶,用离心或过滤收集沉淀。超滤法是从发酵液中提取生物表面活性剂的一种新方法。泡沫是由于发酵过程的快速搅拌和好氧微生物培养液中充氧气等产生。Davis等在这方面进行了研究。他们用泡沫分离法对一类生物表面活性剂surfactins进行了提取和浓缩,认为泡沫分离是一种有效的生物表面活性剂分离方法。

2.4生物表面活性剂的特性

与化学合成的表面活性剂相似,生物表面活性剂也是一种两亲分子,具有非极性的疏水基团和极性的亲水基团,但生物表面活性剂具有化学合成表面活性剂所无法比拟的优点:①空间结构十分复杂和庞大,表面活性高,乳化能力强,多数生物表面活性剂可将表面张力降低到30 mN/m;②具有良好的热稳定性和化学稳定性;③无毒或低毒,能被生物完全降解,不会对环境造成污染和破坏;④生物相容性好,一般不会导致过敏,可应用于药品、化妆品,甚至作为功能性食品添加剂;⑤分子结构多样,具有特殊的官能团,专一性强;⑥生产工艺简便,常温、常压下即可发生反应,生成设备要求不高;⑦生产原料来源广阔且价廉,可以从工业废料和农副产品中获得。

2.5生物表面活性剂的应用

2.5.1 生物表面活性剂在食品工业中应用

生物表面活性剂在食品行业中可作为食品添加剂、乳化剂、风味剂、保鲜剂等。如蔗糖酯可加入果糖、面包、蛋糕中,改善食品品质,同时还可以用于水果保鲜,李江云等;磷脂、卵磷脂等常做食品工业乳化剂和稳定剂;鼠李糖脂可产生香料,加入高档咖啡、饮料等产品中。

2.5.2 生物表面活性剂在医学领域中应用

生物表面活性剂有抗生素和抑制人类免疫缺陷病毒生长的作用;红串红球菌产生的琥珀酰海藻糖脂能够抑制单纯疱疹病毒和流感病毒;Joachim等发现枯草杆菌C1株产生的脂肽N1能够抑制多种革兰阳性菌的活性,是一种非常有潜力的抗菌剂。

2.5.3生物表面活性剂在化妆工业中应用

蔗糖酯能改善化妆品的水洗性能,增加皮肤的光润和滑嫩性;磷脂在细胞代谢和细胞膜渗透性调节方面起着重要作用,在化妆品中可作为保湿剂、乳化剂、抗氧化剂等,赋予皮肤柔软性和润湿性。槐糖脂具有良好的皮肤亲和性,可作为皮肤保湿剂用于化妆品中,还可用于制造洗涤剂、增加感光乳剂的稳定性等。2.5.4生物表面活性剂在石油工业中应用

生物表面活性剂主要用于采油后期过程,当原油经过一次和二次采油之后地下剩余原油仍然较高,为了提高采油率,常向下油层注入生物活性剂降低油/水界面张力,使重烃组分和油层岩石的润湿性改变,降低原油粘度,从而达到驱油、提高采油率的目的。

2.6结论及展望

2.6.1结论

决定生物表面活性剂生产成本的主要因素有原料、发酵工艺和技术等。

解决问题的途径

(1)通过选育高产菌株、构建基因工程高产菌;发展快速检测表面活性剂高产菌株并评价其潜力的方法;

(2)找到廉价发酵原料、改进发酵工艺、用先进的技术等方法提高生物表面活性剂的发酵产率和提取得率,从而大大降低它的生产成本;

(3)利用生物表面活性剂的特殊性,开发出它的二次产品,提高其附加值。如用于化妆品、食品、制药等行业。

2.6.2展望

目前,生物表面活性剂大多数品种处于实验研究阶段,还没有进行大规模的生产,只有少数产品走向市场,这主要是由于它的生产成本较高,据估计生物表面活性剂是化学表面活性剂成本的3-10倍。为了开发生物表面活性剂的应用潜力,降低其生产成本是当前研究开发的热点和主要目标。

随着生物技术和相关技术手段的快速发展,生物表面活性剂的价格将逐步降到消费者可以接受的水平,越来越广泛地应用在食品工业、精细化工、医疗卫生等行业,与我们的日常生活密切相关。生物表面活性剂及其应用研究将有广阔的发展前景。

3.高分子表面活性剂

通常将分子量在数千以上且具有表面活性的物质称为高分子表面活性剂。与普通表面活性剂相似,高分子表面活性剂尚未有标准分类法。通常根据低分子表面活性剂的分类法,按其在水中的离子性来分类,可分为阴离子型、阳离子型、两性离子型和非离子型。根据在溶液中是否形成胶束,可分为聚皂及水溶性高分子表面活性剂。

3.1高分子表面活性剂的分类

高分子表面活性剂可根据在水中电离后亲水基所带电荷分为阴离子型、阳离子型、两性离子型和非离子型四类高分子表面活性剂。如阴离子型的高分子表面活性剂有聚甲基丙烯酸钠、羧甲基纤维素钠、缩合萘磺酸盐、木质素磺酸盐、缩合烷基苯醚硫酸脂等。阳离子型的高分子表面活性剂有氨基烷基丙烯酸酯共聚物、改型聚乙烯亚胺、含有季胺盐的丙烯酸酰胺共聚物、聚乙烯苯甲基三甲铵盐等。两性离子型的高分子表面活性剂有丙烯酸乙烯基吡啶共聚物、丙烯酸一阳离子丙

烯酸酯共聚物、两性聚丙烯酰胺等。非离子型的高分子表面活性剂有羟乙基纤维素、聚丙烯酸胺、聚乙烯吡咯烷酮、聚氧乙烯类共聚物等。

高分子表面活性剂按来源分类可分为天然高分子表面活性剂和合成高分子表面活性剂。天然高分子表面活性剂是从动植物体内分离、精制而制成的两亲性水溶性高分子,包括天然高分子经过化学改性而制成的高分子表面活性剂,也叫半合成高分子表面活性剂。如各种淀粉、树胶、多糖、改性淀粉、纤维素、蛋白质和壳聚糖等。周家华[3]采用淀粉和苯乙烯合成了淀粉苯乙烯接枝共聚物高分子表面活性剂。唐有根[4]等通过壳聚糖接枝二甲基十四烷基环氧丙基氯化铵再磺化H,合成了一种吸湿性极强, 具有优异表面活性的新型壳聚糖两性高分引入一SO

3

子表面活性剂。合成高分子表面活性剂是指亲水性单体均聚或与憎水性单体共聚而合成的高分子。如聚丙烯酰胺、聚丙烯酸和聚苯乙烯-丙烯酸共聚物等。张洁辉等采用烷基酚聚氧乙烯醚丙烯酸酯、丙烯酰胺和丙烯酸异辛酯共聚,得到了三元共聚物高分子表面活性剂。

高分子表面活性剂又可根据在溶液中是否形成胶束分为聚皂和水溶性高分子表面活性剂。聚皂从离子性来看也可分为阴离子型、阳离子型和非离子型等。如阴离子型聚皂有丙烯酸醋的共聚物、顺酐与乙烯基醚的共聚物和顺酐与烯烃的共聚物等。阳离子型聚皂有含氮杂环聚合物通过卤代烷烃季铵化改性产物、丙烯酰胺与季铵化丙烯酰胺的共聚物等。非离子型聚皂有冠醚类聚合物、聚环氧乙烷接枝聚合物和纤维素的改性产物等[5]。

此外,还有一些非传统意义的特殊高分子表面活性剂,如反应型高分子表面活性剂[6]。

3.2高分子表面活性剂的性质

高分子表面活性剂的主要特性有降低表、界面张力的能力较小,不易形成胶束;摩尔质量较高,渗透力弱;形成泡沫能力差,但泡沫比较稳定且保水性强;乳化力强;优良的分散和凝聚能力;较好的成膜性和黏附性;低毒或无毒。下面简要介绍一些高分子表面活性剂的性质[7]:

3.2.1表面活性

高分子表面活性剂的表面活性通常较弱,表面张力要经过很长时间才能达到恒定。表面活性不但与化学结构及相对分子质量有关, 而且还与大分子化合物内链段的排列方式有关。当疏水基上引入硅烷、氟烷时,降低表面张力的能力显著增强。有机硅高分子表面活性剂由性能差别很大的聚醚链段和聚硅氧烷链段通过化学键连接而成, 亲水性的聚醚链段赋予了其良好的水溶性,疏水性的聚硅氧烷链段又赋予了低表面张力,而且这类共聚物还具有生物相容性、良好的适应性和低的玻璃化温度, 因此作为表面活性剂是其它有机类表面活性剂无法比拟的。氟

端基聚合物具有极强的表面活性,当在水溶液中或聚合物共混体中含有极少量的氟端基聚合物时,即会发生向表面的强烈吸附现象。水溶性的氟端基聚合物水溶液在临界胶束浓度时,表面张力可达到15mN/m左右.

3.2.2乳化性

高分子表面活性剂不仅具有优良的乳化稳定性而且往往能赋予乳液以特殊性能,这是普通表面活性剂无法比拟的。高分子表面活性剂具有较强的乳化能力,将一定量接枝共聚物溶解于油水中,充分震荡后,就会使油水体系乳化,并且保持乳化液稳定。曹亚等研究了羧甲基纤维素系列高分子表面活性剂与甲苯水-异丙醇体系微乳液的形成过程发现微乳液粒子大小均一, 形态一致乳液稳定。

3.2.3胶束性质

为获得必要的亲水性应引入亲水基但水溶性和亲水基含量及极性间却难以有一个定量关系。因聚合物不同, 分子结构不同水溶性亦会有很大的变化。当疏水基作用加强时水溶性高分子表面活性剂亦会形成胶体溶液, 即以分子聚集体形式存在于溶液中。在多数情况下水溶性高分子表面活性剂形成的是胶体溶液,这是一种热力学稳定体系,各种形状的粒子以分子簇的形式悬浮于胶体溶液中。聚皂和低分子表面活性剂一样,疏水基在表面吸附而使表面张力降低, 同时在溶液内部缔合成胶束。

3.2.4分散性

普通表面活性剂虽然很多都具有分散作用,但由于受分子结构、相对分子质量等因素的影响,它们的分散作用往往十分有限,用量较大。高分子表面活性剂由于亲水基、疏水基、位置、大小可调分子结构可呈梳状又可呈现多支链化, 因而对分散微粒表面覆盖及包封效果要比前者强的多。由于其分散体系更易趋于稳定、流动成为很有发展前途的一类分散剂。许坷敬等在氧化物陶瓷微粉悬浮液中通过调节值, 使颗粒间具有较高静电效应的基础上加入高分子表面活性剂使颗粒间又具有空间位阻效应,防止了颗粒间的团聚可得到高度分散而无团聚的粉末和悬浮液。

3.3高分子表面活性剂的合成方法

3.3.1 加成聚合

在自由基或离子型引发剂存在下,由两亲性单体均聚,或由亲油/亲水单体共聚,可以制得高分子表面活性剂,该方法简便易行,单体种类选择和组成变化范围广。

3.3.2缩合聚合

通过缩聚反应制备的聚酯、聚酰胺、烷基酚醛树脂及聚氨酯类型高分子表面活性剂,其组成和亲油亲水平衡值(HLB)易于调节,但一般分子量较低。

3.3.3 开环聚合

含活泼氢化合物引发烷基环状亚胺、内脂、酰胺及环氧化合物开环聚合,得到嵌段或无规高分子表面活性剂,结构易于控制,可根据性能要求调节链段长度和分布。利用开环聚合合成高分子表面活性剂的典型代表是以丙二醇为起始剂制得的嵌段聚醚“Pluronics”系列以及以己二胺为起始剂制得的具有阳离子特性的“Tatranics”系列嵌段聚醚。它们都是由环氧乙烷、环氧丙烷开环聚合而成的。通过改变聚氧丙烯的分子量(或引发剂的种类)及环氧乙烷、环氧丙烷的用量可获得具有不同亲水疏水性能的聚醚类高分子表面活性剂。近年来通过N-烷基环状亚胺醚开环反应制备多嵌段共聚物:这些产物表面活性优良,有良好的开发前景,存在的问题是离子聚合反应条件较为苛刻,共聚物分子量仍然偏低(Mn≈103)。

3.3.4 高分子的化学反应

高分子化学反应是指通过化学反应的方法在聚合物上引入疏水基或亲水基,得到两亲性结构的高分子表面活性剂。其优点是可以直接用已商品化的聚合物作起始原料,得到的产物相对分子量较高,而缺点则是反应通常需要在高粘度的聚合物溶液中进行。如把长链烷基引入到聚乙烯醇、羧甲基纤维素、羟乙基纤维素

基团引入亲油性的聚丁二烯或聚异戊二烯分子链上,亦中,或由磺化反应把SO

3

可通过活泼氢反应将两亲性的聚(氧化乙烯- 氧化丙烯)接枝到聚硅氧烷主链上。

3.4高分子表面活性剂的应用

3.4.1在制药工业中的应用

由于嵌段型和梳型高分子表面活性剂的优良表面活性,使得它们在制药工业中应用广泛,可以用作药物载体、药物乳化剂和分散增溶剂、润湿剂等。此外高分子表面活性剂在药物合成中作为相转移催化剂,在药物分析中也有较广泛的应用。

3.4.2在石油工业中的应用

由于开采出的原油中含有固体石蜡,致使原油流动性差,对这种易凝高粘油料的生产、储运、加工等工序均带来一定的困难,这个问题可以通过加入原油倾点下降剂或者流动性改进剂的办法解决。利用油溶性高分子表面活性剂的分散性可以进一步改善流动性改进剂,防止燃料油中的石蜡在运输和储藏过程中形成沉淀。

3.4.3在纺织印染工业中的应用

聚醚类高分子表面活性剂常被用作低泡洗涤、乳化剂、分散剂、消泡剂、抗静电剂、润湿剂、印染剂等;聚乙烯醇等高分子化合物作为增稠剂和保护胶体广泛应用于乳液型印染助剂的制备中;羧甲基纤维素等纤维素衍生物被用于洗涤剂

作为再玷污防止剂;木质素磺酸盐、酚醛缩合物磺酸盐等被用作不溶性染料的分散剂。

3.4.4在造纸工业中的应用

由于高分子表面活性剂在改进纸张性能,提高纸机效率等方面有着非常独特的重要作用,所以近年来越来越受到造纸工作者的重视。有研究表明以不同相对分子质量的聚乙二醇与马来酸酐制备马来酸单酯,再与丙烯酸聚合生成马来酸单酯.丙烯酸共聚物,脱墨效果显著。

3.5结论与展望

相信随着材料工业的发展,对高分子表面活性剂的需求必将日趋旺盛。人们对高分子表面活性剂的研究也正在不断深入,开发新的品种和新的合成方法仍是当前研究的热点。近几年来活性聚合尤其是ATRP 技术的运用为制备具有可控结构和预期性能的高分子表面活性剂提供了可能,人们可以根据需要采用不同的单体以及不同的裁剪手段合成各种各样的高分子表面活性剂。尽管高分子表面活性剂的已经或正在取得一个个很好的成果,但是高分子表面活性剂在皮革上的研究和应用少见报道,因此积极开展此方面的研究工作,开发新产品并推广其在皮革工业中的应用, 对皮革工业的发展将具有重大的意义[5、7]。

参考文献

[1]张连水.日常生活与表面活性剂[J].化学教育,1998,(3):1一3

[2] Cooper D G. Biosurfactants [J].Microbiol Science, 1986(3):145一49

[3] 周家华.淀粉苯乙烯接枝高分子表面活性剂的性质研究.广州化工,2008,

28(4):33一35

[4] 唐有根, 蒋刚彪, 谢光东.新型壳聚糖两性高分子表面活性剂的合成.湖南

化工, 2000,30(2):30—33

[5] 王学川,强涛涛,任龙芳.高分子表面活性剂的研究进展及应用前景展望.中

国洗旅用品工业,2005,(4):41—46

[6] 张世朝, 徐宝财. 特种表面活性剂和功能性表面活性剂—反应型表面活性

剂的研究进展. 日用化学工业,2010,40(4):296—300

[7] 王翔, 代加林, 杨梦.高分子表面活性剂的发展及应用现状. 塑料工

业,2007,35:22—25

生物表面活性剂和高分子表面活性剂

生物表面活性剂和高分子表面活性剂 摘要:表面活性剂是由两种截然不同的粒子形成的分子,一种粒子具有极强的亲油性,另一种则具有极强的亲水性。溶解于水中以后,表面活性剂能降低水的表面张力,并提高有机化合物的可溶性。本文将就生物表面活性剂和高分子表面活性剂进行具体介绍,并且列举了部分它们在社会中的应用以及它们存在的问题和发展前景进行了简单的介绍。 关键词:表面活性剂;生物表面活性剂;高分子表面活性剂 Biological surfactant and polymer surfactant Abstract:Surfactant is composed of two distinct particles, a kind of particle has extremely strong lipophilicity, the other with strong hydrophilic. Dissolved in water, surfactants can reduce the surface tension of the water, and increase of soluble organic compounds. This article will discuss biosurfactant and polymeric surfactants are detailed introduction, and lists the part of their application in society and their existing problems and development prospects were simply introduced. Keyword:The surfactant; Biosurfactant; Polymer surfactant

表面活性剂最新研究进展

表面活性剂最新研究进展 人类的日常生活,各类生产活动,多种科学和技术的进步对表面活性剂品种和性能提出越来越高的要求,促使表面活性剂科学不断发展,迄今方兴未艾,表面活性剂已经深入到生命起源以及膜材料、纳米材料、对映体选择性的反应等各个领域中,设计新的有特殊用途和应用价值的表面活性分子仍不断受到人们的关注。新的功能型表面活型剂与附加的官能基团的性质和位置有密切关系, 对传统的表面活性剂分子结构的修饰会导致其结构形态有很大的变化,近几年国内外的相关研究单位在表面活性剂领域的最新研究进展主要有以下方面。 一、高分子表面活性剂 高分子表面活性剂的合成成为近年来表面活性剂合成研究的热点课题之一。高分子表面活性剂是相对一般常言的低相对分子质量表面活性剂而讲的,通常指相对分子质量大于1000且具有表面活性功能的高分子化合物。它像低分子表面活性剂一样,由亲水部分和疏水部分组成。高分子表面活性剂具有分散、凝聚、乳化、稳定泡沫、保护胶体、增溶等性质,广泛应用作胶凝剂、减阻剂、增黏剂、絮凝剂、分散剂、乳化剂、破乳剂、增溶剂、保湿剂、抗静电剂、纸张增强剂等。因此,高分子表面活性剂近年来发展迅速,目前已成为表面活性剂的重要发展方向之一。 高分子表面活性剂可根据在水中电离后亲水基所带电荷分为阴离子型、阳离子型、两性离子型和非离子型四类高分子表面活性剂。如阴离子型的高分子表面活性剂有聚(甲基)丙烯酸(钠)、羧甲基纤维素(钠)、缩合萘磺酸盐、木质素磺酸盐、缩合烷基苯醚硫酸酯等。两性离子型的高分子表面活性剂有丙烯酸乙烯基吡啶共聚物、丙烯酸-阳离子丙烯酸酯共聚物、两性聚丙烯酰胺等。非离子型的高分子表面活性剂有羟乙基纤维素、聚丙烯酰胺、聚乙烯吡咯烷酮、聚氧乙烯类共聚物等。阳离子型的高分子表面活性剂有聚烯烃基氯化铵阳离子表面活性剂、亚乙基多胺与表氯醇共聚季铵盐、淀粉或纤维素高取代度季铵盐、多聚季铵盐、聚多羧基季铵盐等。 开发低廉、无毒、无污染和一剂多效的高分子表面活性剂将是今后高分子表面

洗涤剂文献综述及配方技术发展

洗涤剂文献综述及配方技术发展 化工11-2班谢佳璇3110313242 摘要:随着人们生活水平的提高和现代社会生活习惯的变化,人们对洗涤剂的需求也越来越大。本文献综述主要从洗涤剂的现状、洗涤剂的类型发展历史、质量标准及未来洗涤剂的发展趋势做出了简单的概述,让我们加深了对洗涤剂的了解和认识。 洗涤剂, 是指以去污为目的而设计配方的制品, 由活性组分和辅助组分构成。作为活性组分的是表面活性剂,作为辅助组分的有助剂、抗沉淀剂、酶、填充剂等,其作用是增强和提高洗涤剂的各种效能。洗涤剂的产品种类很多,基本上可分为 肥皂、合成洗衣粉、液体洗涤剂、固体状洗涤剂及膏状洗涤剂几大类。衣用(或其他纺织品)洗涤剂是洗涤用品中生产最早,用量最大的洗涤剂,人们日常使用较多 的衣用洗涤剂主要是洗衣粉、皂粉、液体洗涤剂和肥(香)皂。[1] 1 洗涤剂现状 洗涤剂的主要成分是表面活性剂,表面活性剂是分子结构中含有亲水基和亲 油基两部分的有机化合物。一般是根据表面活性剂在水溶液中能否分解为离子, 又将其分为离子型表面活性剂和非离子型表面活性剂的两大类。离子型表面活性 剂又可分为阳离子表面活性剂、阴离子表面活性剂和两性离子表面活性剂三种。 区别于家用洗涤剂,专业洗涤剂是个独立分类,主要有宾馆、医院、酒店洗 涤剂,用于洗衣房等大型洗涤业的需求。包括公用设施用清洗剂、纺织工业清洗剂、皮革清洗剂、食品工业清洗剂、交通工具清洗剂、金属清洗剂、光学玻璃清 洗剂,塑料橡胶清洗剂以及其它工业清洗剂。 工业清洗剂常用表面活性剂:阳离子表面活性剂/阴离子表面活性剂/两性表 面活性剂/非离子表面活性剂,一般低泡沫清洗剂常用非离子表面活性剂。[2] 2 各类洗涤剂 2.1 粉状洗涤剂 粉状洗涤剂主要为洗衣粉和皂基洗衣粉。洗衣粉是一种碱性的合成洗涤剂, 主要成分是阴离子表面活性剂如烷基苯磺酸钠、少量非离子表面活性剂, 再加一 些辅助剂, 经混合、喷粉等工艺制成。皂基洗衣粉为近几年上市的洗化用品, 与 合成洗衣粉不同点在于: 它的主要成分为皂。另外加一种或多种表面活性剂和洗 涤助剂而成。表面活性剂有脂肪酸聚氧乙烯醚、脂肪酸烷醇酰胺等去污力较强的 非离子表面活性剂, 同时加入助洗剂。常见的洗衣粉配方如下[3]: 配方一:含磷重垢洗衣粉配方(质量%):十二烷基苯磺酸钠14.9,羧甲基纤维素

生物表面活性剂及在油田中的应用

生物表面活性剂及在油田中的应用 杨丽1,李建波2 (1.西南石油学院研究生院应用化学,四川新都;2.西南石油学院) 摘要:生物表面活性剂是由微生物产生的一种生物大分子物质,具有一些优于化学合成表面活性剂的特性,其应用前景十分广阔。本文简述了其种类、特性、生产方法及在石油工业中的应用。 关键词:生物表面活性剂;性能;种类;石油工业;应用 表面活性剂是一种两亲性分子,据其来源的不同,可分为化学合成、生物合成及天然表面活性剂三类。化学合成表面活性剂以有机化学为基础,其性能和成本依赖于原料的性质和价格。生物表面活性剂是微生物在一定条件下产生的集亲水和疏水基于一体的代谢产物,不但具有降低表面张力的特点,而且还能被微生物降解,在特殊的工亚领域中能克服化学合成表面活性剂的某些不足。 1生物表面活性剂 1.1分类 化学合成表面活性剂是据极性基团分类,而生物表面活性剂则依据化学组成和微生物来源分类。其据亲水基的不同可以分为五大类[1]:糖脂、脂肪酸和磷脂、脂肽和脂蛋白、多聚和特殊生物表面活性剂。 1.2特点 生物表面活性剂分子[2]通常比化学合成表面活性剂化学结构更为复杂和庞大,单个分子占据更大的空间,因而显示出较低的临界胶束浓度。其与化学合成表面活性剂相比,除具有用量少、可用微生物方法引入化学方法难以合成的新化学基团等特点外还具有以下优点[3]: 1无毒或低毒; o可生物降解,对环境不造成污染; ?结构多样化,可以用于特殊领域; ?可以从工业废物中生产,有利于环境治理; ?在极端温度、pH值、盐浓度下具有很好的选择性和专一性; ?不致敏、可消化、可用作化妆品、食品和功能食品的添加剂;1.3制备途径 1.3.1微生物发酵法 发酵法生产生物表面活性剂与其它微生物产品生产过程基本相同,包括培养发酵、分离提取和产品纯化三大步骤。大多数微生物发酵产生的表面活性剂的分离提取、纯化都有一些类似的方法,如萃取、盐析、离心沉淀、结晶以及冷冻干燥等。微生物发酵生产表面活性剂在技术和经济上都非常可行,适合大量生产。 1.3.2酶法合成 与微生物方法相比较,酶法合成的表面活性剂分子多是一些结构相对简单的分子,但同样具有优良的表面活性,酶法合成还具有反应专一性强、副反应少、产物容易分离纯化等优点。 1.3.3从动植物材料中提取 目前,应用于食品、医药和化妆品工业的磷脂、卵磷脂类等生物表面活性剂是从蛋黄或大豆中分离提取而来,这类生物表面活性剂的来源都是天然生物原料,受到原料的限制,难以大量生产。 2生物表面活性剂在石油工业中的应用 生物表面活性剂有着非常广泛的应用,能用于许多行业中,目前应用最广泛的是石油工业[4]。 2.1提高石油采收率 生物表面活性剂在石油工业中最主要的应用是提高石油采收率(MERO)。现阶段大多数油田已经进入二次驱油的中后期,但仍有大约70%的原油滞留在储油层中,所以提高采收率是当今石油工业的重要研究领域。微生物可以通过以下几种方式提高石油采收率: 1改变重烃组分的润湿性;(下转第18页) y收稿日期:2005-11-15 作者简介:杨丽(1980-),女,四川简阳人,西南石油学院应用化学专业研究生在读。

表面活性剂的综述

表 面 活 性 剂 的 文 献 综 述 学院:化学化工学院 专业:应用化学 姓名:XX 2016年1月1日

表面活性剂的文献综述 摘要:本文介绍了表面活性剂的基本概念和应用以及表面活性剂中胶束的形成,阐述了表面活性剂溶液的多种性质,并简要分析了胶束催化的原理。对阳离子表面活性剂的分类进行了归纳,并说明阳离子表面活性剂的用途和实例应用。 关键词:表面活性剂、溶液、胶束、阳离子表面活性剂 Abstract: this paper introduces the basic concept and application of the surfactant and surfactant micelle formation, this paper expounds the various properties of surfactant solution, and briefly analyzes the principle of micellar catalysis.Has carried on the induction, the categorization of cationic surfactant and explains the use and application of cationic surfactant. Keywords: surfactant, solvent, micelle, cationic surfactant 一、前言 近年来,随着化学相关领域的不断发展,使得我们在表面活性剂的研究和应用发展方面有了很大的进步。表面活性剂主要是改变相应溶液的各种性质来达到预期的效果,以完成其作用。阳离子表面活性剂中,大部分是含氮的有机化合物,即有机胺的衍生物。简单的胺的盐酸(或者它的无机酸)盐及醋酸盐等(碳8~18),可在酸性水溶液中用作乳化、分散、润湿剂,也常用作矿物浮选剂,以及用作颜料粉末表面的疏水剂。 二、表面活性剂基本概论 2.1表面活性剂的概念 表面活性剂是有两种基团的分子:亲水基和亲油基。表面活性剂分子作用于水溶液与气相或油层形成的界面,亲水性基团插入水溶液,亲油基团则朝向空气或油层形成一定形式的排列。当表面活性剂到达一定的浓度后,可以形成紧密的单分子层,具有降低表面张力的作用。 2.2表面活性剂分类及举例 当表面活性剂溶解于水后,根据是否生成离子,分为离子型表面活性剂和非离子型表面活性剂,离子型表面活性剂还可以根据电性,更具体地分为阴离子型(如硬脂酸、肥皂、十二烷基苯磺酸钠等)、阳离子型(如带有季铵离子的长链

表面活性剂的作用

表面活性剂的作用 润湿作用 润湿是固体与液体接触时,扩大接触面而相互附着的现象。若接触面趋于缩小不能附着则称不润湿。可以用接触角θ的大小来描述润湿的情况。液体,比如把水滴在玻璃表面上,它很容易铺展开,在固液交界处有较小的接触角θ;而滴在固体石蜡上则呈球形,θ达到180°。接触角越小,液体对固体润湿得越好,θ为180°表示液体完全不润湿固体。显然,这是不同表面与界面的张力的作用的综合的结果。倘若加入表面活性剂,改变液体的表面张力,则接触角θ随之改变,液体对固体的润湿性也就改变了。能被液体所湿润的固体称为亲液性固体,反之称为憎液性固体。一般极性液体容易润湿极性固体物质。极性固体皆亲水,如硫酸盐、石英等。而非极性固体多数是憎水的,如石蜡、石墨等。 乳化和增溶作用 把一种液体以极其细小的液滴(直径约在0.1~数十μm数量)均匀分散到另一种与之不相混溶的液体中的过程称为乳化。所形成的体系称为乳状液。将两种纯的互不相溶的液体,比如水和油放在一起用力振荡(或搅拌)能看到许多液珠分散在体系中,这时界面面积增加了,构成了热力学不稳定体系。静置后水珠迅速合并变大,又分为两层,得不到稳定的乳状液。若想得到较稳定的乳状液,通常加入稳定剂,称为乳化剂。它实际上是表面活性剂。它的作用在于能显著降低表(界)面张力。由于表面活性剂分子在“液滴”,即胶束表层作定向

排列,使“液滴”表层形成了具有一定机械强度的薄膜,可阻止“液滴”之间因碰撞而合并。若用离子型表面活性剂时,因为带同性电荷,胶束间相斥阻止了液滴的聚集。乳状液中所形成的胶束有两种。 前者分散介质是水,分散质为油,这种乳状液称为水包油型(O/W);后者则正相反,这种乳状液是油包水型(W/O)。把某种表面活性剂加入到乳状液中,乳状液会变成透明溶液。表面活性剂的这种作用叫做增溶作用,起增溶作用的表面活性剂叫增溶剂。表面活性剂可以用于增溶的原因:是由于表面活性剂形成了各种形式的胶束,分散质进入胶束囊中或层间使胶束膨胀但又不破裂(体系外观也没有变化),因而“增加”了溶解度。 与乳化类似,将磨细的固体微粒(粒径0.1μm至几十μm)分散到液体中时,加入少量的表面活性剂可增加液体对固体的润湿程度,抑制固体微粒的凝聚成团的倾向,从而能很好地均匀地分散在液体中。 起泡和消泡作用 大家知道纯水不易起泡,肥皂水却很容易形成较稳定的泡沫。泡沫是未溶气体分散于液体或熔融固体中形成的分散系。能使泡沫稳定的物质为起泡剂。它们大多数是表面活性剂,肥皂便是一种。气体进入液体(水)中被液膜包围形成气泡。表面活性剂富集于气液界面,以它的疏水基伸向气泡内,它的亲水基指向溶液,形成单分子层膜。这种膜的形成降低了界面的张力而使气泡处于较稳定的热力学状态。当气泡在溶液中上浮到液面并逸出时,泡膜已形成双分子膜了。倘若再加入另一类表面活性剂,部分替代原气泡膜中起泡剂分子,从而改变膜

生物表面活性剂研究进展

生物表面活性剂研究进展 杨齐峰 (黄石理工学院,湖北,435000) 【摘要】:生物表面活性剂是由微生物分泌的天然产物,它无毒,可以生物降解,对环境影响很小,具有高效的表面活性,因此是合成表面活性剂的理想代替品。介绍了生物表面活性剂的特性及其生产制备方法,综述了近年生物表面活性剂在石油、洗涤、医药、食品等工业领域的应用与研究进展,主要介绍了利用生物表面活性剂在提高石油采收率等方面的应用,探讨了今后生物表面活性剂的主要发展方向。 【关键词】:生物表面活性剂;微生物;应用;发展趋势 Biosurfactant research progress Yangqifeng (Huangshi Institute of Technology School Hubei 435003)abstract:Biological surfactant is secreted by microbial natural products,it is avirulent,can biodegradation,a little influence and efficient surface activity,and is thus synthesis of surfactants ideal replacement. Introduces the characteristics and its biosurfactant production preparation methods,this paper reviews biosurfactant in petroleum,washing,pharmaceutical,food and other industrial areas of application and research progress,mainly introduced the use of biological surfactants in enhanced oil recovery of application,discusses the future biosurfactant the main development direction。 key words:biosurfactant;Microbial;application;development tendency 表面活性剂是一类能显著降低溶剂表面张力的物质,化学合成的表面活性剂都是以石油为原料化学合成而来的,在生产和使用过程中常常会给人类生存环境带来严重的污染,对人类的身体健康产生很大威胁。生物表面活性剂是从20世

化妆品中常用的表面活性剂综述

化妆品中常用的表面活 性剂综述 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

题目:综述化妆品中常用的表面活性剂 阴离子AAS

N-酰胺基及其盐 由α-氨基酸的氨基酰化后制得。氨基酸属于两性,但酰化后变成阴离子AAS。 用途: 香波:增泡和稳泡,头发亲合性强,改善梳理性,减少静电; 皮肤清洁剂:治疗面部粉刺,可与水杨酸和过氧化苯甲酰等匹配而不影响其活性; 口腔制品:口腔清洗剂,抑制己糖激酶的生长,防止牙齿腐烂; 含药化妆品:去屑香波、治疗粉刺膏霜等。 香皂和添加剂等… 安全性: 已在化妆品和洗涤用品应用几十年,非常温和,对皮肤不会产生过敏和刺激,安全性非常高。 羧酸(酯)盐 一般指单价羧酸(酯)盐型。 用途:很广泛,用于制备O/W型膏霜或乳液。主要用作皂基、各种乳液和膏霜基体。安全性:呈碱性,稍微有刺激的感觉。 硫酸(酯)盐 用途:O/W型乳化剂、润湿剂和悬浮剂,是香波和皮肤清洁使用较广泛的AAS之一。一般与其它AAS复配来增加泡沫的稳定性和粘度,并降低对皮肤的脱脂能力。 安全性:高浓度时有刺激性。但在化妆品的使用条件下是安全的。 用途:香波的主要表面活性剂,也用于皮肤清洁和沐浴制品,较少用作乳化剂。一般与其它AAS(阴、两性、非离子)复配。

安全性:与AS相近,但刺激性略低于AS。 磺酸盐 用途:去污力太强,因此在化妆品中应用不广泛,主要用于洗衣粉。 安全性:对皮肤中等刺激,容易脱脂而变得干燥粗糙,用三乙醇胺盐复配可降低刺激性。 用途:成本低,稳定性好,刺激性地,去污能力好,很有前途的AAS。 安全性:对皮肤无致敏作用。 阳离子AAS 烷基咪唑啉盐 用途:用于香波、护发素和一些护肤品中,用作调理剂、乳化剂、抗静电剂和抗菌剂等。 安全性:pH值较高,对皮肤和眼睛有较大刺激性。制成盐后刺激性大大降低。 乙氧基化胺类 氨基上的氢被乙氧基取代。 用途:乳化剂和调理剂 安全性:浓液对眼睛和皮肤有刺激,但作为调理剂加入到化妆品中是安全的。 季铵盐 是应用最广的阳离子AAS。取代基可以是亲水基或亲油基,因此其润湿、发泡、乳化作用差别很大。季铵盐碱性较强,在酸碱中都稳定,热稳定性也好。 突出特性:对有负电荷的固体表面的吸附和杀菌消毒作用。 复配时禁配阴离子AAS、氧化物、柠檬酸钠蛋白质或一些高分子化合物等。

生物表面活性剂

生物表面活性剂及其应用 谈到学科知识应用,我第一反应是把其与人或自然界中实际存在的生物联系在一起,进而得出既有意义又有趣的结论和现象。在学习完物理化学表面化学部分后我们知道,表面活性剂(surfactant)是指加入少量能使其溶液体系的界面状态发生明显变化的物质。具有固定的亲水亲油基团,在溶液的表面能定向排列。表面活性剂的分子结构具有两亲性。表面活性剂分为离子型表面活性剂(包括阳离子表面活性剂与阴离子表面活性剂)、非离子型表面活性剂、两性表面活性剂、复配表面活性剂、其他表面活性剂等。但是目前大多数表面活性剂主要以石油为原料经化学合成而来,由于受化工原料、产品的理化特性及其在生产和使用过程对环境造成严重污染等原因,使表面活性剂的应用前景受到极大的挑战。因此寻找一种新型高效低污染的表面活性剂是一个尤为重要的举措。 生物表面活性剂就是一类性能较为优异的表面活性剂。查阅文献可知他们是指利用酶或微生物通过生物催化和生物合成法得到的具有一定表面活性的代谢产物。它们在结构上与一般表面活性剂分子类似,即在分子中不仅有脂肪烃链构成的非极性憎水基,而且含有极性的亲水基,如磷酸根或多烃基基团,是集亲水基和憎水基结构于一身的两亲化合物。它们不仅具有化学表面活性剂具有的各种表面性能,而且还拥有下列优点:①选择性广,对环境友好;②庞大而复杂的化学结构使得表面活性和乳化能力更强;③分子结构类型多样,具有许多特殊的官能团,专一性强;④原料在自然界广泛存在且价廉;⑤发酵生产是典型的“绿色”工艺等。 生物产生的生物表面活性剂包括许多不同的种类。依据他们的化学组成和微生物来源可分为糖脂、脂肽和脂蛋白、脂肪酸和磷脂、聚合物和全胞表面本身等五大类。于是我们可以明显知道这些生物表面活性剂是对生物和环境极其友好,相较与普通的化学表面活性剂有更广阔的应用范围。 微生物强化采油(MEOR技术)是生物表面活性剂最为重要的应用领域。在油田中注入一些微生物和其生长所必须的营养物质,微生物在生长的同时,可以产生生物表面活性剂,这些生物表面活性剂能降低原油和水两相界面的张力,从而提高原油的开采量。与化学合成生物表面活性剂相比,生物表面活性剂可被微生物降解,不会对环境造成污染。微生物驱油和化学驱油最大的不同是微生物不但可沿注水压差方向运移,还可在油层中纵深迁移,大大提高了水驱或化学驱的效率。 利用生物表面活性剂能够增强水性化合物的亲水性和生物利用度,还可以使环境污染物不断降解,该技术称为生物修复。我觉得在不远的未来这个技术能有更大的应用和发展前景。 针铁矿(Fe(OH)3) 是一种非常重要的矿产资源,可以吸附土壤和工业废水中有毒的金属离子。用针铁矿吸附、共沉淀金属离子,再用生物表面活性剂作为絮凝剂载体,可将金属离子分离出来。资源问题一直是当今世界重视的难题,利用生物表面活性剂将环境保护和资源采集率两个方面同时兼顾,这将是我们对抗环境恶化的重要手段。 资源的紧缺以及人类环保意识的加强,将进一步推动绿色表面活性剂工业的发展。当前,世界表面活性剂市场呈稳定而缓慢的增长趋势,更多新型、性能优良、易生物降解、高效、安全的表面活性剂出现,会给人们的生活和工业生产注入新的活力。根据国外一些大公司及专家预测,未来表面活性剂工业发展趋向主

文献综述 完整版

XXX大学 文献综述 ***届 离子液体+ 溶剂二元体系电导率、表面 张力物性研究进展 学生姓名XXX 学号XXX 院系XXX 专业XXX 指导教师XXX 填写日期XXX 离子液体 + 溶剂二元体系电导率、表面 张力物性研究进展

摘要 离子液体作为一种新型的绿色溶剂,其物理化学性质的研究受到了普遍的关注,采用离子液体与各类溶剂形成二元体系研究究引起了全世界研究者的关注。针对离子液体二元体系常规理化性质的研究有利于了解离子液体的结构特性及新型离子液体的开发。离子液体二元体系的理化性质除受到温度和离子液体本身结构的影响外,还受到二元体系中溶剂极性和各组分含量等的影响。本文综述了离子液体的电导率、表面张力的研究进展。研究发现大部分离子液体的表面张力γ随温度升高而减小,同一种离子液体浓度越高,表面张力越小,表面张力随含水量的增加而增加;离子液体在相同温度下电导率随浓度的增加而增大,相同浓度下电导率随温度的升高而增大。 关键词:离子液体;电导率;表面张力 离子液体具有与传统有机溶剂截然不同的性质和特点,其化学稳定性好、溶解性好、熔点低、不易挥发、可传热、可流动、对环境污染少,可作为绿色溶剂用于化学反应和分离过程,近年来受到了人们的广泛关注和被广泛应用,例如精细化学品合成、高分子聚合物及有关合成、分离萃取、消除环境污染、太阳能电池和燃料电池等[1]。离子液体成为国内外研究的热点之一,目前已广泛应用于催化、材料和萃取分离[2-5]等领域由于离子液体所具备的这些优点,近年来离子液体越来越多地被作为一种可设计的功能型分子,即所谓的功能化离子液体(TSIL)。功能化离子液体是指在阳离子或阴离子上引入官能团的离子液体,但其与离子液体是一个不可分割的整体。由于功能化离子液体的核心离子与官能团影响着反应过程,与溶解于其中的溶质产生相互作用,导致最终过程优化的实现,更加符合实验和工业需求而受到重视。 本文结合国内外的研究情况,不仅对离子液体+溶剂二元体系表面张力实验测定工作进展做了归纳,还对电导率方面的研究做了相应的综述。 1.离子液体+溶剂二元体系表面张力 目前,关于离子液体表面张力的研究还十分有限,表面张力是表面化学中最

化妆品中常用的表面活性剂综述

题目:综述化妆品中常用的表面活性剂 阴离子AAS

名称简称用途安全性 N-酰胺基及其盐香波、皮肤清洁剂、口腔制 品、含药化妆品、香皂和添 加剂等…没有刺激性,非常安全 羧酸(酯)盐很广泛,用于制备O/W型膏 霜或乳液。主要用作皂基、 各种乳液和膏霜基体。呈碱性,稍微有刺激的感觉 硫酸(酯)盐 烷基硫酸酯盐AS很广泛,O/W型乳化剂、润 湿剂和悬浮剂,常在香波和 皮肤清洁制品使用。一般与 其它AAS复配来增加泡沫 的稳定性和粘度,并降低对 皮肤的脱脂能力。高浓度时有刺激性。但在化妆品的使用条件下是安全的

N-酰胺基及其盐 由α-氨基酸的氨基酰化后制得。氨基酸属于两性,但酰化后变成阴离子AAS。

用途: 香波:增泡和稳泡,头发亲合性强,改善梳理性,减少静电; 皮肤清洁剂:治疗面部粉刺,可与水杨酸和过氧化苯甲酰等匹配而不影响其活性; 口腔制品:口腔清洗剂,抑制己糖激酶的生长,防止牙齿腐烂; 含药化妆品:去屑香波、治疗粉刺膏霜等。 香皂和添加剂等… 安全性: 已在化妆品和洗涤用品应用几十年,非常温和,对皮肤不会产生过敏和刺激,安全性非常高。 羧酸(酯)盐

一般指单价羧酸(酯)盐型。 用途:很广泛,用于制备O/W型膏霜或乳液。主要用作皂基、各种乳液和膏霜基体。 安全性:呈碱性,稍微有刺激的感觉。 硫酸(酯)盐 用途:O/W型乳化剂、润湿剂和悬浮剂,是香波和皮肤清洁使用较广泛的AAS之一。一般与其它AAS复配来增加泡沫的稳定性和粘度,并降低对皮肤的脱脂能力。 安全性:高浓度时有刺激性。但在化妆品的使用条件下是安全的。 用途:香波的主要表面活性剂,也用于皮肤清洁和沐浴制品,较少用

表面活性剂解析

表面活性剂:是一种加入很少即能明显降低溶剂(通常为水)的表面(或界面张力),改变 物系的界面状态,能够产生润湿、乳化、起泡、憎溶及分散等一系列作用,从而达到实际应用的要求的精细化学品。在结构上至少存在亲水基和疏水基两种基团,一个分子中可以同时 存在多个亲水基,多个疏水基。 分类:(1)按离子类型分类:1)非离子型表面活性剂2)离子型表面活性剂:阴离子、阳离子、两性(2)按表面活性剂的特殊性分类:碳氟表面活性剂、含硅表面活性剂、高分子表面活性剂、生物表面活 性剂、冠醚型表面活性剂。 常见阴离子、阳离子、两性表面活性剂的中英文名、简写及结构 (1)阴离子:十二烷基苯磺酸钠:Sodium dodecyl benzene sulfonate (SDBS 或LAS) 弧比一 3 Na (2)阳离子:苄基三甲基氯化铵:Benzyltrimethylammonium Chloride (TMBAC ) (3)非离子:脂肪醇聚氧乙烯醚:Primary Alcobol Ethoxylate (AE 或AEO) R-O-(CH2CH2O) n-H (4)两性:十二烷基甜菜碱:Dodecyl dimethyl betaine (BS-12)C12H25-N+(CH3)2CH2COO- 阴离子表面活性剂的合成: (1)烷基苯磺酸盐——烷基芳烃的生产过程: a?以烯烃为烷基化试剂合成长链烷基苯: 反应历程:(质子酸做催化剂) R—CH = CH2 + H+ = R- + CH —CH3 (以AlCl3作催化剂) HCl + AICI3 = H S +—Cl S - ? AICI3 RCh k CH2 + H S +—Cl S - ? AlCl3 = R — + CH- CH V AICI4 — 之后反应: R-CH-CH3 +

有机污染物的生物降解【文献综述】

有机污染物的生物降解 ——读书报告【091200028环院江静怡】【基本概况】 有机污染物,organic pollutant即进入环境并污染环境的有机化合物,导致生物体或生态系统产生不良效应。 生物降解,biodegradation即有机污染物在生物或其酶的作用下分解的过程。 具体的来说,生物降解分为三种基本类型。Primary biodegradation初级生物降解:指的是母体化合物的结构发生变化,并改变原化合物分子的完整性;Environmentally acceptable biodegradation环境兼容性降解:是指可除去有机污染物的毒性或者人们所不希望的特性;Ultimate biodegradation完全生物降解:指的是有机污染物经过矿化转化后转化为二氧化碳和水以及其他的可利用的无机盐。 不过在可降解的有机污染物中,由于化合物在环境中的滞留时间可达几个月或者几年之久,有机污染物又有难降解和易降解化合物之分。比如,POPs(Persistent Organic Pollutants)持久性有机污染物,是一类具有长期残留性、生物累积性、半挥发性和高毒性,并通过各种环境介质(大气、水、生物等)能够长距离迁移对人类健康和环境具有严重危害的天然的或人工合成的有机污染物,它的半衰期为半年。而通过一定的处理过程后,半衰期超过五天的化合物被定义为生物难降解有机化合物。 化合物难降解的原因有很多种。比如化合物本身的化学组成和结构的稳定性,使其具有抗降解性。像我们常常提到的农药“666”(六氯代环己烷)和常见的多环芳烃类就是依结 构的稳定性等特性稳定地存在于环境之中。另外地,在自然环境中也存在阻止生物降解的环境因素,包括物理、化学条件以及多种生物之间的协同作用。比方说,活性污泥就是模拟多 种条件下的协同作用从而达到生物降解处理污染物的效果。 生物降解的过程非为两种,好氧分解和厌氧分解。在好氧分解过程中,细菌是其中的主力军,微生物以有氧呼吸消耗分解大分子有机物。其中水质评价体系中的BOD(Bio-chemical Oxygen Demand)指的是水中有机物由于微生物的生化作用进行氧化分解,使之无机化或气体化时所消耗水中溶解氧的总量。而厌氧分解则是主要依靠厌氧细菌,这个过程俗称“发酵”。在农村生活中,我们常见的沼气池就是这样工作的。通常地,科学家们在厌氧微生物 中能寻找到一些能特异性氧化分解某特定难降解有机物的酶。 目前生物降解研究的发展趋势为:1.研究自然环境中有机污染物和无机污染物的生物降解途径,寻找自然界中具有生物净化能力的特殊群体,探讨生物降解和污染物的相互作用关系,以便制定消除污染的措施。2.利用遗传学方法将多种有益的特异性基因重组成具有多功能、高降解能力的菌株。3.利用酶的固定化技术制备成专一的或多功能的生物催化剂,以降解多种污染物。

生物表面活性剂应用研究进展

生物表面活性剂应用研究进展 刘江红陈逸桐贾云鹏芦艳 (东北石油大学化学化工学院石油与天然气化工省高校重点实验室大庆163318) 摘要生物表面活性剂是由微生物产生的天然产物,具有表面活性高、对环境无污染、生物可降解性及良好的抑菌作用等优于化学合成的表面活性剂的独特性质。本文对生物表面活性剂的特性、分类及其制备方法进行了介绍,对生物表面活性剂在石油工业、环境工业、医药、食品、农业和化妆品工业等领域的应用进行了总结,展望了生物表面活性剂的良好应用前景。 关键词生物表面活性剂特性分类应用 Progress on the Applications of Biosurfactants Liu Jianghong,Chen Yitong,Jia Yunpeng,Lu Yan (Provincial Key Laboratory of Oil&Gas Chemical Technology,College of Chemistry&Chemical Engineering, Northeast Petroleum University,Daqing163318) Abstract Biosurfactants are natural products produced by microorganisms.The biosurfactants have unique properties,such as,high surface activity,environmental friendliness,biodegradable and good anti-microbial activity,which chemical surfactants do not have.Herein the properties,classifications and preparation methods of biosurfactants are introduced in brief.The applications of biosurfactants in various fields such as petroleum exploit,environmental protection,preparation of medicals,food products as well as agriculture and cosmetics are summarized.The prospect in the development of the biosurfactants is predicted. Keywords Biosurfactant,Property,Classification,Application 生物表面活性剂是利用可再生的资源如植物油、碳水化合物等为原料,由不同的微生物生产代谢得到的。与其他表面活性剂相比,具有耐酸、耐盐、可生物降解、低毒性、抗菌性、对环境无污染和生物相容性好等优点,同时生物表面活性剂兼备降低溶剂表面张力、稳定乳化液及增加泡沫等其他表面活性剂的特点,因此生物表面活性剂逐渐在石油工业、环境工业、医药、食品、农业和化妆品工业等领域得到广泛的应用,在未来有逐步替代化学合成的表面活性剂的趋势。 1生物表面活性剂的性质、分类及制备 1.1生物表面活性剂的特性 生物表面活性剂分子结构包含极性基团和非极性基团,是一种具有亲水、疏水两性特点的生物大分子化合物。生物表面活性剂分子的亲水基和疏水基可以由不同的分子成分组成。 生物表面活性剂与其他表面活性剂比较,主要特性就是无毒性、稳定性好、耐酸耐盐性好、可以被生物降解、对环境无污染及抗菌性。 1.2生物表面活性剂的分类 生物表面活性剂根据其化学结构的不同,可以分为酰基缩氨酸系、糖脂系、磷脂系、高分子聚合物和脂肪酸系表面活性剂五类,如表1所示。 刘江红女,47岁,硕士,副教授,主要从事生物化工研究。E-mail:ljhread@126.com 国家863计划项目(2008AA06Z304)和黑龙江省教育厅科技攻关项目(1153005)资助 2012-11-09收稿,2013-03-31接受

药物中使用的表面活性剂综述

表面活性剂应用 表面活性剂是一类能够改变溶液性质的表面活性物质。 表面活性剂能改变体系界面状态,从而产生润湿或反润湿、乳化或破乳、起泡或消泡以及增溶等一系列作用。 1. 口服制剂中作增溶剂 在难溶性药物的水溶液中加入非离子型表面活性剂可使药物增溶。 采用自乳化系统以改善脂溶性药物的生物利用度,在体内易形成良好的乳滴,可通过淋巴吸收,克服首过效应,适用于水溶性和脂溶性药物。 主要包括:聚乙二醇辛酸、葵酸甘油酯、聚乙二醇月桂酸甘油脂及聚乙二醇硬脂酸甘油酯。 2. 在混悬剂中做助悬剂 优点:载药量大、防止药物氧化水解、掩盖药物不良气味、易吞咽等。 例子:蜂蜡、卵磷脂、羟甲基纤维素 3. 乳剂、纳米乳中作乳化剂 烷基聚葡糖苷(APG)表面活性剂形成纳米乳 4. 在靶向制剂中的应用 在各种抗癌药剂中,表面活性剂的主要作用是乳化和增溶。 表面活性剂的双亲结构能显著降低药物与水相间的界面张力,利用其乳化作用增加药物在水中的溶解度,从而提高疗效。 许多药物仅利用表面活性剂的乳化作用,其浓度达不到治疗的要求,这时还需要利用表面活性剂的增溶作用。 抗癌制剂中表面活性剂:一般是非离子表面活性剂,如吐温、司盘。

一些非离子表面活性剂可单独使用或与其它脂质混和物形成非离子表面活性剂囊泡:单(双)烷基聚三醇醚类、司盘类、吐温类、苄泽类等。 5. 表面活性剂在经皮给药制剂中的应用 渗透促进剂 阴离子型的月桂酸钠、十二烷基硫酸钠; 阳离子型的苯扎溴胺; 非离子型的聚氧乙烯烷基醚、吐温、泊洛沙姆等。 表面活性剂在药物制剂中的应用 1. 在片剂中的应用 (1)片剂的润湿剂和粘合剂 片剂要求所用的药物能顺利流动,黏度不能太大,服用后在体液作用下又能迅速崩解、溶解和吸收。 粘合剂往往也是润湿剂 常用的表面活性剂润湿剂、粘合剂有羧甲基纤维素钠、聚乙二醇等 (2)崩解剂 片剂中加入适量的表面活性剂可提高片剂的润湿性能,加速水分的透入,增大药物的溶出速度,使片剂较快崩解 表面活性剂有月桂基硫酸钠、溴化十六烷基三甲胺、硬酯醇磺酸钠等 使用表面活性剂的方法:(a)溶于粘合剂中;(b)与崩解剂淀粉混合加于干颗粒中;(c)制成醇溶液喷在干颗粒上。 表面活性剂化学及其一般相行为 表面活性物质是有机分子当在溶剂中的浓度较低时它们易吸附于界面从而

表面活性剂的基本作用与应用

5 表面活性剂的基本作用与应用 表面活性剂的分子由疏水基和亲水基组成。依据“相似相亲”的原则,当表面活性剂分子进入水溶液后,表面活性剂的疏水基为了尽可能地减少与水的接触,有逃离水体相的趋势,但由于表面活性剂分子中亲水基的存在,又无法完全逃离水相,其平衡的结果是表面活性剂分子在溶液的表画上富集,即疏水基朝向空气,而亲水基插入水相。当表面上表面活性剂分子的浓度达到一定值后,表面活性剂基本上是竖立紧密排列,形成一层界面膜,从而使水的表面张力降低,赋予表面活性剂润湿、渗透,乳化、分散、起泡、消泡、去污等作用。 由于表面活性剂疏水基的疏水作用,表面活性剂分子在水溶液中发生白聚,即疏水基链相互靠拢在一起形成内核,远离环境,而将亲水基朝外与水接触。表面活性剂分子在水溶液中的自聚(或称白组装、自组)形成多种不同结构、形态和大小的聚集体(参见第4章)。使表面活性剂具有增溶以及衍生出胶束催化、模板功能、模拟生物膜等多种特殊功能。 表面活性剂已广泛应用于日常生活、工农业生产及高新技术领域,是最重要的工业助剂之一,被誉为“工业味精”。在许多行业中,表面活性剂起到画龙点睛的作用,只要很少量即可显著地改善物质表面(界面)的物理化学性质,改进生产工艺、降低消耗和提高产品质量。根据应用领域的不同,表面活性剂分民用表面活性剂和工业用表面活性剂两大类。 民用表面活性剂主要是用作洗涤剂,如衣用、厨房用、餐具用、居室用、卫生间用、消毒用和硬表以以及个人卫生用品如香波,浴液和洗脸、洗手用的香皂、液体皂、块状洗涤剂等。其次是用作各种化妆品的乳化剂。 工业用表面活性剂可以分成两大类。一类是工业清洗,例如火车、船舶、交通工具的清洗,机器及零件的清洗,电子仪器的清洗,印刷设备的清洗,油贮罐、核污染物的清洗,锅炉、羽绒制品、食品的清洗等等。根据被洗物品的性质及特点而有各种配方,借助表面活性剂的乳化、增溶、润湿,渗透、分散等作用和其他有机或无机助剂的助洗作用,并施以机

生物表面活性剂

98-25:脂肽 H:环脂肽 【内容】 所有的生物都是由细胞所构成,细胞中70%的是水分,蛋白质、核酸、糖类、脂类等各种物质通过细胞内的精细结构进行着有序的活动。表面活性剂作为控制细胞界面秩序而不可缺少的物质起着重要作用。 由于生物体内的表面活性剂是在极其复杂的生物物质群中微量地存在,因此大量提取纯制品非常困难。近来发现微生物在其菌体外较大量地产生、积蓄微生物表面活性剂。这已在石油三次回收剂、石油环境污染的无公害处理剂及功能性表面活性剂等许多领域得到应用和开发。 生物表面活性剂具有合成表面活性剂所没有的结构特征,大多有着发掘新表面活性功能的可能性,人们正希望开发出生物降解性和安全性及生理活性都好的生物表面活性剂。 1.生物表面活性剂分类 生物表面活性剂根据其亲水基的类别,分为以下五种类型:①以糖为亲水基的糖脂系生物表面活性剂;②以低缩氨酸为亲水基的酰基缩氨酸系生物表面活性剂;③以磷酸基为亲水基的磷脂系生物表面活性剂;④以羧酸基为亲水基的脂肪酸系生物表面活性剂;⑤结合多糖、蛋白质及脂的高分子生物表面活性剂(生物聚合体)。 (1)糖脂系生物表面活性剂糖脂与磷脂形成复合脂成为连接脂和糖的桥梁,从化学结构来看,它们是由脂肪醇或脂肪酸形成的复杂脂。根据这种糖脂的结构和分布可分为四类:鞘氨糖脂,植物糖脂,甘油糖脂,结构单元中无鞘氨醇和甘油的其他糖脂。 鞘氨糖脂是动物糖脂的代表性物质,存在于动物组织,特别是动物的脑神经组织中。植物糖脂主要存在于植物中。 甘油糖脂广泛存在于高等植物、藻类和能进行光合作用的细菌中,既有植物性又有微生物性糖脂的特性。 属于结构单元中无鞘氨醇和甘油的糖脂有来自高好碱性菌的硫糖脂,及源于植物的有代表性的皂草苷生物表面活性剂。以前,人们常用皂草苷作洗涤用品,从结构上看,它是由以甾族化合物或三萜系化合物为非糖部分(皂草配基)与低聚配糖体构成的。皂草苷具有生物活性,如具有溶血、强心和免疫等作用。 (2)酰基缩氨酸系生物表面活性剂大致分为硫放线菌素类和脂氨基酸类,这类物质以氨基酸或低聚缩氨酸作亲水基。它广泛存在于各种微生物、植物、无脊椎动物的消化液、鸡的卵管、人的皮肤等中。虽然对脂氨基酸的生理意义还不了解,但作为生物膜的存在,它与维持膜结构及膜机能有关,而且存在于皮肤的角质层中,也与保湿作用有关。硫放线菌素类是微生物的产物,有高表面活性。 (3)磷脂系生物表面活性剂这是磷脂与糖脂在复合脂中形成的一大领域。大致分为甘油磷脂和鞘氨磷脂。 甘油磷脂是以磷脂酰酸作基本骨架,由具有羟基的各种化合物构成,结构式如下:

高分子表面活性剂在表面施胶中的应用

摘要:表面活性剂在造纸中有很大的应用,例如在制浆、湿部、脱墨、涂布加工等方面。本文主要综述了几种主要的高分子表面活性剂如:阳离子淀粉,AKD 专用高分子表面活性剂,壳聚糖,聚乙烯醇,羧甲基纤维素等在表面施胶中的应用。 关键词:造纸、高分子表面活性剂、表面施胶。 表面施胶也叫纸面施胶,纸页形成后在半干或干燥后的纸页或纸板的表面均匀涂上胶料。施胶剂分松香型和非松香型两大类,非松香型施胶剂主要用于表面施胶。常用的表面施胶剂含有疏水基和亲水基,因此广义地说都是表面活性剂。表面施胶剂主要有变性淀粉、聚乙烯醇(PVA)、羧甲基纤维素(CMC)和聚丙烯酰胺(PAM)等。可根据不同的需要选择不同的表面活性剂,如:提高抗水性,可用AKD、分散松香、石蜡、硬脂酸氯化铬、苯乙烯马来酸酐共聚物及其他合成树脂胶乳等;提高抗油性,可加入有机氟化合物,如全氟烷基丙烯酸酯共聚物,全氟辛酸铬配合物,全氟烷基磷酸盐等;增加防黏性,可加入有机硅树脂;改善印刷性能,主要用变性淀粉、CMC、PVA等[1];改进干湿强度,可加入PAM、变性淀粉等;改善印刷光泽度和印刷发色性,主要用CMC、海藻酸钠、甲基纤维素、氧化淀粉等。为了提高表面施胶效果,通常采用两种或几种表面活性剂共用的方法。 1. 淀粉是一种天然高分子化合物,它是一种重要的表面施胶剂和纸张增强剂。在造纸工业中,薯类淀粉使用效果较好。天然未改性的淀粉粘度较高,流动性差,容易凝聚,用水稀释后易沉淀,故在表面施胶中常用各种改性淀粉。改性淀粉在较高浓度时仍有较低的粘度,并保持良好的溶解性、粘着力和成膜性能。用于表面施胶的改性淀粉主要有氧化淀粉、阳离子淀粉、阳离子型磷酸酯淀粉、羟烷基淀粉、双醛淀粉、乙酸酯淀粉、酸解淀粉。以下主要介绍阳离子淀粉。 阳离子淀粉通常是指淀粉在一定条件下与阳离子试剂反应制得的产物,阳离子试剂主要有叔胺盐类和季铵盐类阳离子试剂。阳离子淀粉还可以通过淀粉与阳离子型乙烯基单体通过自由基共聚法制得。阳离子淀粉作为表面施胶液的固含量和取代度DS(Degree of Substitutio)是影响表面施胶性能的两个非常重要的因素。阳离子淀粉的品种很多,按取代度来分,主要有低取代度(DS<0.1)和高取代

相关文档
最新文档