物联网智能浇灌控制系统

物联网智能浇灌控制系统
物联网智能浇灌控制系统

Computer Science and Application 计算机科学与应用, 2017, 7(4), 329-335 Published Online April 2017 in Hans. https://www.360docs.net/doc/069061161.html,/journal/csa https://https://www.360docs.net/doc/069061161.html,/10.12677/csa.2017.74040

文章引用: 冯雨轩, 王圣玥, 杨丹丹, 郭仁春, 赵立杰, 邢杰. 物联网智能浇灌控制系统[J]. 计算机科学与应用, 2017, Intelligent Irrigation Control System Using Internet of Things

Yuxuan Feng, Shengyue Wang, Dandan Yang, Renchun Guo, Lijie Zhao, Jie Xing

College of Information Engineering, Shenyang University of Chemical Engineering, Shenyang Liaoning

Received: Apr. 4th , 2017; accepted: Apr. 17th , 2017; published: Apr. 27th , 2017

Abstract

Traditional orchard cultivation is inefficient and heavy work, and the Internet of Things technol-ogy + traditional orchard cultivation mode is conducive to improving the efficiency of the orchard management. In this paper, with STM32 series of single-chip microcomputer, 2.4 G wireless mod-ule, and Unity3D engine mobile development platform, we design and develop an orchard planting remote monitoring and control system of Internet of Things + Unity3D interactive intelligent vir-tual reality. The system consists of the bottom part and the top part of the composition. The bot-tom part of the design uses soil moisture sensors and air temperature and humidity sensors to detect the soil temperature and outdoor environment temperature and humidity information. According to different fruit soil moisture settings, the controller adjusts the solenoid valve and controls the amount of irrigation. The top part of the design establishes three-dimensional virtual scene to achieve roaming, real-time monitoring, and information display. The bottom part estab-lishes protocols with the top part, then we can investigate fruit tree farming professional informa-tion to set the intelligent watering, and establish remote manual control watering, which facilitate the management staff at any time to view the data and remotely control watering, thus reducing the difficulty of orchards maintenance. Keywords

Smart Orchards, Remote Control and Detection, Internet of Things, Virtual Reality

物联网智能浇灌控制系统

冯雨轩,王圣玥,杨丹丹,郭仁春,赵立杰,邢 杰

沈阳化工大学信息工程学院,辽宁 沈阳

*通讯作者。

冯雨轩 等

收稿日期:2017年4月4日;录用日期:2017年4月17日;发布日期:2017年4月27日

摘 要

传统果园种植低效且工作繁重,物联网技术+传统果园种植的模式有利于提高果园管理效率。本文采用STM32系类单片机、2.4 G 无线模块,结合Unity3D 引擎移动开发平台,设计和开发了一种物联网+Unity3D 可交互智能化虚拟现实果园种植远程监控控制系统。该系统由底层部分和顶层部分组成,底层部分设计使用土壤湿度传感器和空气温湿度传感器检测果园土壤温度和外部环境温度和湿度信息,控制器根据不同果树土壤湿度设定值,调节电磁阀,控制浇水量。顶层部分设计建立三维虚拟场景,实现场景漫游、实时监视、信息显示功能。底层部分与顶层部分建立协议,通过查询果树养殖专业信息设定智能浇灌,同时也建立远程手动控制浇灌,方便管理人员随时查看数据和远程控制浇灌,降低果园养护难度。

关键词

智慧果园,远程控制与监测,物联网,虚拟现实

Copyright ? 2017 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.360docs.net/doc/069061161.html,/licenses/by/4.0/

1. 引言 传统果园种植手工劳动方式造成果园养护效率低下,果农劳动强度大。由于专业养护人员的缺乏、果树养护不及时,常常导致果树营养不良甚至死亡,给果农造成极大的损失。随着信息时代的高速发展,传统产业迎来了物联网时代。如何让电脑客户端和手机APP 应用程序自动检测控制果树的生长情况,在果树缺失水分时自动通知果农,并进行自动浇水。通过远程监控控制功能实现智能管理,越来越受到关注,因此迫切需要一种可交互智能化果园种植虚拟现实监控控制系统。

文[1]设计的基于PC 机和单片机智能灌溉系统无智能终端即智能手机APP 操控,极大的限制了远程操作的距离。文[2]设计开发了一种基于ZigBee 技术实现农田节水灌溉、施肥以及信息采集与处理的系统数据只能通过路由器传输,限制了数据传输和控制的范围。文[3]发明的基于无线传感器网络智能灌溉系统仅仅可通过无线网络对果园进行浇水控制,但无法检测到果树周围环境的具体信息,同时需要大量的接线不利于在果园安装和维护。虚拟现实作为一种高度逼真的交互式视景仿真技术,在军事、医学、设计和娱乐等领域得到广泛应用[4]。但是,基于虚拟现实技术的可交互远程智能果园浇灌系统尚未见报道。

针对以上已有研究中出现的问题,本文设计和开发了一种物联网 + Unity3D 可交互智能化虚拟现实果园种植远程监控控制系统。该系统具有数字化、网络化、虚拟与现实的深度融合的特点。系统硬件采用STM32系类单片机、2.4 G 无线模块,虚拟仿真应用程序的开发选用Unity3D 引擎移动开发平台。整个系统包括底层部分和顶层部分。其中,底层部分的功能是:对果树进行实时信息采集和控制,顶层部分的功能是实现虚拟漫游、实时信息显示、远程控制功能。顶层部分和顶层部分通过GPRS 模块进行数据交换和传输。

Open Access

冯雨轩等

2. 系统总体结构和功能设计

2.1. 总体结构设计

本文提出一种可交互智能化果园种植虚拟现实监控控制系统,该系统由底层部分和顶层部分组成,如图1所示。底层部分包括:核心控制器STM32系类单片机、2.4 G无线模块、土壤湿度传感器、空气温湿度传感器、485通信模块、GPRS模块、继电器模块、水泵、水管、喷头。顶层部分包括:PC端和手机APP。

土壤和空气环境信息采集部分采集部分:采用主—从机模式,主从机均采用STM32F103系列单片机,主机采集空气环境的温湿度和其所在区域的土壤湿度信息,从机负责采集其他区域的土壤湿度信息,并且通过2.4 G通信模块[5]与主机通信,实现一主机多从机的模式,主机收集到各区域的环境信息后将数据发送给上位机。

底层控制系统的设计与开发:电磁阀一端通过水管连接水泵,另一端通过水管连接到土壤,将单片机信号线与继电器接口相连,继电器触点和电磁阀连接,通过改变I/O口的高低电平就可完成对浇灌动作的控制。

下位机与上位机之间通信系统的设计开发:STM32通过串口将数据发送到485模块上,再传输到USR-GPRS-730上,上位机通过TCP/IP协议与GPRS进行通信,使得上位机与下位机可通过物联网相互传送数据。同时,上位机与下位机建立协议,上位机可根据下位机发出的信息进行处理并反馈数据到下位机,下位机根据反馈数据后进行对应的控制处理。

客户端三纬虚拟人机交互APP设计与开发[6]:采用3D Max进行场景建模、渲染和加工,生成3D 模型文件后导入Unity3D,后台c#.net脚本语言进行场景漫游、信息显示和远程控制实现[7]。

底层部分封装进一个独立设计的包装中,底层部分都是无线进行相互连接,方便安装和使用;顶层部分开发APP,可以让使用者方便操作和远程监测。最终结合成一个完善的3D数字化智慧果园管理系统。

Figure 1.System global structure chart

图1.系统总体结构图

冯雨轩等

2.2. 系统功能设计

本系统将传感器采集到的信息通过2.4 G无线网络同意发送至主核心控制器STM32系类单片机,对果树信息进行实时采集,采用Unity3D引擎开发移动平台实现虚拟现实应用程序开发。通过三维虚拟场景漫游,与果树浇灌设备交互实现远程开启停止控制,应用虚拟现实VR技术,实现智能浇灌控制,手自动工作切换模式功能。

具体包括:

1) 信息监测:PC端和手机APP信息显示面板自动显示果树品种、当前环境温湿度、土壤温度和浇

灌湿度控制系统设定值。

2) 远程控制:设置了手动浇灌模式和自动浇灌模式。开启自动模式,系统根据实时采集的土壤湿度

信息,比较温湿度传感器采样值和控制系统设定值之间的大小,根据差值调整浇水量。手动模式时,可通过PC端或者APP进行对果园的管理,由于对果园进行了三维场景的建立,因此,果农可以直接看到果园的全部场景,利用鼠标点击电脑屏幕或者使用手机APP直接点击手机屏幕对果树进行浇灌。

3) 场景漫游:通过场景前后左右移动和旋转漫游,查看果园场景漫游。

3. 系统开发关键技术

3D数字化智慧果园系统开发包括底层控制系统开发和顶层远程站客户端应用程序开发。底层部分核心控制器采用STM32F103系列单片机最小系统板将收集的土壤和环境空气信息的模拟数据转为二进制数据,STM32F103系列单片机成本低、体积小、开发简单、系统开发灵活,并且STM32F103系列单片机中断、定时器等外设多,非常适用于控制。虚拟现实开发选择Unity3D平台[8],它具有大型场景支持和在线控制功能,模块资源丰富,编程周期短,脚本强大,渲染高速的优点。

3.1. 传感器数据采集和单片机的数据处理

通过湿度传感器采集土壤的湿度信号和通过温度传感器采集空气、土壤、水的温度信号,通过单片机的AD模块采样并转换成单片机能识别的信号后送入核心控制单元,核心控制单元对信号进行判断决策后,实时对喷灌设备进行控制,调整喷灌时间、喷灌水量及温度上下限报警,以达到节水节能的目的。

根据实时采集土壤水分、温湿度等数据和电磁阀、泵等驱动执行设备参数,远程设置和修改现场的环境参数(温湿度、土壤水分等)以及现场设备的控制模式,实现智能自动、定时自动、手机遥控、手动灌溉等多种灌溉模式。

3.2. 客户端与单片机之间无线数据传输

上位与下位机之间通信系统的设计开发:STM32通过串口将数据发送到485模块上,再传输到USR-GPRS-730上,上位机通过TCP/IP协议与GPRS进行通信,使得客户端与单片机可通过物联网相互传送数据。同时,上位机与下位机建立协议,上位机可根据下位机发出的信息进行处理并反馈数据到下位机,下位机根据反馈数据后进行对应的控制处理。

3.3. 三维交互系统APP的开发

客户端三纬虚拟人机交互APP设计与开发:采用3D Max进行场景建模、渲染和加工,生成3D模型文件后导入Unity3D,后台c#.net脚本语言进行场景漫游、信息显示和远程控制实现,虚拟场景实时与现实交互,使操作者更加直观的感受到果园的现实场景,具有强烈、逼真的感官冲击,给人身临其境的视觉享受。3D数字化智慧果园系统人机交互界面的设计与开发如图2所示。

冯雨轩等

Figure 2. The human-computer interaction interface flow chart of design and development

图2.人机交互界面的设计与开发流程图

具体开发过程包括:

1) 果园全景取景,建模。使用3D Studio Max软件进行对果园果树等场景的建模,并对模型进行加工和渲染,再利用Photoshop对模型进行精细加工、美化,最后得到逼真的三维模型,将制作好的模型生成Fbx文件导入Unity3D中。

2) 基于Unity3D实现果园场景漫游、实物可视化和实时三维动画。本系统采用c#.net语言作为开发的脚本语言,利用Unity3D软件对微软Visual Studio开发软件提供API,然后通过控制第三视角前后左右、放大、缩小、旋转开发实现三维场景漫游以及手动灌溉模式。

3) Unity 3D应用程序多平台导出。根据Unity3D提供的导出功能,添加导出的场景到列表里,根据应用程序运行在PC端还是移动端,选择切换平台,生成应用程序。

4. 系统测试

3D物联网智能浇灌控制系统的底层部分如图3所示,底层部分包括机械部分和控制部分。机械部分包括电磁阀、储水箱、水泵、水管;控制部分包括土壤湿度传感器、空气温湿度传感器和继电器。实物图如图所示。

土壤湿度传感器和空气温湿度传感器与核心控制器采用STM32F103系列单片机最小系统板相连,土壤湿度传感器探头插入果树周围土壤中,空气温湿度传感器置于空气中,单片机将收集的土壤和环境空气信息的模拟数据转为二进制数据。果园划分区域进行监控,每块区域放置一个独立的核心控制器,所有区域的信息都将通过2.4 G无线网络传送到一个主核心控制器,主核心控制器与GPRS模块相连,将信息通过物联网发送到上位机,并在APP应用中显示。每个区域各设置一个电池阀,一端通过水管连接

冯雨轩等

(a)

(b)

(c)

Figure 3.Physical diagram of bottom. (a) Information acquisition and control systems; (b) Master-slave STM32 series mi-crocontrollers; (c) GPRS wireless communication

图3.底层实物图。(a) 信息采集和控制系统;(b) 主从机STM32系列单片机;(c) GPRS无线通信部分

冯雨轩等

水泵,另一端通过水管连接到喷头,每块区域中的核心控制器STM32F103系列单片机信号线与继电器接口相连,继电器触点和电磁阀连接,通过改变I/O口的高低电平就可改变电池阀的开关,对果树浇灌进行控制。

APP建立的三维虚拟场景下每个区域都有独立的显示土壤和空气环境信息界面,可以结合科学知识设定果树生长所需环境进行智能浇灌,也可以点击喷头进行手动浇灌。通过界面显示与提示对果园进行管理。基于虚拟现实技术的应用程序可以在PC端使用,也可以在手机上使用。

5. 结论

本文设计开发了一种物联网+ Unity3D的虚拟现实果园种植远程监控控制系统,该系统由底层部分和顶层部分组成,底层部分主核心控制器采用STM32系类单片机,顶层部分应用程序采用Unity3D和3D Studio Max开发。底层部分和顶层部分通过GPRS模块进行数据交换和传输。系统测试表明该系统可以实时监测采集果树的基本信息,监测果树的生长情况,融合采集到的果园信息,实时自动控制浇灌,达到节水、智能、高效的目的。操作者还可以选择手动浇灌,更加精准地控制果园的浇灌。此系统克服了果园现场有线布线的不便,实现了全网络无线传感器信息传输和控制,系统实用性增强,市场应用前景广阔。

参考文献(References)

[1]吴爱萍, 李嘉琪. 智能灌溉控制系统设计[J]. 工业控制计算机, 2015, 28(6): 142-143.

[2]温宗周, 豆朋达, 钱佳佳, 等. 基于ZigBee的智能灌溉系统设计[J]. 单片机与嵌入式系统应用, 2016, 16(11): 38-

42.

[3]杨柏楠. 基于无线传感器网络智能灌溉系统的设计[J]. 农业科技与信息, 2016(10): 95-95.

[4]姜学智, 李忠华. 国内外虚拟现实技术的研究现状[J]. 辽宁工程技术大学学报, 2004, 23(2): 238-240.

[5]邱林, 覃江峰. 智能灌溉系统中无线传感网络2.4GHz无线信道传播特性[J]. 湖北农业科学, 2015(9): 2242-2244.

[6]王圣霖, 朱世范, 胡海辉. 基于移动设备的虚拟实境技术在景观设计中的应用[J]. 中国园林, 2015, 31(11).

[7]王洪源. Unity3D人工智能编程精粹[M]. 北京: 清华大学出版社, 2014.

[8]朱惠娟. 基于Unity3D的虚拟漫游系统[J]. 计算机系统应用, 2012, 21(10): 36-39.

期刊投稿者将享受如下服务:

1. 投稿前咨询服务(QQ、微信、邮箱皆可)

2. 为您匹配最合适的期刊

3. 24小时以内解答您的所有疑问

4. 友好的在线投稿界面

5. 专业的同行评审

6. 知网检索

7. 全网络覆盖式推广您的研究

投稿请点击:https://www.360docs.net/doc/069061161.html,/Submission.aspx

期刊邮箱:csa@https://www.360docs.net/doc/069061161.html,

基于Android的物联网控制系统的设计与实现

基于Android的物联网控制系统的设计与实现 摘要:基于Android智能操作系统开发平台,以移动通信网为载体,利用短信方式和GPRS 方式实现在系统客户端信息采集与传输、进行数据分析处理等功能的物联网无线测控系统。用户通过Android设备终端,可以随时随地查看环境数据并进行实时检测与控制,实现物联网嵌入式的无线测控功能。关键词: Android OS;GPRS;SMS;物联网;无线测控目前无线通信处于3G/4G时代,中国移动GPRS业务全面投入运营,无线数据通信的发展和应用向着愈来愈广泛和深入的领域发展[1]。远程测控技术并不是一项新的技术,然而由于移动通信网的介入,使之焕发出新的光辉。因此,随着智能手机的迅速发展,Android操作系统作为最流行的操作平台,充分利用无线通信的现有资源,开展远程物联控制是远程控制充满活力的发展方向,网络远程控制技术也是物联网建设的基本方向之一[2]。本系统是基于Android操作系统平台,将传统的远程控制技术向基于无线通信网的移动终端设备的方向转变,实现了一种为移动客户端提供远程无线测控的方案。该方案能够对远程数据进行实时监控,提高工作效率,也增加了远程控制的灵活性。1 Android操作系统平台Android操作系统是谷歌发布基于Linux平台的开源手机操作系统。该平台由操作系统、中间件、用户界面和应用软件组成,是首个为移动终端打造的真正开放移动软件,其开放的平台允许任何人在终端设备上开发[3]。Android所包含的功能如下:(1)APPLICATIONS(应用程序层):Android 装配了一个核心应用集合,包括短信、日历、地图、通信录等。所有应用程序都是用Java 语言编写的。(2)APPLICATION FRAMEWORK(应用程序框架层):Android具有强大的应用层API和丰富的传感器功能,所有的应用程序其实是一组服务和系统,主要包括如下内容:视图(View);内容提供者(Content Providers);资源管理器(Resource Manager);通知管理器(Notification Manager);活动管理器(Activity Manager)。(3)LIBRARIES(库):Android包含一个C/C++库的集合,用来提供给Android系统多种组件使用,这些功能通过Android的应用程序框架来提供给开发者。(4)ANDROID RUNTIME(Android运行时):Android 包含一个核心库的集合,提供大部分在Java编程语言核心类库中可用的功能。每一个Android 应用程序是Dalvik虚拟机中的实例,运行在自己的进程中。(5)LINUX KERNEL(Linux 内核):Android基于Linux2.6提供核心系统服务,例如安全、内存管理、进程管理、网络堆栈、驱动模型等。作为硬件和软件之间的抽象层,它隐藏具体硬件细节而为上层提供统一的服务[4]。2 硬件平台该物联网无线测控系统的硬件平台主要由STC12C5A60S2单片机、WISMO228无线通信模块、I/O测控接口、本地串行通信接口等资源组成。硬件总体框架设计。 微控制器选用8 bit STC12C5A60S2系列单片机,其指令格式完全兼容8051,但速度要快8~12倍。GPRS模块选用基于GSM/GPRS的工业级无线通信模块WISMO228,可直接由单片机串行口连接并通过AT命令控制等特性,能很好地适应物联网对远程测控的要求。以太网控制器选择高度集成的全双工以太网接口芯片RTL8019AS。固件程序的主要功能包括初始化228模块、生成短消息、解析短消息、有线和无线网络的通信、控制I/O设备等。3 终端应用程序开发3.1 系统方案(1)系统开发环境:本系统使用Android 应用开发工具和API 接口,基于JDK + Eclipse + ADT插件 + SDK的开发环境。(2)系统设计流程:系统通过Activity 管理相应功能。首先进入LOGO界面,然后跳转到登录界面,验证成功即可进入TabView界面,创建异步任务,进行异步操作,这样能够提高处理速度,使软件更加健全可靠。软件系统架构。 (3)模块化设计:系统客户端软件主要包括界面模块、数据库模块和功能控制模块3个部分。3.2 设计与实现3.2.1 UI布局实现Activity是Android的核心类,是一个用来提供

物联网智能终端设备识别方法探究

物联网智能终端设备识别方法探究 肖清旺 (移动互联网系统与应用安全国家工程实验室上海201315) 摘要:物联网终端身份的正确识别是建立物联网安全连接的重要前提,其中智能终端的身份识别问题尤为重要。本文调研现有技术条件下智能终端的身份识别的方法。从物理防护、网络攻击、应用管理等多个角度,分析现有方案存在的安全隐患。将物联网领域内项目研究工作的成果和业界的经验结合,现提出物联网智能终端的多维度设备特征信息的识别方法。解决物联网智能终端设备识别方法过于简单,导致易被盗用设备合法身份的问题。 关键词:物联网;智能终端;身份识别; Research on intelligent terminal equipment identification method of Internet of things Xiao Qingwang (Mobile Internet system and Application Security National Engineering Laboratory n, Shanghai 20161228, China) Abstract: The correct identification of the terminal of the Internet of Things is an important prerequisite to establish a secure connection of the Internet of Things. The identification of the intelligent terminal is particularly important. This paper investigates the method of identification of smart terminals under the existing technology conditions. From the physical protection, network attacks, application management and other points of view, the existing program of existing security risks. Combining the achievements of project research in the field of Internet of Things and the experience of the industry, this paper proposes the identification method of multidimensional equipment feature information of IOT intelligent terminals. The intelligent terminal equipment identification method is too simple to solve, which leads to the problem of the easy identification of the legal identity of the equipment. Key words: Internet of Things,Intelligent Terminal,Identification 1引言 物联网的发展会接入各种设备。意味着物联网对现实世界会有更强的控制能力和数据采集能力。越来越强大的控制能力和数据采集能力,使其对现实生活的影响程度也是与日俱增的。所以物联网在飞速发展的同时,物联网的安全问题是不容忽视的。目前业内对物联网安全的解决策略主要有三点:应用层由安全服务解决认证授权、数据保护等问题;网络层在服务端和终端之间建立安全的连接;感知层的终端有可靠

物联网智能浇灌控制系统

Computer Science and Application 计算机科学与应用, 2017, 7(4), 329-335 Published Online April 2017 in Hans. https://www.360docs.net/doc/069061161.html,/journal/csa https://https://www.360docs.net/doc/069061161.html,/10.12677/csa.2017.74040 文章引用: 冯雨轩, 王圣玥, 杨丹丹, 郭仁春, 赵立杰, 邢杰. 物联网智能浇灌控制系统[J]. 计算机科学与应用, 2017, Intelligent Irrigation Control System Using Internet of Things Yuxuan Feng, Shengyue Wang, Dandan Yang, Renchun Guo, Lijie Zhao, Jie Xing College of Information Engineering, Shenyang University of Chemical Engineering, Shenyang Liaoning Received: Apr. 4th , 2017; accepted: Apr. 17th , 2017; published: Apr. 27th , 2017 Abstract Traditional orchard cultivation is inefficient and heavy work, and the Internet of Things technol-ogy + traditional orchard cultivation mode is conducive to improving the efficiency of the orchard management. In this paper, with STM32 series of single-chip microcomputer, 2.4 G wireless mod-ule, and Unity3D engine mobile development platform, we design and develop an orchard planting remote monitoring and control system of Internet of Things + Unity3D interactive intelligent vir-tual reality. The system consists of the bottom part and the top part of the composition. The bot-tom part of the design uses soil moisture sensors and air temperature and humidity sensors to detect the soil temperature and outdoor environment temperature and humidity information. According to different fruit soil moisture settings, the controller adjusts the solenoid valve and controls the amount of irrigation. The top part of the design establishes three-dimensional virtual scene to achieve roaming, real-time monitoring, and information display. The bottom part estab-lishes protocols with the top part, then we can investigate fruit tree farming professional informa-tion to set the intelligent watering, and establish remote manual control watering, which facilitate the management staff at any time to view the data and remotely control watering, thus reducing the difficulty of orchards maintenance. Keywords Smart Orchards, Remote Control and Detection, Internet of Things, Virtual Reality 物联网智能浇灌控制系统 冯雨轩,王圣玥,杨丹丹,郭仁春,赵立杰,邢 杰 沈阳化工大学信息工程学院,辽宁 沈阳 *通讯作者。

物联网与智能交通系统

物联网与智能交通系统 物联网的英文名:Internet of Things(IOT),也称为Web of Things。被视为互联网的应用扩展,应用创新是物联网的发展的核心,以用户体验为核心的创新是物联网发展的灵魂。 物联网定义为通过各种信息传感设备,如传感器、射频识别(RFID)技术、全 球定位系统、红外感应器、激光扫描器、气体感应器等各种装置与技术,实时采 集任何需要监控、连接、互动的物体或过程,采集其声、光、热、电、力学、化 学、生物、位置等各种需要的信息,与互联网结合形成的一个巨大网络。其目的 是实现物与物、物与人,所有的物品与网络的连接,方便识别、管理和控制。 智能交通系统(ITS),是指将先进的传感器技术、信息技术、网络技术、自 动控制技术、计算机处理技术等应用于整个交通运输管理体系从而形成的一种信 息化、智能化、社会化的交通运输综合管理和控制系统。智能交通系统使交通基 础设施能发挥最大效能。随着互联网、移运通信网络和传感器网络等新技术的应 用,物联网应用于智能交通已见雏形,在未来几年将具有极强的发展潜力。 智能交通体系: 智能交通是一个综合性体系,它包含的子系统大体可分为以下几个方面: 一、车辆控制系统。指辅助驾驶员驾驶汽车或替代驾驶员自动驾驶汽车的系 统。该系统通过安装在汽车前部和旁侧的雷达或红外探测仪,可以准确地判断车 与障碍物之间的距离,遇紧急情况,车载电脑能及时发出警报或自动刹车避让, 并根据路况自己调节行车速度,人称“智能汽车”。目前,美国已有3000多家 公司从事高智能汽车的研制,已推出自动恒速控制器、红外智能导驶仪等高科技 产品。

二、交通监控系统。该系统类似于机场的航空控制器,它将在道路、车辆和驾驶员之间建立快速通讯联系。哪里发生了交通事故。哪里交通拥挤,哪条路最为畅通,该系统会以最快的速度提供给驾驶员和交通管理人员。 三、运营车辆高度管理系统。该系统通过汽车的车载电脑、高度管理中心计算机与全球定位系统卫星联网,实现驾驶员与调度管理中心之间的双向通讯,来提供商业车辆、公共汽车和出租汽车的运营效率。该系统通讯能力极强,可以对全国乃至更大范围内的车辆实施控制。目前,行驶在法国巴黎大街上的20辆公共汽车和英国伦敦的约2500辆出租汽车已经在接受卫星的指挥。 四、旅行信息系统。是专为外出旅行人员及时提供各种交通信息的系统。该系统提供信息的媒介是多种多样的,如电脑、电视、电话、路标、无线电、车内显示屏等,任何一种方式都可以。无论你是在办公室、大街上、家中、汽车上,只要采用其中任何一种方式,你都能从信息系统中获得所需要的信息。有了该系统,外出旅行者就可以眼观六路、耳听八方了。 随着信息技术的发展,智能交通系统也开始实现不停车收费、交通信号灯智能控制、智能抓拍违章车辆等功能。 目前我国的智能交通系统主要有三部分: 1)城市智能交通 为了缓解越来越大的城市交通压力,智能交通系统在我国城市交通管理中得到了重视和应用。城市智能交通系统是通过先进的交通信息采集技术、数据通信传输技术、电子控制技术和计算机处理技术等,把采集到的各种道路交通信息和各种道路交通相关的服务信息传输到城市交通指挥中心,交通指挥中心对来自交通信息采集系统的实时交通信息进行分析处理,并利用交通控制与交通组织优化

中国消费物联网智能终端行业发展概况-行业产品市场前景

中国消费物联网智能终端行业发展概况-行业产品市场前景 (3)物联网细分产品市场前景 消费物联网智能终端产品应用领域广泛,产品层次丰富。本公司基于自身的研发路线积累,制造的物联网智能终端目前主要专注于以视觉技术为核心的智能摄像机、车载智能终端、智能网通网关产品,并逐步在听觉技术领域形成突破,承接了智能音箱等听觉类智能终端产品的订单。 本公司之所以聚焦于音视频数据采集和处理的智能终端产品是因为物联网智能终端作为数据采集和处理的重要端口,如何有效地进行数据的采集和处理,是占据数据流量入口制高点的关键。视觉是人类与环境互动的主要感官之一,是人类接收机器信息最高效的模式,随着科技的进步,机器不仅能捕获视觉输入,还可以分析视觉输入并执行动作;同时,以语音的模式传递信息,是机器接收人类信息最高效的模式,与触觉交互相比,语音交互快速、简单,用户可以较低的成本实现随时访问,并能获得更好的用户体验。未来物联网智能终端产品将会越来越多地呈现视觉交互与语音交互的融合。 ①智能摄像机行业发展概况和趋势 A、智能摄像机行业概述 智能摄像机是由数字摄像机视频显示技术、无线网络传输技术及智能追踪识别技术相结合产生的新一代摄像机,是网络摄像机智能化的产物。智能

摄像机可以通过蜂窝网络或WIFI、蓝牙等无线通讯技术联网,并提供视频信息的采集、编码、传输和存储功能,同时嵌入了人脸识别、移动侦测、夜视切换、语音识别交互等技术。万物互联时代,摄像机已从传统的视频摄制工具,转变为具有安防监控、家庭看护、沟通媒介功能的重要载体。与传统的数字摄像机相比,智能摄像机增加了网络接入功能,将数字化的视频信号转换成符合网络传输协议的数据流,支持上传至云端并形成用户的私有云空间。通过网络传输,用户可以在本地或者远程地点实时查看和管理视频数据,或者监听摄像机内置麦克风采集的现场声音。在产品的智能化提升方面,智能摄像机利用人工智能图像深度学习技术,可以精确识别人形移动、哭声检测等异响、异动,自动跟踪拍摄异常运动轨迹,并向用户推送报警信息;智能摄像机还利用红外夜视技术,可自动切换白天、黑夜模式,实现全天候拍摄;在语音交互方面,智能摄像机还可实现双向语音通话,人机语音交互,甚至可通过内置的遥控模块,实现对其他联网的终端设备的控制,有效提高了家用安防产品的实用性、便捷性和多功能性。

物联网智能交通方案设计

物联网智能交通系统 建设方案

目录 一、物联网信息平台 (3) 1.1 物联网信息平台简介 (3) 1.2 物联网信息平台创新点 (3) 1.3 产品优势及特点 (4) 1.4 物联网信息平台设备清单 (6) 二、智能交通系统 (6) 2.1 系统概述 (6) 2.2 系统技术方案 (8) 2.3 智能小车系统 (8) 2.4 道路交通管理系统 (9) 2.5 路灯自动控制系统 (11) 2.6 ETC系统 (11) 2.7 智能停车系统 (12) 2.8 城市照明系统 (13) 2.9 支持的实验 (14) 2.10 智能交通实训系统设备清单 (15) 三、配置清单及规格参数 (16)

一、物联网信息平台 1.1 物联网信息平台简介 物联网信息平台以光载无线交换机和上层应用程序为核心,构建WiFi无线局域网,覆盖物联网实验室及其周边区域,配合实验室现有的有线网络交换机、网络路由器,建立融合有线网络、无线局域网络的物联网关键部分——网络层。 物联网信息平台是物联网综合应用实训室整体解决方案的核心和基础,在此基础上配合解决方案中的其他物联网接入设备和控制设备可以实现物联网基础教学、物联网基础实验、无线传感器网络教学、RFID技术的应用、传感器的学习及应用、智慧教室、物联网创新应用等功能,学生可亲身真实体验和感受到物联网技术给未来生产和生活带来的改变。 图(4)物联网信息平台组网图 1.2 物联网信息平台创新点 以物联网信息平台为核心构建的物联网综合应用实训室在实验教学、学生学习、教学管理、科学研究等方面都有创新: 实验室建设的创新 以工程实践为背景,将物联网感知层、网络层、应用层等3层架构清晰、完整地体现出来,构建整体化的物联网综合应用实训室,实现系统内的物与物、物与人的泛在链接,使各个实验区和实验设备不再是信息孤岛;

物联网无线控制系统的制作方法

本技术提供一种物联网无线控制系统,包括由核心处理器、无线节点模块以及射频模块组成,所述核心处理器外部设有射频模块,所述核心处理器通过射频模块无线连接无线节点模块;所述核心处理器分别并联接入控制主机内部的SD卡、摄像头、WIFI模块、感应传感器以及音频外设,核心处理器通过GSM模块与用户手机进行无线连接;所述无线节点模块内部设有核心处理器。本技术有益效果为:通过核心处理器设计的控制主机部分与无线节点模块组成整体系统,其作用主要在于控制主机部分通过核心处理器控制射频模块实现无线节点的信息汇总和处理,并通过GSM模块利用短信和彩信的方式通知用户手机并接收短信命令进行后续处理,以此实现物联网无线控制。 权利要求书 1.一种物联网无线控制系统,包括由核心处理器(1)、无线节点模块(2)以及射频模块(3)组成,其特征在于:所述核心处理器(1)外部设有射频模块(3),所述核心处理器(1)通过射频模块(3)无线连接无线节点模块(2);所述核心处理器(1)分别并联接入控制主机内部的SD卡(5)、摄像头(6)、WIFI模块(7)、感应传感器(8)以及音频外设(9),核心处理器(1)通过GSM模块(4)与用户手机(10)进行无线连接。 2.根据权利要求1所述的物联网无线控制系统,其特征在于:所述无线节点模块(2)内部设有核心处理器(21)。

技术说明书 一种物联网无线控制系统 技术领域 本技术涉及物联网无线控制技术,尤其涉及一种物联网无线控制系统。 背景技术 随着物联网相关设备的不断创新,现有新型物联网智能安防、家居实验设备一般由主控系统、无线传感网及传感器及相应的远程控制装置组成,并能自成系统完成相当于安装于家庭中的智能安防报警系统、智能家居控制、监测等功能。更新后的物联网技术框架,首先以真实的智能安防、家居为模型,具有独立的各种传感器模块、无线射频传感网模块、家居信息控制模块,然后以ARM芯片为基础的并携带WIFI信息传输功能的主机服务器,也有利于为学生从事物联网相关技术的研发和维护打下基础。对于物联网教学方面其内容丰富,主要分为感知层、网络层及应用层,其感知层用来提供多种射频识别、传感器节点和路由器等硬件和网络协议,数据采集教学;其网络层提供基于ARM处理器的嵌入式教学,完成多种无线网络管理,传感器和射频识别信息处理,且通过无线及有线网络路经,将数据传输到物联网中心服务器,数据库和互联网;其应用层可提供各种物联网应用实训、智能家居、智能环境检测、智能交通等。因此,组接物联网无线控制系统有其必要性。 技术内容 针对以上缺陷,本技术的目的是提供一种能够保持整体系统稳定、便于拓展、可有利于主要实现物联网无线控制的物联网无线控制系统,以解决现有技术的诸多不足。

物联网温室智能控制系统的应用案例

物联网温室智能控制系统的应用案例 在全国各地区,现代化的农场种引进物联网技术是时代发展的需要,也是现代科技农业的重要体现。在乌拉特中旗海流图镇设施农业科技示范园区的温室内,物联网温室智能控制系统正在在紧罗密鼓的安装中。 物联网温室智能控制系统通过基于物联网技术对温室内外监测数据的分析,结合作物生长发育规律,利用相关设备,对温室进行实时监控,实现对作物优质、高产、高效的栽培目的。该套智能监控系统具有自动开启关闭卷帘、补光、滴灌等功能,并凭借智能化、自动化控制技术,调节作物的最佳生长环境。种植户可通过电脑、手机等信息终端随时随地查看温室内实时环境监测、预警信息,实现对温室大棚的网络智能化远程管理,充分发挥物联网技术在设施农业生产中的作用。 在地区农业的发展中,引进物联网温室智能控制系统有利于建设该地区的科技农业设施,起到示范作用,也有利于提高地区设施农业生产的科技含量和综合生产水平,促进设施农业现代化发展。另外通过农产品的安全质量追溯,可以改善市民的食品安全条件,增强市民的购买信心,提升农产品的市场竞争力。目前来看,农业物联网技术是现代农业逐步实现智能化、精确化、信息化的有力保障,而随着种植规模的扩大和温室大棚的普及推广,物联网温室智能控制系统将会得到越来越多的应用。 对于规模化的温室种植而言,借助人工管理需要大量人手和时间,并且存在难以避免的 人工误差。物联网技术的应用,真正实现了农业信息数字化、农业生产自动化、农业管理智能化,使温室大棚种植可达到提高产量、改善品质、节省人力、降低人工误差、提高经济效益的目的,实现温室种植的高效和精准化管理。托普温室种植监控系统,改变了传统温室种植管理在技术上的桎梏状态。

智能终端技术 物联网应用领域

智能终端技术物联网应用领域 西安德阳电子技术交流 2011-12-31 ?智能交通 智能交通系统包括公交行业无线视频监控平台、智能公交站台、电子票务、车管专家和公交手机一卡通五种业务。 公交行业无线视频监控平台利用车载设备的无线视频监控和GPS定位功能,对公交运行状态进行实时监控。 智能公交站台通过媒体发布中心与电子站牌的数据交互,实现公交调度信息数据的发布和多媒体数据的发布功能,还可以利用电子站牌实现广告发布等功能。 电子门票是二维码应用于手机凭证业务的典型应用,从技术实现的角度,手机凭证业务就是手机凭证,是以手机为平台、以手机身后的移动网络为媒介,通过特定的技术实现完成凭证功能。 车管专家利用全球卫星定位技术(GPS)、无线通信技术(CDMA)、地理信息系统技术(GIS)、中国电信3G等高新技术,将车辆的位置与速度,车内外的图像、视频等各类媒体信息及其他车辆参数等进行实时管理,有效满足用户对车辆管理的各类需求。 公交手机一卡通将手机终端作为城市公交翼卡通的介质,除完成公交刷卡功能外,还可以实现小额支付、空中充值等功能。 测速E通通过将车辆测速系统、高清电子警察系统的车辆信息实时接入车辆管控平台,同时结合交警业务需求,基于GIS地理信息系统通过3G无线通信模块实现报警信息的智能、无线发布,从而快速处置违法、违规车辆。 ?智能家居 智能家居产品融合自动化控制系统、计算机网络系统和网络通讯技术于一体,将各种家庭设备(如音视频设备、照明系统、窗帘控制、空调控制、安防系统、数字影院系统、网络家电等)通过智能家庭网络联网实现自动化,通过中国电信的宽带、固话和3G无线网络,可以实现对家庭设备的远程操控。与普通家居相比,智能家居不仅提供舒适宜人且高品位的家庭生活空间,实现更智能的家庭安防系统;还将家居环境由原来的被动静止结构转变为具有能动智慧的工具,提供全方位的信息交互功能。 ?智能医疗

智能交通与物联网

物联网与智能交通系统

一、前提简介: 物联网的英文名:Internet of Things(IOT),也称为Web of Things。被视为互联网的应用扩展,应用创新是物联网的发展的核心,以用户体验为核心的创新是物联网发展的灵魂。 物联网定义为通过各种信息传感设备,如传感器、射频识别(RFID)技术、全球定位系统、红外感应器、激光扫描器、气体感应器等各种装置与技术,实时采集任何需要监控、连接、互动的物体或过程,采集其声、光、热、电、力学、化学、生物、位置等各种需要的信息,与互联网结合形成的一个巨大网络。其目的是实现物与物、物与人,所有的物品与网络的连接,方便识别、管理和控制。 智能交通系统(ITS),是指将先进的传感器技术、信息技术、网络技术、自动控制技术、计算机处理技术等应用于整个交通运输管理体系从而形成的一种信息化、智能化、社会化的交通运输综合管理和控制系统。智能交通系统使交通基础设施能发挥最大效能。随着互联网、移运通信网络和传感器网络等新技术的应用,物联网应用于智能交通已见雏形,在未来几年将具有极强的发展潜力。二、智能交通体系: 智能交通是一个综合性体系,它包含的子系统大体可分为以下几个方面: 一、车辆控制系统。指辅助驾驶员驾驶汽车或替代驾驶员自动驾驶汽车的系统。该系统通过安装在汽车前部和旁侧的雷达或红外探测仪,可以准确地判断车与障碍物之间的距离,遇紧急情况,车载电脑能及时发出警报或自动刹车避让,并根据路况自己调节行车速度,人称“智能汽车”。目前,美国已有3000多家公司从事高智能汽车的研制,已推出自动恒速控制器、红外智能导驶仪等高科技产品。 二、交通监控系统。该系统类似于机场的航空控制器,它将在道路、车辆和驾驶员之间建立快速通讯联系。哪里发生了交通事故。哪里交通拥挤,哪条路最为畅通,该系统会以最快的速度提供给驾驶员和交通管理人员。 三、运营车辆高度管理系统。该系统通过汽车的车载电脑、高度管理中心计算机与全球定位系统卫星联网,实现驾驶员与调度管理中心之间的双向通讯,来提供商业车辆、公共汽车和出租汽车的运营效率。该系统通讯能力极强,可以对全国乃至更大范围内的车辆实施控制。目前,行驶在法国巴黎大街上的20辆公共汽车和英国伦敦的约2500辆出租汽车已经在接受卫星的指挥。 四、旅行信息系统。是专为外出旅行人员及时提供各种交通信息的系统。该系统提供信息的媒介是多种多样的,如电脑、电视、电话、路标、无线电、车内

基于智能终端的物联网组网介绍

基于智能终端的物联网组网介绍 随着信息技术的不断发展与革新,从“智慧地球”到“感知中国”——物联网已经成为经济危机后期的制高点,甚至被誉为继计算机、互联网之后的第三次信息革命。物联网技术融合了无线射频识别技术(RFID)、无线定位、产品电子编码(EPC)和互联网技术,将被广泛应用于社会、经济、国防等领域。云里物里科技在物联网领域也钻研多年,目前BLE蓝牙模块和iBeacon、蓝牙网关产品也服务了80多个国家与地区。 近年来,我国汽车行业呈现高速增长态势,并且由于销量的持续攀升,汽车企业生产效率将得到越来越充分的体现。2010年我国汽车产量和销量均超过1800万辆,创下全球汽车产销之最,汽车需求的迅速增长,无疑对汽车制造厂商提出了越来越高的生产要求。市场研究报告预计汽车行业将是推进物联网技术发展的主要行业之一。物联网技术应用在物料与产品跟踪上的作用将对汽车生产管理产生积极的影响。物联网技术在汽车生产管理上的应用将包括生产装配、车体识别、零部件与固定资产的跟踪管理、关键零部件(如发动机、轮胎)的防伪标识、整车的物流管理及售后服务等方面。物联网技术中的RFID电子标签与其设备成本相对汽车价格与汽车物流成本来说并不是太高,而整车与汽车零部件自身成本比较高。并且电子标签具有可以重复使用的特点,如果能够合理地使用这项技术,最终会实现汽车生产管理系统中真正的“物联网”,实现整个国家范围内的汽车生产的自动化、信息化。 1汽车生产管理系统与物联网技术 1.1汽车生产管理信息化 信息化是企业生产管理的主要特征,运用信息技术提升企业竞争力是主要目标。汽车企业要想在竞争中取得优势,就要运用现代信息技术,实现信息共享,进一步提高企业竞争实力。特别是广大中小企业,因为没有充足的资金进行设备引进,只有采取生产管理信息化等软措施,加强生产线的自动化信息化,提高企业生产效率,从而全面提升汽车生产企业的竞争能力。 一辆汽车由大量的零部件组成,要提高汽车生产管理的效率,必须实施高效的信息化自动化管理模式。此时生产线上每一点关于加工的确切信息都是需要的。这要求运用计算机通讯与网络技术来管理汽车生产线中庞大的物流、信息流。另外还要确保生产线工人能够及时有效地获取加工制作信息并做出及时响应,从而满足现代生产装配的要求。因此,实现汽车企业生产管理的信息化迫在眉睫。 1.2RFID与物联网技术 射频识别技术(RFID,Radio Frequency Identification)是自动识别技术在无线电技术方面的具体应用与发展,利用射频信号通过空间耦合实现无接触信息传递并通过所传递的信息达到识别目的的技术。 物联网最早由美国麻省理工学院提出,经过多年的研究,现在的物联网概念,更加宽泛。一切与物物相连,有别于人与人的移动通信网和互联网的,统称为物联网。

基于物联网的智能家居控制系统设计

基于物联网的智能家居控制系统设计 【摘要】本文结合了ZigBee无线通信技术、物联网技术、人工智能技术、传感器技术以及人脸识别技术等提出了基于物联网的智能家居控制系统的软硬件设计方案,并实现了智能化家居系统主要任务。 【关键词】智能家居;ZigBee无线通信;CC2530 0 引言 随着经济的飞速发展,科技的不断进步,人们对于生活水平的要求逐步提高,对于家居环境的舒适度特别是家居的智能化程度提出了越来越高的要求。 1 系统整体结构 系统主要分五个部分组成,供电部分:供电部分为智能家居控制系统室内系统部分供电。系统远程通信部分:系统远程通信部分主要是通过Internet进行远程控制家居设备。中央控制器:中央控制器是智能家居控制系统的核心部分,中央控制器接收由各个功能子模块采集到的数据信息然后对采集到的数据信息进行处理分析,并根据分析的数据做出相应的指令。功能子模块:每个功能子模块实现自己特定的功能。系统室内通信部分:系统室内通信部分主要是各功能

子模块与中央控制器之间的通信,选择的无线组网技术是ZigBee无线技术。 2 系统的硬件设计 2.1 中央处理器型号 中央处理器采用CC2530芯片,CC2530所使用的是一个单周期的8051兼容性CPU内核。 2.2 LCD液晶显示屏接口硬件电路 本设计中人机交互界面选择LCD液晶显示屏,采用以ST7920控制芯片的12864。 2.3 温度传感器硬件节点设计 智能家居控制中室内环境的温度是我们进行控制的主要因素之一。利用温度传感器进行室内温度的采集,将采集到的结果传送到中央处理器,根据当前温度值做出相应的处理,控制空调等设备进行温度的调整。本设计采用DS18B20温度传感器进行温度的采集。DS18B20的电路原理图如图3所示: 2.4 湿度传感器硬件节点设计 智能家居控制中室内环境的湿度同样也是我们进行控制的主要因素之一,利用湿度传感器进行室内湿度的采集,将采集到的结果传送到中央处理器,根据当前湿度值做出相应的处理,控制加湿器进行湿度的调整。本设计湿度传感器模块中采用的湿敏电阻是

物联网的终端

物联网终端 一、物联网终端的概念 物联网终端是物联网中连接传感网络层和传输网络层,实现采集数据及向网络层发送数据的设备。它担负着数据采集、初步处理、加密、传输等多种功能。 二、物联网终端的基本原理及作用 原理: 物联网终端基本由外围感知(传感)接口,中央处理模块和外部通讯接口三个部分组成,通过外围感知接口与传感设备连接,如RFID 读卡器,红外感应器,环境传感器等,将这些传感设备的数据进行读取并通过中央处理模块处理后,按照网络协议,通过外部通讯接口,如:GPRS模块、以太网接口、WIFI等方式发送到以太网的指定中心处理平台。 作用: 物联网终端属于传感网络层和传输网络层的中间设备,也是物联网的关键设备,通过他的转换和采集,才能将各种外部感知数据汇集和处理,并将数据通过各种网络接口方式传输到互联网中。如果没有他的存在,传感数据将无法送到指定位置,“物”的联网将不复存在。 三、物联网终端的分类(5个层面) 1、从行业应用分 主要包括工业设备检测终端,设施农业检测终端,物流RFID识

别终端,电力系统检测终端,安防视频监测终端等,下面就几个常用行业介绍一下终端的主要特点。 工业设备检测终端: 该类终端主要安装在工厂的大型设备上或工矿企业的大型运动机械上,用来采集位移传感器、位置传感器(GPS)、震动传感器、液位传感器、压力传感器、温度传感器等数据,通过终端的有线网络或无线网络接口发送到中心处理平台进行数据的汇总和处理,实现对工厂设备运行状态的及时跟踪和大型机械的状态确认,达到安全生产的目的。抗电磁干扰和防暴性是此类终端考虑的重点。 设施农业检测终端: 该终端一般被安放在设施农业的温室/大棚中,主要采集空气温湿度传感器、土壤温度传感器、土壤水分传感器、光照传感器、气体含量传感器的数据,将数据打包、压缩、加密后通过终端的有线网络或无线网络接口发送到中心处理平台进行数据的汇总和处理。这种系统可以及时发现农业生产中不利于农作物生长的环境因素并在第一时间内通知使用者纠正这些因素,提高作物产量,减少病虫害发生的概率。终端的防腐、防潮设计将是此类终端的重点。 物流RFID识别终端: 该类设备分固定式、车载式和手持式,固定式一般安装在仓库门口或其他货物通道,车载式安装在物流运输车中,手持式则由使用者手持使用。固定式一般只有识别功能,用于跟踪货物的入库和出库,车载式和手持式中一般具有GPS定位功能和基本的RFID标签扫描功

智能交通与物联网之间的关联

1. 1 物联网基本概念 物联网( T he internet o f thing s) 是将各种物体相互联系在一起的网络。按照国际电信联盟的定义, 物联网是一种通过各种信息标示和传感设备, 如射频识别( RFID) 装置、红外感应器、全球定位系统、激光扫描器等, 将物体连接成网, 以进行信息的交换和共享, 最终实现物体的实时、智能化管理的网络。 1. 2 物联网的原理和结构 1. 2. 1 原理部分 物联网是通过在物体上嵌入电子标签等能够存储物体信息的标识, 由相应阅读器读取其中信息并通过无线网络将即时信息发送到后台信息处理系统, 而各大信息系统可互联形成一个庞大的网络, 从而达到对物品实施跟踪、监控等智能化管理的目的。其实质是利用射频自动识别( RFID) 技术, 通过计算机互联网、电信网等实现物体的自动识别和信息的互联与共享 智能交通是将信息、通信、控制、计算机网络等高新技术有效地综合运用于地面交通管理体系,从而建立起一种大范围、全方位发挥作用、实时、准确、高效的交通运输管理系统。它是目前世界交通运输领域研究的前沿课题,也是目前国际公认的解决城市交通拥挤、改善行车安全、提高运行效率、减少空气污染等的最佳途径。可以预见,智能交通系统将成为21 世纪现代化地面交通运输体系的模式和发展方向,是交通运输进入信息时代的重要标志 3. 1 智能交通与物联网之间的关联 智能交通是一个很宽泛的概念, 其主要特点是将先进的信息技术、数据通讯传输技术、电子控制技术、传感器技术以及计算机处理技术等有效的综合运用于整个运输系统, 从而建立起的一种在大范围内、全方位发挥作用的实时、准确、高效的运输综合管理系统。其目的是使人、车、路密切的配合、和谐的统一, 极大地提高交通运输效率、保障交通安全、缓解交通问题、改善环境质量和提高能源利用率。智能交通领域是物联网重要的应用领域, 也是物联网最有可能取得产业化成功的行业之一。智能交通系统( IT S) 所涉及的技术较多, 从数据的采集到信息的发布和共享其中涉及到各种技术且跨度较大, 但稍加对比不难发现, ITS 许多方面都与物联网技术息息相关, 两者之间有着天然的联系, 物联网与ITS关联 1) 物联网具有强大的数据采集功能, 可为ITS提供较为全面交通数据。底层的数据是系统的基础。IT S 离不开基础数据的采集, ITS 需要时刻不间断的掌握路网上的交通信息才能有效的控制和管理道路交通。实时、准确和全面的交通数据是智能交通系统高效运行的基本保障。物联网最重要和本质的特点就是实现物物相连, 只要嵌入有电子标签的物体都可以成为被采集的对象。大量交通参与者, 无论是人或车, 甚至是道路相关设施的信息都将快速的汇集到物联网中, 利用物联网ITS 可以方便的采集到路面上各类交通数据。 2) 物联网可为交通数据的传输提供良好的渠道, 为交通信息的发布提供广阔的平台。物联网本身就是一个巨大的信息传输渠道, ITS 如果能与物联网无缝的连接, 利用物联网的底层的传输体系, 通过有线和无线传输方式, ITS 所需的交通数据即可实现从采集设备到处理中心的传输。ITS 在实际应用中不仅需要底层的设备为上层提供数据, 有时上层也会有向下传送相关指令的要求, 也就是说, IT S中数据或信息的传输不是单向的, 兼有上传和下行的需求。

我国消费物联网智能终端行业发展概况

我国消费物联网智能终端行业发展概况 消费物联网智能终端是指具备信息采集、处理和连接能力,并可实现智能感知、交互、大数据服务等功能的终端硬件产品,是物联网时代人工智能的重要载体,也是消费级物联网产业链中的重要环节。作为消费电子领域的新兴产业和重要组成部分,在手机、电视等终端产品实现智能化之后,新一代信息技术正加速与智能家居、车载智能硬件、可穿戴设备、移动医疗等物联网智能终端产品集成融合,催生智能硬件产业蓬勃发展,带动模式创新和效率提升。 (1)消费物联网基本概述 物联网(IoT)是互联网在终端上的延伸和扩展,是万物互联的智能网络,具体来说,物联网是指利用条码、射频识别(RFID)、传感器、全球定位系统、机器视觉、激光扫描器等信息传感设备,按约定的协议,把任何物品与互联网连接起来,进行信息交换和通讯,以实现智能化识别、定位、跟踪、监控和管理的一种网络系统。根据应用领域的不同,物联网(IoT)可分为工业物联网(IIoT)和消费物联网(CIoT),从发展和商业推广的角度来看,工业物联网和消费物联网逐渐成为两个平行的生态系统。 消费级物联网(CIoT)与工业物联网(IIoT)不同的是,其主要面向个人用

户而非工业客户,应用在终端消费领域,是消费者最常接触到的程序、用例和设备集合的统称。消费物联网硬件和设备主要围绕人们生活工作环境而设计,适用于满足生活工作环境的需求。物联网从体系架构上可分为感知层、网络层、平台层和应用层。其中,感知层包括芯片、传感器等核心元器件;网络层包括通信模组和通信网络;平台层包括平台、系统;应用层包括智能终端和集成应用。在物联网的产业链中包括物联网的芯片、传感器等上游部件供应商、物联网智能终端制造商、提供通信网络服务的通信运营商以及提供应用平台及系统开发服务的互联网公司。 CIoT 产业链图示

基于物联网技术的智能家居控制系统设计方案

基于物联网技术的智能家居控制系统设计方案 随着人们生活水平的提高和科技的发展,家庭智能化已成为一种必然趋势而深入千家万户。 家庭智能化即智能化家居 (Smart Home),亦称数字家园(Digital Family )、家庭自动化(Home Automation )、电子家庭(E-home)、智能化住宅(Intelligent Home )、网络家居(Network Home )、智能屋(Wise House, WH)、智能建筑(Intelligent Building、等。它是利用计算机、通信、网络、电力自动化、信息、结构化布线、无线等技术将所有不同的设备应用和综合功能互连于一体的系统。它以住宅为平台,兼备建筑、网络家电、通信、家电设备自动化、远程医疗、家庭办公、娱乐等功能,集系统、结构、服务、管理为一体的安全、便利、舒适、节能、娱乐、高效、环保的居住环境。其从控制层次来分,一般由中央控制中心、家居智能控制终端、小区智能控制系统、家庭网关和外部网络几部分组成。 1智能家居系统体系结构 家居系统主要由智能灯光控制、智能家电控制、智能安防报警、智能娱乐系统、可视对 讲系统、远程监控系统、远程医疗监护系统等组成,框图如图1所示。 图1智能家居系统结构框图 2系统主要模块设计 2.1照明及设备控制 智能家居控制系统的总体目标是通过采用计算机、网络、自动控制和集成技术建立一个 由家庭到小区乃至整个城市的综合信息服务和管理系统。系统中照明及设备控制可以通过智 能总线开关来控制。本系统主要采用交互式通信控制方式,分为主从机两大模块,当主机触 发后,通过CPU将信号发送,进行编码后通过总线传输到从模块,进行解码后通过CPU触 发响应模块。因为主机模块与从机模块完全相同,所以从机模块也可以进行相反操作控制主

相关文档
最新文档