平行四边形与矩形的综合运用

平行四边形与矩形的综合运用
平行四边形与矩形的综合运用

课题: 平行四边形的判定与性质的综合运用

目标:1.熟练掌握平行四边形的判定与性质,并会灵活运用。

2.总结线段“倍分”、“和差”问题的思路,形成一定的思维模型。

3.培养学生运用知识分析问题解决问题的能力,特别是将题设与结论结合的综合分析能力。

重点:平行四边的性质和判定的综合、灵活运用。

难点:解题思路的获得——辅助线的构造

教学方法:引导分析。

教学过程:

25.(2017年三模题)如图,在平行四边形ABC 中,AC ⊥BC,点E 是CD 的中点,连接AE,作AF ⊥AE 交BC 于F.

(1) 若AC=6,BC=8,求AE 的长;

(2) G 为BC 延长线上一点,且AG+CG=BC,求证:AF=2EG.

(1)小题分析:由勾股定理和直角三角形斜边中线性质易得.

(2)小题分析:

分析思路1

考虑到点E 是CD 中点,且EG 在结论中出现,试着构造“X”形全等三角形,于是延长GE 交AD 于H.易知△CEG ?△DEH,∴CG=DH,GE=EH.由已知AG+CG=BC 及平行四边形的性质得,AG+DH=BC=AD=AH+DH ,∴AG=AH,由等腰三角形“三线合一”得,AE ⊥GH,又AE ⊥AF,∴AF ∥HG,∴四边形AFGH 是平行四边形,∴AF=HG,∴AF=2EG.(全等三角形的判定性质,等腰三角形“三线合一”,平行四边形的判定性质).

分析思路2

仍然从中点E 出发考虑构造“X”形全等三角形,延长AE 与CG 的延长线交于点H,易知△ADE ?△HCE,∴AE=EH,AD=CH,由已知及平行四边形的性质有

AG+CG=BC=AD=CH=GH+CG,∴AG=GH,∴∠4=∠2,因为∠4+∠3=90°,∠2+∠FAG=90°,∴∠3=∠FAG,∴AG=FG,∴GH=FG,∴AF=2EG.

分析思路3

第一点 由题设AG+CG=BC,这是线段和差的典型问题,可考虑“截长”或“补短”.试着延长AG 点M,使GM=CG,则AG+CG=AG+GM=AM,∴AM=AD.因此连接DM,得△ADM 为等腰三角形.∴∠ADM=∠AMD.延长BG 交DM 于点P,则∠ADM=∠GPM,∴∠GPM=∠GMP,∴GP=GM=GC,∴∠CMP=90°.在Rt △CAD 和Rt △CM 中,AE=(1/2)CD=ME.由上易得△AEM ?△AED,∴∠1=∠2,∴AE ⊥MD(三线合一).而AE ⊥AF,∴AF ∥DM.∴四边形AFPD 是平行四边形,∴AF=PD.又易知,PD=2EG(三角形中位线性质).∴AF=2EG.

第二点 从结论AF=2EG 分析,这是线段倍分问题,既可考虑作“分”也可作“倍”(事实上均可,若“分”则用梯形中位线性质,若“倍”则用三角形全等),都能得到平行四边形.如用“倍”即为分析思路1.

(3)后记:

①本题涉及平行线、三角形、四边形的几乎所有重要知识点:垂直于同一直线的直线平行,平行于同一直线的直线平行;等腰三角形定义、性质、“三线合一”;直角三13

24H G E

B D

C A

角形斜边中线的性质及其逆定理;全等三角形的判定与性质;三角形、梯形中位线性质;平行四边形的判定与性质.是一个综合性很强的几何论证题.

②本题设计非常巧妙,必须熟练掌握有关知识及常用辅助线才能进行逐一分析.

③本题最难之处在于如何根据初中知识将题设与结论结合起来分析出思路——辅助线的作法,学生必须具备灵活而严密的思维能力,才能通观全局、综合考虑、步步深入、找到解决问题的金钥匙.

④本题有多种破题思路,题目虽有难度,但可从多角度思考得出相应的解题思路,为更多学生解答此题提供了可能。

⑤本题还可做一些研究,比如,结论可改为“求证BF=2CG”思路类似.

此题告诉我们,数学的核心素养既包括基础知识、基本技能,更要重视思维能力的培养.

平行四边形较难题

绝密★启用前 2013-2014学年度???学校4月月考卷 试卷副标题 题号一二三四五总分 得分 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 第I卷(选择题) 请点击修改第I卷的文字说明 评卷人得分 一、选择题(题型注释) 中,AB=CB,BO⊥AC,把△ABC折叠,使AB落在AC上,点B与AC上的点E重合,展开后,折痕AD交BO于点F,连接DE、EF.下列结论:①图中有4对全等三角形;②若将△DEF沿EF折叠,则点D不一定落在AC上;③BD=BF;④S四边形DFOE=S△AOF,上述结论中正确的个数是() A、1个 B、2个 C、3个 D、4个 2.如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的边长为 A.23B.43C.4 D.8 3.如图,正形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△CEF=2S△ABE.其中正确结论有【】个.

A .2 B .3 C .4 D .5 4.下列给出的条件中,能判定四边形ABCD 是平行四边形的是 ( ). (A)AB ∥CD ,AD=BC (B)AB=AD ,CB=CD (C)AB=CD ,AD=BC (D)∠B=∠C ,∠A=∠D 5.已知,如图,在平行四边形ABCD 中,∠ABC 的平分线与AD 相交于点P,下列说法中正确的是( ) ①△APB 是等腰三角形 ②∠ABP+∠BPD=°③PD+CD=BC ④PDCB APB S S 梯形=? A. ①②④ B. ①②③ C. ①③④ D. ①②③④ 6.已知△ABC 的面积为36,将△ABC 沿BC 的向平移到△A /B /C / 的位置,使B / 和C 重合,连结AC / 交A /C 于D ,则△C /DC 的面积为 ( ) D. 18 7.已知△ABC 的面积为36,将△ABC 沿BC 的向平移到△A ′B ′C 的位置,使B ′和C 重合,连接AC ′交A ′C 于D ,则△C ′DC 的面积为( ) A . 6 B . 9 C . 12 D . 18 8.如图,第①个图形中一共有1个平行四边形,第②个图形中一共有5个平行四边形,第③个图形中一共有11个平行四边形,……则第⑩个图形中共有_________个平行四边形. A A ' C ')(B 'C B D

(完整版)二次函数,矩形的存在性问题,含答案

1. (2015 黑龙江省龙东地区) 如图,四边形OABC是矩形,点A、C在坐标轴上,△ODE是△OCB绕点O顺时针旋转90°得到的,点D在x轴上,直线BD交y轴于点F,交OE于点H,线段BC、OC的长是方程x2﹣6x+8=0的两个根,且OC>BC. (1)求直线BD的解析式; (2)求△OFH的面积; (3)点M在坐标轴上,平面内是否存在点N,使以点D、F、M、N为顶点的四边形是矩形?若存在,请直接写出点N的坐标;若不存在,请说明理由.

2. (2015 重庆市綦江县) 如图,抛物线2 23y x x =-++与x 轴交与A ,B 两点(点A 在点B 的左侧),与 y 轴交于点C . 点D 和点C 关于抛物线的对称轴对称,直线AD 与y 轴相交于点E . (1)求直线AD 的解析式; (2)如图1,直线AD 上方的抛物线上有一点F ,过点F 作FG ⊥AD 于点G ,作FH 平行于x 轴交直线AD 于点H ,求△FGH 的周长的最大值; (3)点M 是抛物线的顶点,点P 是y 轴上一点,点Q 是坐标平面内一点,以A ,M ,P ,Q 为顶点的四边形是AM 为边的矩形,若点T 和点Q 关于AM 所在直线对称,求点T 的坐标. x x x 26题备用图2 26题备用图1 26题图1

3. (2016 山东省东营市) 】.】.在平面直角坐标系中,平行四边形ABOC如图放置,点A、C的坐标分别是(0,4)、(﹣1,0),将此平行四边形绕点O顺时针旋转90°,得到平行四边形A′B′OC′. (1)若抛物线经过点C、A、A′,求此抛物线的解析式; (2)点M时第一象限内抛物线上的一动点,问:当点M在何处时,△AMA′的面积最大?最大面积是多少?并求出此时M的坐标; (3)若P为抛物线上一动点,N为x轴上的一动点,点Q坐标为(1,0),当P、N、B、Q构成平行四边形时,求点P的坐标,当这个平行四边形为矩形时,求点N的坐标.

平行四边形知识点总结及对应例题.

平行四边形、矩形、菱形、正方形知识点总结 定义:两组对边分别平行的四边形是平行四边形 平行四边形的性质: (1):平行四边形对边相等(即:AB=CD,AD=BC); (2):平行四边形对边平行(即:AB//CD,AD//BC); (3):平行四边形对角相等(即:∠A=∠C,∠B=∠D); (4):平行四边形对角线互相平分(即:O A=OC,OB=OD); 判定方法:1. 两组对边分别平行的四边形是平行四边形(定义判定法); 2. 一组对边平行且相等的四边形是平行四边形; 3. 两组对边分别相等的四边形是平行四边形; 4. 对角线互相平分的四边形是平行四边形; 5.两组对角分别相等的四边形是平行四边形; 考点1 特殊的平行四边形的性质与判定 1.矩形的定义、性质与判定 (1)矩形的定义:有一个角是直角的平行四边形是矩形。 (2)矩形的性质:矩形的对角线_________;矩形的四个角都是________角。矩形具有________的一切性质。矩形是轴对称图形,对称轴有_____________条,矩形也是中心对称图形,对称中心为_____________的交点。矩形被对角线分成了____________个等腰三角形。 (3)矩形的判定 有一个是直角的平行四边形是矩形;有三个角是_____________的四边形是矩形;对角线_____的平行四边形是矩形。 温馨提示:矩形的对角线是矩形比较常用的性质,当对角线的夹角中,有一个角为60度时,则构成一个等边三角形;在判定矩形时,要注意利用定义或对角线来判定时,必须先证明此四边形为平行四边形,然后再请一个角为直角或对角线相等。很多同学容易忽视这个问题。 2.菱形的定义、性质与判定 (1)菱形的定义:有一组邻边相等的平行四边形是菱形。 (2)菱形的性质 菱形的_______都相等;菱形的对角线互相_______,并且每一条对角线______一组对角;菱形也具有平行四边形的一切性质。菱形即是轴对称图形,对称轴有____条。 (3)菱形的面积

备战中考数学 平行四边形 培优 易错 难题练习(含答案)附详细答案

一、平行四边形真题与模拟题分类汇编(难题易错题) 1.操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN. (1)连接AE,求证:△AEF是等腰三角形; 猜想与发现: (2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论. 结论1:DM、MN的数量关系是; 结论2:DM、MN的位置关系是; 拓展与探究: (3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由. 【答案】(1)证明参见解析;(2)相等,垂直;(3)成立,理由参见解析. 【解析】 试题分析:(1)根据正方形的性质以及等腰直角三角形的知识证明出CE=CF,继而证明出△ABE≌△ADF,得到AE=AF,从而证明出△AEF是等腰三角形;(2)DM、MN的数量关系是相等,利用直角三角形斜边中线等于斜边一半和三角形中位线定理即可得出结论.位置关系是垂直,利用三角形外角性质和等腰三角形两个底角相等性质,及全等三角形对应角相等即可得出结论;(3)成立,连接AE,交MD于点G,标记出各个角,首先证明出 MN∥AE,MN=AE,利用三角形全等证出AE=AF,而DM=AF,从而得到DM,MN数量相等的结论,再利用三角形外角性质和三角形全等,等腰三角形性质以及角角之间的数量关系得到∠DMN=∠DGE=90°.从而得到DM、MN的位置关系是垂直. 试题解析:(1)∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠B=∠ADF=90°,∵△CEF 是等腰直角三角形,∠C=90°,∴CE=CF,∴BC﹣CE=CD﹣CF,即BE=DF, ∴△ABE≌△ADF,∴AE=AF,∴△AEF是等腰三角形;(2)DM、MN的数量关系是相等,DM、MN的位置关系是垂直;∵在Rt△ADF中DM是斜边AF的中线,∴AF=2DM,∵MN 是△AEF的中位线,∴AE=2MN,∵AE=AF,∴DM=MN;∵∠DMF=∠DAF+∠ADM, AM=MD,∵∠FMN=∠FAE,∠DAF=∠BAE,∴∠ADM=∠DAF=∠BAE, ∴∠DMN=∠FMN+∠DMF=∠DAF+∠BAE+∠FAE=∠BAD=90°,∴DM⊥MN;(3)(2)中的

存在性问题

1.(19年北京中考)在矩形ABCD 中,M ,N ,P ,Q 分别为边AB ,BC ,CD ,DA 上的点(不与端点重合). 对于任意矩形ABCD ,下面四个结论中, ①存在无数个四边形MNPQ 是平行四边形; ②存在无数个四边形MNPQ 是矩形; ③存在无数个四边形MNPQ 是菱形; ④至少存在一个四边形MNPQ 是正方形. 所有正确结论的序号是__________. 2.(20年朝阳期末)如图,分别过第二象限内的点P 作x ,y 轴的平行线,与y ,x 轴分别 交于点A ,B ,与双曲线6y x = 分别交于点C ,D . 下面三个结论, ①存在无数个点P 使AOC BOD S S =△△; ②存在无数个点P 使POA POB S S =△△; ③存在无数个点P 使ACD OAPB S S =△四边形. 所有正确结论的序号是 . 3. 已知长方形ABCD 可以按图示方式分成九部分,在a ,b 变化的过程中, 下面说法正确的有 ①图中存在三部分的周长之和恰好等于长方形ABCD 的周长 ②存在长方形ABCD 的长宽之比为2 ③存在长方形ABCD 分成的九部分为正方形 ④当长方形ABCD 的周长为60时,它的面积可能为100 A .①② B .①③ C .②③④ D .①③④ b b a a b a C D B

4.(20年人大附中月考)在□ABCD 中,对角线AC ,BD 交于点O ,E 是边AD 上 的一个动点(与点A ,D 不重合),连接EO 并延长,交BC 于点F ,连接BE ,DF . 下列说法: ① 对于任意的点E ,四边形BEDF 都是平行四边形; ② 当90ABC ∠>?时,至少存在一个点E ,使得四边形BEDF 是矩形; ③ 当AB AD <时,至少存在一个点E ,使得四边形BEDF 是菱形; ④ 当45ADB ∠=?时,至少存在一个点E ,使得四边形BEDF 是正方形. 所有正确说法的序号是_________________. 5.我们知道任意三角形都存在内切圆,同样的,一些凸四边形也存在内切圆。我们规定:存在与凸四边形的三边相切的圆叫伪内切圆,以下结论正确的是:______ ①凸四边形必存在伪内切圆 ②当平行四边形只存在一个伪内切圆时,它的对角线一定相等 ③矩形伪内切圆的个数可能为1,2,4 ④当且仅当四边形对角线互相垂直平分且相等时,该四边形的伪内切圆与内切圆重合 6.如图,点A ,B ,C 是⊙O 上的三个点,点D 在BC 的延长线上.有如下四个结论: ①在∠ABC 所对的弧上存在一点E,使得∠BCE =∠DCE ; ②在∠ABC 所对的弧上存在一点E,使得∠BAE =∠AEC ; ③在∠ABC 所对的弧上存在一点E,使得EO 平分∠AEC ; ④在∠ABC 所对的弧上任意取一点E (不与点A,C 重合) , ∠DCE=∠ABO +∠AEO 均成立. 上述结论中,所有.. 正确结论的序号是____________ 7.(20年海淀一模)16.如果四边形有一组对边平行,且另一组对边不平行,那么称这样的 四边形为梯形,若梯形中有一个角是直角,则称其为直角梯形. 下面四个结论中, ①存在无数个直角梯形,其四个顶点分别在同一个正方形的四条边上; ②存在无数个直角梯形,其四个顶点在同一条抛物线上; ③存在无数个直角梯形,其四个顶点在同一个反比例函数的图象上; ④至少存在一个直角梯形,其四个顶点在同一个圆上. 所有正确结论的序号是 .

二次函数平行四边形存在性问题例题

二次函数平行四边形存在性问题例题 一.解答题(共9小题) 1.如图,抛物线经过A(﹣1,0),B(5,0),C(0,)三点. (1)求抛物线的解析式; (2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标; (3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由. 2.如图,在平面直角坐标系中,直线y=﹣3x﹣3与x轴交于点A,与y轴交于点C.抛物线y=x2+bx+c经过A,C两点,且与x轴交于另一点B(点B在点A右侧). (1)求抛物线的解析式及点B坐标; (2)若点M是线段BC上一动点,过点M的直线EF平行y轴交x轴于点F,交抛物线于点E.求ME长的最大值; (3)试探究当ME取最大值时,在x轴下方抛物线上是否存在点P,使以M,F,B,P为顶点的四边形是平行四边形?若存在,请求出点P的坐标;若不存在,试说明理由. 3.已知:如图,在平面直角坐标系xOy中,直线与x轴、y轴的交点

分别为A、B两点,将∠OBA对折,使点O的对应点H落在直线AB上,折痕交x 轴于点C. (1)直接写出点C的坐标,并求过A、B、C三点的抛物线的解析式; (2)若(1)中抛物线的顶点为D,在直线BC上是否存在点P,使得四边形ODAP 为平行四边形?若存在,求出点P的坐标;若不存在,说明理由; (3)若把(1)中的抛物线向左平移3.5个单位,则图象与x轴交于F、N(点F 在点N的左侧)两点,交y轴于E点,则在此抛物线的对称轴上是否存在一点Q,使点Q到E、N两点的距离之差最大?若存在,请求出点Q的坐标;若不存在,请说明理由. 4.已知:如图,在平面直角坐标系xOy中,直线与x轴、y轴的交点分别为A、B,将∠OBA对折,使点O的对应点H落在直线AB上,折痕交x轴于点C. (1)直接写出点C的坐标,并求过A、B、C三点的抛物线的解析式; (2)若抛物线的顶点为D,在直线BC上是否存在点P,使得四边形ODAP为平行四边形?若存在,求出点P的坐标;若不存在,说明理由; (3)设抛物线的对称轴与直线BC的交点为T,Q为线段BT上一点,直接写出|QA ﹣QO|的取值范围. 5.如图,Rt△OAB如图所示放置在平面直角坐标系中,直角边OA与x轴重合,

八年级下平行四边形难题全面专题复习最全面的平行四边形

【镭霆数学】平行四边形专题复习 一、平行四边形与等腰三角形专题 例题1已知:如图,平行四边形ABCD中,E为AD的中点,BE的延长 线交CD的延长线于点F. (1)求证:CD=DF; (2)若AD=2CD,请写出图中所有的直角三角形和等腰三角形. 训练一 1.如图,在?ABCD中,分别以AB、AD为边向外作等边△ABE、△ADF,延长CB交AE于点G,点G 在点A、E之间,连接CE、CF,EF,则以下四个结论一定正确的是() ①△CDF≌△EBC;②∠CDF=∠EAF;③△ECF是等边三角形;④CG⊥AE. A.只有①② B.只有①②③ C.只有③④ D.①②③④ 2.如图,四边形ABCD是平行四边形,△AB′C和△ABC关于AC所在的直线对称,AD和B′C相交于点O,连接BB′. (1)请直接写出图中所有的等腰三角形(不添加字母); (2)求证:△AB′O≌△CDO. 3.如图,已知AD和BC交于点O,且△OAB和△OCD均为等边三角形,以OD和OB为边作平行四边形ODEB,连接AC、AE和CE,CE和AD相交于点F. 求证:△ACE为等边三角形. 4.如图,已知:平行四边形ABCD中,∠BCD的平分线CE交边AD于E,∠ABC的平分线BG交CE于F,交AD于G.求证:AE=DG.

二、平行四边形与面积专题 例题2 已知平行四边形ABCD ,AD=a ,AB=b ,∠ABC=α.点F 为线段BC 上一点(端点B ,C 除外),连接AF ,AC ,连接DF ,并延长DF 交AB 的延长线于点E ,连接CE . (1)当F 为BC 的中点时,求证:△EFC 与△ABF 的面积相 等; (2)当F 为BC 上任意一点时,△EFC 与△ABF 的面积还相 等吗说明理由. 训练二 1. 如图,过?ABCD 的对角线BD 上一点M 分别作平行四边形两边的平行线EF 与GH ,那么图中的?AEMG 的面积S 1与?HCFM 的面积S 2的大小关系是( ) A. S 1>S 2 B .S 1<S 2 C .S 1=S 2 D .2S 1=S 2 2.农业技术员在一块平行四边形的实验田里种植四种不同的农作物,现需将该实验田划成四个平行四边形地块(如图),已知其中三块田的面积分别是14m 2,10m 2,36m 2 ,则第四块田的面积为 3.如图,AE ∥BD ,BE ∥DF ,AB ∥CD ,下面给出四个结论:(1)AB=CD ;(2)BE=DF ;(3)S ABDC =S BDFE ; (4)S △ABE =S △DCF .其中正确的有( ) 个 个 个 个 4.在面积为15的平行四边形ABCD 中,过点A 作AE 垂直于直线BC 于点E ,作AF 垂直于直线CD 于点F ,若AB=5,BC=6,则CE+CF 的值为( ) A .231111+ B .231111- C .231111+或231111- D .231111+或2 31+ 5.平行四边形ABCD 的周长为20cm ,AE ⊥BC 于点E ,AF ⊥CD 于点F , AE=2cm ,AF=3cm ,求ABCD 的面积.

平行四边形与矩形的综合运用

课题: 平行四边形的判定与性质的综合运用 目标:1.熟练掌握平行四边形的判定与性质,并会灵活运用。 2.总结线段“倍分”、“和差”问题的思路,形成一定的思维模型。 3.培养学生运用知识分析问题解决问题的能力,特别是将题设与结论结合的综合分析能力。 重点:平行四边的性质和判定的综合、灵活运用。 难点:解题思路的获得——辅助线的构造 教学方法:引导分析。 教学过程: 25.(2017年三模题)如图,在平行四边形ABC 中,AC ⊥BC,点E 是CD 的中点,连接AE,作AF ⊥AE 交BC 于F. (1) 若AC=6,BC=8,求AE 的长; (2) G 为BC 延长线上一点,且AG+CG=BC,求证:AF=2EG. (1)小题分析:由勾股定理和直角三角形斜边中线性质易得. (2)小题分析: 分析思路1 考虑到点E 是CD 中点,且EG 在结论中出现,试着构造“X”形全等三角形,于是延长GE 交AD 于H.易知△CEG ?△DEH,∴CG=DH,GE=EH.由已知AG+CG=BC 及平行四边形的性质得,AG+DH=BC=AD=AH+DH ,∴AG=AH,由等腰三角形“三线合一”得,AE ⊥GH,又AE ⊥AF,∴AF ∥HG,∴四边形AFGH 是平行四边形,∴AF=HG,∴AF=2EG.(全等三角形的判定性质,等腰三角形“三线合一”,平行四边形的判定性质).

分析思路2 仍然从中点E 出发考虑构造“X”形全等三角形,延长AE 与CG 的延长线交于点H,易知△ADE ?△HCE,∴AE=EH,AD=CH,由已知及平行四边形的性质有 AG+CG=BC=AD=CH=GH+CG,∴AG=GH,∴∠4=∠2,因为∠4+∠3=90°,∠2+∠FAG=90°,∴∠3=∠FAG,∴AG=FG,∴GH=FG,∴AF=2EG. 分析思路3 第一点 由题设AG+CG=BC,这是线段和差的典型问题,可考虑“截长”或“补短”.试着延长AG 点M,使GM=CG,则AG+CG=AG+GM=AM,∴AM=AD.因此连接DM,得△ADM 为等腰三角形.∴∠ADM=∠AMD.延长BG 交DM 于点P,则∠ADM=∠GPM,∴∠GPM=∠GMP,∴GP=GM=GC,∴∠CMP=90°.在Rt △CAD 和Rt △CM 中,AE=(1/2)CD=ME.由上易得△AEM ?△AED,∴∠1=∠2,∴AE ⊥MD(三线合一).而AE ⊥AF,∴AF ∥DM.∴四边形AFPD 是平行四边形,∴AF=PD.又易知,PD=2EG(三角形中位线性质).∴AF=2EG. 第二点 从结论AF=2EG 分析,这是线段倍分问题,既可考虑作“分”也可作“倍”(事实上均可,若“分”则用梯形中位线性质,若“倍”则用三角形全等),都能得到平行四边形.如用“倍”即为分析思路1. (3)后记: ①本题涉及平行线、三角形、四边形的几乎所有重要知识点:垂直于同一直线的直线平行,平行于同一直线的直线平行;等腰三角形定义、性质、“三线合一”;直角三13 24H G E B D C A

特殊平行四边形难题综合训练(含答案)

第五章 特殊平行四边形难题综合训练 1、正方形ABCD ,正方形BEFG 和正方形RKPF 的位置如图所示,点G 在线段DK 上,且G 为BC 的三等分点,R 为EF 中点,正方形BEFG 的边长为4,则△DEK 的面积为( ) A .10 B .12 C .14 D .16 2、如图,在正方形ABCD 内有一折线段,其中AE ⊥EF ,EF ⊥FC ,并且AE =6,EF =8,FC =10,则正方形的边长为 . 第1题 第2题 第3题 第4题 3、如图,平面内4条直线l 1、l 2、l 3、l 4是一组平行线,相邻2条平行线的距离都是1个单位长度,正方形ABCD 的4个顶点A 、B 、C 、D 都在这些平行线上,其中点A 、C 分别在直线l 1、l 4上,该正方形的面积是 平方单位. 4、如图,在菱形ABCD 中,边长为10,∠A =60°.顺次连结菱形 ABCD 各边中点,可得四边形A 1B 1C 1D 1;顺次连结四边形 A 1B 1C 1D 1各边中点,可得四边形A 2B 2C 2D 2;顺次连结四边形A 2B 2C 2D 2各边中点,可得四边形A 3B 3C 3D 3;按此规律继续下去…….则四边形A 2B 2C 2D 2的周长是 ;四边形A 2013B 2013C 2013D 2013的周长是 . 5、如图,四边形ABCD 是矩形,点E 在线段CB 的延长线上,连接DE 交AB 于点F ,∠AED =2∠CED ,点G 是DF 的中点,若BE =1,AG =4,则AB 的长为 . 6、如图,四边形ABCD 中,AB =BC ,∠ABC =∠CDA =90°,BE ⊥AD 于点E ,且四边形ABCD 的面积为8,则BE =( ) A .2 B .3 C .22 D .32 第5题 第6题 第7题 第8题 7、如图,菱形OABC 的顶点O 在坐标原点,顶点A 在x 轴上,∠B =120°,OA =2,将菱形OABC 绕原点顺时针旋转105°至OA ′B ′C ′的位置,则点B ′的坐标为( ) A 、(2,2-) B 、(2,2-) C 、(3,3-) D 、(2,2--) 8、如图,正方形ABCD 中,AB =3,点E 在边CD 上,且CD =3DE .将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于

《平行四边形及矩形》测试题

《平行四边形及矩形》测试题 班级 1.平行四边形的两邻边分别为3、4,那么其对角线必( B.小于7 C.大于1且小于7 D.小于7或大于1 CAB的度数分别为( 4.口ABCD中, EF过对角线的交点0, AB=4, AD=3 0F=1.3,则四边形BCEF的 周长为() 6.如图所示,在口ABCD中 , E, F分别在BC, AD上,若想使四边形AFCE为平 行四边形,须添加一个条件,这个条件可以是( ①AF=CF ②AE=CF ③/ BAE W FCD ④/ BEA玄FCE A.①或② B .②或③ C .③或④ D .①或③或④ 7.如图4,在口ABCD中, AD=5,AB = 3,AE 平分 /BAD 交BC边于 A. 2和3 B . 3和2 C . 4和1 D . 1和4 2.如图1,四边形ABCD是平行四边形,/ D=120°,/ CAD=32 . J则/ ABC / 姓名 A.大于1 A.28 ° , 120° B.120 ° , 28° C.32 120° D.120 ,32° 3 .在口ABCD中, / A:/ B :/ C :/ D的值可以是 A.1 : 2 : 3 : B.1 : 2 : 2 : 1 C.1 : 1 : 2 : D.2 : 1 : 2 : 1 A.8.3 B.9.6 C.12.6 D.13.6 5.下列条件中不能确定四边形ABCD是平行四边形的是( A.AB=CD AD// BC B.AB=CD AB// CD C.AB// CD AD// BC D.AB=CD AD=BC 点E,则线段BE、EC的长度分别为( 2

8. 如图,口 ABCD 中, BD= CD / C = 70°, A 、20° B 、250 C 、300 9. 平行四边形没有而矩形具有的性质是( 10.矩形ABCD 勺对角线相交于点0,如果MBC 的周长比人AOB 的周长大10cm, 则 AD 的长是( )A 、5cm B 、7.5cm C 、10cm .填空题 13. 如果平行四边形的一条边长是 8, —条对角线长为6, 线长m 的取值范围是 14. 平行四边形的周长等于 56 cm ,两邻边长的比为3 : 1,那么这个平行四边 形较长的边长为 15. 如果一个矩形较短的边长为 5 cm ,两条对角线所夹的角为60°,则这个矩 形的面积是 16. 矩形是面积的60, 一边长为5,则它的一条对角线长等于 17.在口ABCD 中, AB=AC,若口ABCD 勺周长为 38 cm ,^ ABC 的周长比□ ABCD 勺周长少10测,求口 ABCD 勺一组邻 边的长. 18.如图,在□ ABCD 中,点E 、F 是对角线AC 上两点, AE± BD 于点 E ,则/ DAE=( 、350 A 、对角线相等 B 、对角线互相垂直 C 、对角线互相平分 D 、对角相等 D 、12.5cm 11.如图, 12.已知: 则BC= cm, CD 且 AE=CF 求证:/ EBF=/ FDE 那么它的另一条对角 cm. □ ABCD 中,/ 1 = 平行四边形一边

11 答案 二次函数-矩形的存在性问题

参考答案 1. (2015 黑龙江省龙东地区) 如图,四边形OABC 是矩形,点A 、C 在坐标轴上,△ODE 是△OCB 绕点O 顺 时针旋转90°得到的,点D 在x 轴上,直线BD 交y 轴于点F ,交OE 于点H ,线段BC 、OC 的长是方程x 2 ﹣6x+8=0的两个根,且OC >BC . (1)求直线BD 的解析式; (2)求△OFH 的面积; (3)点M 在坐标轴上,平面内是否存在点N ,使以点 D 、F 、M 、N 为顶点的四边形是矩形?若存在, 请直接写出点N 的坐标;若不存在,请说明理由. 1. 分析: (1)解方程可求得OC 、BC 的长,可求得B 、D 的坐标, 利用待定系数法可求得直线BD 的解析式; (2)可求得E 点坐标,求出直线OE 的解析式,联立直线BD 、OE 解析式可求得H 点的横坐标,可求得△OFH 的面积; (3)当△MFD 为直角三角形时,可找到满足条件的点N ,分∠MFD=90°、∠MDF=90°和∠FMD=90°三种情况,分别求得M 点的坐标,可分别求得矩形对角线的交点坐标,再利用中点坐标公式可求得N 点坐标. 解答: 解:(1)解方程x 2 ﹣6x+8=0可得x=2或x=4,∵BC 、OC 的长是方程x 2 ﹣6x+8=0的两个根,且OC >BC , ∴BC=2,OC=4,∴B (﹣2,4),∵△ODE 是△OCB 绕点O 顺时针旋转90°得到的, ∴OD=OC=4,DE=BC=2,∴D (4,0),设直线BD 解析式为y=kx+b , 把B 、D 坐标代入可得,解得,∴直线BD 的解析式为y=﹣x+; (2)由(1)可知E (4,2),设直线OE 解析式为y=mx , 把E 点坐标代入可求得m=, ∴直线OE 解析式为y=x ,令﹣x+=x , 解得x= ,∴H 点到y 轴的距离为 , 又由(1)可得F (0,),∴OF=,∴S △OFH =××= ; (3)∵以点D 、F 、M 、N 为顶点的四边形是矩形, ∴△DFM 为直角三角形, ①当∠MFD=90°时,则M 只能在x 轴上,连接FN 交MD 于点G ,如图1, 由(2)可知OF=,OD=4,则有△MOF ∽△FOD , ∴=,即=,解得OM=,∴M (﹣,0),且D (4,0),∴G (,0), 设N 点坐标为(x ,y ),则=,=0,解得x=,y=﹣,此时N 点坐标为(,﹣); ②当∠MDF=90°时,则M 只能在y 轴上,连接DN 交MF 于点G ,如图2,

平行四边形和矩形练习题

第4题 F E D C B A 第2题 A B C D E T R Q P O D C B A 平行四边形和矩形练习题 1、在平行四边形ABCD 中,AB =5,BC =7,∠B 、∠C 的平分线分别交AD 于E 、F ,则EF = . 第1题 第3题 第4题 第6题 2.如图,在矩形ABCD 中,DC=2BC ,在DC 上取一点E ,使EB=AB , 连结EA ,则∠DAE=____________。 3、如图,△ABC 是边长为1的等边三角形.取BC 边中点E ,作ED ∥AB ,EF ∥AC , 得到四边形EDAF ,它的面积记作S 1;取BE 中点E 1,作E 1D 1∥FB ,E 1F 1∥EF ,得到 四边形E 1D 1FF 1,它的面积记作S 2.照此规律作下去,则S 2011= . 4.如图,在矩形ABCD 中,BC=6cm ,AE= 2 3 AD,∠CBF=30°,且点A 与F 关于BE 对称,则BE=________________,AB=_____________________。 5.矩形ABCD 中,点E 为边AB 上的一点,过点E 作直线EF 垂直对边CD 于F ,若S AEFD :S BCFE =2:1,则DF :FC= 。 6.如图,在□ABCD 中,AB =3,AD =4,∠ABC =60°,过BC 的中点E 作EF ⊥AB ,垂足为点F ,与DC 的延长线相交于点H ,则△DEF 的面积是 。 7、如图,AC 是□ABCD 的对角线,点E 、F 在AC 上,要使四边形BFDE 是平行四边形,还需要增加的一个条件是 (只要填写一种情况). 第7题 第9题 第10题 第11题 第13题 8、已知□ABCD 的周长为28,自顶点A 作AE ⊥DC 于点E ,AF ⊥BC 于点F . 若AE =3,AF =4,则 CE-CF= . 9、如图,有一块直角三角形的木板AOB ,∠O=90°,OA=3,OB=4,一只小蚂蚁在OA 边上爬行(可以与O 、A 重合),设其所处的位置C 到AB 的中点D 的距离为x ,则x 的取值范围是__________ 10、如图,在平行四边形ABCD 中,AE ⊥BC 于E ,AF ⊥CD 于F ,∠EAF =45o ,且AE+AF = ,则平 12、平行四边形的一条边长为12cm ,那么这个平行四边形的两条对角线的长可以是( ) A.5 cm 和7 cm B.20 cm 和30 cm C.8 cm 和16 cm D.6 cm 和10 cm 13、如图,在□ABCD 中,E 是BC 的中点,且∠AEC=∠DCE ,则下列结论不正确的是_______ A 、S △AFD =2S △EF B B 、BF= 2 1 DF C 、四边形AECD 是等腰梯形 D 、∠AEB=∠ ADC 14、如图,△ABC 和△ADE 都是等腰直角三角形,∠BAC =∠DAE =90°四边形ACDE 是平行 四边形,连结CE 交AD 于点F ,连结BD 交 CE 于点G ,连结BE . 下列结论中: ① CE =BD ;② △ADC 是等腰直角三角形;③ ∠ADB =∠AEB ; 一定正确 的结论有( ) A .1个 B .2个 C .3个 D .4个 15、如图,在□ABCD 中,EF ∥BC ,GH ∥AB ,EF 、GH 的交点P 在BD 上, 则图中面积相等的平行四边形有( ) (A )0对 (B )1对 (C )2对 (D )3对 16、如图,在直角梯形ABCD 中,∠ABC=90°,DC//AB ,BC=3, DC=4,AD=5.动点P 从B 点出发,B →C →D →A 沿边运动,则△ABP 的最大 面积为( )A .10 B .12 C .14 D .16 17、如图,在△ABC 中,D 是BC 上的点,O 是AD 的中点,过A 作BC 的平行线交BO 的延长线于点E , 则四边形ABDE 是什么四边形?并说明理由。 18.如图,在矩形ABCD 中,P 是AD 上任一点,PQ ⊥AC 于点Q ,PR ⊥BD 于点R ,DT ⊥AC 于点T ,问:PQ 、PR 、DT 三条线段能否组成三角形?若能,请证明;否则,请说明理由。 19.如图,在矩形ABCD 中,从顶点C 作对角线BD 的垂线与∠A 的平分线相交于点E 。求证:BD=CE 。 20.若一次函数y =2x -1和反比例函数x k y 2 的图象都经过点(1,1). (1)求反比例函数的解析式; (2)已知点A 在第三象限,且同时在两个函数的图象上,利用图象求点A 的坐标; (3)利用(2)的结果,若点B 的坐标为(2,0),且以点A 、O 、B 、P 为顶点的四边形是平行四边形,请你直接写出点P 的坐标. A B E

平行四边形的存在性问题

平行四边形的存在性问题 专题攻略 解平行四边形的存在性问题一般分三步: 第一步寻找分类标准,第二步画图,第三步计算. 难点在于寻找分类标准,分类标准寻找的恰当,可以使得解的个数不重复不遗漏,也可以使计算又好又快.如果已知三个定点,探寻平行四边形的第四个顶点,符合条件的有3个点:以已知三个定点为三角形的顶点,过每个点画对边的平行线,三条直线两两相交,产生3个交点. 如果已知两个定点,一般是把确定的一条线段按照边或对角线分为两种情况. 灵活运用向量和中心对称的性质,可以使得解题简便. 针对训练 1.如图,已知抛物线y=-x2-2x+3与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,顶点为P.若以A、C、P、M为顶点的四边形是平行四边形,求点M的坐标. 解析、由y=-x2-2x+3=-(x+3)(x-1)=-(x+1)2+4, 得A(-3,0),B(1,0),C(0,3),P(-1,4). 如图,过△P AC的三个顶点,分别作对边的平行线,三条直线两两相交的三个交点就是要求的点M. ①因为AM1//PC,AM1=PC,那么沿PC方向平移点A可以得到点M1. 因为点P(-1,4)先向下平移1个单位,再向右平移1个单位可以与点C(0,3)重合,所以点A(-3,0)先向下平移1个单位,再向右平移1个单位就得到点M1(-2,-1). ②因为AM2//CP,AM2=CP,那么沿CP方向平移点A可以得到点M2. 因为点C(0,3)先向左平移1个单位,再向上平移1个单位可以与点P(-1,4)重合,所以点A(-3,0)先向左平移1个单位,再向上平移1个单位就得到点M2(-4,1). ③因为PM3//AC,PM3=AC,那么沿AC方向平移点P可以得到点M3. 因为点A(-3,0)先向右平移3个单位,再向上平移3个单位可以与点C(0,3)重合,所以点P(-1,4)先向右平移3个单位,再向上平移3个单位就得到点M3(2,7). 2.如图,在平面直角坐标系xOy中,已知抛物线y=-x2+2x+3与x轴交于A、B两点,点M在这条抛物线上,点P在y轴上,如果以点P、M、A、B为顶点的四边形是平行四边形,求点M的坐标. 解析.由y=-x2+2x+3=-(x+1)(x-3),得A(-1,0),B(3,0). ①如图1,当AB是平行四边形的对角线时,PM与AB互相平分,因此点M与点P关于AB 的中点(1,0)对称,所以点M的横坐标为2. 当x=2时,y =-x2+2x+3=3.此时点M的坐标为(2,3).

长方形正方形平行四边形的特征与知识

长方形、正方形、平行四边形的特征与知识 长方形性质 ①对角线相等且互相平分 ②有四条边 ③对边平行且相等 ④四个角都相等且都是直角 ⑤四个角度数和为360° ⑥有2条对称轴 ⑦在没有数据的情况下,水平的那一边为长,垂直的那一边为宽。 长方形判定 ①有一个角是直角的平行四边形是矩形 ②对角线相等的平行四边形是矩形 ③有三个角是直角的四边形是矩形 ④对角线相等且互相平分的四边形是矩形 长方形面积计算公式 面积公式矩形面积公式:长×宽 长方形面积字母公式:S=ab 长方形周长计算公式 长方形周长文字公式:(长+宽)×2 长方形周长字母公式:C=(a+b)×2 正方形性质 边:两组对边分别平行;四条边都相等;相邻边互相垂直 内角:四个角都是90°; 对角线:对角线互相垂直;对角线相等且互相平分;每条对角线平分一组对角;对称性:既是中心对称图形,又是轴对称图形(有四条对称轴)。 判定方法 1:对角线相等的菱形是正方形。 2:对角线互相垂直的矩形是正方形,正方形是一种特殊的矩形。 3:四边相等,有三个角是直角的四边形是正方形。 4:一组邻边相等的矩形是正方形。 5:一组邻边相等且有一个角是直角的平行四边形是正方形。 6:四边均相等,对角线互相垂直平分且相等的平行四边形是正方形。 7.有一个角为直角的菱形是正方形。 依次连接四边形各边中点所得的四边形称为中点四边形。不管原四边形的形状怎样改变,中点四边形的形状始终是平行四边形。正方形的中点四边形是正方形。面积计算公式:S=a×a

或:S=对角线×对角线÷2 周长计算公式: C=4a 正方形是特殊的矩形, 菱形,平行四边形,四边形 平行四边形特点 ⑴如果一个四边形是平行四边形,那么这个四边形的两组对边分别相等。(简述为“平行四边形的对边相等”) ⑵如果一个四边形是平行四边形,那么这个四边形的两组对角分别相等。(简述为“平行四边形的对角相等”) (3)如果一个四边形是平行四边形,那么这个四边形的两条对角线互相平分。(简述为“平行四边形的两条对角线互相平分”) (4)平行四边形是中心对称图形,对称中心是两条对角线的交点。 判定 1.两组对边分别相等的四边形是平行四边形 2.对角线互相平分的四边形是平行四边形 3.一组对边平行且相等的四边形是平行四边形 4.两组对角分别相等的四边形是平行四边形 5.两组对边分别平行的四边形是平行四边形 性质 ⑴连接平行四边形各边的中点所得图形是平行四边形。 ⑵如果一个四边形的对角线互相平分, 那么连接这个四边形的中点所得图形是平行四边形。 ⑶平行四边形的对角相等,两邻角互补 ⑷过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形。 ⑸平行四边形是中心对称图形,对称中心是两对角线的交点。 ⑹平行四边形的面积等于底和高的积。(可视为矩形) 平行四边形中常用辅助线的添法 一、连结角线或平移对角线 二、过顶点作对边的垂线构造直角三角形 三、连结对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线 四、连结顶点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形。 五、过顶点作对角线的垂线,构成线段平行或三角形全等 平行四边形对边平行 平行四边形的对角相等 平行四边形的对边相等 平行四边形的对角线互相平分 平行四边形是中心对称图形,两条对角线的交点是对称中心 面积与周长

平行四边形存在性问题

平行四边形存在性问题 一、解平行四边形的存在性问题一般分三个步骤 第一步寻找分类标准,第二步画图,第三步计算. 二、难点在于寻找分类标准,寻找恰当的分类标准,可以使得解的个数不重复不遗漏,也可以使计算又准又快. 三、如果已知三个定点,探寻平行四边形的第四个顶点,符合条件的有3个点以已知三个定点为三角形的顶点,过每个点画对边的平行线,三条直线两两相交,产生3个交点,利用横纵坐标的平移变化得出结论。 四、如果已知两个定点,一般是把确定的一条线段按照边或对角线分为两种情况,灵活运用向量和中心对称的性质,可以使得解题简便。(辅助手段~三角形全等,等积法,中点坐标公式) 例1.已知抛物线 b ax ax y ++-=22 与x 轴的一个交点为A(-1,0),与y 轴的正半轴交于点C . ⑴直接写出抛物线的对称轴,及抛物线与x 轴的另一个交点B 的坐标; ⑵当点C 在以AB 为直径的⊙P 上时,求抛物线的解析式; ⑶坐标平面内是否存在点M ,使得以点M 和⑵中抛物线上的三点A 、B 、C 为顶点的四边形是平行四边形?若存在,请求出点M 的坐标;若不存在,请说明理由. 例2、如图,抛物线:y= x 2﹣x ﹣ 与x 轴交于A 、B (A 在B 左侧),A (﹣1,0)、B (3,0),顶点为C (1,﹣2)(1)求过A 、B 、C 三点的圆的半径.(2)在抛物线上找点P ,在y 轴上找点E ,使以A 、B 、P 、E 为顶点的四边形是平行四边形,求点P 、E 的坐标. 例 3.已知,如图抛物线

23(0)y ax ax c a =++>与y 轴交于C 点,与x 轴交于A 、B 两点,A 点在B 点左侧。点B 的坐标为(1,0),OC=30B .(1)求抛物线的解析式;(2)若点D 是线段AC 下方抛物线上的动点,求四边形ABCD 面积的最大值: (3)若点E 在x 轴上,点P 在抛物线上。是否存在以A 、C 、E 、P 为顶点且以AC 为一边的平行四边形?若存在,求点P 的坐标;若不存在,请说明理由. 例4.已知抛物线:x x y 22 12 1+- = (1)求抛物线1y 的顶点坐标. (2)将抛物线1y 向右平移2个单位,再向上平移1个单位,得到抛物线2y ,求抛物线2y 的解析式. (3)如下图,抛物线2y 的顶点为P ,x 轴上有一动点M ,在1y 、2y 这两条抛物线上是否存在点N ,使O (原点)、P 、M 、 N 四点构成以OP 为一边的平行四边形, 若存在,求出N 点的坐标;若不存在,请说明理由. 例5.如图,抛物线223y x x =--与x 轴交A 、B 两点(A 点在B 点左侧),直线l 与抛物线交于A 、C 两点,其中C 点的横坐标为2. (1)求A 、B 两点的坐标及直线AC 的函数表达式; (2)P 是线段AC 上的一个动点,过P 点作y 轴的平行线交抛物线于E 点,求线段PE 长度的最大值; (3)点G 抛物线上的动点,在x 轴上是否存在点F ,使A 、C 、F 、G 这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F 点坐标;如果不存在,请说明理 x y y 12 3 4 5 6 7 8 9 54321 -1-2-3-4 1 y 2 -1

相关文档
最新文档